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ABSTRACT

Integer least squares (ILS) is an important class of optimization problems, which

can arise in many applications, such as communications, cryptography and crypt-

analysis and global navigation satellite systems. This thesis is concerned with solving

the underdetermined box constrained ILS (UBILS) problems. For the two existing al-

gorithms, the direct tree search (DTS) algorithm and the partial regularization (PR)

algorithm, we propose to incorporate some lower bounds to speed up the search pro-

cess. Simulation results show that the proposed lower bounds can make the search

process of the DTS algorithm perform more efficiently than the original one. Then

we propose a modified DTS algorithm by partially using a best-first search strategy

in the search process. Numerical tests results indicate that the new search algorithm

is very effective in improving the efficiency of the DTS algorithm with or without

incorporating the proposed lower bounds.
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ABRÉGÉ

Les moindres carrs en nombres entiers (ILS) est une mthode d’optimisation des

problmes, qui peut tre applique dans beaucoup de domaines, comme la commu-

nication, la cryptographie et la cryptanalyse les systmes de navigation mondiaux

par satellite. Dans cette thse, on tudiera trois types de problmes concernant les

moindres carrs en nombres entiers: les problmes de moindres carrs en nombre entiers

classiques(OILS), les problmes hyperdtermins(OBILS) et hypodtermins(UBILS) avec

les contraintes de boites. Dans un premier temps, on va faire un rappel de diffrents

algorithmes pour rsoudre ces trois types de problmes, suivi par une prsentation de

diffrents minorations afin d’augmenter l’efficacit du processus de recherche. Pour

les deux algorithmes existants l’algorithme de recherche en arbre directe(DTS) et

l’algorithme de rgularisation partielle (RP), on va proposer les minorations corre-

spondantes afin d’acclrer le processus de recherche. On montrera les rsultats de

simulation qui justifient que les minorations qu’on propose peut faire le processus

de recherche par l’algorithme de recherche en arbre directe plus performante que la

mthode classique. Puis, on va proposer un nouveau algorithme de recherche pour

rsoudre les problmes UBILS, qui est en fait une modification directe sur l’algorithme

de recherche en arbre directe en utilsant la stratgie de recherche le meilleur en

premier(best-first) dans le processus de recherche. Les rsultats de test numrique

montrera que le nouvel algorithme de recherche est plus efficace que la mthode de

recherche en arbre directe existante.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Integer Least Squares Problems . . . . . . . . . . . . . . . . . . . . . 1
1.2 Box-constrained Integer Least Squares Problems . . . . . . . . . . . 3
1.3 Organization and Contributions . . . . . . . . . . . . . . . . . . . . . 7
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Algorithms for Solving Various ILS Problems . . . . . . . . . . . . . . . . . 9

2.1 Ordinary ILS Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Overdetermined Box-constrained ILS Problems . . . . . . . . . . . . 20
2.2.1 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Underdetermined Box-constrained ILS Problems . . . . . . . . . . . 28
2.3.1 Direct Tree Search (DTS) Algorithm . . . . . . . . . . . . . . 30
2.3.2 Partial Regularization (PR) Algorithm . . . . . . . . . . . . 39

3 Lower Bounds for UBILS Problems . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Lower Bounds for OBILS Problems . . . . . . . . . . . . . . . . . . . 45
3.1.1 A Norm-wise Based Lower Bound . . . . . . . . . . . . . . . 48

vi



3.1.2 A Component-wise Based Lower Bound . . . . . . . . . . . . 48
3.1.3 A Basis Reduction Based Lower Bound . . . . . . . . . . . . 48

3.2 Lower Bounds for UBILS Problems . . . . . . . . . . . . . . . . . . . 49
3.2.1 Incorporating Lower Bounds in the DTS Algorithm . . . . . 50
3.2.2 Incorporating Lower Bounds in the PR Algorithm . . . . . . 54

4 A New Search Algorithm for UBILS Problems . . . . . . . . . . . . . . . . 55

4.1 Reordering Strategy for the Search Process . . . . . . . . . . . . . . 55
4.2 A New Search Ordering Strategy at Level n . . . . . . . . . . . . . . 58
4.3 The New Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Incorporating Lower Bounds in the New Search Algorithm . . . . . 62

4.4.1 Lower Bounds in the Order Choosing Stage . . . . . . . . . . 64
4.4.2 Lower Bounds for the Overdetermined Part . . . . . . . . . . 65

5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 System Model and Algorithm Notations . . . . . . . . . . . . . . . . 66
5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Simulation Result for Case 1 . . . . . . . . . . . . . . . . . . . 70
5.2.2 Simulation Result for Case 2 . . . . . . . . . . . . . . . . . . . 76
5.2.3 Simulation Result for Case 3 . . . . . . . . . . . . . . . . . . . 79

6 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

KEY TO ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



LIST OF TABLES
Table page

5–1 Case 1 with m = 15, n = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5–2 Cases 2 with m = 15, n = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5–3 Case 3 with Nt = 8, Nr = 12, for 4,16,64QAMs . . . . . . . . . . . . . . . 84

viii



LIST OF FIGURES
Figure page

4–1 An example of search tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5–1 Case 1, σ = 0.1, l = 0, u = 7, m = 15, n = 16,17,18,19,20 . . . . . . . . . 71

5–2 Case 1, σ = 0.1, l = 0, u = 7, m = 15, n = 16,17,18,19,20 . . . . . . . . . 72

5–3 Case 1, σ = 0.1, l = 0, u = 7, m = 15, n = 20 . . . . . . . . . . . . . . . . . 73

5–4 Case 2, σ = 0.1, l = 0, u = 7, m = 15, n = 16,17,18,19,20 . . . . . . . . . 76

5–5 Case 2, σ = 0.1, l = 0, u = 7, m = 15, n = 16,17,18,19,20 . . . . . . . . . 77

5–6 Case 2, σ = 0.1, l = 0, u = 7, m = 15, n = 20 . . . . . . . . . . . . . . . . . 78

5–7 4QAM, flat-fading system . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5–8 4QAM, flat-fading system . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5–9 4QAM, flat-fading system . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5–10 16QAM, flat-fading system . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5–11 16QAM, flat-fading system . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5–12 16QAM, flat-fading system . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5–13 64QAM, flat-fading system . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5–14 64QAM, flat-fading system . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5–15 64QAM, flat-fading system . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5–16 Case 3, average time against SNR (16QAM, flat-fading system) . . . . 90

5–17 Case 3, median time against SNR (16QAM, flat-fading system) . . . . 91

ix



CHAPTER 1
Introduction

1.1 Integer Least Squares Problems

Suppose we have the following linear model

y =Ax̂ + v, v ∼ N(0, σ2I), (1.1)

where A ∈ Rm×n is a given matrix, y ∈ Rm is an observation vector, x̂ ∈ Zn is a

parameter vector, and v ∈ Rm is a noise vector with Gaussian distribution N(0, σ2I).

Then, we estimate x̂ in (1.1) by solving the following minimization problem:

min
x∈Zn

∥y −Ax∥2
2. (1.2)

This problem is referred to as an integer least squares (ILS) problem and the solu-

tion of it is the maximum likelihood estimate of the parameter vector x̂ in (1.1). To

distinguish (1.2) with other types of ILS problems, we also refer to it as an ordinary

integer least squares (OILS) problem. As in the literature, we assume that A in

the OILS problem (1.2) has full column rank, and then A can be referred to as a

lattice generator matrix, which can generate the lattice L(A) = {Ax ∶ x ∈ Zn}, see,

e.g., [1]. The ILS problem (1.2) is equivalent to finding the closest point to y in

the lattice L(A), so it can also be referred to as the closest point problem. The

ILS problem has applications in various fields, such as wireless communications (see,
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e.g., [43, 1, 24]), cryptography and cryptanalysis (see, e.g., [25, 33, 6, 34]), GPS

positioning (see, e.g., [35], [53]), and number theory (see, e.g., [32]), etc.

Different from a real least squares problem, the ILS problem has been proved

to be NP-hard (see [41] and [54]). Various algorithms have been developed to solve

the ILS problem, such as, the Monte Carlo probabilistic algorithms, see [2, 3, 9, 34],

the Voronoi cell based approach, see [49] and [42], and the discrete enumeration

algorithm, which enumerates all candidate lattice vectors in some given region to

find the optimal solution, see, e.g., [45, 29, 36, 37, 47], and the real relaxation based

branch and bound approach [4]. The discrete enumeration approach is usually the

most efficient one, and in this thesis, all the algorithms we will discuss later use this

approach.

The discrete enumeration approach usually consists of two phases: reduction and

search. The reduction process is to reduce the problem (1.2) to an equivalent new

problem, which can make the search process easier and more efficient. The search

process aims to find the optimal solution of the reduced problem. For the reduction

process, there are two well-known reduction strategies: the Korkine-Zolotareff (KZ)

reduction [38] and the Lenstra-Lenstra-Lovász (LLL) reduction [39]. Due to the

expensive computated cost of the KZ reduction, the LLL reduction is usually used

in practice for solving OILS problems. Since the KZ reduction can make the search

process more efficient than the LLL reduction, it is often used in applications when

one solves a sequence of ILS problems in which the given matrices are the same. The

details of the computed cost analysis of these two reduction algorithms can be found

in [46] and we will introduce the LLL reduction in Section 2.1.1. The search process
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is to enumerate integer points in a region to find the optimal solution. There are

also two well known search strategies: the Phost strategy (see [45] and [29]), which

enumerates the integer vectors in a hyper-ellipsoid and the Kannan strategy (see

[36] and [37]), which enumerates the integer vectors in a rectangular parallelotope.

Later, Schnorr and Euchner [47] proposed a subtle but important improvement on

the Phost strategy, which also enumerates the integer vectors in a hyper-ellipsoid but

in a different order. The hyper-ellipsoid in which the Phost strategy or the Schorr-

Euchner strategy enumerates integer points, is also a hyper-sphere in terms of the

lattice points. For this reason, such kind of search algorithms are called shpere

decoding (SD) algorithms in communications. The detailed comparison between

these search strategies can be found in [1]. It shows that the Schnorr-Euchner (SE)

strategy outperforms the other two and thus in this thesis we focus on the Schnorr-

Euchner based search strategies. We will introduce this strategy in Section 2.1.2 in

detail.

1.2 Box-constrained Integer Least Squares Problems

In some applications, such as wireless communications [43, 24], the parameter

vector x̂ is usually constrained to a box B in Zn, i.e.,

x̂ ∈ B = {x ∈ Zn ∶ l ≤ x ≤ u, l,u ∈ Zn}. (1.3)

Then the ILS problem in (1.2) becomes

min
x∈B

∥y −Ax∥2
2. (1.4)
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We refer to (1.4) as a box-constrained integer least squares (BILS) problem. If

m ≥ n and the matrix A has full column rank, we refer to the BILS problem (1.4) as

an overdetermined box-constrained integer least squares (OBILS) problem. Other-

wise, when m < n and A has full row rank, (1.4) is referred to as an underdetermined

box-constrained integer least squares (UBILS) problem. In this thesis we mainly

consider the UBILS problem.

When (1.4) is an OBILS problem, the LLL reduction can not be applied since it

would transform the box B to a much complex geometry, making the search process

difficult. However, the columns of A can be reordered to make the search process

faster. Damen et al [24], and Chang and Han [14] suggest to use VBLAST and SQRD

respectively, to make the search process faster. Both V-BLAST and SQRD use only

the information of A to determine the column reordering. In [52], Su and Wassell

use all information of the problem to propose a new column reordering algorithm in

a geometric point of view. Independently, Chang and Han proposed another column

reordering algorithm in [14], which is derived from an algebraic point of view. These

two algorithms can bring more reduction in the cost of the search process than

the previous three. In [11], Breen and Chang showed that the reduction algorithm

proposed in [52] is essentially the same as that reduction proposed in [14], in the

sense that they give the same column reordering result in theory. They combined

the best part of these two algorithms and proposed a new mathematically equivalent

but computationally faster reduction algorithm. This algorithm is called AIP (all-

information based permutation) algorithm in [58]. For the search process, three

Schnorr-Euchner based strategies were proposed to find the optimal solutions for the
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reduced OBILS problems (see, [10, 14, 24]). The one proposed by Boutros et al [10]

is a direction extension of the original Schnorr-Euchner search algorithm by taking

the box-constraint into account. The one proposed by Damen et al [24] is more

natural and easier to understand. The one proposed by Chang and Han [14] is an

improvement of the former two. In Section 2.2.2 and Section 2.2.1, we will mainly

introduce the AIP reduction proposed by Breen and Chang in [11] and the search

algorithm proposed by Chang and Han in [14].

When (1.4) is an UBILS problem, in the search process, regular sphere decoding

based search algorithms for the OBILS problem can not be applied directly. Damen

et al [23] proposed the first so-called generalized sphere decoding (GSD) algorithm.

Its main idea is to partition the vector x in (1.4) into two subvectors x(1) ∈ Zm and

x(2) ∈ Zn−m. For each candidate of x(2), it solves a corresponding OBILS problem to

find the corresponding x(1). After all the possible x(2) are enumerated, the combi-

nation of x(2) and x(1) which gives the minimal residual, is the optimal solution for

(1.4). Later, Dayal and Varanasi [27] proposed another generalized sphere decoding

algorithm, which can significantly reduce the computational cost by partitioning the

candidate set for x(2) into disjoint ordered subsets. Then, Yang et al [60] proposed a

so-called double-layer sphere decoder (DLSD) to solve the UBILS problem. Its basic

idea is to apply an outer layer sphere decoder to get possible candidates for x(2).

Once x(2) is determined, an inner layer sphere decoder is employed to get the relative

x(1). Then, Chang and Yang [20] proposed a direct tree search (DTS) algorithm,

which modified the DV algorithm and incorporated a column reordering strategy in

the reduction process, and is much faster than the one given in [27] and the one given
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in [5]. The DTS algorithm will be introducd in Section 2.3.1. All the above algo-

rithms mainly consider how to generate a sequence of determined sub-ILS probelms

and solve them to find the optimal solution. In [22], Cui and Tellambura solved the

UBILS problem arising from communications, which has a special box constraint

using a different approach. Their approach transforms the UBILS problem (1.4) to

an equivalent OBILS problem by adding a term in the objective function, like the

regularization method for ill-posed real least squares problem. Then the problem

(1.4) becomes a corresponding OBILS problem so that a regular sphere decoding

based algorithm can be applied. In [19], Chang et al proposed a partial regulariza-

tion (PR) approach, which is a modification of the algorithm given in [22] and is

faster than it. We will introduce it in Section 2.3.2. In [48], Shahnaz and Ali pro-

posed another regularization approach to solve the UBILS problem on orthogonal

frequency division multiplexing and space division multiple access (OFDM/SDMA)

uplink system, which also transforms the UBILS problem to an OBILS problem, but

using a different method to enlarge the original matrix A.

A number of suboptimal algorithms also have been developed to reduce the

complexity of solving the problem (1.4), see, e.g., [55, 26, 44]. In this thesis, we focus

on optimal algorithms to solve the UBILS problem in (1.4).

The search methods for the OBILS problem and the UBILS problem we men-

tioned before are tree search approaches. The search cost is proportional to the

number of tree nodes. If we can find some ways to prune the nodes of the search

tree, the search process can then be speeded up. In [14, 51, 31, 12], various lower
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bounds have been proposed to prune the search tree for the OBILS problem. We

will introduce the typical lower bounds in Chapter 3.

1.3 Organization and Contributions

The rest part of the thesis is organized as follows. In Chapter 2, we will review

different algorithms for OILS, OBILS and UBILS problems respectively.

In Chapter 3, we first review three different lower bounds for the OBILS prob-

lems: the norm-wise lower bound, the component-wise lower bound, and the basis

reduced lower bound respectively. Then we propose a lower bound for the UBILS

problem, which is inspired by the partial regularization approach. To our knowledge,

there are no lower bounds for the UBILS problem in the literature.

