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Abstract—In this work, a system scheme is proposed for
tracking a radio emitting target moving in two-dimensional space.
The localization is based on the use of biased time-of-arrival
(TOA) measurements obtained at two asynchronous receivers,
each equipped with two closely spaced antennas. By exploiting the
multi-antenna configuration and using all the TOA measurements
up to current time step, the relative clock bias at each receiver and
the target position are jointly estimated by solving a nonlinear
least-squares (NLS) problem. To this end, a novel time recursive
algorithm is proposed which fully takes advantage of the problem
structure to achieve computational efficiency while using orthogo-
nal transformations to ensure numerical reliability. The Cramer-
Rao lower bound (CRLB) is also derived as a lower bound on
the error in estimating the position and biases. Simulationresults
show that the mean-squared error (MSE) of the proposed method
approaches the CRLB closely.

Keywords—Clock bias estimation, localization, recursive non-
linear least squares, synchronization, time of arrival.

I. I NTRODUCTION

Tracking and positioning of mobile targets in a wireless
network is of interest in many applications, including vehicle
navigation, indoor positioning, etc. [1], [2]. The localization
methods based on time-of-arrival (TOA) and time-difference-
of-arrival (TDOA) measurements have received great attention,
especially in ultra-wideband (UWB) impulse radio systems due
to their good timing resolution [3].

In the traditional TOA-based tracking techniques, the target
node (transmitter) and all the fixed anchors (receivers), have to
be precisely synchronized to yield good estimation accuracy. In
practice, it is often difficult and costly to maintain the desired
level of synchronization between the target and the anchors. In
this case, localization can still be achieved by either hyperbolic
positioning using TDOA data [1], [2], or joint synchronization
and positioning using TOA data [4]. However, the TDOA-
based methods require one more anchor for localization as
well a reliable line-of-sight (LOS) reference node which isnot
guaranteed all the times [2]; therefore, TOA-based methodsare
usually preferred in applications.

With the broad deployment of multiple antenna transceivers
in emerging wireless networks, the need for a positioning
system that exploits this structure is growing [5]. Unlike the
above referenced methods which only employ a single antenna
per anchor, several two-dimensional (2D) localization methods
have been proposed that make use of anchors equipped with
closely spaced antennas. For instance, in [6], a localization
scheme is proposed based on the measurements of the TOAs
and the TDOA at two neighboring antennas. The TDOA is used

in turn to compute an angle-of-arrival (AOA) which is com-
bined to the TOA to locate the target. However, this method
requires accurate synchronization between the transmitter and
the receiver; furthermore, it is sensitive to TDOA errors. The
proposed scheme in [7] makes use of two anchors, each one
equipped with two receiving antennas. The AOA at each an-
chor is estimated based on TDOA measurements and then the
target position is finally determined. This method requiresno
synchronization between the target and the anchors; however,
the considered approximations and the sensitivity to the noise
in TDOA measurements deteriorate the position estimate.

In this work, by assuming a system configuration similar
to that in [7], we propose a novel asynchronous localization
method which uses all previous and current TOA measure-
ments at each antenna to jointly estimate the clock biases and
the current location. Knowledge of the clock bias removes the
need for synchronization in the network layer and therefore
reduces system costs and complexity. Furthermore, our method
requires only two anchors, as compared to the standard triangu-
lation and the hyperbolic positioning techniques which require
three and four synchronized anchors, respectively [2]. At each
time step, the joint parameter estimation is achieved by solv-
ing a nonlinear-least-squares (NLS) problem iteratively.For
computational and memory efficiency, the proposed method is
designed in a recursive manner by fully exploiting the structure
of the NLS problem, whereas the orthogonal transformations
are exploited to ensure numerical reliability. The Cramer-Rao-
lower-bound (CRLB) on the parameter estimate covariance
is also derived analytically. Through numerical simulations,
by evaluating the mean-squared error (MSE) in positioning
and clock bias estimation, it is shown that the mean squared
error (MSE) of our proposed algorithm approaches the CRLB
closely.

