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Abstract—To provide satisfactory customer experience, mod-
ern server clusters like Amazon usually set Service Level Agree-
ment (SLA) as guaranteeing a certain percentile (i.e. 99%) of the
customer requests to have a response time within a threshold (i.e.
1s). One way to meet the SLA constraint is to serve the customer
requests with sufficient computing capacity based on the worst-
case workload estimation in the server cluster. However, this
may cause unnecessary power consumption in the server cluster
due to over-provision of the computing capacity especially when
the workload is highly dynamic. In this paper, we propose an
adaptive computing capacity allocation scheme referred to as
TailCon. TailCon aims at minimizing the power consumption in
the server cluster while satisfying the SLA constraint by adjusting
the number of active servers and the CPU frequencies of the turn-
on machines online. In TailCon, we analyze the distribution of
the request response time dynamically and leverage the measured
request response time to estimate the workload intensity in the
server cluster, which is used as a continuous feedback to find
the proper provision of the computing capacity online based on
optimization techniques. We conduct both the emulation using
the real-word HTTP traces and the experiments to evaluate the
performance of TailCon. The experimental results demonstrate
the effectiveness of TailCon scheme in enforcing the SLA con-
straint while saving the power consumption.

I. INTRODUCTION

Power consumption becomes a major concern in modern
server clusters. With the growth of user demands to the online
commercial services, the service providers invest enormously
in establishing and maintaining the server clusters to server the
on-demand workload [1]. The operation of the servers and the
cooling systems in the server clusters consume huge amount of
power. Statistics show that the electricity bills for maintaining
the worldwide server clusters mount up to $30 billion [2].
Since there are power-aware techniques like DVFS (dynamic
voltage and frequency scaling) and DPM (dynamic power
management) developed and applied to computers, it is highly
desired to leverage these techniques for power management
in the server clusters so that the power consumption can be
reduced.

In the commercial server clusters, Quality of Service (QoS)
is the primary concern to the service providers, which is usu-
ally evaluated by the completion of Service Level Agreement
(SLA) contracted between the service provider and the clients.
Failing to fulfill SLA will degrade QoS and further causes
the financial losses to the service provider. SLAs are usually
chosen to ensure that most online commercial clients can
enjoy the service within a time threshold. Based on enterprize
cost-benefit analysis, modern server clusters like Amazon [3]
set their SLAs as to ensure that 99% of client requests can
receive replies within a response time threshold. To provide
the percentile guarantee of the response time, the service
provider can allocate sufficient computing capacity to serve
the incoming client requests in the server clusters according to
the peak workload. However, the provision of the computing

capacity based on the worst-case workload estimation may
cause unnecessary power consumption especially when the
workload is highly dynamic. How to provide satisfactory user
experience with minimum power consumption is challenging.

In this paper, we provide a power-minimizing response
time percentile control scheme, referred to as TailCon. The
goal of TailCon is to minimize the power consumption in
the server cluster while providing the percentile guarantee of
the response time. The goal is met by dynamically providing
the computing capacity in the server cluster to serve the
incoming client requests, and the computing capacity includes
the number of the active servers and CPU frequencies of the
servers. In Tailcon, we analyze the statistics of the request
response time and the power consumption of the server cluster
based on real implementation. In the server cluster, the heavy-
tailed distribution like Pareto distribution can well approximate
the statistics of the requested webpage sizes [4]–[7]. We es-
tablish a server cluster with Apache servers, where each server
serves the client requests with dynamic PhP webpages and the
webpage sizes follow Pareto distribution. Experimental results
show that the tail of the request response also follows Pareto
distribution, where the lower bound of the request response
time in the Pareto distribution is inversely proportional to
the number of active servers and the CPU frequencies of
the servers. In modern server clusters, a physical machine
can either be configured as a single server or as a host
holding several virtual machines with each virtual machine
as an independent server, referred to as VM server. We use a
physical machine with the two configurations to test the power
consumption. We find that the power consumption of the phys-
ical machine has a cubic relation with the CPU frequencies
in both configurations. Moreover, we do experiments to test
the relation between the distribution of the request response
time and the provision of the computing capacity, and build
the system model accordingly. To adapt to the variation of
the workload, we use the request response time as an online
feedback to identify the parameters in the system model. Based
on the system models, we design algorithms to minimize the
power consumption with the SLA constraint by adjusting the
provision of the computing capacity online. The contribution
of the paper is summarized as follows:

• We design TailCon by considering multiple real-world
server cluster configurations, i.e. a physical machine can
be either a single server or a host for several VM servers.
For each configuration, we provide the online computing
capacity allocation scheme.

• We integrate multiple strategies to design the online
capacity provision algorithm in TailCon, including ca-
pacity planning based on workload pattern identification,
capacity pre-allocation based on workload change point
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Fig. 1: Server Cluster Configuration

detection, and the capacity adjustment based on request
response time feedback.

We implement both emulation and experiment to test the
effectiveness of TailCon in different server cluster configura-
tions, where we generate the client requests following the real-
world HTTP trace [8]. Experimental results demonstrate the
effectiveness of TailCon in meeting the SLA requirement while
consuming much less power in comparison with a Baseline
scheme.

