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Abstract—To efficiently utilize the computing resources and provide good Quality of Service (QoS) to the end-to-end tasks in the
distributed real-time systems, we can enforce the utilization bounds on multiple processors. The utilization control is challenging
especially when the workload in the system is unpredictable. To handle the workload uncertainties, current research favors feedback
control techniques, and recent work combines the task rate adaptation and processor frequency scaling in an asynchronous way for
CPU utilization control, where task rates and the processor frequencies are tuned asynchronously in two decoupled control loops
for control convenience. Since the two manipulated variables, task rates and processor frequencies, contribute to the CPU utilizations
together with strong coupling, adjusting them asynchronously may degrade the utilization control performance. In this paper, we provide
a novel scheme to make Synchronous Rate and Frequency Adjustment to enforce the utilization setpoint, referred to as SyRaFa
scheme. SyRaFa can handle the workload uncertainties by identifying the system model online and can simultaneously adjust the
manipulated variables by solving an optimization problem in each sampling period. Extensive evaluation results demonstrate SyRaFa
outperforms the existing schemes especially under severe workload uncertainties.

Index Terms—Distributed systems, embedded systems, real-time systems, end-to-end task, quality of service, optimization.

1 INTRODUCTION

ISTRIBUTED real-time systems, such as wireless net-

work, networked embedded systems and Supervi-
sory Control and Data Acquisition (SCADA) systems, are
gaining increasingly importance and growing more com-
plex with abundant computing devices being connected
together. These systems often work in an open environ-
ment with dynamic workload. Efficiently using the com-
puting resources in these systems is of vital significance
in order to provide quality of service (QoS) guarantees
and at the same time reduce the energy consumption.
CPU utilization control is a good solution to reach the
goal. In the distributed real-time systems holding the
tasks with soft end-to-end deadlines, keeping the CPU
utilization of each processor close to its schedulable uti-
lization bound can usually provide small miss-deadline
ratio to the real-time tasks. Moreover, CPU utilization
control can lower down the energy consumption in the
processors by avoiding over-provision of the computing
resources to the real-time tasks. It is challenging to
conduct CPU utilization control in distributed real-time
systems with workload variations and uncertainties. To
handle the workload uncertainties, most recent work
favors feedback control techniques for CPU utilization
control [1]-[6], since the feedback control techniques can
tolerate the system modeling error caused by workload
variations and can leverage the measured processor
utilizations as continuous feedback to properly enforce
the utilization setpoint of each processor.

o Xi Chen, Xiao-Wen Chang and Xue Liu are with the School of Computer
Science, McGill University, Montreal, Quebec, Canada.
E-mail: xi.chen7@mail.mcgill.ca, chang,xueliu@cs.mcgill.ca

The percentage of CPU time utilized by a task in
a processor is the product of the task execution time
and the task rate. Given a set of tasks located on each
processor, the CPU utilization of this processor can be
affected by adjusting the execution times and the task
rates. In modern distributed real-time systems where
the processors support dynamic voltage and frequency
scaling (DVFS) techniques, we can adjust the execution
times of the tasks on each processor by scaling the
processor frequency [4]. Moreover, the task rates can be
tuned within the specified ranges by the rate modulator
on the processors. Therefore, processor frequency scaling
can be combined with task rate adaptation to realize
CPU utilization control.

Typical work on CPU utilization control by using
processor frequency scaling and task rate adaptation was
proposed in [4]. The scheme in [4] leverages feedback
control techniques to adjust the two manipulated vari-
ables, processor frequencies and task rates, to enforce
the utilization setpoints, which outperforms previous
utilization control schemes that depend on task rate
adaptation exclusively such as EUCON [1]. Since si-
multaneously adjusting the two manipulated variables
will result in a nonlinear control model, [4] decom-
poses the system model into two linear control loops
for CPU utilization control; one control loop uses task
rate adaptation and the other uses processor frequency
scaling. The decoupled control loops are controlled in
their respective sampling periods without interactions.
Although the feedback control technique can handle the
workload uncertainties to certain extent, the decoupled
and asynchronous adjustments to the manipulated vari-
ables is not an ideal way to conduct CPU utilization
control. This is because task rates and processor frequen-



cies contribute to the CPU utilization with strong mutual
influence. Ignoring the coupling between the two manip-
ulated variables to cater the feedback control techniques
may degrade the utilization control performance.

