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ABSTRACT
An efficient regularization approach is proposed for decoding
underdetermined multiple input multiple output (MIMO)
systems. The main idea is to transform an underdetermined
integer least squares problem to an equivalent overdeter-
mined integer least squares problem by using part of the
transmit vector to do a regularization. Some strategies are
proposed to enhance the efficiency of this approach. Specif-
ically, we discuss how many entries of the transmit vector
should be chosen and how to choose them when we do the
regularization. An empirical formula for the regularization
parameter is presented. Simulation results indicate that this
modified approach can be much more efficient than current
approaches for any square constellation higher than 4QAM.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Formal models
of communication; F.2.1 [Analysis of Algorithms and
Problem Complexity]: Numerical Algorithms and Prob-
lems—Computation of transforms, Computations on ma-
trices; G.1.6 [Numerical Analysis]: Optimization—Con-
strained optimization, Least squares methods

General Terms
Algorithms Performance

Keywords
regularization approach, underdetermined integer least squares,
generalized sphere decoding, MIMO

1. INTRODUCTION
In Gaussian multi-input multi-output (MIMO) linear chan-

nels systems, the received signal vector is given by a linear
combination of the flat-fading channel corrupted by additive
noise. The relation between the received signal vector and
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the transmit signal vector can be written as a complex linear
system

ỹ = H̃x̃ + ṽ (1)

where H̃ ∈ C
Nr×Nt represents the flat-fading channel with

Nt transmitter antennas and Nr receiver antennas, and the
elements of H̃ are complex i.i.d Gaussian variables with
(normalized) distribution CN(0, 1), ṽ ∈ C

Nr is the white
Gaussian noise vector with distribution CN(0, 2σ2I), and
x̃ ∈ C

Nt is the unknown signal vector and its elements are
odd numbers in the finite set

X̃k = {k1 + k2j}

where k1, k2 = ±1,±3, · · · ,±(2k − 3),±(2k − 1), and j2 =
−1. Note that k = 1, 2, 3 corresponds to QPSK (i.e., 4QAM),
16QAM, 64QAM constellations, respectively. The decoding
problem is to estimate x̃ in (1).

In order to avoid complex computations, we first trans-
form the complex linear system (1) to a real one. For each
vector or matrix in (1) we separate its real part and imagi-
nary part:

ỹ = ỹR + jỹI , H̃ = H̃
R

+ jH̃
I
,

x̃ = x̃R + jx̃I , ṽ = ṽR + jṽI .

Then it is easy to show that (1) is equivalent to the following
real linear system

y = Hx + v (2)

where

y =

[

ỹR

ỹI

]

, H =

[

H̃
R

−H̃
I

H̃
I

H̃
R

]

, x =

[

x̃R

x̃I

]

, v =

[

ṽR

ṽI

]

.

Obviously H ∈ R
m×n with m , 2Nr, n , 2Nt and hij ∼

N(0, 1/2), v ∼ N(0, σ2Im), and x ∈ Xn
k with

Xk , {±1,±3, · · · ,±(2k − 3),±(2k − 1)}. (3)

In order to estimate the complex transmit vector x̃ in
(1) or the real “transmit” vector x in (2), one solves the
following minimization problem

min
x∈Xn

k

‖y − Hx‖2
2, (4)

which we refer to as a box constrained integer least squares
(ILS) problem. This is also referred to as maximum likeli-
hood decoding. When the matrix H has full column rank, a
regular sphere decoding (SD) algorithm can be employed to

349



find the optimal solution of (4) , see, e.g., [1], [2], [3], [4] and
[5]. In this paper, we are interested in the case that H has
full row rank. One such application is the multiple-antenna
communication systems where there are more transmitting
antennas than receiving antennas. For this case, a regular
SD algorithm cannot be applied directly. To solve this prob-
lem, Damen et al [6] proposed the first generalized sphere de-
coding (GSD) algorithm. Later, Dayal and Varanasi [7] pro-
posed another GSD algorithm, to be called Algorithm DV
in this paper for convenience, which can significantly reduce
the computational complexity by partitioning the candidate
set into disjoint ordered subsets. Recently, Yang et al [8] pro-
posed a new GSD algorithm, to be referred to as Algorithm
YLH, which is usually faster than Algorithm DV. More re-
cently, Chang and Yang [9] proposed a recursive GSD al-
gorithm, to be called Algorithm CY, which modified Algo-
rithm DV and incorporated a column permutation strategy
in reduction (or preprocessing), and is (much) faster than
Algorithms DV and YLH. All the above algorithms mainly
consider how to generate a sequence of determined sub-ILS
problems. In [10], Cui and Tellambura proposed a different
approach, which transforms the underdetermined problem
(4) to an equivalent overdetermined problem so that a reg-
ular SD algorithm can then be applied. We refer to this
approach as a regularization approach and the correspond-
ing algorithm as Algorithm CT for convenience. The idea of
this approach is first transforming the entire vector x into
a new vector x̄ whose entries are either 1 or −1, and then
transforming the underdetermined problem to an overdeter-
mined problem by adding a constant term which involves
the 2-norm of the entire vector x̄ to the objective function
of the problem. If k = 1 in the constraint Xk in (3), our sim-
ulations indicated that Algorithm CT is the most efficient
one among all the above decoding algorithms. However, for
k ≥ 2, our simulations showed that Algorithm CT is slower
than Algorithm CY. For computational efficiency, some al-
gorithms have been proposed to find a sub-optimal solution
to (4), see, e.g., [11] and [12]. Such algorithms will not be
discussed in this paper.