The rest of the paper is organized as follows: We present
a detailed analysis of power consumption and response time
distribution in Section II. In Section III, we formulate the
constraint optimization problem to minimize the power con-
sumption subject to the SLA constraint. Section IV gives
an overview of TailCon scheme. Section V and Section VI
provide the experiment setup and results respectively. Section
VII briefly surveys the related work. Section VIII concludes
the paper.

II. SYSTEM MODEL

In this section, we provide the structure of the server cluster
and analyze the power consumption of the server cluster as
well as the response time distribution.

A. Server Cluster Configuration
There are typically two ways to configure the modern server

cluster: one way is to configure the physical machine as a
single server, as shown in Fig. 1(a), and the other way is
to configure the physical machine as a host that hosts n0
servers, each of which is located on a VM, as shown in
Fig. 1(b). Since the client requests are usually independently
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Fig. 2: Power Consumption with Different CPU Frequency of
a Physical Machine

generated, we assume that the client requests arrive at the
frontend in the server cluster following a Poisson distribution
with a mean arrival rate λF [9], [10]. The frontend dispatches
the incoming requests to the backend servers according to a
load-balancing policy. In our paper, we assume all the servers
in the cluster (either the physical machines in Fig. 1(a) or the
VMs in Fig. 1(b) are homogeneous, hence round-robin is the
optimal load-balancing policy. The reply to the request will
be sent by the backend server and relayed by the frontend
to the client. The workload in the server cluster can be
highly dynamic, i.e. the arrival rate of the client requests may
change from time to time during the runtime. Depending on
the current workload intensity, the server cluster can allocate
proper amount of computing capacity to serve the requests.
The computing capacity in a server cluster is referred to as
the number of active servers and the CPU frequencies of the
machines holding the active servers. Given a server cluster
with M physical machines, either configured as M servers or
configured as M physical machines with each machine holding
n0 VM servers, we need to decide how many servers (or
VM servers) should be activated on these physical machines
and what the CPU frequency of the machines should be so
that a given percentile of the client requests can receive the
replies within a time threshold, and at the same time the power
consumption is minimized.

B. Power Consumption of Server Cluster
We tested the power consumption of a physical ma-

chine with 2 Quad-core Intel Xeon processors and 4 GB
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RAM running Centos 6.2 operating system. The physi-
cal machine supports DVFS, where the CPU frequency
f can be adjusted in the range F = {1.197,1,330,
1.463,1.729,1.862,1.995,2.128,2.394,2.527,2.528}GHz. When
the machine is configured as a single server, the power
consumption at different CPU frequencies when the server is
fully loaded is shown in Fig. 2(a). The power consumption P
of the machine at the busy state is

P b = P I + αfθ, (1)

where P b, P I are the power consumption of the server at
the busy state and at the idle state respectively. We use
θ = 1 and θ = 3 to approximate the relation between P b

and f respectively, and θ = 3 is a better approximation
as shown in Fig 2, which also matches the power model
proposed in [11], [12]. In our model P I = 58.3648Watts,
α = 2.1143Watts/GHz3, and θ = 3. When the machine is
visualized using VirtualBox and holds multiple VM servers,
we let the machine run at different CPU frequencies and in
each frequency we test the power consumption of the machine
by activating different VM servers. The power consumption is
shown in Fig. 2(b). Note that for each active VM, we let them
run at the full load in our test. The power consumption P can
be modeled as a function of the CPU frequency f and the
number of active VM servers n,

P b = P I + (β0 + β1n)f
3, (2)

where P I = 59.6221, β0 = 0.2078, β1 = 0.4892, n ≤ n0 and
n0 = 3 in our configuration.

For a server, we usually consider the expected power con-
sumption during a running period. Suppose the CPU utilization
of the server is ρ, the expected power consumption E(P ) is

E(P ) = (1− ρ)P I + ρP b, (3)

and the expected power consumption of the server cluster,
E(P t), is

E(P t) = mE(P ) = mP I +mραf3, (4)

in the first configuration and

E(P t) = mE(P ) = mP I +mρ(β0 + β1n)f
3, (5)

in the second configuration, where m is the number of turn-
on machines and n is the number of active VM servers on
each machine. Our goal is to minimize the expected power
consumption in the server cluster E(P t) by adjusting m, n
and f dynamically subject to the percentile constraint of the
request response time.

C. Response Time Distribution
The percentile constraint of the request response time,

also known as SLA, is illustrated as follows. Given a server
cluster running for a long period, the percentile of the request
response time that exceeds a time threshold τ , referred to as
the tail percentile, should be no larger than a percentile bound
ξ. To meet the percentile constraint, a direct way is to measure
the tail percentile online and adjust the provision of the com-
puting capacity (usually chosen as m, n and f ) accordingly.
However, capacity allocation based on the measurement to the
tail percentile may suffer from control saturation, i.e. when the
measured tail percentile stays at 0 or 1, we can hardly estimate
the intensity of the workload but only know the system is
under-utilized or overloaded. In this case, it is hard to decide
how much computing capacity should be provided to match the
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Fig. 3: The Power-Law Fitting Results in Scenario 1

workload intensity. To avoid the control saturation, we would
like to study the distribution of the response time R. Therefore,
we can reinterpret the percentile constraint as controlling the
complementary Cumulative Distribution Function (CDF) of
the response time above the threshold τ , P(R > τ), to stay
under the percentile setpoint ξ,