In this paper, we propose a Synchronous Rate and
Frequency Adjustment scheme, referred to as SyRaFa, for
utilization control. To preserve the coupling between the
two manipulated variables, we simultaneously adjust the
task rates and processor frequencies by solving a bilinear
mixed-discrete least squares (LS) optimization problem
online instead of using the feedback control techniques.
Since solving the LS problem calls for a highly accurate
system model, we use the measurement to the CPU
utilization of the processors as feedback information to
estimate the parameters in the system model online.
Specifically, we develop a hybrid strategy that adopts a
workload change point detection approach and a Recur-
sive Least Squares (RLS) approach to predict the load-
variation matrix in the utilization model adaptively.

The main contribution of this paper can be summa-
rized as follows:

o We propose SyRaFa, a novel solution based on a
bilinear mixed-discrete LS problem method for opti-
mal processor frequencies and task rates adjustment
to enforce desired CPU utilization. In contrast to
the typical asynchronous Rate and Frequency (R&F)
control scheme [4], our scheme takes advantage of
the interaction between task rates and processor
frequencies instead of decoupling their relation [4]
to control the processor utilization.

o We propose the G-estimator for workload esti-
mation. This RLS-based estimation approach with
change point detection can handle the large work-
load uncertainties and fluctuations, and it can filter
out the white noises in the measurement of the
processor utilizations.

Experimental results show that SyRaFa outperforms the
asynchronous R&F control scheme especially when large
workload uncertainties and fluctuations exist. Moreover,
the computation cost of SyRaFa is small for online
implementation.

The rest of this paper is organized as follows. Related
work is discussed in Section 2. We state CPU utilization
problem in distributed real-time systems and formu-
late the model for utilization control in Section 3. The
SyRaFa scheme is given in Section 4. We introduce the
G-estimator for online estimation to the load-variation
matrix in Section 5. We discuss the utilization control for
synchronous adjustment to the manipulated variables
in Section 6. Section 7 demonstrates simulation results
of SyRaFa in comparison with the asynchronous R&F
control scheme. Section 8 summarizes the main results
and concludes the paper.

2 RELATED WORK

To ensure the End-to-End deadlines of the hard real-
time tasks in the distributed systems, typical schedul-
ing algorithms like end-to-end scheduling [7] and dis-
tributed scheduling were provided [8], [9]. However,

these algorithms are open-loop approaches designed
offline based on the worst-case execution time (WCET)
of all the tasks. With increasing distributed systems
working in the open and unpredictable environment, the
open-loop approaches based on worst-case estimation to
task execution time may result in the underutilization
of the processors and waste energy. Moreover, many of
these distributed real-times systems contain the tasks
with soft end-to-end deadlines, missing deadlines at a
small ratio can also provide satisfactory QoS to the real-
time tasks. Therefore, it is possible to trade off the end-
to-end deadline guarantees for the efficient usage of the
system energy and computing resources.

Recently, control-theoretic approaches have been pro-
posed to handle the workload uncertainties and pro-
vide desired QoS in general for computing systems,
and for distributed systems holding soft real-time tasks
in particular. Surveys on feedback control for resource
management in real-time computing systems are pre-
sented in [10] and [11]. Many projects and applications
on feedback scheduling are implemented. In particular,
Goel et al. [12] proposed a feedback-based scheduling
approach to meet real-time requirement. Stankovic et
al. [13] applied feedback control to schedule real-time
systems. Wang et al. [14] proposed a middleware that
adopts feedback control techniques for CPU utilization
and miss deadline ratio control. Fu et al. [6] used a dis-
tributed utilization feedback controller to handle system
dynamics caused by load balancing for large-scale server
clusters.

Most previous work on CPU utilization control in dis-
tributed real-time systems is based on task rate adapta-
tion exclusively. To enforce desired utilization by adjust-
ing the task rates, various control methods are leveraged.
Wang et al. used Model Predictive Control (MPC) to
handle execution time variations within a specified range
in [1], [3] and [4]. Yao et al. [5] developed an adaptive
control method to handle large workload uncertainties.
However, all these algorithms assume that task rates can
be continuously tuned. To tackle the discrete task rates,
hybrid control theory [15] and optimization strategies
[16] were proposed, but they are based on the priori
knowledge of the tasks” WCET and are not applicable to
the unpredictable environment. Using task rate adaption
exclusively for utilization control may degrade control
performance due to reasons such as discrete rate trunca-
tion or task rate saturation.

DVFS has been leveraged as an effective technique for
energy efficient scheduling. Many of the energy-aware
scheduling algorithms are proposed [17]-[22]. However,
most of them are open-looped algorithms that rely on
priori knowledge of WCETs, and they focus on mini-
mizing energy or temperature and do not use DVFS as
a technique for utilization control.