In Chapter 4, a new search algorithm is proposed for solving the UBILS problem,

which is a modification of the DTS algorithm by partially using the best-first search

approach.

In Chapter 5, numerical test results for different solvers for UBILS problems are

given to show our lower bounds are effective in reducing the search cost and the new

search algorithm is faster than the existing ones.

Finally, we summarize our results and discuss future research directions in Chap-

ter 6.

1.4 Notation

In this section, we introduce the notations to be used in this thesis.

We denote scalars by normal type lower or upper case letters, column vectors by

boldface lower case letters and matrices by boldface upper case letters. Usually, we
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use Greek letters (e.g., α,β) or Roman letters with subscripts (e.g., ai, aij) to denote

scalars, and sometimes we also use capital Roman letters (but not boldface).

Define R, Z and C as the spaces of real scalars, integer scalars and complex

numbers respectively, Rn, Zn and Cn as the spaces of n−dimensional real vectors,

integer vectors and complex vectors respectively, and Rm×n, Zm×n and Cm×n as the

spaces of m × n real matrices, integer matrices and complex matrices respectively.

Given a column vector x ∈ Rn, let xi∶j or x(i:j) be the subvector composed of

elements of x with indexes from i to j. Given a matrix A ∈ Rm×n, let Ai∶j,k∶l or

A(i:j,k:l) be the submatrix containing all the elements of A whose row indexes are

from i to j and column indexes are from k to l. Given a set B ⊆ Zn, let Bi∶j = {xi∶j ∶

x ∈ B}. For a scalar α ∈ R, ⌊α⌉ denotes the nearest integer to α (if there is a tie, ⌊α⌉

is the one with smaller magnitude). Let ⌊α⌋ and ⌈α⌉ denote the integers we get after

the floor and ceiling operations of α respectively. Analogously, for a vector x ∈ Rn,

⌊x⌉ denotes the closest integer vector to x, i.e., its i-th entry is ⌊xi⌉, for i = 1, . . . , n.

Let a denote a real number, S denote a set of integers, we use ⌊a⌉ ∣S to denote the

nearest integer to a in the set S.

We also define some special vectors and matrices here. We use 1(n) to represent

the n−dimensional vector of ones. Let I represent an identity matrix. We use ek to

represent the kth column of the identity matrix I. We use N(0, σ2I) to denote the

normal distribution with zero mean and covariance matrix σ2I and use CN(0, σ2I)

to denote complex normal distribution with zero mean and covariance matrix σ2I.
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CHAPTER 2
Algorithms for Solving Various ILS Problems

This chapter briefly reviews algorithms for solving various ILS problems. In

Sections 2.1, 2.2 and 2.3, we will review different algorithms for solving OILS, OBILS

and UBILS problems, respectively.

2.1 Ordinary ILS Problems

Given an OILS problem

min
x∈Zn

∥y −Ax∥2
2 (2.1)

where y ∈ Rm and A ∈ Rm×n is a full column rank matrix, a typical approach to

solving it is the Schnorr-Euchner sphere decoding method, which consists of two

phases: reduction and search. We first introduce the well-known LLL reduction

in Section 2.1.1 and then introduce the Schnorr-Euchner search strategy in Section

2.1.2.

2.1.1 Reduction

A. QRZ Decomposition

The QRZ decomposition of A has the following form (see [13]):

QTAZ =
⎡⎢⎢⎢⎢⎢⎢⎣

R

0

⎤⎥⎥⎥⎥⎥⎥⎦
, (2.2)
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where Q = [Q1
m
,Q2
n−m

] ∈ Rm×m is an orthogonal matrix, Z ∈ Zn×n is a unimodular

matrix, i.e., det(Z) = ±1 and R is upper triangular. With (2.2) we have

∥y −Ax∥2
2 = ∥QT

1 y −RZ−1x∥2
2 + ∥QT

2 y∥2
2. (2.3)

Define

ȳ =QT
1 y, z = Z−1x, (2.4)

then the OILS problem (2.1) can be transformed to an equivalent problem:

min
x∈Zn

∥ȳ −Rz∥2
2. (2.5)

Note that if the optimal solution to (2.5) is ẑ, then the optimal solution to (2.1) is

x̂ = Zẑ. (2.6)

B. LLL Reduction

The LLL reduction was proposed by Lenstra, Lenstra and Lovász in [39] and can

be interpreted as a special QRZ decomposition, which requires the upper triangular

matrix R in (2.2) to satisfy the following specific conditions:

∣rk−1,j ∣ ≤
1

2
∣rk−1,k−1∣, j = k, . . . , n (2.7)

δr2
k−1,k−1 ≤ r2

k−1,k + r2
kk, k = 2, . . . , n (2.8)

where 1
4 < δ ≤ 1. The inequality (2.7) is called the size reduction condition and the

inequality (2.8) is called the Lovász condition. The LLL reduction will help to pursue

the inequality

∣r11∣ ≪ ∣r22∣ ≪ . . .≪ ∣rnn∣. (2.9)
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For the benefits of the matrix R satisfying inequality (2.9), see [13]. For the effects

of the LLL reduction on the sphere decoding process, see [16]. Before introducing

details of the LLL reduction algorithm, we first introduce three operations which

will be used in the LLL reduction process: integer Gauss transformations, Givens

rotations and column permutations.

Integer Gauss Transformations

We call a matrix integer Gauss transformation (IGT) matirx if it has the fol-

lowing form (see, e.g., [20])

Zij = I − ζijeieTj , i ≠ j, ζij ∈ Z. (2.10)

It is easy to prove that Zij is a unimodular matrix and

Z−1
ij = I + ζijeieTj .

Assume we have an upper triangular matrix R, which does not satisfy (2.7) and

(2.8). Applying Zij(i < j) to R from the right, we have

R̄ =RZij ∶=R − ζijReie
T
j . (2.11)

Obviously, R̄ is the same as R except that

r̄kj = rkj − ζijrki, k = 1, . . . , i.

Taking ζij = ⌊rij/rii⌉ makes r̄kj smallest and

∣r̄ij ∣ ≤
1

2
∣rii∣.

11



Givens Rotations and Column Permutations

Column permutations can help make the matrix R satisfy the inequality (2.9).

However, after switching two columns of R, R is not an upper triangular matrix,

which violates the requirement in (2.5). Therefore, some rotations are needed to

make the matrix R upper triangular again and Givens rotations can achieve it. In

the following, we first show how to use Givens rotations to make a permutated R

back to upper triangular and then introduce when to interchange two columns of R.

Suppose we interchange column k − 1 and column k of R and then have

RPk−1,k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k−2 2 n−k

k−2 R11 R̄12 R13

2 R̃22 R23

n−k R33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.12)

where

Pk−1,k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik−2

P

In−k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P =
⎡⎢⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

R̄12 = [R1∶k−2,k−1 R1∶k−2,k] , R̃22 =
⎡⎢⎢⎢⎢⎢⎢⎣

rk−1,k rk−1,k−1

rkk 0

⎤⎥⎥⎥⎥⎥⎥⎦
.
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The block R̃22 violates the upper triangular property and a Givens rotation can

easily be applied to make R̃22 upper triangular. Assume G =
⎡⎢⎢⎢⎢⎢⎢⎣

c s

−s c

⎤⎥⎥⎥⎥⎥⎥⎦
, then we have

GR̃22 =
⎡⎢⎢⎢⎢⎢⎢⎣

r̄k−1,k−1 r̄k−1,k

0 r̄kk

⎤⎥⎥⎥⎥⎥⎥⎦
,

where

c = rk−1,k√
r2
k−1,k + r2

kk

, s = rkk√
r2
k−1,k + r2

kk

,

r̄k−1,k−1 =
√
r2
k−1,k + r2

kk, r̄k−1,k =
rk−1,k−1rk−1,k√
r2
k−1,k + r2

kk

, r̄kk = −
rk−1,k−1rkk√
r2
k−1,k + r2

kk

. (2.13)

Define R̄22 =
⎡⎢⎢⎢⎢⎢⎢⎣

r̄k−1,k−1 r̄k−1,k

0 r̄kk

⎤⎥⎥⎥⎥⎥⎥⎦
, we have

Qk−1,kRPk−1,k = R̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R11 R̄12 R13

R̄22 R̄23

R33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Qk−1,k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik−2

G

In−k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R̄23 =GR23.

Then the problem comes to when to interchange two columns of R. Here we take

column k − 1 and column k as an example. The purpose of column permutations

is to make the diagonal entries of R tend to (2.9) as much as possible. It means

that we want to decrease ∣rk−1,k−1∣ and increase ∣rkk∣ by the reduction process. Since
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the product of ∣rk−1,k−1rkk∣ is invariant under an IGT and the column permutation,

decreasing ∣rk−1,k−1∣ means increasing ∣rkk∣ and vice versa. We can first apply an IGT

Zk−1,k to R from the right to guarantee ∣rk−1,k∣ ≤ ∣rk−1,k−1∣/2. Then, from (2.13), it

is easy to see that a column interchange should be applied on columns k and k − 1,

if δr2
k−1,k−1 > r2

k−1,k + r2
kk. Note that even though the above column permutation can

not guarantee ∣r̄k−1,k−1∣ ≤ ∣r̄kk∣, it can ensure that

∣r̄k−1,k−1∣ < ∣rk−1,k−1∣, ∣r̄kk∣ > ∣rkk∣,

which indicates that the permutations can make the diagonal components of R tend

to (2.9).

LLL Reduction Algorithm

After the LLL reduction, the matrix R satisfies two requirements we mentioned

above: ineuquality (2.7) and inequality (2.8). The first requirement is referred to as

the size-reduced condition and the second one is referred to as the Lovász condition.

Combining these two inequalities, we can get

∣rk−1,k−1∣ ≤
2√

4δ − 1
∣rkk∣. (2.14)

We first briefly introduce the process of the LLL reduction and then give the psue-

docode of it in Algorithm 2.1. At the beginning, we compute the QR decomposition

to obtain an upper triangular matrix R. Then we work on R firom the left to the

right. In the kth column of R, we apply an IGT to reduce rk−1,k and then we check if

the inequality (2.8) holds. If the inequality is satisfied, we reduce rk−2,k, rk−3,k, . . . , r1k

and move to column k + 1. Otherwise, we interchange column k − 1 and column k
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of R, and then apply a Givens rotation to bring R back to upper triangular, and

move back to column k − 1. Finally we finish this process in the last column of R.

Details of the LLL reduction process is given in Algorithm 2.1, which is similar to

the original algorithm given in [39].

There have been some improvements of the LLL reduction algorithm. In [40]

Ling and Howgrave-Graham found that when the LLL reduction is used to improve

the performance of the Babai point (see [5]), the size reduction for the off-diagonal

entries of R above the super-diagonal entries in the LLL algorithm is not necessary

mathematically and can be removed. They proposed the so-called effective LLL

(ELLL) reduction algorithm, which has less cost than the LLL reduction but it may

have some numerical stability problems, see [40, 59]. In [59], Xie et al proposed

a partial LLL (PLLL) reduction algorithm, which does size reductions for part of

super-diagonal entries of R and the corresponding off-diagonal entries in the same

columns such that it can avoid the numerical stability problem in the ELLL reduc-

tion. Furthermore, the PLLL reduction is faster than the ELLL reduction since it

uses the minimum pivoting strategy in computing the QR decomposition, which can

reduce the number of column permutations involved in the LLL and ELLL reduc-

tions. The PLLL reduction eliminates some unnecessary size reductions on some

super-diagonal entries in the ELLL. In [59], they also proved that the ELLL and

PLLL reductions are equivalent to the LLL reduction in improving the efficiency of

the search process for solving (2.1).
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Algorithm 2.1 LLL Reduction

Input: The matrix A ∈ Rm×n with full column rank, and the input vector y ∈ Rm.
Output: The reduced upper triangular matrix R ∈ Rn×n, the unimodular matrix
Z ∈ Zn×n, and the vector ȳ ∈ Rn.
function: [ȳ,R,Z] = LLL(A,y)
1: Set Z = In, k = 2

2: Compute [Q1,Q2]TA = [R
0
] by the Householder transformations, compute

[Q1,Q2]Ty and set ȳ =QT
1 y

3: while k ≤ n do
4: Apply size reduction Zk−1,k: R =RZk−1,k

5: Update Z, i.e., Z = ZZk−1,k

6: if δr2
k−1,k−1 > r2

k−1,k + r2
k,k then

7: Interchange columns k − 1 and k of R
8: Transform permutated R back to upper triangular by Givens rotations
9: Interchange columns k − 1 and k of Z
10: Apply the same Givens rotation to ȳ
11: if k > 2 then
12: k = k − 1
13: end if
14: else
15: for i = k − 2 ∶ −1 ∶ 1 do
16: Apply the integer Gauss tranformation Zik to R, i.e., R =RZik

17: Update Z, i.e., Z = ZZik

18: end for
19: k = k + 1
20: end if
21: end while
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2.1.2 Search

Suppose that we have an upper bound β for the objective funciton in (2.5) such

that

∥ȳ −Rz∥2
2 < β2. (2.15)

Note that the inequality (2.15) is a hyper-ellipsoid with center R−1ȳ in terms of z.

So to solve the problem (2.5) we can search this ellipsoid to find the optimal solution.

The quantity β is referred to as the sphere decoding radius. We first give the basic

idea of the Schnorr-Euchner strategy and then show how to choose the initial β at

the end of this subsection.

Expanding the term ∥ȳ −Rz∥2
2 in (2.15), we have

∥ȳ −Rz∥2
2 =

n

∑
k=1

(ȳk −
n

∑
j=k
rkjzj)2,

and then we can rewrite (2.15) as

n

∑
k=1

(ȳk −
n

∑
j=k
rkjzj)2 < β2. (2.16)

Define

cn = ȳn/rnn, ck = (ȳk −
n

∑
j=k+1

rkjzj)/rkk, k = n − 1, n − 2, . . . ,1. (2.17)

Then it follows from (2.16) that

n

∑
k=1

r2
kk(zk − ck)2 < β2. (2.18)
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The above inequaltiy is equivalent to the following set of inequalities:

level n ∶ r2
nn(zn − cn)2 < β2, (2.19)

⋮
level k ∶ r2

kk(zk − ck)2 < β2 −
n

∑
i=k+1

r2
ii(zi − ci)2, (2.20)

⋮
level 1 ∶ r2

11(z1 − c1)2 < β2 −
n

∑
i=2

r2
ii(zi − ci)2 (2.21)

With the above set of inequalities, a search process can start. We first fix the

value of zn at level n, and then zn−1 at level n− 1, and so on. The value of zk can be

determined only after zn, . . . , zk+1 have been fixed. In the following, we show how to

determine zk.