P(R > τ) ≤ ξ. (6)

The statistics of the request response time is closely related to
the reply sizes of the request. It is shown that the file sizes of
the web requests follow heavy-tailed distributions [13]–[15]
and Pareto distribution in particular [9], [15]. We implement
a server cluster with 6 Apache servers serving dynamic PhP
webpages to the incoming requests, where the client requests
are generated following Possion distribution with mean arrival
rate λF and the PhP webpages are generated in a way so that
their file sizes X follows Pareto distribution [16],

P{X ≥ x} =

{
(xx̂ )

−ν , x ≥ x̂,
1, x < x̂,

(7)

where ν is the Pareto index, 1 < ν < 2, and x̂ is the lower
bound of the file size in Pareto distribution. By changing
the distribution parameters in the file size distribution, like
ν, x̂, and by changing the request arrival rate λF , we tested
the request response time in different situations, where each
test involves 30000 samples of the request response time. In
each test scenario, we use power-law fitting tool [17] to check
whether the response time follows Pareto distribution, and if
follows, what the distribution parameters are.

Fig. 3 and Fig. 4 show the power-law fitting result to the
empirical data of the reply sizes and the response time of the
client requests in two different test scenarios:

• Scenario 1: We set the mean request arrival rate λF =
50 req/s. Each client request requiring a PhP webpage.
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Fig. 4: The Power-Law Fitting Results in Scenario 2

The sizes of the required PhP webpages follows Pareto
distribution with ν = 1.4 and x̂ = 1 KB. Then we get
the response times of the client requests and the file sizes
of the replies to the client requests at the frontend, and
we use the power-law fitting tool to fit the empirical data,
result is shown in Fig. 3.

• Scenario 2: We set the mean request arrival rate λF =
40 req/s. Each client request requiring a PhP webpage.
The sizes of the required PhP webpages follows Pareto
distribution with ν = 1.2 and x̂ = 3 KB. Then we get
the response times of the client requests and the file sizes
of the replies to the client requests at the frontend, and
we use the power-law fitting tool to fit the empirical data,
result is shown in Fig. 3.

From Fig. 3 and Fig. 4, we see that the tail of the response
time, starting from a point ŷ, follows Pareto distribution,

P{R > y} =

{
(yŷ )

−ν , y ≥ ŷ,
1, y < ŷ,

(8)

where ŷ is the lower bound of the response time in the
Pareto distribution and ν is the Pareto index. The distribution
parameters ŷ, ν, and the goodness-of-fitting ratio p in each
test scenario is summarized in Table I. p is a parameter
representing the goodness-of-fitting, where p > 0.1 indicates
the empirical data matches Pareto distribution. Detailed ex-
planation of p is omitted in this paper due to space limitation
but can be referred to [17]. From Table I, we can see that
in different test scenarios, when the reply size follows Pareto
distribution, the tail of the response time also follows Pareto
distribution with the goodness-of-fitting ratio p > 0.1.

The distribution of the response time can be influenced by
the provision of the computing capacity, namely the number of

TABLE I: Distribution Parameter of Response Time in Differ-
ent Test Scenarios

Parameters in X Distribution and
λF

Parameters in R Distribution

ν = 1.2,x̂ = 1KB,λF = 50req/s ν = 1.6,ŷ = 73.83ms,p =
0.1224

ν = 1.4,x̂ = 1KB,λF = 50req/s ν = 1.98,ŷ = 110.61ms,p =
0.6364

ν = 1.6,x̂ = 1KB,λF = 50req/s ν = 1.98,ŷ = 65.35ms,p =
0.7213

ν = 1.8,x̂ = 1KB,λF = 50req/s ν = 1.99,ŷ = 34.29ms,p =
0.8421

ν = 1.2,x̂ = 3KB,λF = 40req/s ν = 1.51,ŷ = 393.52ms,p =
0.8062

ν = 1.4,x̂ = 3KB,λF = 40req/s ν = 1.79,ŷ = 372.89ms,p =
0.7143

ν = 1.6,x̂ = 3KB,λF = 40req/s ν = 1.73,ŷ = 95.84ms,p =
0.1051

ν = 1.8,x̂ = 3KB,λF = 40req/s ν = 1.91,ŷ = 98.43ms,p =
0.1176

active servers and their CPU frequencies. By fixing the number
of active servers at 6 and changing the CPU frequencies of
the turn-on machines, we find ŷ in the Pareto distribution of
response time R is inversely proportional to CPU frequencies
when serving the same workload, as shown in Fig. 5(a). The
same workload means the client requests in these test scenarios
have the same arrival rate and the required webpage sizes
follow the same Pareto distribution. Similarly, by fixing the
CPU frequencies of the servers at their highest value 2.58GHz,
we find ŷ in the Pareto distribution of response time R is
inversely proportional to the number of active servers, as
shown in Fig. 5(b). We formulate ŷ as a function of the number
of active servers, m, and the CPU frequency of each active
server f ,

1

ŷ
= cmf, (9)

where the coefficient c can be influenced by the variation of the
workload like request arrival rate λF , the distribution parame-
ter of the reply sizes ν and x̂. Since c is an unknown variable
and can vary with the fluctuation of the workload, we need to
estimate c online to acquire the accurate knowledge about the
relation between the distribution of R and the provision of the
computing resources. Note that Eq.(9) establishes only when
each server in the cluster is not overloaded (CPU utilization
ρ = 1) or severely under-utilized (CPU utilization ρ ≈ 0).