In this paper, we propose to modify Algorithm CT. The
key idea is to choose part of the transmit vector x to do
the transformation and then to do the regularization. This
can greatly reduce the computational complexity for k ≥ 2.
We will discuss some issues involved in this approach and
propose our strategies.

The rest of this contribution is organized as follows. In
Section 2 we introduce the main ideas of the generalized
sphere decoding approach. In Section 3 we present our effi-
cient regularization approach. In Section 3 we compare our
method with Algorithm CT and discuss a few efficiency is-
sues. Section 5 gives simulation results to show the efficiency
of this approach. Finally a summary is given in Section 6.

2. THE GSD APPROACH
In this section we introduce basic ideas of the recent GSD

algorithms for solving the underdetermined problem (4).
To solve (4), one transforms the problem to a new prob-

lem. This process is called reduction and can be realized
by the QR factorization of the matrix H: H = QR where
Q ∈ R

m×m is orthogonal and R ∈ R
m×n is an upper trape-

zoidal matrix. This QR factorization can be computed by
the Householder transformations, see, e.g., [13, Sec 5.2].

Then with ỹ , QT y, the objective function in (4) can be

written as ‖y − Hx‖2
2 = ‖QT y − Rx‖2

2 = ‖ỹ − Rx‖2
2. So

the problem (4) is reduced to

min
x∈Xn

k

‖ỹ − Rx‖2
2.

Partition the upper trapezoidal matrix R ∈ R
m×n and

the vector x ∈ R
n as

R = [R1
m

, R2
n−m

], x =

[

x(1)

x(2)

]

m

n−m
. (5)

Notice that R1 is nonsingular upper triangular. Then we
have

min
x∈Xn

k

‖ỹ − Rx‖2
2

= min
x
(2)∈X

n−m

k

(

min
x
(1)∈Xm

k

‖(ỹ − R2x
(2)) − R1x

(1)‖2
2

)

. (6)

The GSD algorithm in [6] first fixed x(2), then employs a
conventional SD to solve the bracketed minimization prob-
lem in (6). This is done by exhaustively trying every possi-

ble x(2). Thus the GSD algorithm in [6] has an exponential
complexity in n−m independent of the signal to noise ratio
(SNR). Obviously it is time-consuming to try each possi-

ble candidate for x(2). In fact, it is not necessary to try
each one. Motivated by this observation, [7] [8] [9] proposed
different strategies to improve the efficiency.

3. EFFICIENT REGULARIZATION
APPROACH

In this section, based on the regularization approach given
in [10], we will present a modified approach to improve effi-
ciency.

Partition H and x as follows

H = [H1
n−l

, H2
l

] m , x =

[

x1

x2

]

n−l

l
(7)

where we take l = n − m + 1. Following [10], we can write

x2 ∈ X l
k as a linear combination of x

(i)
2 ∈ X l

1 for 0 ≤ i ≤
k − 1:

x2 =

k−1
∑

i=0

2i
x

(i)
2 . (8)

Define

H̄2 , [H2, 2H2, · · · , 2k−1H2] ∈ R
m×kl,

x̄2 ,













x
(0)
2

x
(1)
2

...

x
(k−1)
2













∈ R
kl.

(9)

Notice that ‖x̄2‖
2
2 = kl, so ‖x̄2‖

2
2 is a constant. Then from

(7)-(9), we see that the original ILS problem (4) is equivalent
to

min
x1∈X

n−l

k
,x̄2∈Xkl

1

∥

∥

∥

∥

y − [H1, H̄2]

[

x1

x̄2

]
∥

∥

∥

∥

2

2

+ α2‖x̄2‖
2
2 (10)

where we refer to α as a regularization parameter and its
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choice will be discussed later. Therefore with

H̄ ,

[

H1 H̄2

0 αI

]

∈ R
(m+kl)×(n+(k−1)l), (11)

x̄ ,

[

x1

x̄2

]

∈ R
n+(k−1)l, ȳ ,

[

y

0

]