Suppose that zn, . . . , zk+1 have been fixed. From (2.20), it is easy to see that zk

should be in the following interval

[⌈ck − [β2 −
n

∑
i=k+1

r2
ii(zi − ci)2]1/2/∣rkk∣⌉ , ⌊ck + [β2 −

n

∑
i=k+1

r2
ii(zi − ci)2]1/2/∣rkk∣⌋] . (2.22)

The Schnorr-Euchner strategy enumerates the integers in the interval (2.22) in a

zigzag sequence as

⌊ck⌉ , ⌊ck⌉ − 1, ⌊ck⌉ + 1, ⌊ck⌉ − 2, . . . , if ck ≤ ⌊ck⌉ ;

⌊ck⌉ , ⌊ck⌉ + 1, ⌊ck⌉ − 1, ⌊ck⌉ + 2, . . . , if ck > ⌊ck⌉ .
(2.23)

Note that zk = ⌊ck⌉ makes the residual on the left hand side of (2.20) smallest and

the residual increases with respect to the zigzag sequence (2.23). If (2.20) does not

hold for some candidates of zk, it does not hold for those candidates after it in (2.23)

either and thus we can skip them in the search process.
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Now we describe the Schnorr-Euchner search strategy starting from level n. First

we take zn = ⌊cn⌉. If this candidate does not satisfy the inequality (2.19), no other

integers can satisfy this inequality and we have to stop. It means that the ellipsoid

(2.18) does not include any integer point and we have to search with a larger β, and

restart the search process. Otherwise we move to level n − 1. Based on the fixed

zn, we first compute cn−1 by (2.17) and then choose zn−1 = ⌊cn−1⌉. If this zn−1 fails

to satisfy the inequality (2.20) with k = n − 1, then we have to go back to level n

and choose zn as the second nearest integer to cn according to the zigzag sequence

(2.23), and so on. If we can find a valid zn−1, we proceed to level n−2. Continue this

process until we reach level 1 and find a valid z1. Then we obtain an integer point

z∗ satisfying (2.15). We shrink the ellipsoid by taking β = ∥ȳ −Rz∗∥2 and search

for a new integer point in the new ellipsoid. We go back to level 2 and update the

value of z2 by choosing z2 to be the next nearest integer to c2. If the inequality for

level 2 holds for this new z2, we move down to level 1 and update the value of z1.

Otherwise we move up to level 3 to update the value of z3, and so on. Finally we

will end up the search process at level n, where we can not choose a new integer for

zn to satisfy the inequality (2.19). Then ẑ, the most recently found integer point, is

the optimal solution of the problem (2.5).

From inequalities (2.19)-(2.21), we can see that the initial value of β is crucial to

the efficiency of the search process. If the initial value of β is too large, there will be

lots of candidate points inside the hyper-ellipoid and the enumeration process may

be time-consuming. However, if the initial value of β is too small, the hyper-ellipsoid

may not include any integer point and we need to restart with a larger β, which
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is also not efficient. For the OILS problem (2.5), we usually set the initial β to be

∞ and the first integer point we get by the search approach is referred to as the

Babai integer point (see [13], [5]). Another simple method to initialize β is to solve a

real least squares problem. Suppose zrls is the real least squares solution of problem

(2.5), i.e., zrls =R−1ȳ, then we can set β = ∣∣ȳ−R ⌊zrls⌉ ∣∣2. If there is no integer point

inside the hyper-ellipsoid when β = ∣∣ȳ−R ⌊zrls⌉ ∣∣2, it means that ⌊zrls⌉ is the optimal

solution of (2.5).

2.2 Overdetermined Box-constrained ILS Problems

In Section 2.1, we have introduced the LLL reduction and the Schnorr-Enchner

search strategy for solving the OILS problem (2.1). In this section, we will introduce

the reduction algorithm in [11] and the search algorithm in [14] to solve the following

OBILS problem

min
x∈B

∥y −Ax∥2
2 (2.24)

where y ∈ Rm, A ∈ Rm×n is a full column rank matrix (m ≥ n), B = {x ∈ Zn ∶ l ≤ x ≤

u, l,u ∈ Zn}.

2.2.1 Reduction

The LLL reduction can be used for solving OILS problems. However, it can not

be applied to OBILS problems since the geometry of the constraint box would become

complicated after x is changed to z by the unimodular transformation and then the

search process would be difficult. Therefore, we only apply a column permutation
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matrix P to A in the OBILS problem (2.24) such that

AP =Q

⎡⎢⎢⎢⎢⎢⎢⎣

R

0

⎤⎥⎥⎥⎥⎥⎥⎦
=Q1R, (2.25)

where Q = [Q1
m
,Q2
n−m

] ∈ Rm×m is orthogonal and R is upper triangular. Then with

(2.25), we have

∥y −Ax∥2
2 = ∥QT

1 y −RP Tx∥2
2 + ∥QT

2 y∥2
2. (2.26)

If we define

ȳ =QT
1 y, z = P Tx, l̄ = P T l, ū = P Tu, (2.27)

then the original problem (2.24) can be transformed to

min
z∈B̄

∥ȳ −Rz∥2
2, (2.28)

where

B̄ = {z ∈ Zn ∶ l̄ ≤ z ≤ ū, l̄, ū ∈ Zn}. (2.29)

In the search process, we find the optimal solution z̃ for the problem (2.28) and the

corresponding solution for the problem (2.24) x̃ = P ẑ (R is upper triangular).

Different column reordering strategies (different permutation matrices P ) for

OBILS problems can be found in [29, 24, 57, 52, 14, 11]. In [29], P was chosen

following the criterion that the columns of the permutated A are arranged in an

increasing order with respect to the 2-norm. In [30], the well-known Vertical Bell

Laboratories Layered Space-Time (V-BLAST) strategy was proposed. It determines

the order of columns of the permutaed A from right to left. When determining

column i, it seeks from the remaining i columns of A to find a column which can
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maximizes the corresponding ∣rii∣. In [57], the sorted QR decomposition (SQRD)

algorithm chooses the order of columns of the permutated A from left to right.

When determining column i, it seeks from the remaining n − i + 1 columns of A to

find a column which can minimize the corresponding ∣rii∣. Details about V-BLAST

and SQRD reduction algorithms can be found in [30] and [57] respectively. Unlike the

above permutation strategies, the SW reduction algorithm [52] and the CH reduction

algorithm [14] used all information of the OBILS problem and it turns out that they

give the same column reordering, which was proved by Breen and Chang in [11],

who also combined the best parts of these two algorithms to propose a reduction

algorithm, to be referred to as AIP (all information permutation). Here, we give

details of the AIP reduction.

Like the V-BLAST reduction, the AIP reduction algorithm determines the or-

dering from right to left, which means it first determines the nth column of R, and

then the (n − 1)th column and so on. We show how to choose the last column of R

in the AIP reduction as an example. Then the subsequent steps of choosing ordering

are very similar.

First, we give some definitions which will be used later. Let

T =R−T , z̆ = T T ȳ, (2.30)

where T is a lower triangular matrix and let zr be the closet integer point to z̆ in

the box (2.29) (here the super script r stands for rounding), i.e.,

zr
i = median(⌊z̆i⌉ , l̄i, ūi), for i = 1,2, . . . , n.
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Define zs to be the second closest integer point to z̆ in the box (2.29), i.e.,

zs
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zr
i + 1 if zr

i = l̄i or zr
i < z̆i

zr
i − 1 if zr

i = ūi or zr
i ≥ z̆i

i = 1,2, . . . , n

Now we show how to determine the last column of the final R. Suppose we inter-

change columns i and n of R, then, the matrix R is not upper triangular and we can

use Givens rotations (see Section 2.1.1) to bring R back to upper triangular. This

process can be described as:

R̂ =GTRP̂ , ŷ =GT ȳ, ẑ = P̂ z. ẑs = P̂ zs (2.31)

where P̂ denotes the permutation matrix that interchanges columns j and n of R.

G is the product of Givens rotations which are used to bring the permutated R back

to upper triangular and R̂ denotes the new upper triangular matrix. Without loss

of generality, we can assume that the diagonal entries of R̂ are positive. Define

d
(n)
i = r̂2

nn(ẑs
n − ŷn/r̂nn)2, i = 1,2, . . . , n, (2.32)

then the AIP reduction chooses column j = arg maxi d
(n)
i as the new nth column.

The motivation of this choice is to make the sphere decoding radius for the (n − 1)-

dimensional subproblem (see (2.33) below) small and at the same time to make rnn

large (for details, see [14] for explanations).

After the index j is found, the AIP reduction algorithm interchanges columns j

and n of R, entries j and n of l̄ and ū, and columns j and n of T respectively. Then

it applies the same Givens rotations to the permutated T and R and make these two

permutated matrices back to lower and upper triangular matrices such that T =R−T
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still holds. Then the AIP reduction algorithm sets zn = median(⌊ȳ/rnn⌉ , l̄n, ūn) and

updates ỹ = ȳ − R1∶n,nzn. Next, the AIP reduction algorithm applies the above

process recursively to the following (n − 1)-dimensional subproblem

min
z1∶n−1∈B̄n−1

∥ỹ1∶n−1 −R1∶n−1,1∶n−1z1∶n−1∥2
2 (2.33)

where B̄n−1 = {z1∶n−1∣z1∶n−1 ∈ Zn−1 ∶ l̄1∶n−1 ≤ z1∶n−1 ≤ ū1∶n−1}. We briefly summa-

rize the AIP reduction algorithm for n-dimensional problem first and then give the

pseudocode of it in Algorithm 2.2.

Algorithm 2.2 includes the computation of the box-constrained Babai point.

Since we will use it later, we give the explicit definition of it here. The box-

constrained Babai point zB is defined as

cn = ỹn/rnn, zB(n) = median(⌊cn⌉ , l̄n, ūn)

ci = (ỹi −
n

∑
j=i+1

rijzB(j))/rii, zB(i) = median(⌊ci⌉ , l̄i, ūi)
(2.34)

for i = n − 1, . . . ,1.

2.2.2 Search

In this section, we will introduce the search algorithm for the OBILS problem,

see [14]. Suppose for the OBILS problem (2.28) we can find β such that the optimal

solution to (2.28) satisfies

∥ȳ −Rz∥2
2 < β2, (2.35)

which can be rewritten with (2.17) as

n

∑
k=1

r2
kk(zk − ck)2 ≤ β2. (2.36)
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Algorithm 2.2 AIP Reduction

Input: The generator matrix A ∈ Rm×n with full column rank, the input vector
y ∈ Rm, the lower bound vector l ∈ Zn, and the upper bound vector u ∈ Zn.
Output: The reduced upper triangular matrix R ∈ Rn×n, the permutation matrix
P ∈ Zn×n, the vector ȳ ∈ Rn, the permuted lower bound vector l̄, the permutated
upper bound vector ū, and the Babai integer point z∗ ∈ Zn
function: [R,P , ȳ, l̄, ū,z∗] = AIP(A,y, l,u)

1: Compute [Q1 Q2]TA = [R
0
] by the Householder transformations, compute

[Q1,Q2]T , and compute ȳ ∶=QT
1 y.

2: Initialize l̄ = l, ū = u, z∗ = [], and ỹ ∶= ȳ.
3: Compute L =R−T and set P ∶= In
4: for k = n ∶ −1 ∶ 2 do
5: Solve LT z̆ = ỹ
6: Let zs

i be the second closest integer in [l̄i, ūi] to z̆i, for i = 1, . . . , k

7: Compute d
(k)
i = (zs

i − z̆i)2/l̆i for i = 1,2, . . . , k

8: Let j = arg max
i=1,2,...,k

d
(k)
i

9: z∗k = median(⌊z̆i⌉ , l̄i, ūi)
10: ỹ = ỹ −R1∶j,jzk
11: Remove column j of L and entry j of l̆
12: if i ≠ k then
13: Interchange column j and k of R
14: Interchange entry j and k of l̄ and ū
15: Interchange columns j and k of P
16: Use Givens rotations to bring R back to upper triangular
17: Apply the same Givens rotations to update L, ȳ and ỹ
18: end if
19: Update l̆i = l̆i − l2ki for i = 1,2, . . . , k
20: Remove row k in L and remove entry k in ỹ
21: end for
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The method for finding the initial β will be discussed at the end of this section. We

can rewrite the inequality (2.36) as the set of inequalities (2.19)-(2.21). For the sake

of readability, we repeat them here. the following set of inequalities

level n ∶ r2
nn(zn − cn)2 < β2 (2.37)

⋮
level k ∶ r2

kk(zk − ck)2 < β2 −
n

∑
i=k+1

r2
ii(zi − ci)2 (2.38)

⋮
level 1 ∶ r2

11(z1 − c1)2 < β2 −
n

∑
i=2

r2
ii(zi − ci)2 (2.39)

Based on the above set of inequalities, a modified Schnorr-Euchner based search

process can be developed to find the solution of (2.28). Different with the method

for solving OILS problems (see Section 2.1), the box constraint (2.29) needs to be

considered here. In the OILS problem, at level k, integer candidates for zk are

enumerated by an increasing order of ∣zk − ck∣. The same startegy can be used here

except that zk should be in the constrained interval [l̄k, ūk]. We choose the first

nearest integer to ck on the interval [l̄k, ūk] as the first candidate of zk, and choose

the second nearest integer to ck on the interval [l̄k, ūk] as the second candidate of zk,

and so on.

We rewrite the inequality (2.36) as

r2
kk(zk − ck)2 < β2 −

n

∑
i=k+1

r2
ii(zi − ci)2 −

k−1

∑
j=1

r2
jj(zj − cj)2. (2.40)
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If we can find a non-negative lower bound Tk for the third term on the right hand

side of (2.40), we will have

r2
kk(zk − ck)2 < β2 −

n

∑
i=k+1

r2
ii(zi − ci)2 − Tk. (2.41)

It is easy to see that the upper bound in (2.41) is at least as tight as the one in

(2.38). If we can find a good lower bound Tk, we can shrink the search region and

improve the efficiency of the search process. In [14], a simple lower bound Tk was

proposed, which we will introduce below.

If we can find a lower bound hi ≤ r2
ii(zi − ci)2 for each i, 1 ≤ i ≤ k − 1, then we

have
k−1

∑
i=1

hi ≤
k−1

∑
i=1

r2
ii(zi − ci)2.

Then Tk = ∑k−1
i=1 hi is the lower bound for ∑k−1

i=1 r
2
ii(zi − ci)2 at level k.

Since l̄j ≤ zj ≤ ūj, for j = 1, . . . , n, we have

min(rkj l̄j, rkjūj) ≤ rkjzj ≤ max(rkj l̄j, rkjūj).

Then it follows that

ȳk −max(rkj l̄j, rkjūj) ≤ ȳk − rkjzj ≤ ȳk −min(rkj l̄j, rkjūj). (2.42)

If the lower bound and upper bound in (2.42) have the same sign, i.e.,

sign[ȳk −
n

∑
j=k

min(rkj l̄j, rkjūj)] = sign[ȳk −
n

∑
j=k

max(rkj l̄j, rkjūj)], (2.43)

then we have

(ȳk −
n

∑
j=k
rkjzj)2 ≥ hk
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where hk = min{[ȳk −∑nj=k min(rkj l̄j, rkjūj)]2, [ȳk −∑nj=k max(rkj l̄j, rkjūj)]2}. Other-

wise, we take hk = 0. Then Tk = ∑k−1
i=1 hi is a lower bound on ∑k−1

j=1 r
2
jj(zj − cj)2. We

will introduce other more complicated lower bounds in Section 3.1. The pseudocode

of the CH search strategy can be found in Algorithm 2.3.

For the OBILS problem (2.28), we can also set the initial β to be ∞ like what

we did for the OILS problem (2.5). But since the AIP reduction (see Algorithm 2.2)

has already computed the Babai point zB, we can set the initial β to be ∣∣ȳ −RzB ∣∣2

instead. This initial β will make the search process a little faster than the one with

β = ∞. Note that if there is no valid integer point inside the hyper-ellipsoid when

β = ∥ȳ−RzB∥2, zB is the optimal solution of (2.28). There is another strategy which

solves a box-constrained real least squares problem

min
z∈Rn,l̄≤z≤ū

∥ȳ −Rz∥2
2. (2.44)

Suppose the optimal solution of (2.44) is zbrls, then we can take β = ∥ȳ −R ⌊zbrls⌉ ∥2.

The methods for solving the box-constrained real least squares problem can be found

in Sec 5.2.4 of [8] and Sec 16.6 of [56]. Note that if we can not find any integer points

with this β, it means that ⌊zbrls⌉ is the optimal solution of (2.28).

