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Approximate Newton Methods
for Nonsmooth Equations1

H. XU2 AND X. W. CHANG3

Communicated by D. Q. Mayne

Abstract. We develop general approximate Newton methods for solv-
ing Lipschitz continuous equations by replacing the iteration matrix
with a consistently approximated Jacobian, thereby reducing the compu-
tation in the generalized Newton method. Locally superlinear conver-
gence results are presented under moderate assumptions. To construct
a consistently approximated Jacobian, we introduce two main methods:
the classic difference approximation method and the e-generalized
Jacobian method. The former can be applied to problems with specific
structures, while the latter is expected to work well for general problems.
Numerical tests show that the two methods are efficient. Finally, a norm-
reducing technique for the global convergence of the generalized Newton
method is briefly discussed.
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1. Introduction

We study the following system of nonsmooth equations:

where F: Rn->Rn is locally Lipschitz continuous.
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Since the introduction of B-derivatives by Robinson (Ref. 1), efforts
have been made to generalize the Newton method and quasi-Newton
methods to the nondifferentiable case. Among them are Refs. 2-10, most of
which are intended to solve some specific nondifferentiable equations such
as those transformed from nonlinear complementarity problems and mathe-
matical programming problems. Kojima and Shindo (Ref. 11) first discussed
a Newton-like method for systems of piecewise continuously differentiable
equations. Ip and Kyparisis (Ref. 12) extended the classic quasi-Newton
methods, especially the Broyden method, to B-differentiable equations.
Locally superlinear convergence results were obtained under the condition
that F(x) has Gateaux derivatives at a solution point of (1). However, the
extension seems to be limited, since a bound on the deterioration of the
updating matrix cannot be maintained if F is not differentiable at a solution
point.

Qi and Sun (Ref. 13) proposed a generalized Newton method for (1).
They employed the following iteration:
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where dF(xk) is the generalized Jacobian of F at xk, defined by Clarke (Ref.
14), and Vk is arbitrarily taken from dF(xk). The iterates produced by (2)
were proved to be locally superlinearly convergent under mild conditions.
However, difficulties may occur when (2) is applied to solve real-life prob-
lems. The obvious one is the calculation of Vk when F is not differentiable
at xk. A simple idea that we are familiar with is to replace Vk with the
Jacobian of F at a point near xk, but the computation of a Jacobian is also
a formidable task, even in the smooth case. Another difficulty is that the
iteration (2) may not work well if there is no significant reduction of \\F(x) \\
when the initial guess is far from a solution point.

Pang and Qi (Ref. 15) developed a new kind of Gauss-Newton method
for solving a certain class of nonsmooth equations. They also extended the
classical superlinear convergence results of Dennis and More for smooth
equations and those of Ip and Kyparisis for B-differentiable equations. There
are also other new surveys on the topic; see Refs. 16-18, for instance.

In this paper, we develop general approximate Newton methods for (1)
in order to avoid the complicated computation of Vk in (2). In Section 2,
we establish a general approximate Newton iterative scheme by introducing
the concept of consistently approximated Jacobian (CAJ in brief); local
convergence results are presented under some mild conditions. In Section 3,
we propose two practical methods: the classic difference approximation
method and the e-generalized Jacobian method. The former can be applied
to a few problems with specific structures, while the latter is expected to
work well for more general problems. In Section 4, we introduce briefly a



norm reducing technique to force the generalized Newton algorithms to
converge when the initial point is far from a solution point of (1). Finally,
we give numerical experiments in Section 5.

2. General Approximate Newton Iteration

2.1. Notation. Throughout this paper, we use the following notation.
Rn denotes the vector space of n-tuples with 2-norm || • ||, and L(Rn) the
matrix space of nxn real matrices with the induced norm || . ||. S(x, 8)
denotes the open ball in Rn with center x and radius 8, and B is an open
unit ball in L(Rn). The closure of a set D is specified by D. If a(h) is a
vector-valued function (in this context, we simply call it a function for
brevity) or a matrix function of heRn, we use a(h) = o(||h||) to denote the
case where
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and we use a(h) = O(||h||) if there exist constants C1, C2 > 0 such that

The set of positive integers [ 1, . . ., n] is denoted by n. The set of points of
Rn at which F is differentiable is denoted by DF.