The organization of the paper is as follows: In Section II,
the system set up and the problem statement are given. The
proposed localization algorithm and the CRLB are derived in
Section III and Section IV, respectively. The simulation ofthe
proposed method and comparison with the CRLB are presented
in Section V. Finally, Section VI concludes the paper.

II. SYSTEM DESCRIPTION

The system under consideration consists of a mobile target
node equipped with a radio transmitter and at least two fixed
anchors, labeledRX1 and RX2, each having two closely
spaced receiver antennas. The moving target, at time stepk, is
located at positionxk = [xk, yk]

T ∈ R
2. The known position

of the j-th antenna of thei-th receiver ispij = [Xij , Yij ]
T ∈



R
2 for i, j = 1, 2. The distance between the two antennas

at each receiver isa = ‖p11 − p12‖ = ‖p21 − p22‖, where
‖ · ‖ denotes the 2-norm operation. The distance between the
target and thej-th antenna of thei-th receiver, at time step
k, is denoted byd(k)ij = ‖xk − pij‖. The range difference
between the two antennas of thei-th receiver is denoted by
∆d

(k)
i = d

(k)
i1 − d

(k)
i2 , where|∆d

(k)
i | ≤ a. The system configu-

ration is described in Fig. 1 and it is practically implemented
in [7].
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Fig. 1. The system scheme in 2D space.

At time stepk, the range measurements at each receiver
antenna can be obtained by multiplying the estimated TOA
with the speed of wave propagation [6]. It this work, these
measurements are modelled as

zk = f(xk) +Ab+ nk, (1)

or equivalently, in expanded vector notation,
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 , (2)

wherenij(k) is the measurement noise at thej-th antenna of
the i-th receiver andbi is the relative clock bias between the
target node and thei-th anchor. For a given pair(i, j), the
sequence of noise termsn(k)

ij are modeled as independent and
identically distributed (iid) Gaussian random variables with
zero-mean and varianceσ2

n, i.e., nij(k) ∼ N (0, σ2
n). For

different (i, j) pairs, the noise terms can be considered un-
correlated with each other if the spacing between neighboring
antennas of each anchor is reasonably large.

For the sake of simplicity we assume that the clock bias
is constant for the localization period and the clock skew is
calibrated and mitigated in the physical layer of UWB system
as done in [8]. Neglecting the effect of clock skew for a
short period of time has also been considered in [9]. The
measurements data are stored and processed in a data fusion
centre for localization. For the sake of generality, we have
assumed that there is no global time reference for anchor
nodes, thus the relative clock biases at each receiver are
different. In this case there is no need for the anchors to
communicate with each other through cables in order to be
synchronized with a reference clock.

III. L OCALIZATION METHOD

At time stepk, to estimatexk (and estimatexl for l =
1, 2, . . . , k − 1 as well for post-processing), we use all the
measurement equations in (1) up to and including stepk and
solve the following nonlinear-least-squares (NLS) problem

min
x1,...,xk,b

∥∥∥∥∥∥∥
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...
zk


−
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...
f (xk)


−



A
...
A


 b

∥∥∥∥∥∥∥
2

. (3)

The solution gives the maximum likelihood estimates ofx1,
. . ., xk and b at time stepk. Instead of the above problem
formulation, we could remove the clock bias by subtracting
the TOA measurement equations of two neighboring antennas
at each receiver in (2), and then estimate the position. However,
due to the close distance between the neighboring antennas,
this estimation method is ill-conditioned in practice. Moreover,
as the clock biases are assumed to be constant, the measure-
ment equations at different time steps are related. Therefore,
without the exploitation of the previous measurements in
estimating the current position, the information from the past
is lost. Thus, the latter method would lead to an inaccurate
and less robust estimate ofxk than that obtained by solving
(3).

Solving the minimization problem (3) becomes computa-
tionally expensive ask grows, therefore, for computational
efficiency, we develop a recursive method by using the idea
given in [10].