From the Pareto distribution in Eq.(8) and Eq.(9), The re-
sponse time percentile constraint (SLA requirement) in Eq.(6)
can be rewritten as

1

ŷ
= cmf ≥ 1

τξ1/ν
. (10)

III. PROBLEM FORMULATION

Our goal is to minimize the expected power consumption in
the server cluster while satisfying the SLA requirement, which
can be achieved by adjusting the number of active servers
and their CPU frequencies. Since the computing capacity
provision is implemented online, we need to choose a sampling
period. The sampling period is usually chosen short enough
to ensure the workload stay relative steady during the period
and long enough to serve a large number of client requests
so that we can get enough request reply samples to analyze
the response time distribution. In our paper, we choose the
sampling period as the time interval to serve a fixed number of
requests, i.e. 10000. After serving a fixed number of requests
(like 10000 requests), we will adjust the computing capacity
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provision in the cluster. We use k as the index of the sampling
period, k = 1, 2, ..., and the variables c, m, f etc. in the kth
sampling period are denoted as ck, mk, fk etc. Since there
are two different configurations of the servers in the cluster,
we formulate our goal as an optimization problem for each
configuration.

A. One Server on One Physical Machine

Suppose each physical machine in the cluster is configured
as a single server, the expected power consumption of the
cluster is in Eq.(4) while the SLA constraint is in Eq.(10).
Our goal can be formulated as the following problem

min
mk,fk

P Imk + αρkmkf
3
k

s.t. ckmkfk ≥ 1

τξ
1
υ

mk ∈ {1, 2, ...,M}
fk ∈ F

(11)

where M is the total number of servers in the cluster, and
F = {f (1), f (2), . . . , f (l)} is the CPU frequency set with l as
the number of the available CPU frequencies.

B. Multiple VM Servers on One Physical machine

Suppose each physical machine in the cluster is configured
as a host hosting multiple homogeneous VM servers. We
propose two ways to decide the number of the turn-on physical
machines and the number of active VM servers.

1) Capacity Allocation with Pattern Identification: When
the workload in the server cluster, i.e. the arrival rate of
the requests, follows a pattern during one day or one week,
we can utilize this pattern to turn on a fixed number of
physical machines m0 in certain period according to the
peak workload during this period. Then, we fine tune the
number of active VM servers on the m0 machines to handle
the workload fluctuations in this period. In this way, the
expected power consumption of cluster, according to Eq.(5), is
E(P t) = m0(P

I +β0ρkf
3
k )+β1ρkgkf

3
k , where gk is the total

number of active VM servers on the m0 machines at the kth
sampling period. Note that the gk active servers are arranged
on the m0 machines in a round-robin way, with each machine
can be assigned

⌊
gk
m0

⌋
or

⌈
gk
m0

⌉
VM servers, where ⌊z⌋ and

⌈z⌉ denotes the nearest integer smaller than z or larger than z,
respectively. The SLA constraint is still in the form of Eq.(10)
but with m replaced by gk. In this situation, our goal can be
formulated as the following problem,

min
gk,fk

m0(P
I + β0ρkf

3
k ) + β1ρkgkf

3
k

s.t. ckgkfk ≥ 1

τξ
1
υ

gk ∈ {1, 2, ...,Mn0},
fk ∈ F ,

(12)

where n0 is the number of VMs on each physical machine, and
Mn0 is the total number of VMs in the server clusters. Note
that if gk obtained from Problem (12) is larger than m0n0,
workload burst may happen in the kth sampling period. When
the workload bursts and does not follow the normal patterns,
we need to add physical machine to support the (gk −m0n0)
active VM servers.

2) Capacity Allocation without Pattern Identification:
When the workload in the server cluster is highly dynamic
or cannot be predicted beforehand, pattern-based capacity
allocation cannot be leveraged. Suppose gk VM servers should
be activated at the kth sampling period, and the number of
physical machine that should be turn on is mk =

⌈
gk
n0

⌉
with

n0 as the number of VM servers hosted by each machine. Thus
the expected power consumption in the server, according to
Eq.(5), is E(P t) =

⌈
gk
n0

⌉
(P I + β0ρkf

3
k ) + β1ρkgkf

3
k . In this

situation, our goal can be formulated as the following problem,

min
gk,fk

⌈
gk
n0

⌉
(P I + β0ρkf

3
k ) + β1ρkgkf

3
k

s.t. ckgkfk ≥ 1

τξ
1
υ

gk ∈ {1, 2, ...,Mn0}
fk ∈ F

(13)