In contrast to the above utilization control methods
and DVFS-based scheduling algorithms, Wang et al.
[4] proposed a power-aware utilization control scheme
that uses DVEFS for utilization control. In [4], processor
frequency scaling is used as a compensation for task
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Fig. 1: Distributed Real-time System Model

rate adaption. However, it separates the two strongly-
coupled variables, processor frequencies and task rates,
into two decoupled linear control models, which may
degrade the overall system performance especially when
large workload variations exist. In this paper, we pro-
pose SyRaFa, which adopts the task rate adaptation and
processor frequency scaling synchronously for CPU uti-
lization control. SyRaFa preserves the nonlinear system
model and leverages the coupling of the manipulated
variables to conduct better utilization control.

3 UTILIZATION PROBLEM IN DISTRIBUTED

REAL-TIME SYSTEMS

In this section, we first state the CPU utilization problem.
Based on the CPU utilization problem, we provide the
model for utilization control.

3.1 CPU Utilization Problem in Distributed Real-time
Systems

We consider the same task model as [1] for forming
the CPU utilization problem in distributed real-time
systems.

A distributed real-time system consists of m indepen-
dent and preemptable end-to-end tasks {7;|1 < i < m}
executed on n processors {F,|1 < ¢ < n}. Each task T;
has a chain of subtasks {T;;|1 < i < m,1 < j < ¢}
that could be located on multiple processors, where ¢;
is the number of subtasks held by task 7;. A typical
distributed real-time system with 2 processors and 2 end-
to-end tasks (with totally 4 subtasks) is shown in Fig. 1.

Each task T; is a periodic task, i.e., instances of its
first subtask T;; are released periodically. The subtasks
of the same task T; should be executed sequentially, i.e.
subtask T; ;41 cannot be released until its predecessor
T;; completes. We assume that the non-greedy synchro-
nization protocol like Phase Modification (PM) protocol
[7] is applied to enforce the precedence constraints on
the subtasks. The PM protocol ensures the instances of
every subtask T;; in 7T; are released periodically with
the same period and the proof is in [7]. Each subtask
T;; can be described by a tuple {c;;,p;}, where ¢;; is
the estimated execution time of T;; and p; is the task
period. The relative deadline of the subtask equals to
pi;. The relative end-to-end deadline of the task T; is
the sum of all the relative deadlines of its subtasks.
Subtasks located on the same processor are scheduled by

Fig. 2: Scheduling of Subtasks

the fixed-priority scheduling algorithm, and we use rate
monotonic scheduling (RMS) [23] in this paper. Consider
the example in Fig. 1, assume {c;;,p;} for each subtask
Ti; are Tyy = {5,20}, Ty = {10,30}, T = {10,30},
T3 ={15,50}. Since Tz; and T»o are subtasks of T, we
apply PM protocol to set the releasing phase of 15, as its
period, hence the first instance of 75, is released 30 time
units after the origin of the runtime. Under PM protocol,
the instances of T»; and T5, are released periodically
with the same period. In this case, as long as we can
ensure the schedulability of 75, and 7%, each instance
of Thy can never be released before the fulfillment of
the corresponding instance of its predecessor T»;. Both
Py and P, use RMS to schedule the periodic subtasks.
On Py, Ty; is given higher priority than 7%; since it
has shorter task period. Similarly, 75, is given higher
priority than 73; on P». The scheduling of the subtasks
on P; and P, are given in Fig. 2. According to [23],
the subtasks can meet their deadlines if the utilization
of each processor stays under a schedulable utilization
bound. The local schedulability of the subtasks helps
to improve the schedulability of the end-to-end tasks,
although cannot completely guarantee.

Modern processor supports CPU frequency scaling
technique like DVFS or clock modulation, and the CPU
frequency can be adjusted within a continuous range [4].
We use f,; to denote a normalized CPU frequency, which
is a ratio of the CPU frequency of processor P, to its
highest value, and f; can be adjusted within the range
[fmin, 1]. For each subtask T;; that is executed on P,
the execution time of T;; is inversely proportional to f,
and can be estimated as ”—J, where ¢;; is the estimated
execution time of Tj; when P, runs at its highest CPU
frequency, namely f, = 1. All the subtasks T;; from the
same task T; share the same task period p;. We use the
term “task rate” to denote the inverse of task period,
denoted by r;, where 7; £ 1711 The task rate r; can be
adjusted within a predefined set R; £ {vi1, Yiz, - s Vit }s
where [ is the number of discrete levels in the set and is
assumed to be the same for all the tasks in this paper.

