
An Efficient Tree Search Decoder with Column
Reordering for Underdetermined MIMO Systems

Xiao-Wen Chang
School of Computer Science

McGill University
Montreal, Quebec, Canada H3A 2A7

Xiaohua Yang
School of Computer Science

McGill University
Montreal, Quebec, Canada H3A 2A7

Abstract—An efficient tree search decoder for underdeter-
mined MIMO systems is presented. The decoder employs a novel
column reordering strategy for the channel matrix in the reduc-
tion process, which can significantly reduce the computational
cost. Simulation results show that this new algorithm is much
more efficient than current approaches for a square constellation
higher than 4QAM.

I. INTRODUCTION

In Gaussian multi-input multi-output (MIMO) linear flat-
fading channel systems, the relation between the received
signal vector and the transmit signal vector can be written
as a complex linear system

yc = Hcxc + vc (1)

where Hc ∈ C
Nr×Nt represents the flat-fading channel with

Nt transmitter antennas and Nr receiver antennas, and the
elements of Hc are complex i.i.d Gaussian variables with
(normalized) distribution CN(0, 1), vc ∈ C

Nr is the white
Gaussian noise vector with distribution CN(0, 2σ2I), and
xc ∈ C

Nt is the unknown signal vector and its elements are
odd numbers in the finite set Xc(k) = {k1 + k2j : k1, k2 =
±1,±3, · · · ,±(2k − 3),±(2k − 1)} where j2 = −1. Note
that k = 1, 2, 3 corresponds to QPSK (i.e., 4QAM), 16QAM,
64QAM constellations, respectively.

To avoid complex operations, we first transform (1) to the
following real linear system

y = Hx + v (2)

y =
[
yR

c

yI
c

]
,H =

[
HR

c −HI
c

HI
c HR

c

]
,x =

[
xR

c

xI
c

]
,v =

[
vR

c

vI
c

]

where AR
c and AI

c denote the real part and image part of a
complex matrix or vector Ac, respectively. Obviously, H ∈
R

m×n with m � 2Nr, n � 2Nt and hij ∼ N(0, 1/2), v ∼
N(0, σ2Im), and x ∈ X (k)n � X (k) × · · · × X (k) with

X (k) � {±1,±3, · · · ,±(2k − 3),±(2k − 1)}. (3)

In order to estimate xc ∈ C
Nt in (1) or x ∈ R

n in (2), one
solves the following minimization problem

min
x∈X (k)n

‖y − Hx‖2
2. (4)

We refer to (4) as a box constrained integer least squares
(ILS) problem. When H has full column rank, a regular

sphere decoder can be employed to solve (4), see, e.g., [1]
and [2]. In this paper, we consider the case that m < n
and rank(H) = m. One such application is a multiple-
antenna communication system which has more transmitting
antennas than receiving antennas. To find the optimal solution
of this problem, Damen et al [3] proposed the first so-called
generalized sphere decoding (GSD) algorithm. Its basic idea is
to partition x in (4) into two subvectors x(1) and x(2). For each
candidate for x(2), it solves a determined sub-ILS problem to
find x(1). After all candidates for x(2) are enumerated, an
optimal solution can be found. Later, Dayal and Varanasi [4]
proposed another GSD algorithm, to be called Algorithm DV
in this paper for convenience, which can significantly reduce
the computational complexity by partitioning the candidate set
for x(2) into disjoint ordered subsets. Recently, Yang et al [5]
proposed a so-called double-layer sphere decoder, which will
be referred to as Algorithm YLH in this paper. Its basic idea
is to apply an outer layer sphere decoder (SD) to get possible
candidates for x(2). When x(2) is determined, an inner layer
SD is employed to get x(1). Algorithm YLH is usually faster
than Algorithm DV. More recently, Chang and Yang [6]
proposed a recursive GSD algorithm, to be called Algorithm
CY, which modified Algorithm DV and incorporated a column
reordering strategy in reduction, and is (much) faster than
Algorithms DV and YLH. All the above algorithms mainly
consider how to generate a sequence of determined sub-ILS
problems. In [7], Cui and Tellambura proposed a different
approach, which transforms the underdetermined problem (4)
to an equivalent overdetermined problem so that a regular SD
algorithm can then be applied. We refer to the corresponding
algorithm as Algorithm CT. All the above algorithms were
presented for k = 1 in (3). The case k ≥ 2 was transformed
into the case k = 1, leading to a new ILS problem with
larger dimensions and those algorithms become less efficient.
Note that in some literature, see, e.g., [8], only a sub-optimal
solution to (4) is found for computational efficiency. This will
not be discussed in this paper.