2.2. Basics. We assume throughout this paper that F is locally
Lipschitz continuous in Rn in the sense that, for every x, there exist L > 0
and 8 > 0, such that

for all y, zeS(x, S). Here, L is called the Lipschitz constant of F at x.
According to the Rademacher theorem, F is differentiable almost every-

where in Rn. The generalized Jacobian of F at x is defined by Clarke in Ref.
14 as follows:

Here and later on, VF(x) denotes the Jacobian of Fat xeDF; conv denotes
the convex hull.

Proposition 2.1. See Proposition 2.6.2., Ref. 14. dF(x) is compact and
upper semicontinuous in the sense that, for every €>0, there exists <5>0
such that



For the sake of convenience in the subsequent discussion, we summarize
some preliminary concepts and results given by Qi and Sun in Ref. 13. F is
said to be semismooth at x if, for every heRn, the following limit exists:

Lemma 2.3. See Theorem 2.3, Ref. 13. The following statements are
equivalent:

(a) F is semismooth at x;
(b) for any VedF(x + h), h-»0, Vh-F'(x,h) = o(||h||);
(c) limh->0[F'(x + h,h) - F'(x, h ) ] / | | h || = 0.

dF(x) is said to be nonsingular if all VedF(x) are nonsingular.

Lemma 2.4. See Proposition 3.1, Ref. 13. Suppose that SF(x) is non-
singular. Then, there exist S > 0, C1 > 0, such that, for each yeS(x, 8), dF(y)

Lemma 2.2. See Lemma 2.2, Ref. 13. Suppose that F'(x, h) exists at
x for any h. Then for every h, there exists VedF(x) such that

and

Proof. It follows directly from Propositions 2.1 and 2.17 of Ref. 13
and the definition of semismoothness.

If there exists 0<p< 1 such that, for any VedF(x + h), h->0,

then F is said to be p-order semismooth at x. In Ref. 13, Qi and Sun proved
that, if F is P-order semismooth at x, then

In particular, when h'=h,

Lemma 2.1. Suppose that .F is semismooth at x. Then, for every heRn,
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where J(xk, s k ) e L ( R n ) is an approximation of some VkedF(xk) and sk is
an l-dimensional parameter vector.

The iteration (4) is a generalization of approximate Newton methods
in the smooth case, which were discussed extensively by Ortega and Rhein-
boldt in Ref. 19. The main difficulty here is the construction of J(x, s). For
the sake of convenience, we present a strict theoretical definition of J(x, s).

Let N(x, 8) denote the closed ball with center x and radius S in R1 in
order to distinguish it from S(x, 8).

Definition 2.1. Let J: D x D1cRn x R'-+L(Rn). If QeR1 is a limiting
point of D1, and if
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is nonsingular and

for all xeD, then J(x, s) is called a consistently approximated Jacobian of
F in D. We call it CAJ for brevity. Here,

Lemma 2.5. Let x* e Rn. Suppose that F is semismooth at x* and that
J(x, s) is a CAJ of F(x) in a neighborhood of x*. Then,

where

Proof. Let 8 > 0 be sufficiently small so that J(x, s) is a CAJ of F in
S(x*,5). By Definition 2.1,

2.3. Approximate Newton Method. We now introduce an approximate
Newton iteration. Let xk be the current point, and let xk+1 be the next point.
Then, xk + 1 is computed by



The proof is complete.

Now, we can state our main results.

