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Effects of the LLL Reduction on the Success
Probability of the Babai Point and on the

Complexity of Sphere Decoding
Xiao-Wen Chang, Jinming Wen, and Xiaohu Xie

Abstract—A common method to estimate an unknown integer
parameter vector in a linear model is to solve an integer least
squares (ILS) problem. A typical approach to solving an ILS
problem is sphere decoding. To make a sphere decoder faster, the
well-known LLL reduction is often used as preprocessing. The
Babai point produced by the Babai nearest plane algorithm is a
suboptimal solution of the ILS problem. First, we prove that the
success probability of the Babai point as a lower bound on the
success probability of the ILS estimator is sharper than the lower
bound given by Hassibi and Boyd [1]. Then, we show rigorously
that applying the LLL reduction algorithm will increase the suc-
cess probability of the Babai point and give some theoretical and
numerical test results. We give examples to show that unlike LLL’s
column permutation strategy, two often used column permutation
strategies SQRD and V-BLAST may decrease the success proba-
bility of the Babai point. Finally, we show rigorously that applying
the LLL reduction algorithm will also reduce the computational
complexity of sphere decoders, which is measured approximately
by the number of nodes in the search tree in the literature.

Index Terms—Babai point, complexity, integer least squares
(ILS) problem, LLL reduction, sphere decoding, success proba-
bility.

I. INTRODUCTION

C ONSIDER the following linear model:

(1)

where is an observation vector, is a de-
terministic model matrix with full column rank, is
an unknown integer parameter vector, and is a noise
vector following the Gaussian distribution with
being known. A common method to estimate in (1) is to solve
the following integer least squares (ILS) problem:

(2)
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whose solution is the maximum-likelihood estimator of .
The ILS problem is also referred to as the closest point problem
in the literature as it is equivalent to finding a point in the lattice

which is closest to .
A typical approach to solving (2) is the discrete search

approach, referred to as sphere decoding in communications,
such as the Schnorr–Euchner algorithm [2] or its variants, see,
e.g., [3] and [4]. To make the search faster, a lattice reduction
is performed to transform the given problem to an equivalent
problem. A widely used reduction is the LLL reduction pro-
posed by Lenstra et al. in [5].
It has been shown that the ILS problem is NP-hard [6], [7].

Solving (2) may become time-prohibitive when is ill con-
ditioned, the noise is large, or the dimension of the problem
is large [8]. So for some applications, an approximate solu-
tion, which can be produced quickly, is computed instead. One
often used approximate solution is the Babai point, produced by
Babai’s nearest plane algorithm [9]. This approximate solution
is also the first integer point found by the Schnorr–Euchner al-
gorithm. In communications, a method for finding this approxi-
mate solution is referred to as a successive interference cancel-
lation decoder.
In order to verify whether an estimator is good enough for a

practical use, one needs to find the probability of the estimator
being equal to the true integer parameter vector, which is re-
ferred to as success probability [1]. The probability of wrong
estimation is referred to as error probability, see, e.g., [10]. If
the Babai point is used as an estimator of the integer parameter
vector in (1), certainly it is important to find its success prob-
ability, which can easily be computed. Even if one intends to
compute the ILS estimator, it is still important to find the suc-
cess probability of the Babai point. It is very difficult to compute
the success probability of the ILS estimator, so lower and upper
bounds have been considered to approximate it, see, e.g., [1] and
[11]. In [12], it was shown that the success probability of the ILS
estimator is the largest among all “admissible” estimators, in-
cluding the Babai point, which is referred to as a bootstrapping
estimator in [12]. The success probability of the Babai point is
often used as an approximation to the success probability of the
ILS estimator. In general, the higher the success probability of
the Babai point, the lower the complexity of finding the ILS esti-
mator by the discrete search approach. In practice, if the success
probability of the Babai point is high, say close to 1, then one
does not need to spend extra computational time to find the ILS
estimator.
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Numerical experiments have shown that after the LLL reduc-
tion, the success probability of the Babai point increases [13].
But whether the LLL reduction can always improve the success
probability of the Babai point is still unknown. In this paper, we
will prove that the success probability of the Babai point will
become higher after the LLL reduction algorithm is used. It is
well known that the LLL reduction can make sphere decoders
faster. But to our knowledge there is still no rigorous justifica-
tion. We will show that the LLL reduction can always decrease
the computational complexity of sphere decoders, an approxi-
mation to the number of nodes in the search tree given in the
literature.
The rest of this paper is organized as follows. In Section II, we