In this paper, an efficient tree search decoder (TSD) will be
presented to find the optimal solution for the underdetermined
problem (4). We integrate the two search processes in Algo-
rithm YLH into one process seamlessly, which is a depth-first
tree search algorithm, and present a novel column reordering
(CR) strategy for the reduction process to make the search

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

process more efficient. Our new algorithm (to be referred to
as TSD-CR) does not handle the cases k = 1 and k ≥ 2
separately, and so does not enlarge the dimensions of the ILS
problem when k ≥ 2. Another advantage is that our algorithm
can easily handle a general box constraint.

II. TREE SEARCH DECODER WITH COLUMN REORDERING

To solve (4), first we reduce it to a new problem (this
process is sometimes called preprocessing). Let N � n−m+
1. We compute the QR decomposition:

H = QR, R =
[
R1 R2

0 rT

]
m−1 N

m−1

1
(5)

where Q ∈ R
m×m is orthogonal, R ∈ R

m×n is an upper
trapezoidal matrix, i.e., R1 ∈ R

(m−1)×(m−1) is upper trian-
gular. With ȳ � QT y, the problem (4) is transformed to

min
x∈X (k)n

‖ȳ − Rx‖2
2. (6)

To solve (6), we find a constant β such that

‖ȳ − Rx‖2
2 < β2. (7)

One effective strategy to choose β was proposed in Chang
and Yang [6], which solves a box constrained real least squares
problem, rounds the solution to an integer vector x0 in X (k)n,
and then takes β = ‖ȳ −Rx0‖2. We use this strategy in this
paper. Note that (7) is a hyper-ellipsoid in terms of x, and a
hyper-sphere in terms of Rx. If there is no integer point in
the hyper-ellipsoid (7), then x0 is the solution to (6).

Then we start a search process to find the solution in the
hyper-ellipsoid (7). In the following we first present a tree
search process for solving the reduced problem (6) and then
propose a column reordering strategy in the reduction process.

A. Tree search process

We rewrite (7) as
m∑

i=1

(ȳi −
n∑

j=i

rijxj)2 < β2. (8)

To simplify notation, define ci � (ȳi −
∑n

j=i+1 rijxj)/rii for
i = m : −1 : 1. Note that ci depends on xi+1, xi+2, · · · , xn.
Then it is easy to see that the inequality (8) is equivalent to a
set of inequalities:

(ȳm −
n∑

j=m

rmjxj)2 < β2 (9)

r2
jj(xj − cj)2 < β2 −

m∑
i=j+1

r2
ii(xi − ci)2 (10)

for j = m − 1 : −1 : 1. Thus for j = m − 1 : −1 : 1,

xj ∈ Xj � X (k) ∩ (λj , µj) (11)

λj � cj −
√

β2 − ∑m
i=j+1 r2

ii(xi − ci)2/|rjj |
µj � cj +

√
β2 − ∑m

i=j+1 r2
ii(xi − ci)2/|rjj |.

In the following, we will use a strategy, which is similar to
the one presented in [5], to determine xn, xn−1, . . . , xm based
on (9) and use the search algorithm given in [2] to determine
xm−1, xm−2, . . . , x1 based on (10). These two processes are
integrated to one process seamlessly.

Let I+ � {j |rmj ≥ 0,m ≤ j ≤ n}, I− � {j |rmj <
0,m ≤ j ≤ n}. Then (9) is equivalent to

ȳm − β <
∑

j∈I+

rmjxj +
∑

j∈I−
rmjxj < ȳm + β. (12)

For each xj (j = m : n), define the following transformation:

x̄j �
{

2k−1+xj

2 , j ∈ I+

2k−1−xj

2 , j ∈ I− (13)

so that
x̄j ∈ X̄ (k) � {0, 1, · · · , 2k − 1}. (14)

Define α � ȳm + (2k − 1)
∑n

j=m |rmj |, then (12) becomes

α − β <
n∑

j=m

2|rmj |x̄j < α + β. (15)

For the time being, assume rmj �= 0 for j = m : n, then from
(14) and (15), it is easy to verify that for j = n : −1 : m

x̄j ∈ X̄j � X̄ (k) ∩ (λ̄j , µ̄j) (16)

λ̄j �
α − β − 2

∑n
i=j+1 |rmi|x̄i − 2(2k − 1)