2.3 Underdetermined Box-constrained ILS Problems

In this section, we briefly review the direct tree search (DTS) algorithm proposed

in [18] and the partial regularization algorithm proposed in [19] for solving the UBILS

problem

min
x∈B

∥y −Ax∥2
2, (2.45)
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Algorithm 2.3 CH Search

Input: The nonsingular upper triangular matrix R ∈ Rn×n, the vector ȳ ∈ Rn, the
lower bound vector l̄ ∈ Zn, the upper bound vector ū ∈ Zn, and the initial hyper-
ellipsoid bound β.
Output: The solution ẑ ∈ Zn to the OBILS problem (2.28).
function: ẑ = CH-SEARCH(R, ȳ, l̄, ū, β)
Step 1 ∶ (Initialization)

Set k ∶= n and Qk ∶= 0, compute Ti for i = 2, . . . , n
Step 2 ∶

Compute ck ∶= (ȳk −∑nj=k+1 rkjzj)/rkk, zk ∶= ⌊ck⌉
Set lboundk ∶= 0 and uboundk ∶= 0
if zk ≤ l̄k then

Set zk ∶= l̄k, lboundk ∶= 1 and ∆k ∶= 1
else if zk ≥ ūk then

Set zk ∶= ūk, uboundk ∶= 1 and ∆k ∶= −1
else

Set ∆k ∶= sign(ck − zk)
end if

Step 3 ∶
if Tk +Qk + r2

kk(zk − ck)2 ≥ β2 then
Go to step 4

else if k > 1 then
Compute Qk−1 ∶= Qk + r2

kk(zk − ck)2,
Set k ∶= k − 1, go to Step 2

else
Compute β ∶=

√
Q1 + r2

11(z1 − c1)2,
Set ẑ ∶= z and k ∶= k + 1, go to Step 5

end if
Step 4 ∶

if k = n then
Terminate

else
Set k ∶= k + 1

end if
Step 5 ∶(Enumeration of level k)

if uboundk = 1 and lboundk = 1 then
Go to Step 4

end if
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Set zk ∶= zk +∆k

if zk = l̄k then
Set lboundk ∶= 1
Compute ∆k ∶= −∆k − sign(∆k)

else if zk = ūk then
Set uboundk ∶= 1
Compute ∆k ∶= −∆k − sign(∆k)

else if lboundk = 1 then
Set ∆k ∶= 1

else if uboundk = 1 then
Set ∆k ∶= −1

else
Compute ∆k ∶= −∆k − sign(∆k)

end if
Go to Step 3

where y ∈ Rm, A ∈ Rm×n(m < n) with rank(A) = m, and B = {x ∈ Zn ∶ l ≤ x ≤

u, l,u ∈ Zn}.

2.3.1 Direct Tree Search (DTS) Algorithm

In this section, we introduce the DTS algorithm which includes two phases:

reduction and search. We describe the search process first since the reduction process

needs some definitions given in the search part.

Search Process

Suppose that the problem in (2.45) has been reduced to

min
z∈B

∥ỹ −Rz∥2
2 (2.46)

where ỹ ∈ Rm, R ∈ Rm×n is an upper trapezoidal matrix. To solve (2.46), we find a

constant β > 0 such that the optimal solution of (2.46) satisfies

∥ỹ −Rz∥2
2 < β2. (2.47)
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A method of finding β can be found in [17], which first solves a box constrained real

least squares problem and then rounds the solution to an integer vector in B, say

z∗, and then takes β = ∥ỹ −Rz∗∥2.

Expanding the objective function ∥ỹ −Rz∥2
2 in (2.47), we can rewrite the in-

equality (2.47) as
m

∑
i=1

(ỹi −
n

∑
j=i
rijzj)2 < β2. (2.48)

Thus like the OILS problem and the OBILS problem (see Section 2.1 and Section

2.2), we can derive the following set of inequalities from (2.48):

level m ∶ (ỹm −
n

∑
j=m

rmjzj)2 < β2, (2.49)

⋮

level k ∶ (ỹk −
n

∑
j=k
rkjzj)2 < β2 −

m

∑
i=k+1

(ȳi −
n

∑
j=i
rijzj)2, (2.50)

⋮

level 1 ∶ (ỹ1 −
n

∑
j=1

r1jzj)2 < β2 −
m

∑
i=2

(ȳi −
n

∑
j=i
rijzj)2. (2.51)

For simplicity, define

ci = (ỹi −
n

∑
j=i+1

rijzj)/rii, i =m, . . . ,1. (2.52)

Thus for k =m − 1, . . . ,1, we can define Bk = {lk, lk + 1, . . . , uk} and have

zk ∈ Zk = Bk ∩ (λk, ϕk)

λk = ck −
¿
ÁÁÀβ2 −

m

∑
i=k+1

r2
ii(zi − ci)2/∣rkk∣

ϕk = ck +
¿
ÁÁÀβ2 −

m

∑
i=k+1

r2
ii(zi − ci)2/∣rkk∣.

(2.53)
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However, unlike the OBILS problem, at level m, the inequality (2.49) has n −m + 1

variables which needs to be determined. And thus the search approach given in

Section 2.2.2 can not work here since it fixes only one variable at each level.

In [60], Yang et al proposed a strategy, which first determines zn, . . . , zm based

on (2.49) and then uses the search algorithm to determine zm−1, . . . , z1 based on

(2.50) with k = m − 2, . . . ,1. In [18], the DTS approach was proposed to integrate

the above two processes into one seamlessly.

Let I+ = {j∣rmj ≥ 0,m ≤ j ≤ n}, and I− = {j∣rmj < 0,m ≤ j ≤ n}. Then (2.49) is

equvialent to

ỹm − β < ∑
j∈I+

rmjzj + ∑
j∈I−

rmjzj < ỹm + β. (2.54)

Define the following transformation for zj, j =m,m + 1, . . . , n

z̄j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−lj + zj if j ∈ I+

uj − zj if j ∈ I−
, (2.55)

so that

z̄j ∈ B̄j ≜ {0,1, . . . , uj − lj}. (2.56)

Define

α = ỹm − ∑
j∈I+

∣rmj ∣lj + ∑
j∈I−

∣rmj ∣uj, (2.57)

then (2.54) becomes

α − β <
n

∑
j=m

∣rmj ∣z̄j < α + β. (2.58)
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Assume rmj ≠ 0 for j =m,m+1, . . . , n, then from (2.56) and (2.58) it is easy to verify

that for j = n,n − 1, . . . ,m

z̄j ∈ Z̄j = B̄j ∩ (λ̄j, ϕ̄j) (2.59)

λ̄j = (α − β −∑ni=j+1 ∣rmi∣z̄i −∑j−1
i=m ∣rmi∣(ui − li))/∣rmj ∣ (2.60)

µ̄j = (α + β −∑ni=j+1 ∣rmi∣z̄i)/∣rmj ∣, (2.61)

With inequalities (2.59) and (2.53), a depth-first tree search algorithm can be de-

veloped to find the optimal solution of (2.46). Now we describe the DTS strategy

starting from level n. First we take z̄n = ⌊ α
∣rmn∣⌉ ∣Z̄n

, which denotes the nearest integer

to α
∣rmn∣ in the set Z̄n. Then we move to level n−1 and compute the set Z̄n−1. If Z̄n−1

is empty, it means that the z̄n we chose is invalid. Then we move back to level n and

choose z̄n to be the next nearest integer to α
∣rmn∣ in the set Z̄n and go to level n − 1

again. If Z̄n−1 is not empty, we choose z̄n−1 = ⌊α−∣rmnz̄n∣
∣rmn−1∣ ⌉ ∣Z̄n−1 . Continue this process

until we reach level m and find a valid integer for z̄m. At this point, we have fixed

z̄n, . . . , z̄m and can transform z̄m∶n to the original integer vector zm∶n by (2.55). Then

we move to level m − 1 and compute Zm−1 with (2.53). If Zm−1 is empty, we move

up to level m. Otherwise, choose zm−1 = ⌊cm−1⌉ ∣Zm−1 and move down to level m − 2.

Continue this procedure until we reach level 1 and choose a valid integer for z1. At

this time, we have fixed all the variables in the vector z and a full integer point z∗

is found. Then we update β by taking β = ∥ỹ −Rz∗∥2. Next, we start the search

process again within the new hyper-ellipsoid by updating z. First we go back to level

2 to update the value of z2 to be the next nearest integer to c2 in the set Z2. Note

that the candidate set Z2 has also been updated by using the new β. If it satisfies
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the inequality (2.50) with k = 2, we move down to level 1 to update the value of z1.

Otherwise, we move up to level 3 to update the value of z3, and so on. In general, in

this tree search process, if we find a valid integer at level j +1 we move down to level

j. If we fail to find any integer value at level j, we move up to level j + 1. Finally,

if we fail to find a new valid integer for z̄n at level n, the search process terminates

and the latest found integer point ẑ is the optimal solution we seek.

It is possible that in (2.58) rmj = 0 for some j. Under this condition all the

integers in the set Z̄j can be candidates for z̄j. When we go to level j from level

j + 1, we choose z̄j to be the smallest integer in the set Z̄j, i.e., z̄j = 0. And if we

go to level j from level j − 1, we set z̄j to be the next smallest integer in the set Z̄j.

Fortunately, this rarely occurs in practice.

Reduction Process

In this subsection, we introduce a reduction process to transform the original

problem (2.45) to the reduced problem (2.46). Like the AIP reduction introduced in

Section 2.2.1, we can apply a permutation matrix P from the right to A such that

we can have the QR decomposition

AP =QR, (2.62)

where Q ∈ Rm×m is an orthogonal matrix and R ∈ Rm×n is an upper trapezoidal

matrix. Then we can derive

∥y −Ax∥2
2 = ∥QT

1 y −RP Tx∥2
2 + ∥QT

2 y∥2
2. (2.63)

34



Algorithm 2.4 DTS Search

Input: The nonsingular upper trapezoidal matrix R ∈ Rn×n, the vector
ỹ ∈ Rn, the lower bound vector l ∈ Zn, the upper bound vector u ∈ Zn,
and the initial hyper-ellipsoid bound β.

Output: The solution ẑ ∈ Zn to the UBILS problem (2.46).
function: ẑ = DTS-SEARCH(R, ỹ, l,u, β)
Step 1 ∶ (Initialization)

Set k = n
Step 2 ∶

Compute λ̄k and µ̄k by following (2.60) and (2.61)
Set Z̄k = {0,1, . . . , uk − lk} ∩ (λ̄k, µ̄k)
if Z̄k is empty then Go to step 4
else

Compute ck =
α−∑n

j=k+1 ∣rmj z̄j ∣
∣rmk ∣

Compute z̄k = ⌊ck⌉ ∣Z̄k

end if
Step 3 ∶

if k >m − 1 then Set k = k − 1, go to step 2
else

Use (2.55) to transform z̄m∶n back to zm∶n
Compute ȳ = y1∶m−1 −R1∶m−1,m∶nzm∶n, and Tm = (ỹm −Rm,m∶nzm∶n)2

Compute z1∶m−1 = CH-SEARCH(R1∶m−1,1∶m−1, ȳ, l1∶m−1,u1∶m−1,
√
β2 − Tm), see

Algorithm 2.3
Set ẑ = z, β =

√
(ȳ −R1∶m−1,1∶m−1z1∶m−1)2 + Tm

Set k = k + 1 and go to step 5
end if

Step 4 ∶
if k = n then

Terminate
else

Set k = k + 1
end if

Step 5 ∶
Choose z̄k ∈ Z̄k to be the next nearest integer to ck
if z̄k does not exist then

Go to step 4
else

Go to step 3
end if
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With ỹ = QT
1 y, z = P Tx, l̄ = P T l, ū = P Tu, we transform (2.45) to (2.46).

Note that if ẑ is the optimal solution to the reduced problem (2.46), x̃ = P ẑ is the

solution to the problem (2.45).

In the reduction process, we first determine how to choose n−m+ 1 columns as

the right part of the permutated A, and the remaining m − 1 columns are the left

part of the permutated A. Then we determine how to order the columns for each

part.

Assuming that the two parts of A have been determined (we will show how to

do it later) and we have a permutated A and a corresponding upper trapezoidal

matrix R. In the following, we show how to reorder the last n−m+ 1 columns of R.

At level j (m ≤ j ≤ n), the integer set Z̄j can be computed by (2.59). The smaller

the number of integers in Z̄j is, the more efficient the search process would be. This

motivates the following reordering strategy. Define

Lj = min{uj − lj, ⌊µ̄j⌋+ sign(µ̄j − ⌊µ̄j⌋)−1}−max{0, ⌈λ̄j⌉− sign(⌈λ̄j⌉− λ̄j)+1}. (2.64)

Here if Lj > 0, Lj is the number of integers in Z̄j. If Lj ≤ 0, it means that the set

Z̄j is empty. Suppose that we have determined the last n − j columns of R, now

we need to choose the jth column (j ≥ m) of R. First we compute Lj with the

current jth column of R, and then we interchange column j and column i of R for

i =m,m+1, . . . , j −1. Then we compute the corresponding Lj after each interchange

and find the smallest Lj. Then the corresponding colmun with smallest Lj is chosen

to be the jth column of R and we go to level j−1 to determine column j−1. We will

repeat this procedure until we order all the last n−m+ 1 columns or we encounter a
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column for which the smallest Lj is nonpositive. The above procedure is described

in Algorithm 2.5.

In Algorithm 2.5, there are two outputs which we need to explain. One is index,

which is the largest column number of those columns which have not been reordered

in Algorithm 2.5. The other is Prod, which is a product of numbers of candidates

at levels higher than index. The empty set Z̄index means the search process has to

move to level index + 1. In other words, we cut off a branch at level index in the

search tree. When the value of index is larger, the branch we can cut off is larger,

and the search process is likely to be more efficient. Therefore, we would like to get

a larger index by reordering some columns of R.

Now we are ready to describe the entire reduction process. (1) Compute the

Householder QR decomposition (2.64) and in the jth step of this process for j = 1 ∶m,

a column permutation will be applied such that ∣rjj ∣ is the smallest positive number

we can achieve. This permutation will tend to make ∣rmj ∣ larger for j =m + 1 ∶ n, as

in terms of 2-norm, m smaller columns of A have been moved to the left. Larger

∣rmj ∣ tends to make ūj smaller (see (2.61)). We mentioned before that λj is usually

nonpositive. Hence, from (2.64), we see that larger ∣rmj ∣ is likely to lead smaller Lj.

In this step, the last n −m columns are as a group determined. (2) For j = 1 ∶ m,

we first interchange columns j and m of R and bring R back to upper trapezoid by

using Givens rotations. Note that when we apply a Given rotation to R, we always

simultaneously update ỹ by the same rotation. Then we apply Algorithm 2.5 to the

new R to reorder (part of) the last n −m + 1 columns and get corresponding index

and Prod. Then after those m steps we find the largest one among the m values of
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Algorithm 2.5 Reorder part of columns of R∶,m∶n
Input: Upper trapezoidal matrix R ∈ Rm×n, ỹm, β
Output: Permuted R, n×n permutation matrix P , variable index for which Z̄index
is empty, variable Prod = Πn

j=index+1Lj
function: [R,P , index,Prod] = REORDER(R, ỹm, β)
1: Set P = In, index =m − 1, Prod = 1, j = n
2: while j ≥m do
3: Compute Lj according to (2.64), set p = j
4: for i =m ∶ j − 1 do
5: Set R′ = R, and interchange columns i and j of R′, then compute the

corresponding L′i
6: if L′i < Lj then
7: Set p = i, Lj = L′i
8: end if
9: end for
10: if p ≠ j then
11: Interchange columns p and j of P and R
12: end if
13: if Lj ≤ 0 then
14: Set index = j, and break the while loop
15: end if
16: Compute z̄j = ⌊α−∑

n
l=i+1 ∣rmlz̄l∣
∣rmj ∣ ⌉ ∣Z̄j

17: Compute Prod = Prod ∗Lj, j = j − 1
18: end while
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index and the corresponding order. Note that if there are more than one orderings

giving the same largest index, we choose the one which gives the smallest Prod. For

the chosen ordering, if index >m+1, we order columns m,m−1, . . . , index as follows.

