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Abstract: The maximum likelihood detection problem in many underdetermined linear communications systems can
be described as an underdetermined integer least squares (ILS) problem. To solve it efficiently, a partial regularisation
approach is proposed.The original underdetermined ILS problem is first transformed to an equivalent overdetermined
ILS problem by using part of the transmit vector to do the regularisation. Then the overdetermined ILS problem is
solved by conventional sphere decoding algorithms. Simulation results indicate that this approach can be much
more efficient than other approaches for any square constellation higher than 4QAM.
1 Introduction
In many linear communications systems, the received signal
vector can be represented as a linear combination of the
channels corrupted by additive noise. The relation between
the received signal vector and the transmit signal vector is
written as a complex linear system

~y ¼ ~H ~xþ ~v (1)

where ~H [ C
Nr�Nt represents the system matrix with Nt inputs

and Nr outputs for the linear system, ~v [ C
Nr is the white

Gaussian noise vector with distribution CN (0, 2s2I ), and
~x [ CNt is the unknown signal vector and its elements are
odd numbers in the finite set ~X k ¼ {k1 þ k2j : k1, k2 ¼

+1, +3, . . . , +(2k
� 3), +(2k

� 1)}, where j2
¼ �1.

Note that k ¼ 1, 2, 3 correspond to QPSK (i.e. 4QAM),
16QAM, 64QAM constellations, respectively. The detection
problem is to recover (or estimate) the transmitted vector ~x in
(1). Such detection problems arise from many communication
applications, including lattice decoding [1], multi-input
multi-output (MIMO) detection problems [2], multi-user
detection problems in direct-sequence code-division multi-
access (DS-CDMA) [3] and multi-carrier code-division
multi-access (MC-CDMA) [4].

In order to avoid complex computations in the detection
process of the transmitted vector ~x, we first transform the
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complex linear system (1) to the following real one (see,
e.g. [5], about the transformation)

y ¼ Hxþ v (2)

where y [ Rn, H [ Rm�n with m W 2Nr and n W 2Nt, v �
N (0, s 2I m), and x [ Xn

k with X k ¼ {+1, +3, . . . ,
+(2k

� 3), +(2k
� 1)}.

To find the maximum likelihood (ML) estimation of the
complex transmit vector ~x in (1) or the real ‘transmit’ vector
x in (2), one solves the following minimisation problem

min
x[Xn

k

ky�H xk22 (3)

which we refer to as a box-constrained integer least squares
(ILS) problem. When the matrix H has full column rank,
a conventional sphere decoding (SD) algorithm can be
employed to find the optimal solution of (3) (see, e.g. [2–8]).
In this paper, we are interested in the case that H has full
row rank, that is, (3) is a constrained underdetermined ILS
problem. One such application is the multiple-antenna
communication systems where there are more transmitting
antennas than receiving antennas. For this case, a conventional
SD algorithm cannot be applied directly. To solve this
problem, Damen et al. [9], Dayal and Varanasi [10], Yang
et al. [11] and Chang and Yang [12] proposed various
generalised SD (GSD) algorithms. All those algorithms
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mainly consider how to generate a sequence of determined
sub-ILS problems. For the convenience of the reader, we
give more details about GSD algorithms in the appendix.

Cui and Tellambura [13] proposed a different approach,
which transforms the underdetermined problem (3) to an
equivalent overdetermined problem so that a conventional
SD algorithm can then be applied. We refer to this
approach as a regularisation approach and the corresponding
algorithm as regularized SD algorithm (RSD). The idea of
this approach is first transforming the entire vector x into a
new vector �x whose entries are either 1 or 21, and
then transforming the underdetermined problem to an
overdetermined problem by adding a constant term which
involves the 2-norm of the entire vector �x to the objective
function of the problem. For the constant-modulus QPSK
constellation (i.e. 4QAM) �x ¼ x, the dimension of the
equivalent overdetermined problem is the same as that of the
original underdetermined problem. Here, dimension means
the number of entries in the unknown vector to be
estimated. However, for the non-constant high-order QAM
(i.e. k � 2 in X k), the transformation from x to �x enlarges
the dimension of the problem from n to nk. This makes the
search process for solving the equivalent over-determined
problem less efficient, although the transformation shrinks
the constellation set.