introduce the LLL reduction to reduce the ILS problem (2). In
Section III, we introduce the Babai point and a formula to com-
pute the success probability of the Babai point, and we show
that the success probability of the Babai point is a sharper lower
bound on the success probability of ILS estimator compared
with the lower bound given in [1]. In Section IV, we rigor-
ously prove that the LLL reduction algorithm improves the suc-
cess probability of the Babai point. In Section V, we rigorously
show that the LLL reduction algorithm reduces the computa-
tional complexity of sphere decoders. Finally, we summarize
this paper in Section VI.
In this paper, denotes the th column of the identity ma-

trix . For , we use to denote its nearest integer
vector, i.e., each entry of is rounded to its nearest integer (if
there is a tie, the one with smaller magnitude is chosen). For
a vector denotes the subvector of formed by entries

. For a matrix denotes the submatrix of
formed by rows and columns . The success prob-

abilities of the Babai point and the ILS estimator are denoted by
and , respectively.

II. LLL REDUCTION AND TRANSFORMATION OF THE
ILS PROBLEM

Assume that in the linear model (1) has the QR factoriza-
tion

where is orthonormal and

is upper triangular. Without loss of generality, we assume the
diagonal entries of are positive throughout the paper. De-
fine . From (1), we have . Because

, it follows that .
With the QR factorization of , the ILS problem (2) can be

transformed to

(3)

One can then apply a sphere decoder such as the Schnorr–Eu-
chner search algorithm [2] to find the solution of (3).
The efficiency of the search process depends on . For effi-

ciency, one typically uses the LLL reduction instead of the QR

factorization. After the QR factorization of , the LLL reduc-
tion [5] reduces the matrix in (3) to

(4)

where is orthonormal, is a unimodular
matrix (i.e., ), and is upper trian-
gular with positive diagonal entries and satisfies the following
conditions:

(5)

(6)

where is a constant satisfying . The matrix
is said to be -LLL reduced or simply LLL reduced. Equations
(5) and (6) are referred to as the size-reduced condition and the
Lovász condition, respectively.
The original LLL algorithm given in [5] can be described in

thematrix language. Two types of basic unimodular matrices are
implicitly used to update so that it satisfies the two conditions.
One is the integer Gauss transformations (IGT) matrices and the
other is permutation matrices, see below.
To meet the first condition in (5), we can apply an IGT, which

has the following form:

Applying to from the right gives

Thus, is the same as , except that for
. By setting , we ensure .

To meet the second condition in (6), permutations are needed
in the reduction process. Suppose that

for some . Then, we interchange columns and
of . After the permutation, the upper triangular structure of
is no longer maintained. But we can bring back to an upper
triangular matrix by using the Gram–Schmidt orthogonalization
technique (see [5]) or by a Givens rotation

(7)

where is an orthonormal matrix and is a permu-
tation matrix, and

(8)

Note that the aforementioned operation guarantees
since . The LLL reduction

algorithm is described in Algorithm 1, where the final reduced
upper triangular matrix is still denoted by .
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Algorithm 1 LLL Reduction

1: compute the QR factorization: ;

2: set ;

3: while do

4: apply IGT to reduce : ;

5: update : ;

6: if then

7: permute and triangularize : ;

8: update : ;

9: , when ;

10: else

11: for do

12: apply IGT to reduce : ;

13: update : ;

14: end for

15: ;

16: end if

17: end while

After the LLL reduction (4), the ILS problem (3) is then trans-
formed to

(9)

where and .
The LLL reduction is a powerful preprocessing tool that al-

lows us to reduce the complexity of search process for finding
the ILS solution, see, e.g., [1] and [3].