Theorem 2.1. Let x*eD be a solution of (1). Suppose that F is semi-
smooth at x* and that dF(x*) is nonsingular. Let J : D x D 1 c R n x R1^L(Rn)
be a CAJ of F in D, and assume that OeD1. Then, there exist <5>0 and y >0
such that J(x, s) is nonsingular for xe5(x*, 8), seN(Q, y). Furthermore,
the function

is contractive in the sense that

Then, we see that (8) holds from (9)-(11) and

Write

uniformly with respect to s. Using Lemma 2.3 (c), we get

uniformly with respect to ||h||<<5, as s-»0. Since F is semismooth at x*,
from Lemma 2.3 (b),
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uniformly with respect to ||h|| <8. Note that dF(x* +h) is closed. Then for
each s, there exists a V(x* + h, s)edF(x* +h) such that



Proof. First, we show that there exist S > 0 and y > 0, such that J(x, s)
is nonsingular for any xeDnS(x*, 8) and any seD 1 r>N(0, 7). It follows
from Definition 2.1 that, for each e>0, there exists a constant y>0 such
that

Now, we prove (13). In fact,

The last inequality is due to Lemma 2.3, Lemma 2.5, (3), and (17). Clearly,
(14) holds. The proof is complete.

Let

Then, from (15) and (6), we have

Suppose without loss of generality that eC1 < 1. Then, by the Banach pertur-
bation theorem and (16), J(x, s) is nonsingular and satisfies

where
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Since dF(x*) is nonsingular, by Lemma 2.4, there exist a constant C1>0
and 8 > 0, such that dF(x) is nonsingular and



The conclusion is obvious as e can be arbitrarily small.

3. Practical Approximation Methods

In Section 2, we established a unified framework of superlinearly con-
vergent approximate Newton methods based on CAJ. The results may be
regarded as theoretical, since there are no practical methods presented for
the construction of a CAJ. In this section, we discuss how to construct a
CAJ practically. Obviously, the existence of a CAJ depends on the local
property of F(x). It seems unlikely to provide a unified approach for general
problems. In what follows, we propose two methods: the finite difference
approximation method and the e-generalized Jacobian approximation
method.

3.1. Finite Difference Approximation. We first introduce some useful
notation. If aj,jen, are n vectors of Rn, we will denote by [ a 1 , . . . , an] the
matrix whose jth column is aj. Similarly if Aj,jen, are subsets of Rn, then
[ A 1 , . . . , An] will be [ [ a 1 , . . . , a n ] : ajeAj, for all jen].

Now, we suppose that F is semismooth in Rn. By Lemma 2.1, for each
xeRn ,

thereby,

Since s=g(x) and g is continuous at x* with g(x*) = 0, there exists 8<81

such that

Corollary 2.1. Suppose that the assumptions in Theorem 2.1 are satis-
fied. Let G(x, s) be defined by (12), and let g:R n^R s be a continuous
function with g(x*) = 0. If s=g(x), then there exists <5>0 such that
G(x,g(x)) is contractive in S(x*, 5). Thereby, the sequence produced by
(4) converges to x* superlinearly for a sufficiently good starting point.

Proof. From (14), it follows that, for any given € >0, there exist 8, >0
and CT > 0 such that
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but equality holds at least in two particular cases: first, when all functions
fj, except possibly one (sayf1), are strictly differentiable at x, in such a case,

3F=[3f1,Vf2, . . . ,Vfn]T;

another equality case is when the functions are nondifferentiable but only
with respect to nonrelated variables.

Example 3.1. Let F: R2->R2 be defined by

Then,

So far, we are able to reach the following conclusions.

Lemma 3.1. Suppose that F is a function whose components are either
nondifferentiable only with respect to nonrelated variables or strictly differ-
entiable, except for one, and F is semismooth in Rn. Then,

In general,

consequently,

and djF denotes the derivatives of F with respect to the jth component of
the variable x at a point x ieDF. Hence,

where

where ej is the jth unit vector. On the other hand,
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By assumption, we get

This completes the proof.

Theorem 3.1. Let x* be a solution of (1). Assume that F is semismooth
in a neighborhood of x* and that dF(x*) is nonsingular. Suppose that the
assumptions of Lemma 3.1 are satisfied and that J(x, s) is defined by (19),
which holds uniformly with respect to x in a neighborhood of x*. Then, for
s= O(||F(x)||), there exists d > 0 such that, if the starting point x0eS(x*, d),
the sequence { x k } generated by (4) is well defined and converges to x*
superlinearly.