By observing the dimension-increasing problem lying in
algorithm RSD which decreases its efficiency, we propose
an efficient partial regularisation approach to relieve that
problem. The key idea is to choose part of the transmit
vector x to do the transformation and then to do the
regularisation. This can greatly reduce the computational
complexity for high QAM constellations. We will also
discuss some issues involved in this approach and propose
our strategies. The resulting method will be referred to as
partial RSD (PRSD) algorithm.

It is also noted that some methods to find a sub-optimal
solution to (3), for example, [14, 15], were proposed to
reduce computational complexity, which will not be
discussed in this paper.

The rest of this contribution is organised as follows. In
Section 2, we present our partial regularisation approach. In
Section 3, we compare our method with algorithm RSD
and discuss a few efficiency issues. Section 4 gives
simulation results to show the efficiency of this approach.
Finally, conclusions are given in Section 5.

2 Partial regularisation approach
The regularisation approach presented in [13] transforms the
underdetermined ILS problem (3) to an overdetermined ILS
problem. For high-order QAM, this approach enlarges the
problem size and becomes less efficient. In this section, we
will present a modified approach to improve efficiency.
The Institution of Engineering and Technology 2009
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Partition H and x as follows

H ¼ [ H 1
n�l

, H 2
l

]m, x ¼
x1

x2

� �
n� l

l
(4)

We will discuss how to choose l in the next section.
Following [13], we can write x2 [ X l

k as a linear
combination of x(i)

2 [ X l
1 for 0 � i � k� 1:

x2 ¼
Xk�1

i¼0

2ix(i)
2 (5)

Define

�H 2 W [H 2, 2H 2, . . . , 2k�1H 2] [ Rm�kl ,

�x2 W

x(0)
2

x(1)
2

..

.

x(k�1)
2

2
666664

3
777775 [ Rkl

(6)

Notice that k�x2k
2
2 ¼ kl , so k�x2k

2
2 is a constant. Then from

(4)–(6), we see that the original ILS problem (3) is
equivalent to

min
x1[Xn�l

k ,�x2[X kl
1

y� [H 1, �H 2]
x1

�x2

� �����
����

2

2

þa2
k�x2k

2
2 (7)

where we refer to a as a regularisation parameter and its
choice will be discussed later. Therefore with

�H W
H 1

�H 2

0 aI

" #
[ R(mþkl )�(nþ(k�1)l )

�x W
x1

�x2

� �
[ Rnþ(k�1)l

�y W
y

0

� �
[ Rmþkl (8)

�X W
x1

�x2

� �
: x1 [ Xn�l

k , �x2 [ X kl
1

� �
(9)

the problem (7) can be rewritten as

min
�x[ �X
k�y� �H �xk22 (10)

When l � n� m, this is a box-constrained overdetermined
ILS problem and can be solved by any conventional SD
algorithm which can handle the constraints. We will use the
V-BLAST column re-ordering strategy in the reduction
(or preprocessing) process (see [6, 8]) and apply the Schnorr–
Euchner strategy-based search algorithm given in [8] for
search. The reduction algorithm transforms �H to a
(nþ (k� 1)l )� (nþ (k� 1)l ) upper triangular matrix by a
QR factorisation with column re-ordering, and the search
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algorithm is an SD algorithm and its cost, which depends on
the number of columns of �H , dominates the cost of the
whole algorithm to solve the problem (10).

3 Efficiency issues
In order to obtain an overdetermined ILS problem (4), l in
(4) has to be at least n� m. In algorithm RSD given in
[13], x2 was chosen as the entire vector x, that is, in (4)
l ¼ n. In our partial regularisation approach, we choose
l ¼ n� mþ 1. The justification will be discussed in
the next paragraph. Thus the matrix �H in (8) is
(mþ k(n� mþ 1))� (nþ (k� 1)(n� mþ 1)) in our
modified approach, whereas it is (mþ kn)� (nþ (k� 1)n)
in algorithm RSD. When k ¼ 1, the numbers of columns
of �H in the two approaches are the same, whereas the
number of rows is smaller in the modified approach. Thus
the reduction process will cost less for the modified
approach, although this is not a big deal, since the search
process dominates the cost of the entire algorithm. When
k � 2, the number of columns of �H in the modified
approach is smaller than that in algorithm RSD, while the
constraint set for each entry of x1 is still X k, which is larger
than X1, the constraint set for each entry of the unknown
vector �x in algorithm RSD. In other words, compared with
Algorithm RSD, when k � 2, our modified approach
decreases the dimension of the overdetermined ILS
problem, while it increases the ranges of part of
the constraint sets. Simulation results in Section 4 will
show that this strategy can significantly decrease the
computational complexity. Thus the dimension has more
significant effect on the efficiency of the search process
than the ranges of the constraints. This is related to the
nature of the search process. The Schnorr–Euchner
strategy-based search process can be regarded as a depth-
first search process on a tree (see e.g. [5]), and our strategy
actually decreases the height of the search tree, making the
search process more efficient (see, e.g. [16 Chapters 12 and
13]) for explanations.