∑j−1
i=m |rmi|

2|rmj |
(17)

µ̄j � (α + β − 2
n∑

i=j+1

|rmi|x̄i)/(2|rmj |). (18)

Based on (16) and (11), our search process can start. The
search algorithm we propose here is a depth-first tree search.
We determine x̄j (or xj) at level j. First at level n, choose
x̄n = � α

2|rmn|	|X̄n
, which denotes the nearest integer in the set

X̄n to α
2|rmn| . Then we proceed to level n−1. At this level, we

compute the set X̄n−1. If X̄n−1 is empty, then we move back to
level n and choose x̄n to be the next nearest integer to α

2|rmn|
in the set X̄n and go to level n−1 again. Otherwise, we choose
x̄n−1 = �α−2|rmn|x̄n

2|rm,n−1| 	|X̄n−1
. In general, when we go to level

j from level j + 1 where j ≥ m, the first chosen integer for
x̄j is �α−2

∑ n
i=j+1 |rmi|x̄i

2|rmj | 	|X̄j
. Continue the procedure until we

reach level m and choose a valid integer for x̄m. At this point
we obtain x̄(2) � [x̄m, · · · , x̄n]T . From (13) we can transform
x̄(2) to the original integer vector x(2) � [xm, · · · , xn]T . Then
we go to level m − 1 and compute the set Xm−1 (see (11)).
If Xm−1 is empty, we go back to level m. Otherwise, choose
xm−1 = �cm−1	|Xm−1 , and proceed to level m− 2. Continue
this process and finally we reach level 1 and choose a valid
integer for x1, resulting in x(1) � [x1, . . . , xm−1]T . Thus x =[

x(1)

x(2)

]
is the first integer point we have found by the search

process. Then we update β by taking β = ‖ȳ − Rx‖2. Now
we seek an integer point within the new hyper-ellipsoid by
updating x. We move up to level 2 and try to choose x2 to be

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

the next nearest integer to c2 in the set X2 (which has been
updated by using the new β). Note that in this tree search
process, if we succeed in finding a valid integer at a level,
then we move to the next lower level, otherwise we move to
the next higher level. Finally, when we fail to find a new valid
integer for x̄n at level n, the search process terminates and
the latest found integer point is the optimal solution we seek.

In theory it is possible that in (15) some rmj = 0, m ≤
j ≤ n. In this case each integer in the set X̄ (k) (see (14)) can
be a candidate for x̄j , and one is chosen each time when the
algorithm is at level j. Specifically, if we go to level j from
level j + 1, we choose x̄j = 0, and when we move to level j
from level j− 1, we choose x̄j to be the next smallest integer
in X̄ (k) (“next” means next to the one chosen last time). This
tends to take more search time compared with the normal case
rmj �= 0. Fortunately, this rarely occurs in practice.

Now we make a remark about the main differences between
Algorithm YLH [5] and the above tree search process. In the
former, when k ≥ 2, a binary representation x̄j =

∑k−1
i=0 2ix̄ij ,

x̄ij ∈ {0, 1} was used to transform the inequality (15) into
a new one, which has unknown binary numbers x̄ij . Then
a search process based on a sphere decoding algorithm was
applied to find [x̄0,m, . . . , x̄k−1,m, . . . , x̄0,n, . . . , x̄k−1,n]T ,
which is then transformed back to x(2) = [xm, . . . , xn]T . This
approach increases the number of the levels of the tree, while
it decreases the constraint interval for each level. From the
tree search point of view, this makes search less efficient, see,
e.g., [9, Chaps 12 and 13] for explanations. To obtain x(1),
like other existing algorithms, Algorithm YLH suggests to use
a regular SD to solve

min
x(1)∈X (k)(m−1)

‖(y(1 :m−1) − R2x
(2)) − R1x

(1)‖2. (19)

Notice that our approach integrates the two search processes
for x(1) and x(2) into one tree search process.

Our tree search process can easily handle the general box
constraint l ≤ x ≤ u where l and u are integer vectors,
while the existing algorithms we mentioned before cannot.
Essentially what we need to do is to replace the transformation
(13) by

x̄j �
{ −lj + xj , j ∈ I+

uj − xj , j ∈ I−

so that x̄j ∈ {0, 1, . . . , uj − lj}.