IV. OVERVIEW OF TAILCON FRAMEWORK

We design an online computing capacity allocation scheme,
referred to as TailCon, to realize tail probability control and
power minimization in the server cluster even under the dy-
namic workload. Since the workload in modern server clusters
are complex and highly dynamic, we integrate multiple strate-
gies to provide the desired performance, including the patter-
based capacity planning, resource pre-allocation according to
the workload change point detection and the optimal capacity
provision based on the online analysis to the response time
distribution.
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A. pattern-based capacity planning
The workload in some server cluster follows a pattern

which can be summarized from the historical record of the
client requests in a long period. In this case, the workload in
the server cluster is highly predictable. Take 24-hour HTTP
trace [8] in Fig 7(a) as an example, we can see that the
HTTP request reaches its peak arrival rate during 2:00 to
10:00, and stays under the a threshold 80req/s in the period
from 0:00 to 2:00 and from 10:00 to 24:00. If the same
pattern can be recognized in everyday’s HTTP request trace,
we can apply pattern-based capacity planning as illustrated
in Section III-B1. The pattern based capacity planning needs
to know the capacity of each server at the design time.
Take a single Apache server in our implementation as an
example, we use a server performance benchmarking tool
AUTOBENCH [18] to generate the HTTP requests and test
the maximum concurrent requests that our server can support,
where each client request requires a dynamic PhP webpage
with the reply size X following Pareto distribution (ν = 1.2
and x̂ = 1KB). The reply rate versus the arrival rate of the
requests is in Fig. 6(a), which shows that the server saturates
at a concurrency of 120req/s. The corresponding response
time is shown in Fig. 6, where the mean response time is
around 500ms when the server begins to saturate. Based on
the capacity of each server, according to the patterns of the
request arrival rate and their reply sizes, we can decide how
many servers to activate. For example, if the pattern in the 24-
hour HTTP trace (Fig. 7(a)) can be predicted one day before
and the reply sizes follows a known distribution like the Pareto
distribution with predictable parameters (i.e. ν = 1.2 and
x̂ = 10KB), we can provide 2 servers during 2:00 to 10:00
to serve the requests with arrival rate between 80req/s and
230req/s, and we can allocate 1 server in the other periods
during the day to serve the requests with arrival rate under
80req/s. In each period, we can fine tune the provision of
computing capacity by adjusting the CPU frequencies and the
number of activated servers to adapt to the workload variation.

The pattern-based capacity planning is only applicable
to clusters with predictable workload following observable
patterns. The pattern-based capacity planning facilitates the
structural management to the cluster resources and reduces the
hardware tearing since frequently turning on/off the physical
machines can be avoided.

B. Capacity Pre-Allocation based on Workload Change Point
Detection

The workload in the cluster may change at the beginning of
a sampling period, which may degrade the service to the client
if the capacity provision is adjusted at the end of the sampling
period. In this case, we use change point detection to detect the
workload changes at the beginning of a sampling period and
take actions accordingly. To be specific, the frontend analyzes
the request logs online. For the first 1000 client requests during
a sampling period that contains replies to 10000 requests, the
frontend checks whether more than 1000ξ requests’s response
time exceeds the threshold τ . If this situation happens, the
workload should experience a sudden burst that the current
capacity cannot serve, therefore, if each machine is configured
as a single server, we adjust the number of active servers (mk)
to be mk =

⌈
d

1000ξmk

⌉
; if each server is configured to host

multiple VM servers, we adjust the number of active VM
servers (gk) to be gk =

⌈
d

1000ξ gk

⌉
, where d is the number

of requests with response time larger than τ among the first
1000 requests. The machines that hold the newly activated
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Fig. 6: Concurrency Test for a Single Server under Different
Request Arrival Rate

servers or VM servers will run at the same CPU frequencies
with the machines already turned on.

C. Optimal Capacity Allocation based on Response Time
Feedback

For every sampling period, TailCon scheme computes the
optimal computing capacity. If each physical machine in the
cluster is configured as a single server, the optimal computing
capacity is derived by solving the problem in (11). If each
physical machine in the cluster is configured as a host for
several VM servers, the optimal computing capacity is derived
by solving the problem in (12) or (13) depending on whether
the pattern-based capacity planning is applied. To solve these
optimization problems, we need to estimate the coefficient ck
and get the CPU utilization of each server ρk. Moreover, we
need to analyze the request response time distribution online
to achieve the distribution parameters ν, ŷ.

1) Online Analysis to Response Time Distribution: We set
the sampling period for online capacity allocation as the period
long enough to finish serving 10000 client requests. We choose
10000 replies to the client requests as the sampling period to
avoid frequent adjustment to the computing capacity allocation
and to ensure enough samples of the request response time can
be collected in each sampling period. For every 10000 requests
served by the cluster, the frontend extracts 1000 samples
uniformly in the 10000 requests to analyze their response
time distribution and find the Pareto distribution parameter
ν, ŷk. This can be achieved by applying the power-law fitting
tool [17] implemented in python scripts. For the response time
distribution analysis, we use 1000 samples instead of all the
10000 requests to reduce the real-time computation cost.
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2) Estimation of ck based on Recursive Least Square
Method: Since the workload variation can influence the re-
lation between the response time distribution parameter ŷ and
the provision of the computing resources mk (or gk) and fk,
we need to estimate ck online using Recursive Least Square
(RLS) method with selective forgetting factor. Since c is the
coefficient in Eq.(9), at the end of the kth sampling period,
we compute c by solving a weighted least squares problem,

min
c

k∑
i=1

w(k, i)
( 1
ŷi

− cmifi
)2
, (14)

where w(k, i) is the weight factor on the square error( 1
ŷi

− cmifi
)2

for i = 1, . . . , k,

w(k, i) =


1, i = k,

k∏
j=i+1

γj , i < k. (15)