To make the number of columns of �H in the
overdetermined ILS problem (10) as small as possible, l in
(4) should be chosen to be n� m. It turns out, however, that
this choice make the search algorithm less efficient. We
can explain this from the structure of the R factor of
the QR factorisation of �H . When l ¼ n� m, �H is
(mþ k(n� m))� (mþ k(n� m)). If we do not do any
column re-ordering, then the k(n� m)� k(n� m) bottom
right block of the R factor of the QR factorisation of �H is a
diagonal matrix (more specifically, it is sI ). Then, when the
search algorithm goes from level mþ k(n� m) (at which
�xmþk(n�m) is determined) to level mþ 1 (at which �xmþ1 is
determined), no node of the search tree can be pruned, that
is, no branch can be cut off, which makes the search process
inefficient. If we use the V-BLAST column re-ordering
strategy, usually the bottom right block of the R factor is still
a diagonal matrix although its dimension is usually smaller
Commun., 2009, Vol. 3, Iss. 1, pp. 17–24
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than k(n� m) (our limited numerical experiments indicated
averagely its dimension is about half of k(n� m)). So, we
still have an efficiency problem. By choosing l to be
n� mþ 1, however, we usually avoid the diagonal structure
problem in the R factor, which makes the search process
more efficient. Certainly, choosing l to be larger than
n� mþ 1 will also avoid this problem, but it would increase
the dimension of the overdetermined ILS problem.

In (4), we use the last n� mþ 1 entries of x to define x2.
But choosing a different x2 from x will make the efficiency of
the algorithm to solve (10) different. Thus, we would like to
determine how to choose a good x2 from x, or how to re-
order the columns of the matrix H so that we have a good
x2 corresponding to the last n� mþ 1 columns of the re-
ordered H. From simulations, we found that sorting the
columns of H in decreasing order with respect to the 2-
norm helps to reduce the computational complexity of the
search process when k � 2. The reason is that such
ordering is likely to make the strict upper triangular part of
the R factor of the QR factorisation of �H smaller, which
can make the search process more efficient (see, [5, 7]), for
some discussion on this issue.

In the ILS problem (7), a is a parameter and its choice has
an effect on the efficiency and performance (i.e. the accuracy of
the computed solution) of the algorithm to solve the problem.
On one hand,a cannot be too small, otherwise �H in (8) will be
nearly singular and the computed solution of (10) may not be
the true solution (i.e. the ML estimate) due to rounding errors;
on the other hand, a cannot be too large, otherwise, the search
region, that is, the hyper-sphere determined by the first integer
point found by the search algorithm, will be large, which will
slow down the search process. It appears difficult if not
impossible to find an optimal a that leads to the lowest
computational complexity. In [13], a was chosen to be 1 or
s [the standard deviation of the noise v in the linear model
(2)] in the simulations, and there was no other suggestion
about how to choose a good a. We found from simulations
that the optimal a in our modified approach depends
strongly on s and weakly on the dimension difference n� m
and k. If n � 2m and k � 3 (this is often the case in
applications), our simulations suggest that a ¼ 27=4s is a
good choice with respect to the efficiency and it has no
negative effect on the performance.