From (2.64), (2.60) and (2.61) we can observe that a larger ∣rmj ∣ leads to a smaller

Lj if λ̄j ≤ 0. The simulations in [18] indicated that usually λ̄j ≤ 0 if ỹm ≤ 0. And

ỹm ≤ 0 can always be guaranteed because that if ỹm > 0, we can simply multiply both

ỹm and the last row of R by −1. Thus we reorder columns m,m+ 1, . . . , index− 1 of

R such that ∣rmm∣ ≤ ∣rm,m+1∣ ≤ . . . ≤ ∣rm,index−1∣. (3) In this step we reorder the first

m − 1 columns. Note that the last n −m + 1 columns have been found and ordered,

we can get the first valid z(2) by the general search process introduced in Section

2.3.1. Then problem (2.45) becomes an OBILS problem and we can employ the AIP

algorithm given in [58], see Section 2.2.1, to order the first m− 1 columns of R. The

details about the algorithm of reordering strategy of the DTS algorithm can be found

in Algorithm 2.6.

2.3.2 Partial Regularization (PR) Algorithm

Different from the direct tree search algorithm introduced in Section 2.3.1, in

this subsection, the partial regularization approach proposed in [19] will be first

presented to solve the UBILS problem (2.45), where B is replaced by the following

constraint:

Xn
p = Xp ×Xp⋯×Xp, Xp = {±1,±3, . . . ,±(2p − 3),±(2p − 1)},

which arises from MIMO applications. Later we slightly modify the approach to deal

with a box constraint problem.
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Algorithm 2.6 DTS Reduction

Input: Given matrix A ∈ Rm×n, y ∈ Rn, β
Output: Permutation matrix P ∈ Zn×n, upper trapezoidal matrix R ∈ Rm×n and

ỹ ∈ Rm.
function: [P ,R, ỹ] = DTS-RED(A,y, β)
1: Compute AP =QR with minimum pivoting
2: Set ỹ =QTy, index = 0, Prod = +∞
3: for j = 1 ∶m do
4: Set R′ =R, ỹ′ = ỹ
5: if j ≠m then
6: Swap columns j and m of R′ and transform R′ to an upper trapezoidal

matrix by Givens rotations. Apply the same Givens rotations to ỹ′

7: end if
8: if ỹ′m > 0 then
9: Set ỹ′m = −ỹ′m, R′

m,∶ = −R′
m,∶

10: end if
11: [R′,P ′, indtmp, P rodtmp] = REORDER(R′, ỹ′m, β), see Algorithm 2.5
12: if indtmp > index then
13: Set index = indtmp, p = j, Rtmp =R′, ỹtmp = ỹ′, Ptmp = P ′

14: else if indtmp = index then
15: if Prodtmp < Prod then
16: Prod = Prodtmp, p = j, Rtmp =R′, ỹtmp = ỹ′, Ptmp = P ′

17: end if
18: end if
19: end for
20: if p ≠m then
21: Swap columns p and m of P
22: Set P = PPtmp, R =Rtmp, ỹ = ỹtmp
23: end if
24: if index >m + 1 then
25: Reorder the columns of R∶,m∶index−1 such that ∣rmm∣ ≤ ∣rm,m+1∣ ≤ . . . ≤

∣rm,index−1∣,and reorder the columns of P correspondingly
26: end if
27: Use the tree search algorithm to find the first z(2) then use Algorithm 2.2 to

reorder the first m−1 columns of R, leading to new R, ȳ and P correspondingly.
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Partition A and x as follows:

A = [A1
m
, A2

l
], x =

⎡⎢⎢⎢⎢⎢⎢⎣

m x1

l x2

⎤⎥⎥⎥⎥⎥⎥⎦
(2.65)

where l = n −m. Following [21], we can write x2 ∈ Xl
p as a linear combination of

x
(i)
2 ∈ Xl

1 for 0 ≤ i ≤ p − 1:

x2 =
p−1

∑
i=0

2ix
(i)
2 . (2.66)

Define

Ā2 = [A2, 2A2, . . . , 2p−1A2] ∈ Rm×pl, x̄2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(0)
2

x
(1)
2

⋮

x
(p−1)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rpl. (2.67)

Notice that ∥x̄2∥2
2 = pl, so ∥x̄2∥2

2 is constant. Then from (2.66) and (2.67), we see

that the UBILS problem (2.45) with B replaced by Xn
p is equivalent to

min
x1∈Xm

p ,x̄2∈Xpl
1

XXXXXXXXXXXXXXX
y − [A1, Ā2]

⎡⎢⎢⎢⎢⎢⎢⎣

x1

x̄2

⎤⎥⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXXX

2

2

+ α2∥x̄2∥2
2, (2.68)
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where α is a regularization parameter. Therefore with

Ā =
⎡⎢⎢⎢⎢⎢⎢⎣

A1 Ā2

0 αI

⎤⎥⎥⎥⎥⎥⎥⎦
∈ R(m+pl)×(m+pl), x̄ =

⎡⎢⎢⎢⎢⎢⎢⎣

x1

x̄2

⎤⎥⎥⎥⎥⎥⎥⎦
∈ Rm+pl, ȳ =

⎡⎢⎢⎢⎢⎢⎢⎣

y

0

⎤⎥⎥⎥⎥⎥⎥⎦
∈ Rm+pl

X̄ =
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

x1

x̄2

⎤⎥⎥⎥⎥⎥⎥⎦
∶ x1 ∈ Xm

p , x̄2 ∈ Xpl
1

⎫⎪⎪⎬⎪⎪⎭
,

(2.69)

the problem (2.68) can be rewritten as

min
x̄∈X̄

∥ȳ − Āx̄∥2
2. (2.70)

Obviuosly, (2.70) is an overdetermined ILS problem and we slightly modify the

method introduced in Section 2.2 to solve it (the modification is needed to deal

with the special constraint).

It is difficult to extend the PR approach to a general box constraint, however,

we can extend it to the following box constraint:

B = {x ∈ Zn, l ≤ x ≤ u, l,u ∈ Zn, uj − lj = 2pj − 1, pj ∈ Z+, j = 1,2, . . . , n}.

First, for each xj, j =m + 1,m + 2, . . . , n, we do the following shift:

x̄j = xj − lj ∈ {0,1, . . . , uj − lj}. (2.71)

Since x̄j is non-negative we can write it as a linear combination of x̄
(i)
j ∈ {0,1} for

i = 0,1, . . . , pj − 1:

x̄j =
pj−1

∑
i=0

2ix̄
(i)
j . (2.72)
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Define the following transformation for each x̄
(i)
j , j = m + 1,m + 2, . . . , n, and i =

0,1, . . . , pj − 1:

z
(i)
j = 2x̄

(i)
j − 1, (2.73)

then combining (2.71), (2.72) and (2.73) we have

xj =
pj−1

∑
i=0

2i(z(i)j + 1)/2 + lj, j =m + 1,m + 2, . . . , n (2.74)

where z
(i)
j ∈ {−1,1}. Then we can define

Ā2 = [a(0)m+1, . . . , a
(pm+1−1)
m+1 , a

(0)
m+2, . . . , a

(pm+2−1)
m+2 , . . . , a

(0)
n , . . . , a

(pn−1)
n ] ,

x̄2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z
(0)
m+1

⋮

z
(pm+1−1)
m+1

z
(0)
m+2

⋮

z
(pm+2−1)
m+2

⋮

z
(0)
n

⋮

z
(pn−1)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ {−1,1}q,

(2.75)
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where a
(i)
j = 2i−1A∶,j and q = ∑nj=m+1 pj. It is easy to see that the original UBILS

problem (2.46) can be transformed to an equivalent problem

min
x1∈B1∶m,x̄2∈{−1,1}q

XXXXXXXXXXXXXXX
(y −A2c) − [A1, Ā2]

⎡⎢⎢⎢⎢⎢⎢⎣

x1

x̄2

⎤⎥⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXXX

2

2

, (2.76)

where cj = lm+j + 1
2(2pm+j − 1) for j = 1,2, . . . , n −m. This problem is also equivalent

to the OBILS problem:

min
x̄∈X̄

∥ȳ − Āx̄∥2
2,

where

Ā =
⎡⎢⎢⎢⎢⎢⎢⎣

A1 Ā2

0 αI

⎤⎥⎥⎥⎥⎥⎥⎦
∈ R(m+q)×(m+q), x̄ =

⎡⎢⎢⎢⎢⎢⎢⎣

x1

x̄2

⎤⎥⎥⎥⎥⎥⎥⎦
∈ Rm+q, ȳ =

⎡⎢⎢⎢⎢⎢⎢⎣

y −A2c

0

⎤⎥⎥⎥⎥⎥⎥⎦
∈ Rm+q

X̄ =
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

x1

x̄2

⎤⎥⎥⎥⎥⎥⎥⎦
∶ x1 ∈ B1∶m, x̄2 ∈ {−1,1}q

⎫⎪⎪⎬⎪⎪⎭
, α is a constant parameter.

This problem can be solved by algorithms we introduced for the OBILS problem in

Section 2.2.
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CHAPTER 3
Lower Bounds for UBILS Problems

To speed up the search process for OBILS problems, lower bounds have been

used in the literature. In this chapter we first review three existing lower bounds for

OBILS problems and then we propose a new lower bound for UBILS problems.

3.1 Lower Bounds for OBILS Problems

In Section 2.2.1, we introduced the AIP reduction algorithm for the OBILS

problem

min
x∈B

∥y −Ax∥2
2, (3.1)

where y ∈ Rm, A ∈ Rm×n is a full column rank matrix (m ≥ n), B = {x ∈ Zn ∶ l ≤ x ≤

u, l,u ∈ Zn}. For convenience, we will first repeat some part given in Section 2.2.1.

First a QRP decomposition is used to reduce the problem (3.1):

AP =Q

⎡⎢⎢⎢⎢⎢⎢⎣

R

0

⎤⎥⎥⎥⎥⎥⎥⎦
=Q1R, (3.2)

where P is a permutation matrix, Q = [Q1
m
,Q2
n−m

] ∈ Rm×m is orthogonal, R ∈ Rn×n is

an upper triangular matrix. With (3.2), we have

∥y −Ax∥2
2 = ∥QT

1 y −RP Tx∥2
2 + ∥QT

2 y∥2
2. (3.3)

Define

ȳ =QT
1 y, z = P Tx, l̄ = P T l, ū = P Tu, (3.4)
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then the original problem (3.1) can be transformed to

min
z∈B̄

∥ȳ −Rz∥2
2, (3.5)

where B̄ = {z ∈ Zn ∶ l̄ ≤ z ≤ ū, l̄, ū ∈ Zn}.

After the reduction, a search process can start to search for the optimal solution

to the reduced OBILS problem (3.5), see Section 2.2.2. The search process at level

k uses the following inequality (see (2.40)):

r2
kk(zk − ck)2 < β2 −

n

∑
i=k+1

r2
ii(zi − ci)2 − Tk, (3.6)

where Tk ≤ ∑k−1
i=1 r

2
ii(zi − ci)2. Obviously, the tighter Tk we get, the more nodes we

can prune on the search tree. However, if the cost of computing lower bounds is

significant, we can not get a good performance even if the lower bounds are tight.

Thus a trade-off between the tightness and the computational cost of lower bounds

needs to be considered. In the following part, we first review some existing lower

bounds and then introduce three lower bounds in detail.

To make the search process for the OBILS problems more efficient, various lower

bounds have been proposed. In [51], Stojnic et al proposed one lower bound based

on solving quadratic optimization problems (QOP) and another lower bound which

only works for binary variables by solving semidefinite programming (SDP). They

claim that the second lower bound can be extended to the general problem but the

extension is complex. In [12], Buchheim et al proposed a lower bound by solving

SDP but it is expensive to compute. In [31], Garcia et al proposed a lower bound

involving the smallest singular value of the matrix. Since it does not need to solve
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QOP or SDP problems, the cost of this lower bound is smaller than those proposed

in [51] and [12] but it is less tighter. In the following, three of those lower bounds

for OBILS problems will be introduced in details.

At level k we find a lower bound Tk, i.e.,

Tk ≤
k−1

∑
j=1

r2
jj(zj − cj)2 = ∥(ȳ1∶k−1 −R1∶k−1,k∶nzk∶n) −R1∶k−1,1∶k−1z1∶k−1∥2

2, (3.7)

where zk∶n has been chosen and z1∶k−1 is unknown. To simplify notation, we consider

lower bounds for the following model

min
z∈B

∥y −Rz∥2
2, (3.8)

where each quantity is defined as before. Then we can obtain Tk for k = n,n−1, . . . ,2.

Define zrls = R−1y, the real least squares solution to (3.8) if B is replaced by Rn.

Now we want to find a lower bound T , such that

0 ≤ T ≤ ∥y −Rz∥2
2. (3.9)

Let C ∈ Rk×n be any arbitrary matrix. Then

∥C(z − zrls)∥2 = ∥CR−1(Rz − y)∥2 ≤ ∥CR−1∥2∥y −Rz∥2

leading to a lower bound on the objective function of the OBILS problem (3.8):

min
z∈B

∥y −Rz∥2 ≥
min
z∈B

∥C(z − zrls)∥2

∥CR−1∥2

. (3.10)

The inequality (3.10) gives a framework for a class of lower bounds. We introduce

three different lower bounds based on different choices of C.
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3.1.1 A Norm-wise Based Lower Bound

Take C = I. From (3.10), we obtain

min
z∈B

∥y −Rz∥2 ≥
∥zrls∣B − zrls∥2

∥R−1∥2

, (3.11)

where (zrls∣B)(i) = zrls(i)∣Bi
with

zrls(i)∣Bi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌊zrls(i)⌉ if li ≤ zrls(i) ≤ ui

li if zrls(i) < li

ui if zrls(i) > ui

, for i = 1, . . . , n.

This lower bound was proposed in [50] for OBILS problems.

3.1.2 A Component-wise Based Lower Bound

Take C = eTi for i = 1, . . . , n. From (3.10), we obtain

min
z∈B

∥y −Rz∥2 ≥ max
i

∣zrls(i)∣Bi
− zrls(i)∣

∥eTi R−1∥2

, (3.12)

where zrls(i)∣Bi
is defined as before. This lower bound was given in [31].

3.1.3 A Basis Reduction Based Lower Bound

Take C = tT ∈ Z1×n. From (3.10), we obtain

min
z∈B

∥y −Rz∥2 ≥ min
z∈B

∣tT (z − zrls)∣
∥tTR−1∥2

. (3.13)

Suppose T = [t1, . . . , tn] ∈ Zn×n is a unimodular matrix which reduces the lattice

basis matrix R−T , i.e., the columns of R−TT becomes shorter. In order to make the

lower bound in (3.13) large, [12] suggests to take t = ti for i = 1, . . . , n. Then from
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(3.13) we have

min
z∈B

∥y −Rz∥2 ≥max
i

min
z∈B

∣tTi (z − zrls)∣
∥tTi R−1∥2

≥max
i

max{∣⌊tTi zrls⌉ − tTi zrls∣, tTi zrls − τmax
i , τmin

i − tTi zrls}
∥tTi R−1∥2

,

(3.14)

where τmax
i = max

z∈B
tTi z and τmin

i = min
z∈B

tTi z.

It is easy to verify that

τmax
i = tTi z

max, τmin
i = tTi z

min, (3.15)

where zmax,zmin ∈ Zn and

zmax
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

uj if ti(j) > 0

lj if ti(j) ≤ 0
, zmin

j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lj if ti(j) > 0

uj if ti(j) ≤ 0
, for j = 1, . . . , n. (3.16)

Now we make a comment about how to get the unimodular matrix T . When

we solve the OILS problem, we use the LLL reduction to reduce the basis matrix R,

see Section 2.1.1 and we can use the same reduction algorithm here to reduce R−T .