III. SUCCESS PROBABILITY OF THE BABAI POINT AND A
LOWER BOUND

The Babai (integer) point found by the Babai
nearest plane algorithm [9] is defined as follows:

(10)

for Note that the entries of are determined
from the last to the first. The Babai point is actually the first
integer point found by the Schnorr–Euchner search algorithm
[2] for solving (3).
In the following, we give a formula for the success probability

of the Babai point. The formula is equivalent to the one given
by Teunissen in [14], which considers a variant form of the ILS

problem (2). But our proof is easier to follow than that given in
[14].
Theorem 1: Suppose in the ILS problem

(3). Let denote the success probability of the Babai point
given in (10), i.e., . Then

(11)

Proof: By the chain rule of conditional probabilities

(12)

Since , we have

Thus, from (10), we have

and if

Then, it follows that

Similarly, we can obtain

Then, from (12), we can conclude that (11) holds.
Since in (11) depends on , sometimes we also write

as .
The success probability of the ILS estimator de-

pends on its Voronoi cell [1] and it is difficult to compute it
because the shape of Voronoi cell is complicated. In [1], a
lower bound is proposed to approximate
it, where is the length of the shortest lattice vector,
i.e., , and is the cumulative
distribution function of chi-square distribution. However,
no polynomial-time algorithm has been found to compute

. To overcome this problem, Hassibi and Boyd [1] pro-
posed a more practical lower bound , where

. Note that is also a lower bound on
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(see [12]). The following result shows that is sharper than
.

Theorem 2:

Proof: Let . Thus, are i.i.d.
and follows the chi-squared distribution with degree
. Let events and

for . Since .
Thus

In the following, we give an example to show that
can be much smaller than .

Example 1: Let and . By simple

calculations, we obtain .
Although this is a contrived example, where the signal-to-noise
ratio is small, it shows that can be much sharper than

as a lower bound on .

IV. ENHANCEMENT OF BY THE LLL REDUCTION

In this section, we rigorously prove that column permutations
and size reductions in the LLL reduction process given in Al-
gorithm 1 enhance (not strictly) the success probability of
the Babai point. We give simulations to show that unlike LLL’s
column permutation strategy, two often used column permuta-
tion strategies SQRD [15] and V-BLAST [16] may decrease the
success probability of the Babai point. We will also discuss how
the parameter affects the enhancement and give some upper
bounds on after the LLL reduction.

A. Effects of the LLL Reduction on

Suppose that we have the QRZ factorization (4), where is
orthonormal, is unimodular, and is upper triangular with
positive diagonal entries (we do not assume that is LLL re-
duced unless we state otherwise). Then, with and

, the ILS problem (3) can be transformed to (9).
For (9), we can also define its corresponding Babai point .
This Babai point can be used as an estimator of , or
equivalently, can be used an estimator of . In (3),

. It is easy to verify that in (9), .
In the following, we look at how the success probability of the
Babai point changes after some specific transformation is used
to .
The following result shows that if the Lovász condition (6) is

not satisfied, after a column permutation and triangularization,
the success probability of the Babai point increases.
Lemma 1: Suppose that for some
for the matrix in the ILS problem (3). After the permutation
of columns and and triangularization, becomes , i.e.,

(see (7)). With and

, (3) can be transformed to (9). Denote .
Then, the Babai point has a success probability greater than
or equal to the Babai point , i.e.,

(13)

where the equality holds if and only if .
Proof: By Theorem 1, what we need to show is the fol-

lowing inequality:

(14)

Since for , we only need to show

which is equivalent to

(15)

Since is orthonormal and is a permutation
matrix, the absolute value of the determinant of the submatrix

is unchanged, i.e., we have

(16)

Let

(17)

(18)

Note that . Then, (15) is
equivalent to

(19)

Obviously, if , then the equality in (19) holds since
in this case

So we only need to show if , then the strict inequality
in (19) holds. In the following, we assume .
From and (8), we can conclude

that

Then, with (17), it follows that

Thus, to show the strict inequality in (19) holds, it suffices to
show that when is a strict monotonically de-
creasing function or equivalently .
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From (18)

where . Note that .