Proof. It follows from Lemma 3.1 that J(x, s) is a CAJ of F in some
neighborhood of x* under the assumption that (18) holds uniformly with
respect to x in a neighborhood of x*. The rest follows directly from Corollary
2.1.

Remark 3.1. Theorem 3.1 is a nonsmooth version of the classic differ-
ence approximate Newton method. It seems that the nonsmooth finite
approximation only fits a small class of problems. Therefore, we are led
to develop other techniques which are likely to deal with more general
problems.

3.2. e-Generalized Jacobian Approximation. In nonsmooth optimiza-
tion, when the steepest subgradient method failed to solve the Wolfe counter-
example, people realized that the subdifferential of a nonsmooth function
contains too little information for finding a convergent search direction. A
larger set, called e-subdifferential, was then introduced and the existing
difficulties were consequently overcome. In this context, using the same
method as for defining the e-subdifferential, we try to define an e-generalized
Jacobian for a vector-valued function. However, rather than in light of
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Proof. Since F(x) is semismooth, by Lemma 2.1,

Hence,



convergence considerations, the definition here is intended to provide more
practical substitutes of the generalized Jacobians, which are usually difficult
to compute.

Definition 3.1. Let F(x) be locally Lipschitz continuous. Then, we say
that deF(x) is the e-generalized Jacobian of F at x if

The e-generalized Jacobian has many interesting properties.

Proposition 3.1. Let dfF(x) be defined by (19). Then:

(a) for every x e Rn, 30F(x) = dF(x);
(b) for every xeRn , if e < e', then d€F(x) c d e F ( x ) ;
(c) for any e > 0, deF(x) is convex and bounded on a bounded set;
(d) for every n > 0, there exists 8 > 0 such that

Proof. Note that, for YtedeF(x), e0>0, {Ve} is bounded for
ee[0, e0]. Assume that there is a subsequence {Vej}, with Ve j->V'$dF(x)
as fj->0, and seek a contradiction. Since

we have

Proposition 3.2. For each VeedeF(x),
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Proof. We only prove (d). By Proposition 2.1, for every n >0, there
exists 8 > 0 such that

From Definition 3.2, we have, for e<<5/2, yeS(x, 5/2),



which leads to a contradiction to (21).

In general, it is very restrictive if we require (20) to hold uniformly with
respect to x in some open set D. Therefore, Ve is not necessarily a CAJ in
general cases. This leads us to consider a weaker condition for the conver-
gence of the approximate Newton methods.

Lemma 3.2. Suppose that F is semismooth at x* and that E: R+->R+

is a real function with E(0) = 0 and limt_0 E(t)/t= 0. Then, for every
UedE(||x-x*||) F(x), there exists VedF(x) such that

Then, for each UedE(||x-x*||) F(x), we have by Definition 3.2 and the Cara-
thedory theorem that

Here, l(x) is an upper-bounded positive number; a i (x ) , i=1, . . . , l(x), are
nonnegative scalars with J^j ai(x) = 1; and
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or equivalently,

where Ac denotes the complementary set of A. Thus, there exists 0<e'<e0

such that

On the other hand, let j be so large that ej<e'. Then, by Proposition
3.1 (b),

Since de-F(x) is compact, we have

Proof. Let



Suppose without loss of generality that h^h as t->0. Since F is semismooth
at x*, it follows from Lemma 2.1 that, for every VedF(x),

Remark 3.2. The conclusion of Lemma 3.2 still holds when E(t) is
replaced by kE(t) for some positive constant k.

Theorem 3.2. Let x* be a solution point of (1). Suppose that F is
semismooth at x* and that dF(x*) is nonsingular. Let E:R+->R+ be a real
function with E(0) = 0 and limt_0 E(t)/t = 0. Then, the iteration

JOTA: VOL. 93, NO. 2, MAY 1997 385

with s i ( x ) eR n , | | s i (x ) | | = 1, and 0i(x)e[0, 1], for i= 1, . . . , l(x). Let

which implies (22).

is well defined and superlinearly convergent to x* in a neighborhood of x*.