Given S, as the set of all subtasks 7j; executed on
processor P,, the utilization of each processor P, can be



estimated by
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The distributed system may work in open environment
with dynamic workload, the processor utilization may
deviate from its estimated value from time to time. we
define g, as the actual processor utilization u, to its
estimated value 4, ( see Eq. (1)), so

a Uq

99 = -
Uq

gq reflects the workload variation. Therefore, we have:

Ug = Ja CijTis 2

fq Ti; €8,

Let u = [uy,us, ..., u,]T be the utilization vector of the n
processors in the distributed real-time systems, then we
have:

u = GxFxExr, 3)

where G £ diag(g1,92,...,9n) referred to as the load-
variation matrix, F £ diag(1/f1,1/ fa,...,1/ fn) referred
to as the frequency inverse matrix, £ £ (e;;) € R™*™
referred to as a subtask allocation matrix, e;; £ cjr if
subtask T}, (the kth subtask of task T}) is on processor
P;, and e £ 0 if no subtask of T, is executed on F;,
r=[ry,ra,...,7m]T referred to as the task rate vector. The
utilization of each processor can be adjusted by tuning
the task rates and the processor frequencies.

In the distributed systems, controlling the CPU uti-
lization of each processor to be close to a utilization
setpoint has many profits. On one hand, CPU utilization
control can reduce the power consumption by scaling
down the processor frequencies when the workload is
overestimated, which avoids over-provisioning of the
computing resources to the real-time tasks. On the other
hand, CPU utilization control can keep the CPU uti-
lization at a setpoint that is slightly lower than the
schedulable utilization bound like the RMS utilization
bound [23], which can make most of the subtasks on
each processor to meet their deadlines. Since each task
T; in the distributed real-time systems has a soft end-to-
end relative deadline related to its period which can be
divided into deadlines of its subtasks. Providing a small
miss-deadline ratio for the subtasks results in a small
miss-deadline ratio for the end-to-end tasks.

It worths noticing that we do not claim the CPU uti-
lization control can ensure schedulability of the end-to-
end tasks under the dynamic workload. This is because
when the execution times of the subtasks change from
time to time, the release interval between consecutive
instances from the same subtask may contain jitter due
to the sequential relation among the subtasks. CPU
utilization control cannot guarantee each task to meet its
end-to-end deadline under the workload variations. But
we will demonstrate in Section 7 that the CPU utilization
control can provide a small miss-deadline ratio to the
real-time tasks, which can be tolerated in the system with
soft real-time tasks.

3.2 Formulation of CPU Utilization Control

The objective of CPU utilization control is to make
the utilization of each processor close to its utilization
setpoint with small error at each sampling period during
the runtime. Naturally, CPU utilization control problem
can be formed as a least squares problem with con-
straints on the manipulated variables.

The sampling period T is selected so that multiple
instances of each task may be released during a sampling
period [1]. Define the time interval [(k—1)Ty, kT as the
kth sampling period, £ = 1,2,.... In this interval, the
utilization vector is u(k), the frequency inverse matrix
is F(k—1), the task rate vector is r(k—1), and the load-
variation matrix is G(k). From Eq. (3), the utilization at
the kth sampling period becomes:

u(k) = G(k)*F(k—1)xExr(k—1). 4)

As aforementioned, our goal for utilization control is
to enforce u(k) to stay at the setpoint u® £ [uf, u3, ..., us]T
for 1 < k < (Total Runtime)/T;. The manipulated vari-
ables for utilization control are task rates and processor
frequencies. Adjusting the two manipulated variables at
each sampling period affects CPU utilization. At the kth
sampling period, given the utilization setpoint vector u*,
the task rate set R; for each task 7T;, and the normalized
processor frequency range [fmin, 1] for all the processors,
the CPU utilization control objective is to find the task
rate vector r(k) and frequency inverse matrix F(k) to
minimize the difference between u(k+1) and «® in the
(k+1)th sampling period [kT, (k+1)T,]. Naturally the
2-norm is used to describe the difference between u(k+1)
and u°, leading to the following LS problem [1]:

HI;inHuS — G(k+1)xF«Exr||s )

subject to 7; € R;,1 <i<m,
fmingfqg]-?lgqgn'

For clarity, we summarize the notations used in this
paper in Table I in the supplementary document.