Thus R−T can be reduced if we apply the LLL reduction on it. Then, we can set

T to be the unimodular matrix. This idea was given in [12] for convex quadratic

integer programming and here we use it for OBILS problems.

3.2 Lower Bounds for UBILS Problems

In Section 3.1, we introduced three different lower bounds for solving OBILS

problems. However, to our best knowledge, no lower bounds have been proposed for

the UBILS problem (see (2.45)). In this section, we propose lower bounds for this
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problem, which is repeated here for convenience:

min
x∈B

∥y −Ax∥2
2, (3.17)

where y ∈ Rm, A ∈ Rm×n(m < n) with rank(A) = m, and B = {x ∈ Zn ∶ l ≤ x ≤

u, l,u ∈ Zn}.

In Section 3.2.1 we derive lower bounds which can be incorporated into the DTS

algorithm. And then in Section 3.2.2 we show how to incorporate lower bounds into

the partial regularization algorithm.

3.2.1 Incorporating Lower Bounds in the DTS Algorithm

Lower Bounds for the Underdetermined Part

In Section 2.3.1, we introduced the DTS algorithm proposed in [18] for solving

(3.1). For convenience, we briefly repeat some parts given in Section 2.3.1. We first

compute the QRP decomposition

AP =QR, (3.18)

where P is a unimodualr matrix, Q ∈ Rm×m is an orthogonal matrix and R ∈ Rm×n

is an upper trapezoidal matrix. Then with ỹ = QTy, z = P Tx, l̄ = P T l, ū =

P Tu, the original UBILS problem (3.1) can be transformed to

min
z∈B̄

∥ỹ −Rz∥2
2 (3.19)

where B̄ = {z ∈ Zn ∶ l̄ ≤ z ≤ ū, l̄, ū ∈ Zn}.

To solve (3.19), we find a constant β, see Section 2.3, such that

∥ỹ −Rz∥2
2 < β2. (3.20)
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Partition z, ỹ, R in (3.19) as follows

z =
⎡⎢⎢⎢⎢⎢⎢⎣

m−1 z(1)

l z(2)

⎤⎥⎥⎥⎥⎥⎥⎦
, ỹ =

⎡⎢⎢⎢⎢⎢⎢⎣

m−1 ȳ

1 ỹm

⎤⎥⎥⎥⎥⎥⎥⎦
, R =

⎡⎢⎢⎢⎢⎢⎢⎣

m−1 l

m−1 R1 R2

1 rTm

⎤⎥⎥⎥⎥⎥⎥⎦
(3.21)

where l = n −m + 1, then it is easy to see that the inequality (3.20) is equivalent to

a set of two inequalities:

(ỹm −
n

∑
j=m

rmjzj)2 < β2 (3.22)

∥ȳ −R1z(1) −R2z(2)∥2
2 < β2 − (ỹm −

n

∑
j=m

rmjzj)2. (3.23)

In [18], the inequality (3.22) is used to determine zn, zn−1, . . . , zm and (3.23) is used

to determine remaining elements zm−1, zm−2, . . . , z1. However, the upper bound β2

in (3.22) may be very loose, since we ignore the other elements of the vector on

the left hand side of (3.20) when we derived (3.22) from (3.20). If we can find a

smaller upper bound for (3.22), we may make the search process more efficient in

determining zn, zn−1, . . . , zm. Note that we can rewrite (3.23) as

(ỹm −
n

∑
j=m

rmjzj)2 < β2 − ∥ȳ −R1z(1) −R2z(2)∥2
2. (3.24)

Suppose we can find a lower bound T for the second term on the right hand side

of (3.24), i.e.,

0 < T ≤ min
z∈B̄

∥ȳ −R1z(1) −R2z(2)∥2
2, (3.25)

then we have

(ỹm −
n

∑
j=m

rmjzj)2 < β2 − T. (3.26)
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Now we show how to find a lower bound T . In Section 3.1, we introduced three

lower bounds for the OBILS problems. Note that the ILS problem in (3.25) is not

an overdetermined one and thus we can not use those lower bounds directly here.

In Section 2.3.2, We showed how to transform a UBILS problem with a special box

constraint to an OBILS problem. We can do the same thing here. But we need to

assume the constrained box B̄ in (3.25) has the same form as that in Section 2.3.2,

i.e., B̄ = {z ∈ Zn, l̄, ū ∈ Zn, ūj − l̄j = 2pj − 1, pj ∈ Z+, for 1 ≤ j ≤ n}.

Following Section 2.3.2, we define

R̄2 = [r(0)m , . . . , r
(pm−1)
m , r

(0)
m+1, . . . , r

(pm+1−1)
m+1 , . . . , r

(0)
n , . . . , r

(pn−1)
n ] ,

z̄(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z̄
(0)
m

⋮

z̄
(pm−1)
m

z̄
(0)
m+1

⋮

z̄
(pm+1−1)
m+1

⋮

z̄
(0)
n

⋮

z̄
(pn−1)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ {−1,1}q,

(3.27)
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where r
(i)
j = 2i−1R1∶m−1,j and q = ∑nj=m pj. Then the UBILS problem in (3.25) can be

transformed to an equivalent problem

min
z(1)∈B̄1∶m−1,z̄(2)∈{−1,1}q

XXXXXXXXXXXXXXX
(ȳ −R2c) − [R1, R̄2]

⎡⎢⎢⎢⎢⎢⎢⎣

z(1)

z̄(2)

⎤⎥⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXXX

2

2

(3.28)

where cj = l̄j+m−1+ 1
2(2pj+m−1 −1) for j = 1,2, . . . , n−m+1. Then by adding a constant

term α2∥z̄(2)∥2
2 = α2q to (3.28) we can transform it to the equivalent overdetermined

ILS problem:

min
z̄∈Z

∥y̆ − R̄z̄∥2
2, (3.29)

where

R̄ =
⎡⎢⎢⎢⎢⎢⎢⎣

R1 R̄2

0 αI

⎤⎥⎥⎥⎥⎥⎥⎦
∈ R(m+q−1)×(m+q−1)

z̄ =
⎡⎢⎢⎢⎢⎢⎢⎣

z(1)

z̄(2)

⎤⎥⎥⎥⎥⎥⎥⎦
∈ R(m+q−1)

y̆ =
⎡⎢⎢⎢⎢⎢⎢⎣

ȳ −R2c

0

⎤⎥⎥⎥⎥⎥⎥⎦
∈ R(m+q−1)

Z =
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

z(1)

z̄(2)

⎤⎥⎥⎥⎥⎥⎥⎦
∶ z(1) ∈ B1∶m−1, z̄(2) ∈ {−1,1}q

⎫⎪⎪⎬⎪⎪⎭
.

(3.30)

Next, we can find a lower bound T̄ for (3.29) by a method introduced in Section 3.1.

A lower bound for the UBILS problem in (3.25) can then be defined as T = T̄ −α2q.
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Lower Bound for the Overdetermined Part

After zn, zn−1 . . . , zm are fixed, the problem (3.19) becomes an OBILS problem

min
z∈B

∥ŷ −R1∶m−1,1∶m−1z1∶m−1∥2
2, (3.31)

where ŷ = ỹ1∶m−1 −R1∶m−1,m∶nzm∶n. We can use lower bounds introduced in Section

3.1 to get lower bounds for the remaining levels m − 1,m − 2, . . . ,1.

3.2.2 Incorporating Lower Bounds in the PR Algorithm

In Section 2.3.2, we introduced the PR algorithm proposed in [19] and we can

also incorporate lower bounds in it. In the PR algorithm, we first transform the

original UBILS problem to an OBILS problem and then use CH algorithm to solve

the OBILS problem, see Section 2.2. Therefore, the way to incorporate lower bounds

in the PR algorithm is the same as the way to incorporate lower bounds in CH for

OBILS problems, which can be found in Section 3.1.
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CHAPTER 4
A New Search Algorithm for UBILS Problems

In Chapter 2, we presented the DTS algorithm and the PR algorithm for solving

the UBILS problem

min
x∈B

∥y −Ax∥2
2, (4.1)

where y ∈ Rm, A ∈ Rm×n (m < n) with rank(A) = m, and B = {x ∈ Zn ∶ l ≤ x ≤

u, l,u ∈ Zn}. (For the PR algorithm, it is assumed that ui − li = 2pi −1, pi ∈ Z+ for i =

1 ∶ n.) In this chapter, we propose a new search algorithm, which is a modification

of the DTS search algorithm. Numerical test results will be given in Chapter 5.

4.1 Reordering Strategy for the Search Process

Recall in the DTS algorithm, we first compute the QRP decomposition:

AP =QR, (4.2)

where P is a permutation matrix, Q ∈ Rm×m is an orthogonal matrix and R ∈ Rm×n

is an upper trapezoidal matrix. Then we have

∥y −Ax∥2
2 = ∥QT

1 y −RP Tx∥2
2 + ∥QT

2 y∥2
2. (4.3)

With ỹ = QT
1 y, z = P Tx, l̄ = P T l, and ū = P Tu, the original UBILS problem (4.1)

can be transformed to

min
x∈B̄

∥ỹ −Rz∥2
2 (4.4)
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where B̄ = {z ∈ Zn ∶ l̄ ≤ z ≤ ū, l̄, ū ∈ Zn}.

An example of the search tree for the DTS algorithm is depicted in Figure 4–1

(where there are three candidate values 1,2,3 for zn). Note that the root node (the

white one) does not correspond to any search operation and is an artificial node. In

this example, the search tree has 3 different branches at level n and we use zn = 1 (red

branch), zn = 2 (yellow branch), zn = 3 (blue branch) to denote them respectively.

Figure 4–1: An example of search tree
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Suppose we can find an initial upper bound β2 for (4.4):

∥ỹ −Rz∥2
2 < β2. (4.5)

Partition R and z as

z =
⎡⎢⎢⎢⎢⎢⎢⎣

m−1 z(1)

l z(2)

⎤⎥⎥⎥⎥⎥⎥⎦
, R =

⎡⎢⎢⎢⎢⎢⎢⎣

m−1 l

m−1 R1 R2

1 rTm

⎤⎥⎥⎥⎥⎥⎥⎦
(4.6)

where l = n −m + 1, then we can derive the following set of inequalities:

(ỹm −
n

∑
j=m

rmjzj)2 < β2 (4.7)

∥ỹ1∶m−1 −R1z(1) −R2z(2)∥2
2 < β2 − (ỹm −

n

∑
j=m

rmjzj)2. (4.8)

In the search process of the DTS algorithm (see Section 2.3.1), we first use (4.7) to

determine zm∶n and then use (4.8) to determine z1∶m−1. Note that the transformation

(2.55) was used to transform each zi, m ≤ i ≤ n to z̄i and it can also be used to

transform z̄m∶n back to zm∶n at level m. The search process starts with the branch

z̄n = z(1)n ≜ ⌊ α
∣rmn∣⌉ ∣Z̄n

. After all the tree nodes at this branch have been enumerated,

the search process moves to another branch. In the DTS algorithm, it chooses z̄n =

z
(2)
n as the next branch to search, where z

(2)
n ∈ Z̄n is the next nearest integer to α

∣rmn∣

and so on. However, our simulations indicated that α
∣rmn∣ is usually larger than ūn(

the upper box bound of zn), which means that z
(1)
n is often equal to ūn. And thus

the search process often starts with branch z̄n = ūn and enumerates all the branches
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by the order of z̄n = ūn, z̄n = ūn−1, . . . , z̄n = l̄n. We do not have a rigorous explanation

for this observation yet and it will be investigated in the future.

This search order does not seem to be an efficient one. Here we give an explana-

tion. If the optimal solution or nearly optimal solution of (4.4) are in some branches

with small values for z̄n, then the search process will come to these branches at a late

stage, making the search process inefficient. We would like to enter these branches

earlier. In the following we first propose a new search ordering strategy at level n

and then give a new search algorithm based on it.

4.2 A New Search Ordering Strategy at Level n

Suppose that there are q elements in the set Z̄n at level n, and we use a1, a2, . . . , aq

to denote these integers from the smallest to the largest, i.e., Z̄n = {a1, . . . , aq} and

a1 < a2 < . . . < aq. Then there are q branches at level n in the search tree and we use

z̄n = a1, . . . , z̄n = aq to represent these branches respectively. We also call the branch

with z̄n = ai the i-th branch. Now the question comes to what criterion we should

use to choose the visiting order for the q branches. We would like to find a local

upper bound for the minimal value of the corresponding objective function in each

branch and then use these upper bounds to help us choose the visiting order. If the

upper bounds are tight enough, we can assume that the smaller the upper bound a

branch has, the higher the possibility that the optimal solution exists in this branch.

In the following, we will make use of (4.8) and (4.7) to derive an upper bound for

the minimal value of the objective function in (4.4) in each branch.

First, suppose we can find the first valid subvector z
(i)
m∶n for zm∶n in branch i by

the DTS search process (see Section 2.3.1) for each i. Then we have q candidates for
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zm∶n: z
(1)
m∶n,z

(2)
m∶n, . . . ,z

(q)
m∶n. After zm∶n is fixed in branch i, the UBILS problem (4.4)

becomes

min
z∈B̄

∥ȳ(i) −R1∶m−1,1∶m−1z1∶m−1∥2
2, (4.9)

where ȳ(i) = ỹ1∶m−1 −R1∶m−1,m∶nz
(i)
m∶n. Now we try to find an upper bound on the

minimal value of the objective function in (4.9).

We use z
(i)
B ∈ Zm−1 to denote the box-constrained Babai integer point of (4.9)

in branch i, the definition of which can be found in Section 2.2.1. Then ∥ȳ(i) −

R1∶m−1,1∶m−1z
(i)
B ∥2

2 is an upper bound on the minimal value of the objective function

in (4.9) for branch i. Then we can define an upper bound on the minimal value of

the objective function in (4.4) as follows:

η(i) = (ỹm −
n

∑
j=m

rmjz
(i)
j )2 + ∥ȳ(i) −R1∶m−1,1∶m−1z

(i)
B ∥2

2. (4.10)

Now we sort the q upper bounds η(1), . . . , η(q) in nondecreasing order and then visit

these branches one by one, from the branch with the smallest upper bound to the one

with the largest upper bound. We will give details about this in the next subsection.

Note that it is possible that for some branch i we may not find a valid vector z
(i)
m∶n

for zm∶n. It means that the solution for (4.4) must not be in this branch (zn = ani)

and we can set the upper bound η(i) of this branch to be ∞. Later, in the new search

process, we can directly skip those branches with ∞ as upper bounds.

The new search ordering strategy at level n is inspired by the idea of best first

search (BFS) algorithm. We do not apply the same idea to other levels, as this may

make the search process less efficient because that there would be too many branches.
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Algorithm 4.1 FIND SEARCH ORDER at LEVEL n

Input: The upper trapezoidal matrix R ∈ Rm×n, the vector ỹ ∈ Rm, the lower bound
vector l̄ ∈ Zn, the upper bound vector ū ∈ Zn, and the initial hyper-ellipsoid
bound β.