4 Illustrative results
In this section, we compare the computational cost of our
algorithm outlined in Section 2 with algorithm RSD in [13]
and the recursive GSD (RGSD) algorithm in [12], which, to
be referred to as algorithm RGSD for convenience, is faster
than other GSD algorithms given in [9–11]. We consider the
flat-fading MIMO system and overloaded frequency-selective
fading group-orthogonal MC-CDMA (GO-MC-CDMA)
system (see [18] and therein) to illustrate the merits of our
proposed algorithm. All the simulations were performed in
MATLAB 7.0. The three algorithms employ the same
19
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conventional SD algorithm for solving any overdetermined or
determined box-constrained ILS problems. This conventional
SD algorithm uses the V-BLAST column re-ordering
strategy (see [6, 8]) in the reduction process and the search
algorithm given in [8] in the search process. The complexity
of the three algorithms is measured by the number of flops.
Only the flops of the search process are counted, since the
cost of the reduction process is relatively negligible. For
algorithm RSD, the parameter a was set to 1 or s as in [13],
and for algorithm PRSD, a was set to 27=4s. For each case,
we performed 200 runs and counted the average flops.

4.1 Flat-fading MIMO systems

We constructed the data for a flat-fading MIMO system
according to the real model (2). The elements of
H [ Rm�n were drawn from an i.i.d. Gaussian distribution
N (0, 1=2), elements of x [ Zn were generated independently
and uniformly according to the set X k and the elements of
the noise vector v [ Rm were drawn from an i.i.d Gaussian
distribution N (0, s2).

Figs. 1–3 show the average flops of the three algorithms
against Nt � Nr for 4QAM (k ¼ 1), 16QAM (k ¼ 2) and
64QAM (k ¼ 3), respectively, and in all of these cases
s ¼ 0:05 and Nr ¼ 4. Since it is too time consuming for
the 64QAM constellation, the simulations were performed
only for Nt � Nr ¼ 1, 2, 3. For 4QAM, we see that there
is only a small difference between the cost of algorithm
RSD (for either a ¼ 1 or a ¼ s) and the cost of algorithm
PRSD. This is because the numbers of columns of �H in
the two overdetermined ILS problems [see (10)] solved by
the two algorithms, respectively, are the same when k ¼ 1.
When Nt � Nr ¼ 1, 2, both algorithms RSD and PRSD
cost more than algorithm RGSD, and when
Nt � Nr ¼ 3, 4, the former cost (much) less than the latter.
For 16QAM and 64QAM, algorithm PRSD is the most
efficient one among the three decoding algorithms. For
example, in Fig. 2, when Nt � Nr ¼ 1, the average flops

Figure 1 Average flops against Nt 2 Nr (4QAM, flat-fading
MIMO)
The Institution of Engineering and Technology 2009
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costed by algorithms PRSD and RSD with a ¼ s are

1:2� 103 and 1:3� 104, that is, Algorithm PRSD is
about 11 times as fast as algorithm RSD; and in Fig. 3,
when Nt � Nr ¼ 1, the average flops costed by algorithms
PRSD and RSD with a ¼ 1 are 1:1� 104 and 2:4� 105,
respectively, that is, algorithm PRSD is about 22 times as
fast as algorithm RSD. If Nt � Nr is fixed, when k
increases, Figs. 1–3 indicate that algorithm PRSD
becomes more and more efficient than algorithm RSD.
This is because the difference (k� 1)(m� 1) between the
numbers of columns of the matrices �H in the two
overdetermined ILS problems solved by algorithms RSD
and PRSD, respectively, becomes larger and larger.

Fig. 4 shows the average flops of the three algorithms
against different signal-to-nose-ratios (SNRs) for 16QAM,
Nr ¼ 4 and Nt ¼ 5. Here, for M-QAM, SNR is defined by
SNR ¼ 10 log10 (((M � 1)=3)=2s2). When SNR increases,

Figure 2 Average flops against Nt 2 Nr (16QAM, flat-fading
MIMO)

Figure 3 Average flops against Nt 2 Nr (64QAM, flat fading
MIMO)
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Fig. 4 indicates that algorithm PRSD becomes more and more
efficient than algorithm RSD. For SNR ¼ 12 and 27 dB, the
average flops costed by algorithm RSD with a ¼ s is about 7
times and 10 times as high as that by algorithm PRSD,
respectively.