A. Initial Estimate of the First Location Using AOA

At time stepk = 1, we estimate the position using an AOA-
based method. The AOA, at the first antenna ofi-th receiver
i = 1, 2, can be computed from the measured parameters as

α̂i1 = arccos

(
a2 − (∆z

(1)
i )2 + 2z

(1)
i1 ∆z

(1)
i

2z
(1)
i1 a

)
, (4)

where the range differences∆z
(1)
i = z

(1)
i1 − z

(1)
i2 , which are

related to the TDOA1, can be stated as

∆z
(1)
i = ∆d

(1)
i +∆n

(1)
i , (5)

where∆n
(1)
i = n

(1)
i1 − n

(1)
i2 and ∆n

(1)
i ∼ N (0, 2σ2

n). The
sensitivity of the angles to the errors in TOA (bias and noise)
is small while the sensitivity to the TDOA errors is large [12].

Using the AOA at antenna locations[X11, Y11]
T and

[X21, Y21]
T , the first locationx1, can be initially estimated

by (see [1])

x̃1 =

[
x̃1

ỹ1

]
= Γ

−1

[
Y11 cos(α̂11)−X11 sin(α̂11)
Y21 cos(α̂21)−X21 sin(α̂21)

]
, (6)

where

Γ =

[
− sin(α̂11) cos(α̂11)
− sin(α̂21) cos(α̂21)

]
. (7)

We do some more iterations based on the method explained
below to improve this initial estimate.

1The effect of antenna delay error on TDOA measurement can be neglected
for a target far enough compared to the antenna distance [11].



B. Recursive NLS Algorithm

To solve (3), suppose that at time stepk − 1, an estimate
of xl, denoted bỹxl, has been obtained forl = 1, . . . , k − 1.
At time stepk, we takex̃k = x̃k−1 as an initial estimate of
xk (if k = 1, the initial estimate ofx1 has been given in (6)).
By the Taylor series expansion,

f(xl) ≈ f(x̃l) + J(x̃l)(xl − x̃l), (8)

where the Jacobian matrix

J(x̃l) =




(x̃l − p11)
T /‖x̃l − p11‖2

(x̃l − p12)
T /‖x̃l − p12‖2

(x̃l − p21)
T /‖x̃l − p21‖2

(x̃l − p22)
T /‖x̃l − p22‖2


 ∈ R

4×2. (9)

Note that each row of the Jacobian matrix is a unit vector
which points from an anchor’s antenna to the target and it will
change little if the position of the target does not change much.
Using the right hand side of (8) to replacef(xl) in (3) we
obtain the linear LS problem:

min
x1,...,xk,b

∥∥∥∥∥∥∥
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,

(10)
Let the QR factorization ofJ(x̃l), be

QT
l J(x̃l) =

[
Rl

0

]
, (11)

whereQl = [U l
2
,V l

2
] ∈ R

4×4 is orthogonal andRl ∈ R
2×2 is

upper triangular. The QR factorization in this work is achieved
by the Householder transformation, which is efficient and
numerically stable [13]. Furthermore,

UT
l A ≡ F l, V T

l A ≡ Gl, (12)

UT
l (zl − f(x̃l)) ≡ rl, V T

l (zl − f(x̃l)) ≡ sl. (13)

Then transforming the linear LS problem (10) by these orthog-
onal matricesQl and reordering gives

min
x1,...,xk,b

∥∥∥∥∥∥∥∥∥∥∥∥∥
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−
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Rk F k

G1
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Gk







x1−x̃1

...
xk−x̃k

b



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.

(14)
To find a new estimate ofxl for l = 1, . . . , k based on (14),
we need to solve the following problem first:

b̂ = argmin
b

∥∥∥∥∥∥∥



s1
...
sk


−



G1

...
Gk


 b

∥∥∥∥∥∥∥
. (15)

The computational complexity in solving the above LS prob-
lem grows linearly withk [13]. Thus, to make our algorithm
efficient, we solve (15) in a recursive way. Suppose that by the

end of time stepk− 1 we have done the following orthogonal
transformations:

W T
k−1



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...
Gk−1


 =
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T k−1

0

]
, W T
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
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
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[
ŝk−1

s̄k−1

]
,

(16)
where W k−1 is orthogonal,T k−1 ∈ R

2×2 is nonsingular
upper triangular and̂sk−1 ∈ R

2. Then at time stepk, we
compute theRk, rk, sk, F k, andGk in (11)–(13). Then we
compute the following orthogonal transformations as

W̃
T

k

[
T k−1

Gk

]
=
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T k

0

]
, W̃

T

k

[
ŝk−1

sk

]
=

[
ŝk
šk

]
, s̄k ≡

[
s̄k−1

šk

]
,

(17)
whereW̃ k is orthogonal,T k ∈ R

2×2 is non-singular upper
triangular andŝk ∈ R

2. Note that we only compute (17),
while (16) is just stated for understanding (17) and it is never
computed explicitly. Thus, from (17), the solution ofb̂ to
the LS problem (15) should satisfy the reduced2 × 2 upper
triangular linear system

T kb̂ = ŝk. (18)

Then, from the top part of (14) we can obtain the estimate
of positionxl based on the measurements upto time epochk,
i.e., xl|k, by solving the upper triangular linear systems

Rl(xl|k − x̃l) = rl − F lb̂, l = 1, . . . , k. (19)

Since the application considered here is a real-time one (i.e.,
we are not interested inxl|k for l = 1, . . . k − 1) and the
computation power and the memory may be limited, we would
solve the upper triangular linear system in (19) only forl = k.

Since the original LS problem (3) is nonlinear, some
iterations may be needed for more accurate estimates. The
algorithm is summarized in Algorithm 1, in whichǫ is a
given tolerance andKmax is an assigned maximum allowable
number of iterations.

Algorithm 1 Recursive NLS localization
1: Computex̃1 using the AOA-based method
2: for k = 1, 2, . . . , N do
3: if k > 1 then
4: Take x̃k = x̃k−1

5: end if
6: Compute (11), (12) and (13) forl = k
7: if k = 1 then
8: Compute (16) withk replaced by 2.
9: else

10: Compute (17)
11: end if
12: Solve (18) to findb̂
13: Solve (19) forl = k to obtainxk|k

14: for Iter = 1, 2, . . . ,Kmax do
15: if ‖x̃k − xk|k‖ ≤ ǫ then
16: Stop the iteration
17: end if
18: Repeat steps 6—13
19: end for
20: end for



The computational analysis for each equation in our algo-
rithm at each time step is given in Table 1. All the orthogonal
transformations, including the QR factorizations are performed
by the Householder transformation. Note that the total costof
the computations involved in (17), (18) (withl = k) at time
stepk is much less than that in computing (15).

At each time step, the maximum computational cost of our
algorithm is the total number of flops and square roots (SQRT)
operation shown in Table 1, multiplied byKmax. As the non-
linearity in (8) is moderate,Kmax can be chosen to be small,
say 5.

TABLE I. COMPUTATIONAL COST OF THENLS ALGORITHM

Equation (9) (11) (12),(13) (17),(18) (19) Total
Flops 24 34 88 56 14 216
SQRT 4 2 0 2 0 8

IV. CRAMER-RAO LOWER BOUND

The CRLB provides a lower bound on the achievable
estimation error variance of all unbiased estimators. Herein,
we derive the CRLB in estimating the parameter vector
θ(k) = [xT

1 ,x
T
2 , · · · ,x

T
k , b

T ], based on the measurementszl

for l = 1, . . . , k. Given the clock biases and the true positions
of the target, the joint probability density function of therange
measurementsz(l)ij is

ϕ(k)(z
(l)
ij , l = 1 . . . , k; i, j = 1, 2 |x1, · · · ,xk, b)

=
1√

(2πσ2
n)

4k
e

−

( k∑

l=1

2∑

i,j=1

(z
(l)
ij − ‖xl − pij‖ − bi)

2

2σ2
n

)

,

(20)

where the above is justified due to the independence of the
measurements. According to [14], the(i, j) element of the
Fisher-information-matrix (FIM)I(k) ∈ R

(2k+2)×(2k+2) at
time stepk is

I
(k)
ij = −E

[∂2 lnϕ(k)