Output: Z,s and U are three ordered sets which store the information of z̄
(i)
m∶n, η(i)

and {Z̄m, Z̄m+1, . . . , Z̄n} in each branch, respectively.
function: [s, Z, U] = NEW-ORDER(R, ỹ, l̄, ū, β)
Step 1 ∶(Initialization)

Set i = 0, s = {}, Z = {}, U = {}, k = n
Step 2 ∶

if k = n then
if i > ūn − l̄n then Go to step 6
end if
Set z̄k = i, η(i) =∞, k = k − 1 //z̄m∶n is transformed from zm∶n by (2.55)

end if
Compute λ̄k and µ̄k by following (2.60) and (2.61)
Set Z̄k = {l̄k, l̄k + 1, . . . , ūk} ∩ (λ̄k, µ̄k)
if Z̄k is not empty then

Compute ck =
α−∑n

j=k+1 ∣rmj z̄j ∣
∣rmk ∣ and z̄k = ⌊ck⌉ ∣Z̄k

, α is defined in (2.57)
else

Go to step 4
end if

Step 3 ∶
if k =m − 1 then

Use the transformation (2.55) to transform z̄m∶n back to zm∶n
Compute ȳ = ỹ1∶m−1 −R1∶m−1,m∶nzm∶n
Compute η(i) by following (4.10)
Go to step 4

else
k = k − 1 and go to step 2

end if
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Step 4 ∶
if k = n − 1 or k =m − 1 then

if k = n − 1 then
Update s = {s, η(i)}, Z = {Z, []}, U = {U, []} //No valid zm∶n in this branch

else
Set Ū = {}
for k =m ∶ n do Update Ū = {Ū, Z̄k}
end for //Ū = {Z̄m, Z̄m+1, . . . , Z̄n}
Update s = {s, η(i)}, Z = {Z,zm∶n}, U = {U, Ū} //Store information
in the current branch, which will be used in Algorithm 4.2 later

end if
Set i = i + 1, k = n and go to step 2

else
Set k = k + 1

end if
Step 5 ∶

Choose z̄k ∈ Z̄k to be next valid integer to ck
if z̄k does not exist then

Go to step 4
else

Go to step 2
end if

Step 6 ∶
Sort s such that s(1) ≤ s(2) ≤ . . . ≤ s(ūn − l̄n + 1). Then reorder Z and U corre-
spondingly
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We have shown how to find the new search order at level n. The corresponding

algorithm is given in Algorithm 4.1.

4.3 The New Search Algorithm

Let η(i1) ≤ η(i2) ≤ . . . ≤ η(iq). Suppose we found an initial upper bound β2 for

(4.4) by the method we introduced in Section 2.3.1. Since η(i1) is an upper bound of

branch i1, it must be an upper bound of the global optimal solution of (4.4). Thus, if

the current β2 is larger than η(i1), we update β2 to be η(i1) when we start the search

process.

In the following, we give a description of the new search process. After the

search order at level n is determined, we start the search process in branch i1. Note

that the first valid value for zm∶n in branch i1 (i.e., z
(i1)
m∶n) has been found thus our

search algorithm can immediately start at level m − 1. The search process between

level m − 1 and level 1 is the same as the DTS algorithm. Each time we find a valid

full integer vector z∗ at level 1, we update β to be ∥ỹ −Rz∗∥2. After the search

process finishes enumerations in branch ii, it chooses branch i2 to continue search in

the same way as it does in branch i1. We repeat such procedure until all the branches

whose upper bounds have finite values at level n are enumerated. The latest found

integer point z̃ is the optimal solution of (4.4).

The details of the search process is given in Algorithm 4.2.

4.4 Incorporating Lower Bounds in the New Search Algorithm

To make the new search process more efficient, lower bounds can also be incor-

porated.
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Algorithm 4.2 NEW SEARCH

Input: The nonsingular upper trapezoidal matrix matrix R ∈ Rn×n, the vector
ỹ ∈ Rn, the lower bound vector l̄ ∈ Zn, the upper bound vector ū ∈ Zn,
and the initial hyper-ellipsoid bound β.

Output: The solution ẑ ∈ Zn to the UBILS problem (2.46).
function: ẑ = NEW-SEARCH(R, ỹ, l̄, ū, β)
Step 1 ∶
[s, Z,U] = NEW-ORDER(R, ỹ, l̄, ū, β), see Algorithm 4.1
Set i = 0

Step 2 ∶
if i > ūn − l̄n or s(i) =∞ then

Terminate
end if
Set k =m − 1, zm∶n = Z(i + 1), Ū = U(i + 1)
for k =m ∶ n do Z̄k = Ū(k)
end for

Step 3 ∶
if k =m − 1 then

Use (2.55) to transform z̄m∶n back to zm∶n
Compute ȳ = y1∶m−1 −R1∶m−1,m∶nzm∶n, and Tm = (ỹm −Rm,m∶nzm∶n)2

Compute z1∶m−1 = CH-SEARCH(R1∶m−1,1∶m−1, ȳ, l1∶m−1,u1∶m−1,
√
β2 − Tm), see

Algorithm 2.3
Set ẑ = z, β =

√
(ȳ −R1∶m−1,1∶m−1z1∶m−1)2 + Tm

Set k = k + 1 and go to step 6
else

Set k = k − 1
end if

Step 4 ∶
if k >m − 1 then

Compute λ̄k and µ̄k by following (2.60) and (2.61)
Set Z̄k = {l̄k, l̄k + 1, . . . , ūk} ∩ (λ̄k, µ̄k)
if Z̄k is not empty then

Compute ck =
α−∑n

j=k+1 ∣rmj z̄j ∣
∣rmk ∣

Compute z̄k = ⌊ck⌉ ∣Z̄k
and go to step 3 //z̄m∶n is transformed from zm∶n by

(2.55)
end if

end if
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Step 5 ∶
if k = n − 1 then

Set i = i + 1 and go to step 2
else

Set k = k + 1
end if

Step 6 ∶
Choose z̄k ∈ Z̄k to be the next nearest integer to ck
if z̄k does not exist then

Go to step 5
else

Go to step 3
end if

4.4.1 Lower Bounds in the Order Choosing Stage

To speed up the new search process above, two lower bounds can be incorpo-

rated.

From (4.5), the optimal solution satisfies

∥ỹ1∶m−1 −R1z1∶m−1 −R2zm∶n∥2
2 + (ỹm −

n

∑
j=m

rmjzj)2 < β2. (4.11)

First, we use the method introduced in Section 3.2.1 to find a lower bound T1 for

the first term of the left hand side of (4.11). As before, we need to assume the box

constraint in (4.4) satisfies: B̄ = {z ∈ Zn, l̄, ū ∈ Zn, ūj−l̄j = 2pj−1, pj ∈ Z+ for j =m ∶ n}.

Then we have

(ỹm −
n

∑
j=m

rmjzj)2 < β2 − T1, (4.12)

which can be used to replace (4.7) as a tighter upper bound to find zm∶n. Note

that the lower bound T1 is independent of any value of zm∶n we choose in the search
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process and it needs to be computed only once. The search method of finding z
(i)
m∶n

is the same as before, see Section 2.3.1.

Second, suppose zm∶n has been fixed and we denote its value by z
(i)
m∶n. From

(4.11), which holds for the optimal solution of the UBILS problem, we have

min
z1∈B̄1∶m−1

∥(ỹ1∶m−1 −R2zm∶n) −R1z1∥2
2 + (ỹm −

n

∑
j=m

rmjzj)2 < β2. (4.13)

Note that the first term of the left hand side of (4.13) is an OBILS problem and

a lower bound T02 on its objective function can be computed by using the method

introduced in Section 3.1. If the current z
(i)
m∶n is valid, it must satisfy

T2 + (ỹm −
n

∑
j=m

rmjz
(i)
j )2 < β2. (4.14)

Otherwise, z
(i)
m∶n is invalid, which means it can not be part of an integer point z

satisfying (4.11). In this case, we need to continue the search process in branch i to

update z
(i)
m∶n.

4.4.2 Lower Bounds for the Overdetermined Part

After fixing zn, zn−1 . . . , zm, the problem (4.4) can be transformed to the OBILS

problem (4.9). We can use lower bounds introduced in Section 3.1 to get lower

bounds for the remaining levels m − 1,m − 2, . . . ,1.
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CHAPTER 5
Numerical Experiments

In this chapter we use numerical experiments to show the effectiveness of the

lower bounds and the new search algorithm for solving the UBILS problem (2.45).

Algorithms to be tested in this chapter are implemented in MATLAB 2013a. All

tests were run on a PC with Intel Core 2 Quad CPU and 3.8 GiB memory running

on Ubuntu 14.04 LTS, 64 bits OS.

5.1 System Model and Algorithm Notations

In the numerical experiments, we construct the data based on the following

linear model

y =Ax̂ + v, (5.1)

where y ∈ Rm, A ∈ Rm×n(m < n) with rank(A) =m, x̂ ∈ B = {x ∈ Zn ∶ l ≤ x ≤ u, l,u ∈

Zn}, and v ∈ Rm is a Guassian noise vector following N(0, σ2I).

In the simulations, we generate three different types of cases for the model

(5.1). Here we introduce some MATLAB built-in functions which will be used

later: randn(p, q) generates a p-by-q matrix of normally distributed random num-

bers; randi([imin, imax], p, q) generates a p-by-q matrix of pseudo random integers

drawn from the discrete uniform distribution on the interval [imin, imax]; ones(p, q)

generates a p-by-q matrix of ones. For both Cases 1 and 2, we use σ ∗ randn(m,1)

to generate an m dimensional noise vector v, use ones(n,1) ∗ l and ones(n,1) ∗ u to
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generate constrained box [l, u], where l, u ∈ Z and use randi([l u], n,1) to generate

the true parametric vector x̂. Note that each element of x̂ has the same range (this

is the case in communications). Then, y can be generated according to (5.1) after

A is generated. We generate three different types of the matrix A:

Case 1 (random case): We use randn(m,n) to generate the matrix A. For the m

and n we chose in our tests, we noticed that the condition numbers of A are usually

below 100.

Case 2 (ill-conditioned case): We use randn(m,n) to generate an m × n matrix

Ā and then use the built-in function svd(Ā) to get the singular value decomposi-

tion Ā = UDV T . Then we replace D by a new diagonal matrix D̄ ∈ Rm×n with

d̄11 = 1, d̄ii = dii for i = 2,3, . . . , n − 1, d̄mm = 0.001. Then we can form a new matrix

A = UD̃V T . The condition numbers of A are at least 1000.

Case 3 (flat-fading in communications): This case is similar to the case tested in

[15] and [19]. In the Gaussian MIMO linear flat-fading channel system, the relation

between received signal vectors and transmit signal vectors of this system can be

written as a complex linear system

yc =Acxc + vc (5.2)

where Ac ∈ CNr×Nt represents the channel matrix with Nt transmitter antennas and

Nr receiver antennas. The elements of Ac are complex i.i.d Gaussian variables with

distribution CN(0,I) and vc ∈ CNr is the white Gaussian noise vector with distribu-

tion CN(0,2σ2I). The elements of the unknown vector xc are odd numbers in set

Xc(p) = {p1 + p2j ∶ p1, p2 = ±1,±3, . . . ,±(2p − 3),±(2p − 1)} where j2 = −1, p = 1,2,3
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correspond to the 4QAM, 16QAM, 64QAM constellations, respectively. To deal with

the complex case, we first transform (5.2) to the following real linear model

y =Ax + v (5.3)

y =
⎡⎢⎢⎢⎢⎢⎢⎣

yRc

yIc

⎤⎥⎥⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎢⎢⎣

AR
c −AI

c

AI
c AR

c

⎤⎥⎥⎥⎥⎥⎥⎦
, x =

⎡⎢⎢⎢⎢⎢⎢⎣

xRc

xIc

⎤⎥⎥⎥⎥⎥⎥⎦
, v =

⎡⎢⎢⎢⎢⎢⎢⎣

vRc

vIc

⎤⎥⎥⎥⎥⎥⎥⎦
(5.4)

where Ac = AR
c + jAI

c , yc = yRc + jyIc , xc = xRc + jxIc and vc = vRc + jvIc . Thus

A ∈ Rm×n with m = 2Nr, n = 2Nt and aij ∼ N(0,1/2), v ∼ N(0, σ2Im), and x ∈

X(p)n = X(p) ×X(p) . . .X(p) with

X(p) = {±1,±3, . . . ,±(2p − 3),±(2p − 1)}. (5.5)

And thus estimating xc ∈ CNt in (5.2) is equivalent to estimating x ∈ Rn in (5.3).

In this case, we can construct the matrix A by setting AR
c = 1√

2
randn(Nr,Nt),

AI
c = 1√

2
randn(Nr,Nt). Then we show how to construct x. First we generate each

element of vector x̄ as x̄i = 2 ∗ randi([1 2p−1]) − 1. Then xi can be generated as

xi = (3−2randi([1,2]))∗ x̄i for i = 1,2, . . . , n. The method to generate y, v is the same as

what we introduced in Cases 1 and 2. To estimate x in (5.3), we solve the following

constrained ILS problem:

min
x∈X(p)n

∥y −Ax∥2
2 (5.6)

Note that the above problem is not a standard UBILS problem since the constraint

on x is not a box. However, we can transform it to a standard problem. For each xi
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(i = 1 ∶ n), we define the following transformation:

x̄i =
2p − 1 + xi

2
, (5.7)

so that x̄i ∈ X̄(p) = {0,1, . . . ,2p − 1}. Then the problem (5.6) becomes a standard

UBILS problem:

min
x̄∈X̄(p)n

∥ȳ − Āx̄∥2, (5.8)

where ȳ = y − (2p − 1)A ∗ 1, Ā = 2A.

Here we first give the formulation to compute the signal-to-noise-rations (SNR),

SNR = 10log10(((M − 1)/3)/2σ2), (5.9)

which will be used later for M -QAM.

In the simulations, we compare the existing DTS algorithm and the PR algo-

rithm with four new solvers for the above three cases. For convenience, we use the

following abbreviations for different solvers:

DTS: The direct tree search algorithm without lower bounds (Algorithm 2.5)

DTSLB: The direct tree search algorithm with lower bounds (see Section 2.3.2)

PR: The partial regularization algorithm without lower bounds (see Section 3.2.1)

PRLB: The partial regularization algorithm with lower bounds (see Section 3.2.2)

NS: The new search algorithm without lower bounds (Algorithm 4.2)

NSLB: The new search algorithm with lower bounds (see Section 4.4)

According to [19], the regularization parameter α in the PR and the PRLB was set

to 27/4σ.
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In Section 3.1, we reviewed three different lower bounds for the OBILS problems,

each of which can be used as a lower bound for the over-determined part of the

UBILS problem, see Section 3.2.1. The lower bounds we used in our tests for the

over-determined parts in the DTSLB and the NSLB are the component-wise lower

bounds, see Section 3.1. It is because that the cost of the component-wise lower

bound is smaller than the basis-reduced lower bound and it is usually tighter than

the norm-wise lower bound.

We compare the above six different solvers in terms of average and median

running time and performance profiles for different scenarios.

5.2 Simulation Results

5.2.1 Simulation Result for Case 1

We first consider Case 1 in various scenarios.

Figures 5–1 and 5–2 display the average and median running time of six algo-

rithms versus n −m of 200 random instances in Case 1. Here σ = 0.1, m = 15 and

n = 16 ∶ 20. The time limit we set for each instance is 1000 seconds. If a solver can

not solve the corresponding problem in the limited time, it will be terminated. For

this case, NSLB is the most efficient one in terms of average running time and PR is

the most efficient one in terms of median running time overall. In Figure 5–1, when

n −m = 3 PR is a little faster than NSLB from the aspect of average running time.

In Figure 5–2, when n −m = 5, the median running time of NSLB is faster than PR

and NS is very close to PR.

Now we look at the effectiveness of lower bounds for DTS, PR and NS based

on the above figures. NSLB outperforms NS and DTSLB outperforms DTS, while
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Figure 5–1: Case 1, σ = 0.1, l = 0, u = 7, m = 15, n = 16,17,18,19,20

PRLB performs worse than PR in both average and median running time. Then, we

can conclude that lower bounds can improve the performances of NS and DTS but

can not improve PR in Case 1.