4 OVERVIEW OF THE SYRAFA SCHEME

To enforce the utilization setpoints, we develop a scheme
to be referred to as SyRaFa (Synchronous Rate and
Frequency Adjustment). Note that G(k+1) in the LS
problem (5) is unknown. In order to deal with this
problem, we first estimate G(k+1) to get an estimate
G(k+1), then we solve the LS problem with G(k+1)
replaced by G(k+1), ie.,

~

min [u® — G(k+1)«FxExr| (6)
T

ri € Riy1 <1< m,
fmingfqg 171 gq

The optimal F' and r are denoted by F(k) and r(k),
which will be applied to the distributed real-time system
to generate u(k+1).

subject to
<n.
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Fig. 3: Overview of SyRaFa

Thus, SyRaFa consists of two parts, the estimator to
dynamically estimate workload by predicting the load-
variation matrix, and the regulator to synchronously
adjust task rates and processor frequencies.

As shown in Fig. 3, SyRaFa is a feedback-based re-
source allocation scheme that can adjust the task rates
and the processor frequencies simultaneously to enforce
the utilization setpoints. As the utilization model in
Eq. (4) shows, the key to find the desired manipulated
variables is to estimate the load-variation matrix G(k)
accurately even in volatile environment. We propose the
so called G-estimator to predict G online by handling
the varying workload. To solve the LS problem in Eq.
(6), we use a centralized utilization regulator in the
distributed real-time system to compute the optimal
manipulated variables. The utilization regulator may
locate on a separate processor or share a processor with
some subtasks. SyRaFa application (including the G-
estimator and utilization regulator) is given the highest
priority to be scheduled on the processor that executes
it to achieve effective utilization control. Each proces-
sor has a wutilization monitor, a rate modulator and a
frequency modulator.

For load-variation matrix estimation, the user inputs to
G-estimator are u*, the measured processor utilizations
formed in the vector u(k), and the historical utilization
measurements {u(1),u(2),...,u(k—1)} that are stored in
G-estimator. The output of G-estimator is the estimation
to G in the next sampling period (the (k+1)th sampling
period), G(k+1).

For task rates and processor frequencies computation,
the inputs to the utilization regulator are G(k+1) from
G-estimator, u®, R; for 1 < ¢ < m and the normalized
processor frequency range [fmin, 1]. The outputs are the
the manipulated variables r(k) and F(k).

The utilization control procedures are summarized in
Section 2.1 of the supplementary document.

5 ONLINE ESTIMATION UTILIZATION

MODEL

OF

We propose G-estimator to estimate the workload varia-
tion matrix G(k) online based on the measured processor
utilizations formed in the vector u(k). Since measure-
ment noise may exist, we rewrite the utilization model

in Eq. (4) as follows:
u(k) = G(k)«F(k—1)xExr(k—1) + v(k), (7)

where v(k) € R” is the noise vector whose entries are
independent and identically distributed n-dimensional
random variables with zero means. The working prin-
ciple of G-estimator is summarized as below. When
workload changes abruptly at some sampling period, we
detect the workload change and estimate G based on the
utilization measurement in this sampling period. When
the workload stays unchanged in several consecutive
sampling periods, we use recursive least squares (RLS),
a widely adopted approach for online model estimation,
to estimate G by leveraging the utilization measurements
in these sampling periods.

5.1 G-estimation Based on Change Point Detection

At the kth sampling period, the true value of the work-
load variation is G(k) and the measured utilization u(k)
is generated by applying F(k—1) and r(k—1) to the
system, hence from Eq. (7) we have

u(k) = G(k)«F(k—1)xExr(k—1). 8)

Define
d(k) 2 F(k—1)xE*r(k—1) € R", 9)

and let the ith entry of d(k) for i = 1,...,n be denoted
by d;(k). Then from Eq. (8) we have

Define
u; (k) .
ni(k) & ————, i=1,2,...,n. (11)
A
From Egq. (10), we can see 7;(k) = %

If |n;(k)—1] > ¢ for some ¢ in {1,2,...,n}, where §
is a tolerance (a small positive number), we assume the
workload changed for processor i at the kth sampling pe-
riod. In this situation, we re-estimate ¢;(k) (i =1,...,n)
and use the estimate as a predict to g;(k+1), denoted by
9i(k+1):
ui(k)

gi(k+1) = d:(k),

G(k+1) £ diag(gi (k+1), .., Gn(k+1)).
Note that the estimation of g;(k+ 1) in Eq. (12) is

computed from Eq. (8) and Eq. (10) by assuming the
noise vector v(k) has small deviation.