In Section 2, we introduced two strategies to improve
the efficiency of our approach. One is about the choice of
the dimension of x2 and the other is about re-ordering the
columns of H to find x2. Fig. 5 shows the effects of these
two strategies on efficiency (again here s ¼ 0:05 and
Nr ¼ 4). All the three curves represent the cost of
algorithm PRSD. The top curve is for the case that the
dimension l of x2 was set to n� m and there was no
column re-ordering of H in finding x2; the middle curve is
for the case that l was set to n� mþ 1 and there was no
re-ordering in finding x2 either; and the bottom curve is
for the case that l was set to n� mþ 1 and x2 was found
by the re-ordering strategy. From Fig. 5, we see that

Figure 4 Average flops against SNR (16QAM, flat-fading
MIMO)

Figure 5 Average flops against Nt 2 Nr (16QAM, flat-fading
MIMO)
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indeed those two strategies can reduce the computational
complexity of Algorithm PRSD.

In order to see how different regularisation parameter a in
(10) affect the efficiency of algorithms RSD and PRSD,
Fig. 6 shows the costs of these two algorithms against limited
a with different settings. Note that the horizontal axis in
Fig. 6 uses different scales for different parts. For each part
where an optimal a is located, more points are displayed. We
observe that algorithm RSD is more sensitive to a than
algorithm PRSD when a . 2. When s ¼ 0:02, 0:05, 0.5,
our choice a ¼ 27=4s ’ 0:07, 0:17, 1:7. We see from Fig. 6
that these values are close to the optimal values. This suggests
that a ¼ 27=4s is a good choice. From Fig. 6, we find that
for the same setting (s ¼ 0:05, 16QAM), algorithm PRSD
with a ¼ 0:17 costs much less than algorithm RSD even
with the optimal a, which appears to be around 0.1.

4.2 Overloaded GO-MC-CDMA systems

The proposed partial regularisation approach was also applied
to the overloaded GO-MC-CDMA systems with frequency-
selective fading wireless channels. At time index i, the
received vector r(i) [ C

Nr for the group of interest is

r(i) ¼ C(i)Dab(i)þ h(i)

where the channel matrix C(i) [ CNr�Nt is decided by two
factors: the channel frequency response and the spreading
sequences applied, Da ¼ diag(a1, . . . , aNt

) and aj [ R is the
signal amplitude of user j, j ¼ 1, . . . , Nt and the complex
i.i.d. AWGN vector h(i) has Nr elements with zero mean
and variance 2s2. Nt also indicates the group load. For an
overloaded GO-MC-CDMA system, the load Nt can exceed
the processing gain Nr to accommodate more active users.

In our simulations, the overloaded GO-MC-CDMA
system was in a typical 3-tap SUI-3 [19] fading channel
with power profile of [0 25 210] db, delay profile of

Figure 6 Average flops against a (flat-fading MIMO)
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[0 0.2 0.4] ms and Rician fading K-factor [1 0 0]. Number of
subcarriers per group was set to Nr ¼ 4. The sampling
frequency was assumed to be 5 MHz for an FFT size of
512. It was assumed that all users had equal-power
transmission, that is, Da was an identity matrix. Two sets
of orthogonal carrier interferometry sequences proposed in
[20] were used for spreading, one for the first Nr columns
of C(i), and the other for the remaining Nt � Nr columns.

Figs. 7 and 8 show the average flops of the three algorithms
against Nt � Nr for 4QAM and 16QAM, respectively, and in
both cases the symbol energy to noise ratio Es=N0 ¼ 24 dB.
Fig. 7 indicates that for k ¼ 1, algorithm PRSD is slightly
less efficient than algorithm RSD, but Fig. 8 shows that for
k ¼ 2, algorithm PRSD is significantly faster than algorithm
RSD. Comparing these two figures with Figs. 1 and 2,
respectively, we see that there is no significant difference
between the flat-fading MIMO system and the overloaded

Figure 7 Average flops against Nt 2 Nr (4QAM, GO-MC-
CDMA)

Figure 8 Average flops against Nt 2 Nr (16QAM, GO-MC-
CDMA)
The Institution of Engineering and Technology 2009
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GO-MC-CDMA system with respect to the efficiency of
the three decoding algorithms.