Proof. Since dF(x*) is nonsingular, by Proposition 3.1 (d), there exists
<5>0 such that deF(x) is also nonsingular and ||U-1|| is bounded for every
UedeF(x), when e<8, xeS(x*,S). Hence,

The last equality follows from Lemma 2.1, Lemma 2.3, and Lemma 3.2.
The proof is complete.

The methods for the construction of dfF(x) vary from problem to prob-
lem. For some problems, a detailed knowledge of deF(x) is needed; for some
others, maybe one element of deF(x) is enough. In what follows, we present
an integral method which can be regarded as a generalization of the results
of Ref. 20.

Let || . || „ denote the infinity norm of vectors of Rn; set
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Define

where

Then, we have the following proposition.

Proposition 3.3. Fe(x) is continuously differentiable with respect to x
and

where

and where (x)j denotes the jth component of vector x.

Proof. The proof can be obtained by a simple calculation.

Lemma 3.3. Let Fe(x) be defined by (24). Then, for every heRn with
||h|| = 1,

Proof. Let heRn with ||h|| = 1. Since Fe(x) is differentiable,



and

Hence,

On the other hand, it follows from Lemma 3.3 that

Then,
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Note that

Hence, by letting t<e, we have

and consequently,

which implies (26).

Lemma 3.4. Let VFf(x) be given by (25). Suppose that dF(x*) is non-
singular. Then, there exist a constant C2>0 and <5>0 such that VFf(x) is
nonsingular and

Proof. By Proposition 3.1 (d), for every /J>0, there exists 5>0 such
that

Since dF(x*) is nonsingular, for n sufficiently small, every matrix of
dF(x*) + nB is nonsingular. Now, let



Since d ( R n + 1 ) e F ( x ) is closed, for every h there exists U h e d ( R n + 1 ) e F ( x ) such
that VFc(x)h = Uhh. By Lemma 3.2 and Remark 3.2, Uh satisifes (22) for
e = E(||x-x*\\). Therefore, by analogy with the proof of Theorem 3.2, we
can easily get the conclusion.

4. Norm Reducing Technique

In this section, we discuss briefly the techniques which are likely to be
combined with local convergence methods when a starting point is far from a
solution point of (1). It is well known that solving the nonlinear simultaneous
equations (1) is equivalent to finding the global minimizer of

Suppose that F(x) is locally Lipschitz continuous. Then, f ( x ) is also
locally Lipschitz continuous, and

A proof of (27) was given by Clarke; see Theorem 2.6.6, Ref. 14.
General methods for minimizing f ( x ) can be summarized as follows:

where xc and x+ denote the current and next approximate root of (1), a is
the stepsize, and dc is the search direction.

which implies that VFe(x) is nonsingular. Letting C2= 1/cr, we have
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which completes the proof.

Theorem 3.3. Let VFe(x) be given by (25). Then, Theorem 3.2 holds
for Uk = VFE(| |x_x*| | )(xk)in(23).

Proof. Since dF(x*) is nonsingular, it follows from Lemma 3.4 that
there exists S > 0 such that VFe(x) is nonsingular and || VFe(x) -1 || is bounded
for all xeS(x*, 8),e<S.On other hand, for all heRn with ||h|| = 1, it follows
from Lemma 3.3 that
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By the Caratheodory theorem, there exist an integer m and V i edF(x c ) , iem,
such that every V c edF(x c ) can be expressed as

with

As a consequence, (29) is equivalent to

and

where (a1 , . . . , am) is the solution of (30).
Therefore, if we already know V i e d F ( X c ) , the search direction may be

computed through (30). However, in practice, it is unrealistic to compute
all V iedF(x e) . One possible substitute is to use the former iteration matrices
computed at the previous steps. Let

instead of (30). This method is called the bundle-like method.