∈ R
m+kl, (12)

X̄ , {[
x1
x̄2

] : x1 ∈ Xn−l
k , x̄2 ∈ X kl

1 }, (13)

the problem (10) can be rewritten as

min
x̄∈X̄

‖ȳ − H̄x̄‖2
2. (14)

This is a box constrained overdetermined ILS problem and
can be solved by any regular SD algorithm which can handle
the constraints. We will apply the Schnorr-Euchner strategy
based search algorithm given in [5] and use the V-BLAST
column reordering strategy in the reduction (or preprocess-
ing) process (see [2] and [5]). Note that the reduction process
is to transform H̄ to an upper triangular matrix whose di-
mension is (n+(k−1)l)×(n+(k−1)l) by a QR factorization
with column reordering.

4. EFFICIENCY ISSUES
In the following, we discuss a few issues with the approach

proposed in Sec. 3.
Unlike Algorithm CT in which x2 was chosen as the entire

vector x (i.e., in (7) l = n), in our modified approach, x2 is
part of x with dimension l = n−m + 1, thus the matrix H̄

in (11) is (m+k(n−m+1))× (n+(k−1)(n−m+1)), while
it is (m+kn)×(n+(k−1)n) in Algorithm CT. When k = 1,
the numbers of columns of H̄ in the two approaches are the
same, while the number of rows is smaller in the modified
approach. Thus the reduction process will cost less for the
modified approach, although this is not a big deal, since the
search process dominates the cost of the entire algorithm.
When k ≥ 2, the number of columns of H̄ in the modi-
fied approach is smaller than that in Algorithm CT, while
the constraint set for each entry of x1 is still Xk, which is
larger than X1, the constraint set for each entry of the un-
known vector x̄ in Algorithm CT. In other words, compared
with Algorithm CT, when k ≥ 2, our modified approach de-
creases the dimension of the overdetermined ILS problem,
while increases the ranges of part of the constraint sets. Our
simulations (see Section 5) showed that this strategy can
significantly decrease the computational complexity. This
is related the nature of the search process. The Schnorr-
Euchner strategy based search process can be regarded as a
depth-first search (DFS) process on a tree, and our strategy
actually decreases the height of the search tree, making the
search process more efficient, see, e.g., [14, Chaps 12 and
13]) for explanations.

In our approach, the dimension l of x2 (see (7)) is chosen
to be n − m + 1. Note that in order to obtain an overde-
termined ILS problem (14), l has to be at least n − m. If
the dimension of x2 were chosen to be n − m, then in the
reduction process, the bottom right corner of the R factor
of the QR factorization of H̄ in (11) would usually be di-
agonal even if we use V-BLAST column reordering strategy
in computing the QR factorization. This structure would
make the search algorithm less efficient. Choosing l to be
n − m + 1 avoids the above problem. Certainly, choosing a
larger dimension for x2 would also avoid this problem, but
it would increase the dimension of the overdetermined ILS
problem.

In (7) we uses the last n−m+1 entries of x to define x2.
But choosing a different x2 from x may make the efficiency
of the algorithm to solve (14) different. Thus we would
like to discuss how to choose good x2 from x, or how to
reorder the columns of the matrix H so that good x2 can be
chosen. From simulations we found that sorting the columns
of H in decreasing order with respect to the 2-norm helps to
reduce the computational complexity of the search process
when k ≥ 2. The reason is that such ordering is likely
to make the strict upper triangular part of the R factor
of the QR factorization of H̄ smaller, which can make the
search process more efficient, see, e.g., [15] and [16], for some
discussion on this issue.

In the ILS problem (10), α is a parameter and its choice
has an effect on the efficiency of the algorithm to solve the
problem. It appears difficult if not impossible to find an
optimal α that leads to the lowest computational complexity.
In [10], α was chosen to be 1 or σ (the standard deviation
of the noise v in the linear model (2)) in the simulations,
and there was no other suggestion about how to choose a
good α. We found from simulations that the optimal α in
our modified approach depends strongly on σ and weakly
on the dimension difference n − m and k. If n ≤ 2m and
k ≤ 3 (this is often the case in applications), our simulations

suggest that α = 27/4σ is a good choice.

5. SIMULATIONS
In this section we compare the computational cost of our

algorithm outlined in Section 3 with Algorithm CT in [10]
and Algorithm CY in [9]. For convenience, our modified
algorithm is referred to as Algorithm MCT. All the simula-
tions were performed in MATLAB 7.0.