In Eq.(15), γj is a forgetting factor adopted at the jth sampling
period (j = 1, . . . , k), 0≤γj≤1. The solution to problem (14)
is a correct estimation of c in the kth sampling period but will
be used as an estimation of c in the (k+1)th sampling period,
denoted as ĉk+1. ĉk+1 replaces ck in the optimization problem
(11), (12) and (13) to deduce mk+1 and fk+1, which will be
applied as the optimal provision of the computing capacity to
serve the requests in the (k+1)th sampling period. Therefore,
at the kth sampling period, when the measured ŷk deviates
from its estimated value 1/(ĉkmkfk) (Eq. (9)), we consider
the workload changes abruptly and set γk = 0 to eliminate
the influence of the historical measurement ŷk−1, . . . , ŷ1 in
estimating c. Otherwise, we will set γk = 1 to make an
accurate estimation of c by leveraging the historical data.

γk =

{
0, |ŷk ĉkmkfk − 1| ≤ δ,
1, |ŷk ĉkmkfk − 1| > δ, (16)

where ŷk ĉkmkfk is the ratio of ŷk to its estimate 1/(ĉkmkfk),
and we set δ as threshold (a small positive number) to judge
whether the workload changes in the kth sampling period. A
ratio ŷk ĉkmkfk close to 1 indicates no workload variation
during the kth sampling period and vice versa.

The least squares problem in Eq.(14) can be solved in a
recursive way, and it is easy to show the solution is

ĉk+1 =
hk

bk
, (17)

where

hk = γkhk−1 +
1

ŷk
mkfk, (18)

bk = γkdk−1 + (mkfk)
2.

Since we always use ĉk+1 computed at the kth sampling
period as a predict to c in the (k + 1)th sampling period,
we inexplicitly assume the workload does not change in
the two sampling periods. If the workload changed abruptly
at the (k + 1)th sampling period, it can only be detected
at the end of the (k + 1)th sampling period. It is known
as one-sampling-period delay in the feedback-based capacity
planning schemes. This is also the reason that we introduce
capacity pre-allocation strategy based on workload change
point detection as a compensation to the one-sampling-period
delay, as illustrated in Section IV-B.

3) Solution to Optimization Problem: At the end of each
sampling period, we need to derive the optimal provision of the
computing capacity for the next sampling period. For example,
mk (or gk) and fk are derived at the end of the (k − 1)th
sampling period. Take finding mk and fk by solving problem
(11) as a general case. At the end of the (k − 1)th sampling
period, the parameters for the response time distribution like
ν, ŷ are achieved by applying power-law fitting tool [17], and
ĉk is derived according to Eq.(18). Meanwhile, the frontend
measures the CPU utilization of each active server and uses it
as ρk in the optimization problem (11). To derive the optimal
mk and fk, the strategy is summarized below.

• Step1: for each CPU frequency f (i) in the available CPU
frequency set F , we compute the minimum number of
active servers m(i) that can satisfy the SLA constraint,

m(i) =

⌈
1/(τξ

1
υ ĉkf

(i))

⌉
. And m(i) will be rounded to

the maximum number of servers in the cluster M if its
value exceeds M .

• Step2: for each pair f (i),m(i), we will use it to compute
the expected power consumption of cluster E(P t), and we
choose the pair f (i),m(i) that can result in the minimum
expected power consumption as the optimal result fk,mk.

The above strategies can also be applied to solve optimization
problem (12) and (13) with m(i) replied by g(i). Since DVFS-
enabled machine can only provide limited number of available
CPU frequencies, i.e. usually less than 12 available CPU
frequencies, enumerating the CPU frequencies takes O(l)
computing cost with l as the number of the values in F .

D. TailCon Structure
Tailcon is implemented as executable scripts at the frontend.

The frontend remotely turns on/off the backend servers and
uses the dynamic load-balancing strategy to dispatch the
incoming requests to the active servers. The frontend uses
script to process the request log file like the Apache piped
logs online. During a sampling period, the frontend analyzes
the first 1000 request replies to see whether the capacity
pre-allocation is needed. After finish serving 10000 sampling
periods, the frontend calls the power-law fitting tool written
in Python to get the Pareto distribution parameters for the
request response time. Then, the frontend computes ĉ by
applying Eq.(18) and find fk,mk or fk, gk by solving the
proper optimization problem in (11), (12) and (13). Finally, the
frontend adjusts the number of active servers or VM servers
and send the CPU frequency scaling command to the physical
machines that hold these active servers. This procedure repeats
in every sampling period till the end of the runtime.

V. EXPERIMENT SETUP

To test the effectiveness of TailCon scheme in different
server cluster configurations, we implement both experiments
and emulation based on real-world HTTP traces [8]. And we
compare our result to a static computing capacity planning
scheme PowerFix.