Then, we may compute an approximate search direction by solving
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Substituting (27) into (28), we have



We may use a trust region method to find a descent direction by solving

5. Numerical Experiments

We implemented the finite-difference approximation method, based on
(4) and (18), and the e-generalized Jacobian methods based on (23) for
some typical examples. The computations were performed in Matlab. The
results show that our methods are efficient.

Example 5.1. Consider the following nonsmooth equations:
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An alternative suggested by Fletcher is to use the L1-norm, i.e., to
convert (1) into the following global minimization problem:

Suppose that fi(x), ien, are regular (Ref. 14). Then, for every heRn,

where

We omit further discussion, since it is not the main topic in this paper.

This problem has two solutions,
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Table 1. Results for Example 5.1.

Initial point

(1,0)T

(1.-1)T

(-1.0)T

(-1,-1)T

s

1.E-11
1.E- 5
1.E-5
1.E-5

NIT

11
6
4
4

Solution

(1,1)TT

(0,0)T

(0,0)T

(0,0)T

||F(x) || 2

6.5087e-07
7.6141e-08
1.8981e-08
2.3110e-09
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F is differentiable at x* but nondifferentiable at x**, and it satisfies the
conditions of Lemma 3.1. We used the finite-difference approximation
method to solve this problem. The numerical results are shown in Table 1,
in which s is the parameter in (18), NIT denotes the number of iterations
needed to reach the specified precision, "solution" is the exact solution of
the equations, to which the iteration sequence converges, and F(x) is the
function evaluated at the computed solution x.

Example 5.2. Consider the function F: Rn-*Rn,

When c1 =c2, F(x) is continuously differentiable. Therefore |c1 - c2| may be
interpreted as the degree of nondifferentiability of F. As it is easily verified,
F(x) has the solutions (1 +2k1n , . . . , 1 +2knn)T, where k1 , . . . , kn are arbi-
trary integers. The example was considered by Martinez and Qi in Ref. 21.

We used the e-generalized Jacobian method to compute this example.
An obvious difficulty is how to compute the elements of the e-generalized
Jacobian. Let x be the current point at which F is nondifferentiable. In the
neighborhood of x, find a point y at which F is differentiable and take
Uk = VF(y). However, it is difficult to design a deterministic algorithm for
identifying y. In our implementation, we get y by giving a random small
perturbation to x. If F is still nondifferentiable at y, then repeat the above
process until finally F is differentiable at y. By the Rademacher theorem, F
is differentiable almost everywhere. Therefore, the probability that y lies in
DF is one. Clearly, running the same program for the same problem at
differnt times results in a different numbers of iternations due to different
perturbations. In the test, we ran our program 100 times for each case. The

where



Table 2. Results for Example 5.2.

C|

1
20

100

C2

-1
-20

-100

ANIT

8.48
9.71

10.60

ANP

4.55
5.76
6.63

Numerical results are displayed in Table 2 for n = 20 with initial point x0=
(0 , . . ., 0)T. In Table 2, ANIT denotes the average number of iterations
needed to reach the specified precision, ANP denotes the average number
of perturbations during the whole iterations.

Example 5.3. Consider the following nonlinear complementarity prob-
lem: find xeR4 such that

Table 3. Results for Example 5.3.

Initial point

(1,0, 0, 0)T

(1,0, 1 , - 5 ) T

(1 ,0 , l ,0)T

(1 ,0 ,0 , l)T

(0,0,0, 1)T

ANIT

3
3

1.96

3.52
failed

ANP

0
0

1

1
—

Solution

(v/6/2, 0, 0, 0.5)T

(V6/2, 0, 0, 0.5)T

(1,0, 3, 0)T

(s/6/2, 0, 0, 0.5)T

(v/6/2,0,0,0.5)T

—
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where f: R4->R4 is given by

The problem can be transformed into the solution of nonsmooth equations:

where min refers to the componentwise minimum. The problem has two
solutions,

termination criterion is



F(x) is differentiable at x* but nondifferentiable at x**. We used the e-
generalized Jacobian method to solve the problem. Some technique for the
implementation of the method has been presented in Example 5.2. Also, we
ran the same program 100 times for each case as we did in Example 5.1.
The termination criterion is still
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