The flat-fading channel matrix H and the receiver vector
y were generated according to the real linear system (2). All
the three algorithms employ the same regular sphere decod-
ing algorithm for solving any overdetermined or determined
box constrained ILS problems. This regular sphere decoding
algorithm uses the Schnorr-Euchner strategy in the search
process and the V-BLAST column reordering strategy in the
reduction process, see [5] for details. The complexity of the
three algorithms is measured by the number of flops. Only
the flops of the search algorithm are counted without con-
sidering the cost of the reduction process, which is relatively
negligible. For Algorithm CT, parameter α was set to 1 or σ
as in [10], for Algorithm MCT, α was set to 27/4σ. For each
case, we performed 100 runs and counted average flops.

Fig. 1, Fig. 2 and Fig. 3 display the average flops of the
three algorithms versus Nt−Nr for 4QAM (k = 1), 16QAM
(k = 2) and 64QAM (k = 3), respectively, and in all of
these cases v ∼ N(0, 0.052Im) and Nr = 4. For 4QAM,
we see that there is small difference between the cost of Al-
gorithm CT (for either α = 1 or α = σ) and the cost of
Algorithm MCT. This is because the numbers of columns
of H̄ in the two overdetermined ILS problems (see (14))
solved by the two algorithms, respectively, are the same
when k = 1. When Nt −Nr = 1, 2, both Algorithm CT and
Algorithm MCT cost more than Algorithm CY, and when
Nt − Nr = 3, 4, the former cost (much) less than the latter.
For 16QAM and 64QAM, Algorithm MCT is the most effi-
cient one among the three decoding algorithms. For exam-
ple, in Fig. 2, when Nt −Nr = 1, the average flops costed by
Algorithm MCT and Algorithm CT with α = σ are 1.2×103

and 1.3×104, i.e., Algorithm MCT is about 11 times as fast
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as Algorithm CT; and in Fig. 3, when Nt−Nr = 1, the aver-
age flops costed by Algorithm MCT and Algorithm CT with
α = 1 are 1.1 × 104 and 2.4 × 105, i.e., Algorithm MCT is
about 22 times as fast as Algorithm CT. If Nt −Nr is fixed,
when k increases, Fig. 1–Fig. 3 indicate that Algorithm
MCT becomes more and more efficient than Algorithm CT.
This is because the difference (k − 1)(m − 1) between the
numbers of columns of the matrices H̄ in the two overde-
termined ILS problems solved by Algorithm CT and MCT
respectively becomes larger and larger.

Fig. 4 shows the average flops of the three algorithms ver-
sus different SNR for 16QAM, Nr = 4 and Nt = 5. Here,

for M -QAM, SNR is defined by SNR = 10 log10
(M−1)/3

2σ2 .
When SNR increases, Fig. 4 indicates that Algorithm MCT
becomes more and more efficient than Algorithm CT. For
SNR = 12dB and SNR = 27dB, the average flops costed by
Algorithm CT with α = σ is about 7 times and 10 times as
high as that by Algorithm MCT, respectively.

In Section 3, we introduced two strategies to improve the
efficiency of our approach. One is about the choice of the di-
mension of x2 and the other is about reordering the columns
of H to find x2. Fig. 5 shows the effects of these two
strategies on efficiency (again here v ∼ N(0, 0.052Im) and
Nr = 4). All the three curves represent the cost of Algo-
rithm MCT. The top curve is for the case that the dimension
l of x2 was set to n−m and there was no column reordering
of H in finding x2; the middle curve is for the case that l
was set to n−m + 1 and there was no reordering in finding
x2 either; and the bottom curve is for the case that l was set
to n − m + 1 and x2 was found by the reordering strategy.
From Fig. 5, we see that indeed those two strategies can
reduce the computational complexity of Algorithm MCT.

In order to see how different regularization parameter α
in (14) affect the efficiency of Algorithms CT and MCT,
Fig. 6 shows the costs of these two algorithms versus α with
different setting. We observe that Algorithm CT is more
sensitive to α than Algorithm MCT when α > 2. When
σ = 0.02, 0.05, 0.5, our choice α = 27/4σ ≈ 0.07, 0.17, 1.7.
We see from Fig. 6 that these values are close to the opti-
mal values. This suggests that α = 27/4σ is a good choice.
From Fig. 6, we find that for the same setting (σ = 0.05,
16QAM), Algorithm MCT with α = 0.17 costs much less
than Algorithm CT even with the optimal α, which appears
to be around 0.1.

6. SUMMARY
A modified decoding approach has been proposed to im-

prove the efficiency of the regularization approach given in
[10] for underdetermined MIMO systems. We showed how
to decrease the dimension of the overdetermined ILS prob-
lem obtained by [10]. Some strategies were proposed to en-
hance the efficiency of our approach. We also suggested
an empirical formula for the regularization parameter. Our
simulations indicated that this formula gave a good approx-
imation to the optimal regularization parameter, which is
difficult to be found. Numerical results indicated that our
new approach is much more efficient than the approach pre-
sented in [10] for a square constellation higher than 4QAM.
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