A. Emulation Setup
Due to the experimental resource limitation, we cannot

conduct experiments on a large-scale server cluster with each
physical machine configured as a single server, hence we build
a discrete event emulator based on J-Sim [19] to simulate a
server cluster with totally 15 servers. The frontend decides
how many servers to turn on and which CPU frequency for
each server to run in each sampling period. The frontend
dispatches the customer requests to the active servers in a
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Fig. 7: 24-Hour HTTP Trace Information

round-robin policy. The server uses the processor sharing
discipline to schedule the incoming requests. We implement
TailCon scheme as a function in the frontend.

We use the inter arrival time of a real world 24-Hour HTTP
trace [8] to generate the customer requests, where the arrival
rate is shown in Fig. 7(a). We can see that the customer
arrival rate λF is highly dynamic with the maximum and
minimum values as 256 and 2.4 respectively. Since the server
serves incoming requests using processor sharing discipline,
the required service time of each request is proportional to the
size of the webpage required by the request [11]. Therefore,
we configured our emulation so that each incoming request
requires a service time that follows a Pareto distribution.
We apply the power law fitting tool [17] to the file size
of the HTTP requests to derive the Pareto index ν, where
ν = 1.3. Fig. 7(b) shows the power-law distribution fitting of
10-minutes traces from 17:26 to 17:36 in the HTTP trace [8].
In our emulation, we set τ = 1s and ξ = 1% as SLA
constraint, indicating 99% of the requests should receive its
reply within 1 second.

The emulator simulates the power consumption in the
server cluster using the power model derived based on our
implementation in Section II and is summarized in Table II.
The power consumption of the server cluster is computed by
the frontend according to Eq.(4).

B. Experiment Setup
To test the effectiveness of TailCon scheme in the server

cluster with each machine supporting several VM servers, we
implement 2 homogeneous physical machines with totally 6

TABLE II: Parameters Setup in Emulation and Experiment
Parameter Value
F (GHz) (2.528, 2.527, 2.394, 2.261, 2.128,

1.995, 1.862, 1.729, 1.463, 1.33,
1.197)

P b with single server on
single machine (watts for
f (i) ∈ F )

(97, 90, 85.5, 82.2, 78.1, 75.4, 72.3,
69.6, 65.2, 64, 61.4)

P I (watts) in Eq.(4) 58.3648
α (watts/GHz3) in Eq.(4) 2.1143
P b with 0 active VM
server on single machine
(watts for f (i) ∈ F )

(67.9, 64.8, 64.3, 64.8, 63.3, 63.2,
62.7, 62.4, 62.2, 62.1, 61.4)

P b with 1 active VM
server on single machine
(watts for f (i) ∈ F )

(76.1, 67.5, 66, 64.5, 64.4,
63.8,63.6, 63.5, 62.9, 62.7, 62.4)

P b with 2 active VM
servers on single machine
(watts for f (i) ∈ F )

(84.5, 75.9, 73.2, 71.6, 67.5, 67,
65.4, 63.6, 63.4, 63.4, 63.3)

P b with 3 active VM
servers on single machine
(watts for f (i) ∈ F )

(92.6, 83.9, 80.5, 76.5, 73.8, 70.7,
66.2, 66.8, 64.4, 63.2, 63.4)

P I (watts) in Eq.(5) 59.6221
β0, β1 (watts/GHz3) in
Eq.(5)

(0.2078, 0.4892)

Parameter in Distribution
of x

ν = 1.3, x̂ = 1KB

VM servers. We use VirtualBox as the virtualization tool.
Each physical machine (2 Quad-core Intel Xeon processors
and 4 GB RAM running Centos 6.2 operating system) holds 3
homogeneous VM servers with each VM server implemented
as an Apache server serving dynamic PhP webpages whose
sizes follow Pareto distribution. Each physical machine is
DVFS-enabled, and the available CPU frequencies are shown
in Table II. The power consumption of the physical machine
follows the power consumption model in Eq.(5) with the
parameters summarized in Table II. The frontend is located
on an independent machine (2 Intel dual-core processors
and 4 GB RAM) and is implemented as an Apache server
with module mod_proxy_balancer enabled for load-balancing
management. The client is located on another machine (Intel
Dual-core processor and 3 GB RAM) running Linux operating
system. We leverage server performance benchmarking tool
Httperf [20] to generate the client requests in around 50
minutes to test the effectiveness of the proposed scheme, and
the arrival rate of the client requests during the 50 minutes
runtime is shown in Fig. 8. The client requests are requiring
the PhP webpages whose sizes X follow Pareto distribution
with ν=1.3 and x=1KB. TailCon scheme is implemented as
executable Bash scripts at the frontend, which works according
to the principles introduced in Section IV-D. The power
consumption of the physical machines is measured by power
meter. Since the client requests during the runtime is highly
dynamic and is unpredictable, hence we did not implement the
pattern-based capacity planning. Therefore, TailCon scheme
implemented in our experiment solves problem (13) in each
sampling period for optimal capacity allocation.

C. Baseline
We use PowerFix as a baseline capacity allocation scheme.

PowerFix turns on a fixed number of servers (or VM servers)
and let the turn-on machines run at a fixed CPU frequency
during the overall runtime. The m (or g) and f in PowerFix
are computed by minimizing the power consumption at the
peak arrival request rate. In our emulation based on the 24-
hour HTTP trace [8] (see Fig. 7(a)), we configure PowerFix
by turning on 15 servers running at the fixed CPU frequency
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2.528GHz during the runtime. And in our experiments based
on the requests arrival trace (Fig. 8), we configure PowerFix
by activating 6 VMs on the 2 machines with each machine
running at 2.394GHz.