B. Column reordering strategy

From (16) and (11) we find that the efficiency of the
tree search process greatly depends on the upper trapezoidal
matrix R. Note that different ordering of the columns of the
channel matrix H leads to different R. To make the tree search
process given in Sec. II-A more efficient, we will find a good
permutation matrix P in the QR decomposition HP = QR
(cf. (5)). It is easy to verify that if x̂ is the solution to (6) with
R defined above, then P x̂ is the solution to (4).

We will determine how to choose n−m+1 columns from
matrix H as the right part of the permuted H . The remaining
m−1 columns form the left part of the permuted H . Then we

will determine how to order the columns of these two parts,
respectively.

First assume that the two parts of H have been determined
and we have a permuted H and the corresponding upper
trapezoidal matrix R. In the following we show how to reorder
the last n − m + 1 columns of R, or equivalently, the last
n − m + 1 columns of the permuted H . At level j, where
m ≤ j ≤ n, any integer number in X̄j (see (16)) is a possible
candidate for x̄j . To make the search process efficient, the
number of integers in X̄j should be as small as possible. This
motivates the following reordering strategy. Define

Lj �min{2k − 1, �µ̄j
 + sign(µ̄j − �µ̄j
) − 1}
− max{0, �λ̄j	 − sign(�λ̄j	 − λ̄j) + 1} + 1 (20)

where �·
 and �·	 denote the floor and ceiling operations,
respectively. If Lj ≤ 0, then X̄j is empty, otherwise Lj is
the number of integers in X̄j . Suppose we have determined
the last n − j columns of R, now we want to determine
column j, j ≥ m. First we compute Lj corresponding to
the current column j of R. Notice that λ̄j and µ̄j depend on
x̄p for p = n, n − 1, · · · , j + 1, see (17)-(18). In computing

them, we take x̄p = �α−2
∑ n

l=p+1 |rml|x̄l

2|rmp| 	|X̄p
, which is the first

integer we take for x̄p at level p in the search process. Then
we interchange columns j and i of R for i = m : j−1. After
each interchange, we compute the corresponding Lj . Then
the column corresponding to the smallest Lj is chosen to be
the j−th column of R. If the smallest value is nonpositive,
we stop this process. Later we will show how to reorder the
remaining columns. Otherwise we go to level j − 1.

Algorithm 2.1 Reorder part of columns of R(:,m : n)
Input: upper trapezoidal matrix R ∈ R

m×n, ȳm, β.
Output: permuted R, n × n permutation P , variable index
for which X̄index is empty, variable Prod �

∏n
j=index+1 Lj .

function: [R,P , index, Prod] = REORDER(R, ȳm, β)
Set P = In, index = m − 1, Prod = 1, j = n
while j ≥ m

Compute Lj according to (20), set p = j
for i = m : j − 1

Set R′ = R, and interchange columns i and j
of R′, then compute the corresponding L′

i

if L′
i < Lj

Set p = i, Lj = L′
i

end
end
if p �= j

Interchange columns p and j of P and R
end
if Lj ≤ 0

Set index = j, and break the while loop
end

Compute x̄j = �α−2
∑ n

l=i+1 |rml|x̄l

2|rmj | 	|X̄j

Compute Prod = Prod ∗ Lj , j = j − 1
end

We could make the above algorithm more computationally
efficient, but for clarity, we will not do it here.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

If the output index > m+1, we can reorder the remaining
columns m,m + 1, . . . , index− 1 of R in the following way.
From (20), (17) and (18) we find that a larger |rmj | leads to
a smaller Lj if λ̄j ≤ 0. Our simulations indicated that usually
λ̄j ≤ 0 if we have ȳm ≤ 0. The latter can be guaranteed, since
if ȳm > 0, we can simply multiply ȳm and the last row of R
by −1. So we reorder columns m,m + 1, . . . , index − 1 of
R such that |rmm| ≤ |rm,m+1| ≤ · · · ≤ |rm,index−1|.

In the tree search process, the empty set X̄index means the
search process has to move to level index+1. In other words,
we cut off a branch at level index in the search tree. When
the value of index is larger, the branch we can cut off is
larger, and the search process is likely to be more efficient.
Therefore, we would like to get a larger index by reordering
some columns of R.