5 Conclusions
A PRSD approach has been proposed to improve the
efficiency of the RSD approach given in [13] for detection
problems in underdetermined linear systems. We showed
how to choose some entries from the transmit vector for
regularisation. We also suggested an empirical formula for
the optimal regularisation parameter. Simulation results on
flat-fading MIMO channels and frequency-selective-fading
group-orthogonal MC-CDMA systems indicated that our
new PRSD approach is much more efficient than the
regularisation approach given in [13] and is also more
efficient than the RGSD approach presented in [12] for
16QAM and 64QAM constellations.
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8 Appendix: Basics of GSD
algorithms
To solve the underdetermined problem (3), we compute the
QR factorisation of the matrix H: H ¼ QR where Q [ Rm�m

is orthogonal and R [ Rm�n is an upper trapezoidal matrix.
This QR factorisation can be computed by the Householder
transformations, (see, e.g. [21, Section 5.2]). Then with
~y W QTy, the objective function in (3) can be written as

ky�H xk22 ¼ kQ
Ty� Rxk2

2 ¼ k~y� Rxk22

So the problem (3) is transformed to

min
x[Xn

k

k~y� Rxk22

The above process is called reduction or preprocessing.

After the above process, a GSD algorithm tries to find the
optimal integer point over a hyper-ellipsoid

k�y� Rxk2
2 , b2 (11)

Note that this is a hyper-sphere with radius b in terms of Rx.
A good choice of b was proposed in [12].

Partition the upper trapezoidal matrix R [ Rm�n and the
vector x [ Rn as

R ¼ [ R1
m

, R2
n�m

], x ¼
x(1)

x(2)

� �
m

n� m
(12)

Notice that R1 is non-singular upper triangular. Then,
we have

min
x[Xn

k

k~y�Rxk2
2 ¼ min

x(2)[Xn�m
k

min
x(1)[Xm

k

k( ~y�R2x(2))�R1x(1)
k

2
2

 !

(13)

The GSD algorithm in [9] first fixed x(2), then employs a
conventional SD to solve the bracketed minimisation
problem in (13). This is done by exhaustively trying every
possible x(2). Thus the GSD algorithm in [9] has an
exponential complexity in n�m independent of the SNR.
Obviously, it is time consuming to try each possible
candidate for x(2). Motivated by this observation, Dayal and
Varnasi [10], Yang et al. [11] and Chang and Yang [12]
proposed different strategies to improve the efficiency.

Instead of partitioning (12), in [10, 12], the vector
�y [ Rm, the upper trapezoidal matrix R [ Rm�m and the
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vector x [ Rn are partitioned as follows

�y ¼
�y(1)

�ym

" #
m� 1

1
, R ¼

R1 R2

0 rT

� �
m�1 n�mþ1

m� 1

1
,

x ¼
x(1)

x(2)

" #
m� 1

n� mþ 1
(14)

Let N W n� mþ 1. Then, we have

min
x[Xn

k

k�y� Rxk2
2 ¼ min

x(2)[XN
k

[( �ym � rTx(2))2

þ min
x(1)[Xm�1

k

k( �y(1)
� R2x(2))� R1x(1)

k
2
2] (15)

Notice that if x(2) is fixed, one can solve the corresponding
ILS sub-problem within the brackets in (15) to obtain the
optimal x(1).
he Institution of Engineering and Technology 2009
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Suppose that (11) holds, then it follows that

( �ym � rTx(2))2
¼ �ym �

Xn

j¼m

rmjxj

 !2

, b2 (16)

This inequality is crucial in the GSD algorithms given in
[10–12]. By using this inequality, only part of possible
candidates for x(2) will be enumerated. Yang et al. [11]
derived a series of inequalities for each entry of x(2) based
on (16). From these inequalities, a slightly modified SD
algorithm is employed to obtain a possible x(2). Dayal and
Varanasi [10] and Chang and Yang [12] partitioned the
candidate set for x(2) into disjoint ordered subsets. Then by
using the inequality (16), only part of the disjoint subsets
need to be enumerated to obtain possible x(2). The GSD
algorithm given in [12], which incorporates a column re-
ordering strategy and has recursive nature, can reduce more
the number of the sub-ILS problems within the brackets in
(15) which need to be solved than the GSD algorithm
given in [10]. Our simulation results showed that the GSD
algorithm given in [12] is faster than those given in [10, 11].
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