VI. PERFORMANCE EVALUATION

We conduct emulation and experiment using the setup
in Section V to evaluate the performances of both TailCon
scheme and PowerFix scheme for controlling the tail percentile
of request response time stay under 1%, where we set τ , the
response time upper bound, as 1s.

A. Emulation Results: Single Server on Single Machine
We simulate a server cluster serving 24 hour HTTP requests

with arrival rate in Fig. 7(a) in the emulation. The power
consumption of the cluster under TailCon scheme and Pow-
erFix scheme is shown in Fig. 9(a). Since TailCon provides
the optimal computing capacity in adaptation to the workload
variation, the power consumption shows a similar variation
trend with the HTTP request arrival rate during the 24 hours.
In contrast, PowerFix provides the computing capacity based
on the peak workload, it results in higher power consumption
than TailCon during most of the runtime. The request response
time for the 24 hour HTTP traces under TailCon scheme and
PowerFix scheme is shown in Fig. 9(b). As we can see, there
are around 270, 0000 requests in the runtime, and most of the
requests stay under 1s in both TailCon and PowerFix.

B. Experiment Result: Multiple VM Servers on Each Machine
We conduct experiments to test 2 physical machine with

totally 6 VM servers serving HTTP requests with arrival rate
in Fig. 8. The power consumption of the cluster under TailCon
scheme and PowerFix scheme is shown in Fig. 10(a). We
can see the power consumption under TailCon is smaller than
the power consumption under PowerFix due to the dynamic
capacity allocation. The response time for the HTTP requests
in the experiment is shown in Fig. 10(b). As we can see, there
are around 11, 0000 requests in the runtime, and most of the
requests stay under 1s in both TailCon and PowerFix.

C. Performance Comparison
We summarize the performance results of TailCon and

PowerFix in Table III. For both the emulation emulating the
large-scale server cluster based on real-world HTTP traces and
the experiment testing the small-scale server cluster with each
machine configured to support multiple VM servers, TailCon
can save the power consumption in comparison with the static
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Fig. 9: Performance of TailCon and PowerFix in the Emulation
based on 24-Hour HTTP Trace

TABLE III: Performance Comparison of Two Schemes
Performance TailCon PowerFix
Average Power Consumption (Em-
ulation)

362.0530 watts 899.8134 watts

Average Power Consumption (Ex-
periment)

100.1276 watts 170.9093 watts

Response Time Tail Percentile
(Emulation)

1.6546e-05 1.8384e-06

Response Time Tail Percentile (Ex-
periment)

3.4055e-04 1.7464e-05

capacity provision scheme and at the same time keep the
response time percentile stay under the setpoint.

VII. RELATED WORK

A significant amount of work focuses on power-aware
computing capacity planning in server cluster [10], [11], [21]–
[25]. In these works, the SLAs are expressed with either the
mean value of the response time in server systems [10], [21],
[22], or based on the assumption on the limited computing
resource in the server clusters [23]–[25]. With the growing
scale of the modern server clusters, the overall computing
capacity could be much higher than the customer demand even
under the worst workload situation. The power consumption
and operating cost supersedes the computing resource and
becomes the major concern. To meet the SLA represented
by the percentile of response time guarantees, the previous
works listed above cannot work. Closely related to this pa-
per, Bertini et al. [26] used deadline missing probability as
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Fig. 10: Performance of TailCon and PowerFix in the Exper-
iment with Dynamic HTTP Requests

the performance metric in web server clusters and proposed
an online feedback control scheme to control the Quality
of Service (QoS). However, they did not take the power
management into consideration. Wang et al. [9] proposed an
computing capacity planning strategy to enforce the response
time percentile constraint while minimizing power, but it is an
offline strategy that cannot be applied for real-time operation
of the server cluster. In contrast, we propose TailCon scheme
that can dynamically provide the computing capacity online
according to the varying workload and can minimize the power
consumption subject to the SLA constraint.

VIII. CONCLUSION

To provide SLA guarantees and minimize the power con-
sumption in the server cluster, we propose TailCon scheme to
provide the optimal computing capacity in the server cluster
in adaptation to the workload variation. We consider different
server cluster configuration in TailCon scheme design, and
integrate multiple capacity strategies in TailCon scheme to
provide good capacity planning results. We implement em-
ulation based on real-world HTTP trace and experiments to
test the performance of TailCon, and the results demonstrate
the effectiveness of TailCon to control the tail probability of
the response time and at the same time reduce the power
consumption in comparison with a baseline scheme PowerFix.
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[17] A. Clauset, C. Shalizi, and M. Newman, “Power-Law Distributions in
Empirical Data,” SIAM Review, vol. 51, no. 4, pp. 661–703, 2009.

[18] J.T.Midgley, “Autobench,” http://xenoclast.org/autobench.
[19] H. Tyan, A. Sobeih, and J. Hou, “Design, Realization and Evaluation of

a Component-Based, Compositional Network Simulation Environment,”
Simulation, vol. 85, no. 3, p. 159, 2009.

[20] D. Mosberger and T. Jin, “httperfąła Tool for Measuring Web Server
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