Now we describe the entire reduction process, which in-
volves column reordering and QR decompositions. (1) Find the
first QR decomposition. Compute the Householder QR decom-
position of H with minimum column pivoting: HP = QR,
where P is a permutation matrix. In the j-th step of this
process (j = 1 : m), we do a column permutation so that
|rjj | is the smallest positive number we can achieve. This
is similar to (but not the same as) the so-called sorted QR
decomposition for overdetermined H (see [10] and [2]). This
will tend to make |rmj | (j = m+1 : n) larger, since, roughly
speaking, m smaller columns of H (in terms of the 2-norm)
have been moved to the left. Larger |rmj | tends to make µj

smaller (see (18)). We mentioned before that λj is usually
nonpositive. Hence, from (20), we see that larger |rmj | is
likely to lead to smaller Lj . This is what we pursue. Then we
compute ȳ = QT y. In the reduction process we always keep
ȳm nonpositive. (2) Determine the last n−m+1 columns. For
j = 1:m, we interchange columns j and m of R (if j = m,
actually there is no interchange). After each interchange, we
compute the new QR decomposition by using Givens rotations
efficiently (note that the permuted R has structure). When we
apply a Givens rotation to R, we always simultaneously update
ȳ by the same Givens rotation. Then we apply Algorithm 2.1
to the new R to reorder (part of) its last n − m + 1 columns
and obtain the corresponding index and Prod. Finally from
the m values of index, we find the largest one indexmax

and then the corresponding ordering. If there is more than
one ordering giving the same largest index, we choose the
one which gives the smallest Prod, a product of numbers of
candidates at levels higher than index. Then we order columns
m,m−1, . . . , index−1 by the method we mentioned before.
Now the last n − m + 1 columns of the permuted H have
been completely determined and so has the last row of R.
(3) Reorder the first m − 1 columns. We use the tree search
process to get the first x(2). Note that the best x(1) is the
solution to the determined ILS problem (19). We employ the
column reordering strategy given in [2] to (19) to reorder the
columns of R1 (or the first m − 1 columns of R).

Algorithm 2.2 Reduction

Input: channel matrix H ∈ R
m×n, y ∈ R

m, β.

Output: permutation P ∈ Z
n×n, upper trapezoidal R ∈

R
m×n and ȳ ∈ R

m.
function: [P ,R, ȳ] = REDUCTION(H,y, β)
Compute HP = QR with minimum pivoting
Set ȳ = QT y, index = 0, Prod = +∞
for j = 1 : m

Set R′ = R, ȳ′ = ȳ
if j �= m

Swap columns j and m of R′ & transform R′ to
an upper trapezoidal matrix by Givens rotations

Apply the same Givens rotations to ȳ′

end
if ȳ′(m) > 0

Set ȳ′(m) = −ȳ′(m), R′(m, :) = −R′(m, :)
end
[R′,P ′, indtmp, P rodtmp] = REORDER(R′, ȳ′

m, β)
if indtmp > index

Set index = indtmp, p = j, Rtmp = R′,
ȳtmp = ȳ′, P tmp = P ′

elseif indtmp = index
if Prodtmp < Prod

Set Prod = Prodtmp, p = j, Rtmp = R′,
ȳtmp = ȳ′, P tmp = P ′

end
end

end
if p �= m

Swap columns p and m of P
Set P = PP tmp, R = Rtmp, ȳ = ȳtmp

end
if index > m + 1

Reorder the columns of R(:,m : index − 1) such that
|rmm| ≤ |rm,m+1| ≤ · · · ≤ |rm,index−1|, and reorder
the columns of P correspondingly

end
Use our tree search algorithm to find the first x(2), apply

the reduction strategy given in [2] to (19) to reorder
the first m − 1 columns of R, leading to new trapezoid
R and ȳ, then reorder the columns of P correspondingly

Remark. Although the above reduction process costs more than
the one which does not use column reordering, usually its cost
is still negligible compared with that of the search process.

III. SIMULATION RESULTS

In this section we compare the computational cost of our
tree search decoder with column reordering, to be refereed to
as Algorithm TSD-CR, with Algorithms YLH [5], CT [7] and
CY [6]. All the simulations were run in MATLAB 7.0.

The channel matrix H and the receive vector y were
generated according to (2), where H ∈ R

m×n with m = 2Nr

and n = 2Nt. In Algorithms YLH, CT and CY, the same
regular sphere decoding algorithm (see [2]) with the V-BLAST
column reordering strategy for reduction is employed for
solving any overdetermined or determined box-constrained
ILS problems. In CT, the parameter α is chosen to be the noise

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1 2 3 4
10

2

10
3

10
4

10
5

10
6

Difference N
t
−N

r

A
ve

ra
ge

 F
lo

ps
Algorithm YLH
Algorithm CY
Algorithm CT
Algorithm TSD−CR

Fig. 1. Average flops vs Nt − Nr (4QAM)

variance σ2 (see [7]). The computational cost is measured by
the number of flops. For each algorithm, only the flops of the
search process are counted without considering the cost of the
reduction process, which is relatively negligible based on our
simulations. But due to limited space, the simulations for that
are not given in this paper. For each case, we performed 100
runs and counted the average flops.