(12)

5.2 G-estimation Based on RLS Approach

At the kth sampling period, when the measured uti-
lization w(k) is close to the setpoint u® enough such
that |n;(k)—1| < 6 for i = 1,2,...,n, we assume the
workload does not change. Suppose that the workload
stays unchanged in an interval starting from the Ith
sampling period to the kth sampling period (I < k), i.e,,



G(l)=...=G(k), instead of using the heuristic approach
to defme G(k:—|— 1) (see Eq. (12)), we prefer solving the
following LS problem and set G(k+1) as the solution:

mlnz [lue(5)

where G =diag(g1,...,9,) € R"*", and d(j) (as defined
in Eq. (9)) for j =1, ..., k have been determined. To solve
the LS problem (13), we define g £ [g1,...,g,]T € R"

= Gxd(j)]13, (13)

and D(j) = diag(d1(j),...,dn(j)) € R™ ™. Then we can
rewrite the LS problem (13) as
u(l) o 7 |
min - : g (14)
g u(k—1) D(k—1)
u(k) D(k) )

It is easy to show that the solution to this LS problem
can be written as

Gk+1) = Sk sw(k),

where

1)+ D(k)2,

ZD S(k—
k) £ Z D(j)xu
j=l

Note that the diagonal matrix S(k—1) and the vector
w(k—1) were obtained at the (k—1)th sampling period.
So the computation for finding g(k+1) can be done in a
recursive way, known as the RLS approach, and is very
efficient. The pseudocode of G-estimator is illustrated
in Algorithm 2 in the supplementary document. In the
implementation of the above algorithm, actually we do
not use two-dimension arrays to store those diagonal
matrices for storage efficiency.

=w(k—1) + D(k)*u(k).

6 UTILIZATION REGULATOR

The utilization regulator finds the optimal manipulated
variables F' and r by solving the lease squares problem
in Eq. (6). We use an alternating direction method to
solve this problem. At the kth sampling period, we first
fix F in the LS problem (6) to be F(1)(k), where, if
k=1, FO(k) =1 (I € R™™ is the unit matrix), else
F(k)=F(k—1) (F(k—1) is F obtained at the (k—1)th
sampling period). By fixing F to be FM(k), we solve
the least squares problem (6), where only r is unknown,
leading to the solution r(!) (k). Then we fix r in (6) to be
(1) (k) and solve (6), where only F is unknown, leading
to the solution F(?) (k). We alternatively fix one variable
to find the other, and this iteration process continues un-
til the difference between u* and G(k+1)FU) (k)ErU) (k)
is less then a specific threshold e or when the maximum
number of iterations is reached. Details about how to
find ) (k) and FU+V (k) for j = 1,2,.... are given in
Section 2.3 of the supplementary document.

7 PERFORMANCE EVALUATION

We implemented a Java-based event-driven simulator in
J-Sim [24] to simulate the distributed real-time systems.
The utilization control scheme for the distributed real-
time systems is implemented as a simulator in MATLAB
(R2009a). The communication between MATLAB simula-
tor and J-Sim is via system calls. In each sampling pe-
riod, the utilization of the processors, the miss deadline
ratio of the end-to-end tasks, the power consumption
of the system as well as the computing time of the
utilization control scheme are computed and used as the
criteria to evaluate the utilization control performance.
Details of the experimental setup is shown in Section 3.1
and 3.2 of the supplementary document.

Our goal for the performance evaluation lies in two
folds. On one hand, we would like to test the necessity
of using the frequency scaling to enforce the desired
CPU utilization. Therefore, we use EUCON [1] as a
baseline since EUCON is a utilization control scheme
which adopts task rate adaptation exclusively. Besides
EUCON, we use the asynchronous task rate and proces-
sor frequency scaling scheme for CPU utilization control
proposed in [4] as another baseline, and we denote it
by AsyRFE. We apply the workload SIMPLE (as shown
in Fig. 1 and Table 1) and conduct the simulations
to compare the CPU utilization control performance of
SyRaFa, AsyRF and EUCON. The workload SIMPLE
is set so that the CPU utilization setpoint can never
be reached by tuning the task rates exclusively. In this
way, we can easily test whether the frequency scaling
in SyRaFa or AsyRF is necessary for CPU utilization
control. On the other hand, we need to verify the robust-
ness of SyRaFa against workload variations and CPU
measurement noise. Moreover, whether SyRaFa outper-
forms AsyRF in CPU utilization control should be tested.
Towards this end, we use AsyRF as the baseline and
use the workload MEDIUM to evaluate the utilization
control performance of SyRaFa and AsyRF. To make fair
comparison, we adopt the MEDIUM workload config-
uration proposed in [4] and [1], where four processors
execute 12 tasks with totally 25 subtasks. Among the
12 tasks, there are 8 end-to-end tasks and 4 local tasks
(tasks Ty to Ti2). The execution time of every subtask
T;; follows a uniform distribution in [1,50]. The task
rate range R; for each T; contains 10 discrete values. We
set R; so that when each processor runs at the highest
processor frequency, the maximum CPU utilization is
0.5 (corresponding to the highest task rates of all the
tasks) and the minimum CPU utilization is 0.1 (corre-
sponding to the lowest task rates of all the tasks). The
CPU utilization setpoint vector for the four processors is
u® =[0.7348,0.7348,0.7286, 0.7348] .