To compare these six algorithms further, we use a different metric, performance

profiles to evaluate them more fairly. Performance profiles provide an effective mean

to compare solver performances for several solvers at once, eliminating some of the

bias some comparisons have. It was first proposed by Dolan and More in [28], which

is an extension of initial performance comparisons developed in [7] by Billups et al.
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Figure 5–2: Case 1, σ = 0.1, l = 0, u = 7, m = 15, n = 16,17,18,19,20

In [28], they define the performance profile of a solver as a (cumulative) distribution

function for a performance metric. Suppose we solved a set of np problems denoted by

P with different solvers. Let p denote a particular problem and s denote a particular

solver. In particular, they use the ratio of the solver resource time for a given solver

versus the best time of all the solvers as the performance ratio, i.e.,

ρ(p, s) =
t(p,s)

min{t(p,s) ∶ 1 ≤ s ≤ ns}
, (5.10)
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where t(p,s) refers to the time solver s spent on problem p, and ns refers to the number

of solvers in the model test set. For practical purposes, if a solver does not solve a

problem, we set its performance ratio to ∞. In order to obtain an overall assessment

of a solver on the given model test set, define a cumulative distribution function

Ps(τ):

Ps(τ) =
1

np
size{p in P ∶ ρ(p, s) ≤ τ}. (5.11)

So Ps(τ) is the probability that a performance ratio ρ(p, s) is within a factor of τ of

the best possible ratio.
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Figure 5–3: Case 1, σ = 0.1, l = 0, u = 7, m = 15, n = 20
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Min(s) Average(s) Median(s) Max(s)

200 rand instances for Case 1
DTS 0.0499 15.7095 1.4206 410.1331
DTSLB 0.0744 1.9432 1.0465 18.4673
PR 0.0259 17.2582 0.1219 500.0001
PRLB 0.1638 44.9894 1.7269 507.7474
NS 0.0390 3.0665 0.7086 44.7135
NSLB 0.0490 0.9948 0.8402 6.8056

Table 5–1: Case 1 with m = 15, n = 20

Figure 5–3 shows the performance profile of six algorithms for Case 1. In all of

these 200 instances σ = 0.1, l = 0, u = 7, m = 15, n = 20 and the time limit we set

is 1000 seconds. It shows that PR can first finish around 60% of all instances when

τ in (5.11) around 1.25 but NSLB and NS can only finish around 12 − 13% at the

same time. The percentages of DTS, DTSLB and PRLB can finish when τ in (5.11)

around 1.25 are all below 10%. There is a turning point for the performances of six

solvers: the time to finish 72% of all instances. From this point, NSLB becomes the

first solver which can finish 72% of all instances and keeps this advantage until the

end (finish all instances). DTSLB, NS, DTS perform better than PR gradually after

the turning point and finish all test instances earlier than PR.

From Figures 5–1 and 5–2, we find that there is a discrepancy between perfor-

mances of average and median running time: NSLB and PR have best performances

in terms of average and median running time, respectively. Figure 5–3 may help us

to explain it. First, let us recall what the average and median running time mean.

The average running time is the summation of all time divided by the number of

instances and the median running time is the middle one of the sorted time set.
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And thus an algorithm like PR, which can finish 60% instances when τ in (5.11)

around 1.25 but need quite a long time to finish the remaining 30% instances easily

has discrepancy performances in terms of average and median running time. That is

because average time considers running time of all instances and median time only

considers the smallest 51% running time of all instances.

Through Figures 5–1, 5–2 and Figure 5–3, we can find that PRLB can not

outperform PR in terms of all three metrics. Here we give a rough explanation

about why lower bounds can not improve the performance of PR. First, in Figure 5–

3, we can see that PR can finish 60% instances when τ in (5.11) around 1.25 and thus

adding lower bounds can easily bring overhead for these instances. Second, different

from DTS and NS, PR solves UBILS problems by transforming UBILS problems into

larger dimensions OBILS problems, which means matrices used for computing lower

bounds in PRLB are larger than those in DTSLB and NSLB. Thus, lower bounds in

PRLB more easily bring overhead than DTSLB and NSLB. Third, the information

given in the above Figures is not complete. For example, we set a time limit of 1000

seconds in all three tests above. There is a possibility that PRLB can solve some

problem in 1100 seconds and PR can not solve the problem in it. But they are all

counted as 1000 seconds in our simulations.

Table 5–1 summarizes the minimum, average, median and maximum time of the

same instances shown in Figure 5–3. From the table we see that PR has the smallest

minimum and median running time, while NSLB has smallest average and maximum

running time. We can also find that the difference between average, median and

maximum running time of NSLB is much smaller than others.
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5.2.2 Simulation Result for Case 2
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Figure 5–4: Case 2, σ = 0.1, l = 0, u = 7, m = 15, n = 16,17,18,19,20

Figures 5–4 and 5–5 display the average and median running time of six algo-

rithms versus n −m of 200 random instances in Case 2. Here σ = 0.1, m = 15 and

n = 16 ∶ 20. The time limit we set for each instance is 1000 seconds. In this case,

NSLB is the most efficient one in terms of average running time. As to the median

running time, NS and NSLB perform best alternatively. NSLB has the best perfor-

mance when n −m equals 3, 5 and NS has the best performance when n −m equals
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Figure 5–5: Case 2, σ = 0.1, l = 0, u = 7, m = 15, n = 16,17,18,19,20

1,2,4. But the performances of these two solvers are very close when n −m equals

1,2,4.

For the effectiveness of lower bounds for DTS, PR and NS, NSLB can outperform

NS and DTSLB can outperform DTS in most instances but PRLB performs worse

than PR in both average and median running time. Then, we can conclude that

lower bounds can improve the performances of NS and DTS algorithms but can not

improve the PR algorithm for Case 2. It is consistent with what we found in Case 1.
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Figure 5–6: Case 2, σ = 0.1, l = 0, u = 7, m = 15, n = 20

Figure 5–6 shows the performance profile of six algorithms in Case 2. In all

of these 200 instances σ = 0.1, l = 0, u = 7, m = 15, n = 20 and the time limit

we set is 1000 seconds. It shows that NS, PR, DTS, DTSLB, NSLB, PRLB can

finish around 40%, 27%, 22%, 10%, 5% and 1% of instances when τ in (5.11) around

1.25, respectively. NSLB and DTSLB can catch up with PR when solving around

31% of instances almost at the same time and can catch up with DTSLB when

solving around 38% of instances. NSLB begins to perform better than NS when

solving around 60% of instances and has the best performance over all solvers after
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Min(s) Average(s) Median(s) Max(s)

200 rand instances for Case 2
DTS 0.0386 198.3417 14.1826 1000.0000
DTSLB 0.0413 172.1622 9.6048 1000.0000
PR 0.0309 381.0334 60.6704 1000.0000
PRLB 0.0312 395.7107 69.7932 1000.2000
NS 0.0377 181.1204 10.6955 1000.0000
NSLB 0.0532 170.6295 10.4604 1000.0000

Table 5–2: Cases 2 with m = 15, n = 20

this. None of six solvers can finish all instances within the time limit. NSLB, NS,

DTSLB, DTS can finish 90% of instances, while PR and PRLB can finish 65% and

60% of instances, respectively.

Table 5–2 summarizes the minimum, average, median and maximum time of the

same instances shown in Figure 5–6.

For Case 2, PR still has the smallest minimum time and the minimum running

time of all six algorithms are quite close. NSLB and DTSLB have the best average

and median running time, respectively. Note that the median running times of

DTSLB, NS, NSLB are quite close. As to the maximum time, all of six algorithms

have some extreme instance which can not be solved within the time limit (1000

seconds) we set.

5.2.3 Simulation Result for Case 3

Figures 5–7 and 5–8 give the average time and median running time of six

algorithms against Nt −Nr for 4QAM (p = 1) with Nr = 8, Nt = 9 ∶ 12 in all of 200

random instances. Each of instance has a time limit 2000 seconds. From the aspect

of average running time: when Nt −Nr ≤ 2, NSLB has the best performance; when
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Figure 5–7: 4QAM, flat-fading system

Nt − Nr = 3,4 the performances of PR and NSLB are almost the same and PR is

little faster than NSLB. When it comes to median running time, PR always performs

best.

Figure 5–9 shows the performance profile of six solvers for 4QAM flat-fading

system. In all of these 200 instances SNR = 30, Nr = 8, Nt = 12 and the time limit

we set is 2000 seconds. PR has the best performance in the whole process, which

can finish around 80% instances when τ in (5.11) around 1.25. However, the other

five solvers can only finish around (NS, DTS) or below (NSLB, DTSLB, PRLB) 10%
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Figure 5–8: 4QAM, flat-fading system

at that time. NS has the second best performance for the first 75% instances and

PRLB has the second best performance for instances between 76%-95%. For the rest

part (the last 5%) instances, the performances of NS, NSLB, DTS, DTSLB, PRLB

are very close.

Figures 5–10 and 5–11 give the average and median running time of six solvers

against Nt −Nr for 16QAM (p = 2) with Nr = 8, Nt = 9 ∶ 12 in all of 200 random

instances. Each of instance has a time limit of 2000 seconds. It is easy to see that
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Figure 5–9: 4QAM, flat-fading system

NSLB and PR always have the best performance in terms of average and median

running time, respectively.

Figure 5–12 shows the performance profile of six solvers for 16QAM flat-fading

system. In all of these 200 instances SNR = 30, Nr = 8 and the time limit we set is

2000 seconds. When τ in (5.11) around 1.25, PR can finish around 65% of instances

but NSLB, NS and DTSLB can only finish around 10% instances. The percentages

of instances DTS and PRLB can finish when τ in (5.11) around 1.25 are both below

10%. In terms of finishing 85% of instances, the performances of NSLB and NS
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Figure 5–10: 16QAM, flat-fading system

can catch up with that of PR. NSLB and NS have best performances after that and

NSLB can finish all instances first.

Figures 5–13 and 5–14 give the average time and median running time of six

solvers against Nt−Nr for 64QAM (p = 3) with Nr = 8, Nt = 9 ∶ 12 in all of 200 random

instances. Each of instance has a time limit of 2000 seconds. When Nt − Nr ≥ 2,

NSLB has the best performance in terms of average running time and NS has the

best performance when Nt −Nr = 1. For the median running time, PR has the best

performance when Nt−Nr ≥ 2 and NSLB has the best performance when Nt−Nr = 1.
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Min(s) Average(s) Median(s) Max(s)

200 rand instances with 4QAM
DTS 0.0392 1.3946 0.3327 13.7556
DTSLB 0.0393 1.8795 0.4745 23.7022
PR 0.0259 0.1422 0.0509 1.5403
PRLB 0.0333 1.6176 0.2422 12.2163
NS 0.0360 1.5099 0.2434 22.4341
NSLB 0.0430 1.8128 0.3572 18.8811
100 rand instances with 16QAM
DTS 0.0307 46.9653 3.4256 2000.0000
DTSLB 0.0694 28.8014 2.4976 451.9706
PR 0.0276 72.0403 0.4116 2000.0000
PRLB 0.0525 77.6904 1.4313 2000.0000
NS 0.0500 29.1598 1.8829 422.8588
NSLB 0.0690 23.6563 1.3815 263.4167
100 rand instances with 64QAM
DTS 0.0307 46.9653 3.4256 2000.0000
DTSLB 0.0694 28.8014 2.4976 451.9706
PR 0.0334 101.9469 0.8625 2000.0000
PRLB 0.0492 120.9281 1.1281 2000.0000
NS 0.0500 29.1598 1.8829 422.8588
NSLB 0.0690 20.7674 1.3815 248.5187

Table 5–3: Case 3 with Nt = 8, Nr = 12, for 4,16,64QAMs
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Figure 5–11: 16QAM, flat-fading system

Figure 5–15 shows the performance profile of six solvers for 64QAM flat-fading

system. In all of these 200 instances SNR = 30, Nr = 8 and the time limit we set is

2000 seconds. When τ in (5.11) around 1.25, PR can finish around 67% of instances

and NSLB, NS and DTSLB can only finish around 10% instances. The percentages

of instances DTS and PRLB can finish at that time are below 10%. In terms of 90%

of instances, the performances of NSLB and NS catch up with that of PR. NSLB

and NS have best performances after that and NSLB can finish all instances first.
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Figure 5–12: 16QAM, flat-fading system

Table 5–3 summarizes the minimum, average, median and maximum time of the

same instances shown in Figures. 5–9, 5–12 and 5–15. We can see that PR has best

values in terms of all four aspects for 4QAM instances. It also has best minimum and

median values for 16QAM instances. NSLB has best average and maximum values

for 16QAM instances. For 64QAM instances, DTS has the best minimum value, PR

has the best median value and NSLB has best average and maximum values.

Figures 5–16 and 5–17 show the average and median running time of the six

solvers against different SNRs for 16QAM with Nr = 8, Nt = 10 and SNR = 9 ∶ 3 ∶
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Figure 5–13: 64QAM, flat-fading system

30. The time limit for each instance is 2000 seconds. NSLB always has the best

performance in terms of average running time and PR is the most efficient one from

the aspect of median running time. Also we can find that with SNR decreasing, the

performance of NSLB is more close to PR.

87



1 2 3 4
10

−2

10
−1

10
0

10
1

10
2

N
t
−N

r

tim
e 

(s
ec

on
ds

)

median times

 

 

DTS
DTSLB
PR
PRLB
NS
NSLB

Figure 5–14: 64QAM, flat-fading system
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Figure 5–15: 64QAM, flat-fading system
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Figure 5–16: Case 3, average time against SNR (16QAM, flat-fading system)
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Figure 5–17: Case 3, median time against SNR (16QAM, flat-fading system)
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CHAPTER 6
Summary and Future Work

In this thesis, we first reviewed several algorithms for different kinds of ILS

problems, and then focused on the investigation of methods to improve the search

process for UBILS problems. We proposed a lower bound and a new search algorithm

for UBILS problems.

In Chapter 2, we reviewed existing sphere decoding algorithms for solving OILS,

OBILS and UBILS problems respectively. For the UBILS problem, we gave two

algorithms: DTS and PR.

In Chapter 3, first three lower bounds were reviewed for speeding up the search

process for OBILS problems: norm-wise lower bound, component-wise lower bound,

and basis reduced lower bound. Then, a new lower bound was proposed for the

search process in the underdetermined part of the UBILS problem, which is inspired

by the partial regularization approach. Numerical tests results indicate that lower

bounds added to UBILS problems can speed up the search process of the direct tree

search algorithm and the new search algorithm we proposed in Chapter 4.

In Chapter 4, we proposed a new search algorithm for solving the UBILS prob-

lem, which is a modification of the direct tree search algorithm and uses a best-first

search idea. Numerical tests show that the new search algorithm outperforms than

the direct tree search algorithm with or without incorporating lower bounds.
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In Chapter 5, we compared six solvers: DTS, DTSLB, NS, NSLB, PR and

PRLB in terms of average, median running and performance profiles. We also tested

the above six solvers under three different conditions: random case, ill-conditioned

case and flat-fading models in communications. The results show that it is difficult

to find one solver can always have best performance in all cases. But we can give

a rough recommendation for different cases here. If we pursue a good average or

median running time, NSLB and PR usually give a good performance, respectively.

If we have a strong preference for avoiding of extreme instances, PR will not be a

good choice and NSLB, NS usually can guarantee good performances. If we only

consider about cases which can be done in a very short time and do not mind a small

percentage of extreme instances, PR will be a good choice. We can hardly list every

specified condition and give the corresponding recommendation here and thus need

to find a better algorithm which can perform well in more conditions in the future.

In the future work, we shall investigate the following problems: (1) The current

column reordering strategy in the DTS algorithm is complicated and it deals with the

under-determined part and the determined part quite differently. We intend to find

a more unified and simpler strategy. (2) We noticed that unlike DTSLB and DTS,

NSLB and NS, PRLB can not outperform PR in almost all test cases. One reason is

the overhead of the lower bounds is significant. We plan to use lower bounds only in

part of the search process to reduce the cost. (3) Simulation results show that the

lower bound we proposed for underdetermined part seems not tight enough and we

plan find a tighter bound for it.
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