Figs. 1, 2 and 3 display the average flops of four algorithms
versus Nt−Nr, for 4QAM, 16QAM and 64QAM, respectively.
In all of these cases v ∼ N(0, 0.12I2Nr

), Nr = 5 and Nt

is a variable. For 4QAM, when Nt − Nr ≤ 3, TSD-CR is
the most efficient one among the four algorithms; when Nt −
Nr = 4, CT is slightly more efficient than TSD-CR. When the
number of constellation points increases, TSD-CR becomes
more and more efficient compared with three other algorithms.
For example, in Fig. 2, when Nt −Nr = 4, TSD-CR is about
13 times as fast as YLH on average; and in Fig. 3, when
Nt − Nr = 3, TSD-CR is about 20 times as fast as YLH.

We found that when we decreased the variance of the noise
v, i.e., increased SNR, the cost for each of the four algorithms
decreased, but TSD-CR was still the most efficient one for a
square constellation higher than 4QAM. Due to limited space,
we will not present those simulation results here.

IV. SUMMARY

We have presented a new efficient tree search decoder for
the underdetermined MIMO systems. A column reordering
strategy was proposed to make the search process more
efficient. Numerical simulations indicated that this approach
is (much) more efficient than current methods. Moreover, this
new approach can handle general box-constraints easily.

REFERENCES

[1] M. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood
detection and the search for the closest lattice point,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2389–2402, Oct. 2003.

[2] X.-W. Chang and Q. Han, “Solving box-constrained integer least squares
problems,” IEEE Trans. Wireless Commun., in press.

1 2 3 4
10

3

10
4

10
5

10
6

10
7

10
8

Difference N
t
−N

r

A
ve

ra
ge

 F
lo

ps

Algorithm CT
Algorithm YLH
Algorithm CY
Algorithm TSD−CR

Fig. 2. Average flops vs Nt − Nr (16QAM)

1 2 3
10

4

10
5

10
6

10
7

10
8

10
9

Difference N
t
−N

r

A
ve

ra
ge

 F
lo

ps

Algorithm CT
Algorithm YLH
Algorithm CY
Algorithm TSD−CR

Fig. 3. Average flops vs Nt − Nr (64QAM)

[3] M. Damen, K. Abed-Meraim, and J. Belfiore, “Generalized sphere de-
coder for asymmetrical space-time communication architecture,” Electron.
Lett., vol. 36, pp. 166–167, 2000.

[4] P. Dayal and M. Varanasi, “A fast generalized sphere decoder for optimum
decoding of under-determined MIMO systems,” in 41st Annu. Allerton
Conf. Communication, Control, and Computing, Monticello, IL, Oct.
2003, pp. 1216–1225.

[5] Z. Yang, C. Liu, and J. He, “A new approach for fast generalized sphere
decoding in MIMO systems,” IEEE Sig. Proc. Letters, vol. 12, no. 1, pp.
41–44, 2005.

[6] X.-W. Chang and X. Yang, “A new fast generalized sphere decoding algo-
rithm for underdetermined MIMO systems,” in 23rd Biennial Symposium
on Communications, Kingston, Canada, May-June 2006, pp. 18–21.

[7] T. Cui and C. Tellambura, “An efficient generalized sphere decoder for
rank-deficient MIMO systems,” IEEE Commun. Lett., vol. 9, no. 5, pp.
423–425, 2005.

[8] M.O. Damen, H. El Gamel, and G. Caire,“MMSE-GDFE lattice decoding
for solving under-determined linear systems with integer unknowns,” in
Proc. IEEE Int. Symp. Inform. Theory, Chicago, USA, June-July 2004.

[9] T. H. Cormen, C. E. Leiserson, and C. Rivest, Introduction to algorithms.
MIT Press, 2001.

[10] D. Wubben, R. Bohnke, J. Rinas, V. Kuhn, and K. Kammeyer,“Efficient
algorithm for decoding layered space-time codes,” IEEE Electronics
Letters, vol. 37, pp. 1348-1350, Oct., 2001.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

	Select a link below
	Return to Main Menu