7.1 Experiment I:SIMPLE and Steady Workload

In Experiment I, we use SIMPLE workload as shown in
Fig. 1 and Table 1 to conduct simulations. The workload-
variation matrix is set as a constant matrix G = diag(1, 1)
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Fig. 4: The Performance of EUCON, AsyRF and SyRaFa in Experiment I

TABLE 1: SIMPLE Workload Configuration

P | Ty | cij Ri ri(0) | ug,g=1,2
P | Tu | 35 1:?(; 2: :%{éjlizl?ig?ég}ﬁ’ 0.0030

—7
DT [ A0 X OIS 2236 Too0m | ososs
P| T | 45 | 2; ;71714117545’055;* 0.0033

in each run, which facilitates us to compare the perfor-
mance of EUCON, AsyRF and SyRaFa in the steady state
without workload estimation error. In EUCON, the pro-
cessor frequencies are set as the highest CPU frequency
3GHz while the task rates r;,% = 1...,m are adjusted
dynamically online. The utilization control performance
of EUCON is shown in Fig. 4(a). The utilizations of the
two processors are controlled at around 0.38 and 0.4
respectively, which fail to meet the utilization setpoint
0.8284. In contrast to EUCON, AsyRF and SyRaFa add
the processor frequency scaling to the CPU utilization
control, and their performance are shown in Figs. 4(b)
and (c). Both AsyRF and SyRaFa can enforce the uti-
lization setpoint by dynamically adjusting the processor
frequencies, which compensates the control error due
to exclusive task rate adaptation. As we can see from
Figs. 4(d),(e) and (f), the processor frequencies are lower
in AsyRF and SyRaFa than the processor frequencies
in EUCON, showing that the CPU frequencies of the
processors are scaled down to enforce the utilization
setpoint in SyRafa and AsyRE. From the results in Ex-
periment I, we can see frequency scaling is necessary
for CPU utilization control.

7.2 Experiment ll: MEDIUM and Steady Workload

In Experiment II, we use MEDIUM, a more complex
workload configuration than SIMPLE, to test the utiliza-

tion control performance of SyRaFa and AsyRF under
different workload configurations. We conduct seven
groups of simulations and use steady workload in each
group of simulations, which can be achieved by setting
the load variation factor g in the load variation matrix
G = g=diag(1,1,1,1) as constant for each group of
simulations. Each group of simulations include two runs
with each run containing 1000 sampling periods. The
utilization control schemes in the two runs are SyRaFa
and AsyRF, respectively. To test the performance of
SyRaFa and AsyRF under different steady workload
configurations, we set g as 0.1, 0.4, 0.7, 1, 1.3, 1.6, 1.9
in the seven groups of simulations separately.

For each group of simulations, we compute the aver-
age value and the standard deviation of each processor’s
utilization during the runtime (1000 sampling periods).
Moreover, the average values of the miss deadline ratio,
the power consumption and the control time in each run
are also calculated. The performance results are shown
in Fig. 5. From Figs. 5(a) and (b), we can see both AsyRF
and SyRaFa can keep the average CPU utilization of each
processor near the setpoint when g <1.3. When g=1.6
and g = 1.9, the average utilization of each processor
under AsyRF cannot track its setpoint properly. AsyRF
results in a utilization control error around 0.05 while
the proposed scheme SyRaFa can enforce the utiliza-
tion setpoints. In the seven groups of simulations, the
standard deviation of the processor utilization increases
with the growth of the workload estimation error (either
with the increase of ¢ when workload is underestimated
g > 1 or with the decrease of ¢ when the workload is
overestimated g < 1). However, SyRaFa results in much
smaller standard deviation of the processor utilization
than AsyRF. Compared with AsyRF, SyRaFa provides
stable utilization control performance throughout the
seven runs with precise setpoint-tracking result. The
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Fig. 5: The Performance of SyRaFa and AsyRF in Experiment II