∂θi∂θj

]
, (21)

whereθi is thei-th scalar element of the parameter vectorθ(k).
It is easy to show thatI(k) has the following form

I(k) =
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where the sub-matrices are
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j=1

(xl −X1j)

‖xl − p1j‖
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2∑
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2∑
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

. (23)

The minimum covariance matrix in determining the un-
known vector parameterθ(k) is given by (I(k))−1 [14].
The mean-squared-error (MSE) of any unbiased estimator in
determining the position atk-th time step is limited by the
CRLB in estimatingxk where

CRLB(xk) = (I(k))−1
2k−1,2k−1 + (I(k))−1

2k,2k, (24)

where(I(k))−1
m,m is the(m,m) element of(I(k))−1. The MSE

of any unbiased estimator in estimating thei-th receiver clock
bias at time stepk is higher than the CRLB in estimatingbi
where

CRLB(bi) = (I(k))−1
2k+i,2k+i, i = 1, 2. (25)

V. NUMERICAL RESULTS

In the simulation set-up we consider a square 2D area of
200×200 units and the system scheme described in Fig. 1. We
assume that all the units in the plane, the ranges, biases, and the
standard deviation of noises are in meters. The four antennas
are located atp11 = [−51,−100]T , p12 = [−49,−100]T ,
p21 = [49,−100]T , andp22 = [51,−100]T , respectively. The
initial point of the target is set to be[0, 50]T and the target
trajectory is according to a random walk model, with iid zero-
mean-Gaussian increments with standard deviation equal to
0.5m/s (see in [1, p122]). The number of samples isN=3000
and the sample interval is set to be0.5s so that the consecutive
range measurements are not mixed and there would be enough
time for iterations. In order to simulate data in (1) for eachtime
sample, the exact range between the target and each antenna
is computed and then disturbed with the biasesb1 = 5 and
b2 = −5 andnij with standard deviationσn = 10−2.

After generating the data, the estimation process starts as
described in Section III. At each time step, the recursive NLS
localization algorithm described in Section III-B is performed
iteratively with ǫ = 0.05 and Kmax = 5. For the same
trajectory of the mobile node, our algorithm is simulated for M
Monte-Carlo (MC) trials, whereM = 5000. The root-mean-
square error (RMSE) for the position estimate at time stepk
is computed as

exk =

√√√√ 1

M

M∑

m=1

‖xk|k(m)− xk‖2, (26)



and shown in a logarithm scale in Fig. 2, wherexk|k(m) is the
estimate ofxk in them-th MC run. The minimum achievable
standard deviation of the errorσmin =

√
CRLB(xk) in

location estimation, is computed for the considered trajectory
and plotted in Fig. 2. Note that the RMSE of our method is
close to the bound because in theory our position estimate
at each time step is the maximum likelihood estimate. The
performance of our method in estimating the biasbi is also
evaluated by computing the RMSE after M runs

e
(i)
k =

√√√√ 1

M

M∑

m=1

‖b̂k,i(m)− bi‖2, (27)

whereb̂k,i(m) is the estimate of the relative bias ati-th anchor
for m-th MC run. The comparison of the computed RMSE
for b1 and b2 with the corresponding lower bound,σmin =√
CRLB(bi), is given in Fig. 3. Again we observe that RMSE

of each clock bias is very close to the corresponding lower
bound.
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Fig. 2. The RMSE of our method and the comparison with the CRLB.
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Fig. 3. RMSE and CRLB in estimating the biases.

VI. CONCLUSION AND FUTURE WORK

The proposed recursive NLS method in this paper requires
no anchor synchronization, unlike the conventional triangu-
lation and hyperbolic methods. It was illustrated that the
computational cost of our algorithm at each time step was
low. The simulation of our method indicated that the RMSE
of the position estimates was very close to the square root
of the CRLB. For off-line tracking scenarios, we can easily
modify our algorithm to make the position estimates in early
time steps as accurate as the position estimates in late time
steps by updating all the previous position estimates. In the
future, we would extend this work to a joint localization
and synchronization framework with unknown clock skew
parameters.
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