miss deadline ratios under SyRaFa and AsyRF are shown
in Fig. 5(c), where SyRaFa results in a smaller average
miss deadline ratio than AsyRF. Both schemes give a
miss deadline ratio lower than 0.03, showing that more
than 97% of the real-time tasks in the distributed systems
can meet their end-to-end deadlines. For the distributed
systems with soft real-time tasks, a miss deadline ratio
less than 0.03 can provide good QoS. As mentioned
above, the underestimation and overestimation to the
workload will degrade the control performance in cer-
tain extent. As a consequence, the miss deadline ratio
when g > 1 or g < 1 is a little bit larger than that
when g =1 under both schemes (SyRaFa and AsyRF).
The average power consumptions in the simulations are
shown in Fig. 5(d), where SyRaFa and AsyRF cause
similar power consumptions. The average control times
taken by SyRaFa and AsyRF are shown in Fig. 5(e).
SyRaFa has a slightly longer average control time than
AsyRFE. However, the average control time in SyRaFa is
under 0.025s in MATLAB time, which is a small value
in comparison with the sampling period (usually several
minutes) and does not cause large computation overhead
for online implementation.

7.3 Experiment lll:MEDIUM and Dynamic Workload

In Experiment III, we use MEDIUM workload and test
the performance of SyRaFa and AsyRF under dynamic
workload and measurement noise. Each run in the sim-
ulation contains 1000 sampling periods, we set g = 0.5
during 0-249 sampling periods, g = 1 during 250-499
sampling periods, g = 1.5 during 500-749 sampling

periods and g = 2 during 750-1000 sampling periods.
Therefore, there are sudden changes of the workload at
250th, 500th, 750th sampling periods respectively. More-
over, we add uniformly distributed random noise in the
range of [0,0.01] to the CPU utilization measured from
the J-Sim simulator. As we can see from Figs. 6(a) and
(b), CPU utilization overshoot occurs when the workload
changes. This is because both SyRaFa and AsyRF are
feedback-based schemes, the adjustment to the current
manipulated variables are based on the estimation to
the workload in the previous sampling period, which
results in one sampling period control delay. How-
ever, after the sudden changes of the workload, SyRaFa
takes less sampling periods than AsyRF to make each
processor’s utilization converge to its setpoint. AsyRF
performs badly in handling the workload variations if
the workload is underestimated (g > 1). When g = 1.5,
AsyRF takes more than 100 sampling periods to make
the CPU utilization u; fall into the range of (1+0.05)u;.
When g = 2, the CPU utilization of each processor
vibrates around the setpoint and does not converge. In
contrast, SyRaFa enforces the CPU utilization setpoints
throughout the runtime. The miss deadline ratio and the
power consumption in each run under the two schemes
are shown in Figs. 6(c-f). SyRaFa gives a much smaller
average miss deadline ratio (0.0061) than AsyRF (0.0240).
The average power consumptions of the system under
SyRaFa (598.6570Watts) and AsyRF (556.2954Watts) are
similar.

We summarize the average values of the processor
utilization, miss deadline ratio, power consumption and
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Fig. 6: The Performance of SyRaFa and AsyRF in Experiment III

the control time in each sampling period during the
runtime in the above experiments, which is shown in
Table 2 in the supplementary documents. Besides the
above experiments, we test the performance of SyRaFa
and AsyRF for processor utilization control using a
workload setting in the large-scale distributed real-time
system. The experiment results are shown in Section 3.3
in the supplementary documents.

8 CONCLUSIONS

Both task rates and processor frequencies contribute
to the CPU utilizations of the processors in the dis-
tributed real-time systems. In order to keep the processor
utilizations close to the setpoint in a distributed real-
time system, we need to tune task rates and processor
frequencies together for efficient processor utilization
control. Existing method uses feedback control to tune
the two manipulated variables separately in two control
loops with asynchronous sampling periods. We have
provided a novel scheme called SyRaFa that simultane-
ously adjusts the two variables to enforce desired CPU
utilizations of the processors. In SyRaFa, a new strategy,

which takes the utilization measurement noise into ac-
count, is used to estimate the workload by predicting
the load-variation matrix online. Then we compute the
optimal manipulated variables (task rates and processor
frequencies) by solving a bilinear mixed-discrete least
squares problem. Simulation results have demonstrated
that the SyRaFa scheme is effective especially in the
situation with large workload uncertainties and frequent
workload fluctuations.
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