Thus, in order to show for , we need only to
show that is a strict monotonically decreasing function or
equivalently when .
Simple calculations give

If and , then obviously . If
and , since

where the second inequality can easily be verified. Thus, again
when , completing the proof.

Now we make some remarks. The aforementioned proof
shows that for reaches its maximum when

. Thus, if or equivalently

will increase most. For a more general result, see Lemma 4
and the remark after it.
In Lemma 1, there is no requirement that should be

size reduced. The question we would like to ask here is do size
reductions in the LLL reduction algorithm affect ? From
(11), we observe that only depends on the diagonal entries
of . Thus, size reductions alonewill not change . However,
if a size reduction can bring changes to the diagonal entries of
after a permutation, then it will likely affect . Therefore, all
the size reductions on the off-diagonal entries above the super-
diagonal have no effect on . But the size reductions on the
superdiagonal entries may affect . There are a few different
situations, which we will discuss below.
Suppose that the Lovász condition (6) holds for a specific .

If (6) does not hold any more after the size reduction on ,
then columns and of are permuted by the LLL reduc-
tion algorithm and according to Lemma strictly increases
or keeps unchanged if and only if the size reduction makes

zero (this occurs if is a multiple of be-
fore the reduction). If (6) still holds after the size reduction on

, then this size reduction does not affect .
Suppose that the Lovász condition (6) does not hold for a

specific . Then, by Lemma increases after a permu-
tation and triangularization. If the size reduction on is
performed before the permutation, we show in the next lemma
that increases further.

Lemma 2: Suppose that in the ILS problem (3) satisfies
and for

some . Let , and be defined as in Lemma 1. Sup-
pose a size reduction on is performed first and then after
the permutation of columns and and triangularization,

becomes , i.e., . Let

and ; then, (3) is transformed

to . Denote . Then,
the Babai point corresponding to the new transformed ILS
problem has a success probability greater than or equal to the
Babai point , i.e.,

(20)

where the equality holds if and only if

(21)

Proof: Obviously (20) is equivalent to

which, by the proof of Lemma 1, is also equivalent to

where is defined in (18). Since has been showed to be
strict monotonically decreasing when , what we need to
show is that

(22)

where the equality holds if and only if (21) holds.
Since

But ; thus

Suppose that after the size reduction, becomes .
Note that

Thus, it follows from (22) what we need to prove is that
or equivalently

(23)

and the equality holds if and only if (21) holds.
By the conditions given in the lemma
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Thus

Now, we consider two cases and sepa-
rately. If , then

Thus, to show (23), it suffices to show that

Simple algebraic manipulations shows that the aforementioned
inequality is equivalent to

which certainly holds. And obviously, the equality in (23) holds
if and only if

If , we can similarly prove that (23) holds and the
equality holds if and only if

completing the proof.
Here, we make a remark about the equality (21). From the

proof of Lemma 2, we see that if (21) holds, then the equality
in (23) holds, thus . But the absolute value of
the determinant of the submatrix is unchanged
by the size reduction; we must have . Thus,
if (21) holds, the effect of the size reduction on is to
make and permuted; therefore, the success prob-
ability is not changed by the size reduction. Here, we give
an example.

Example 2: Let . Then, it is easy to verify

that and . From the

diagonal entries of and , we can conclude that the success
probabilities of the two Babai points corresponding to and
are equal.
From Lemmas 1 and 2, we immediately obtain the following

results.
Theorem 3: Suppose that the ILS problem (3) is transformed

to the ILS problem (9), where is obtained by Algorithm 1.
Then

where the equality holds if and only if no column permutation
occurs during the LLL reduction process or whenever two con-
secutive columns, say and , are permuted, is a

multiple of (before the size reduction on is per-
formed). Any size reductions on the superdiagonal entries of
that are immediately followed by a column permutation during
the LLL reduction process will enhance the success probability
of the Babai point. All other size reductions have no effect on
the success probability of the Babai point.
Now, we make some remarks. Note that the LLL reduction is

not unique. Two different LLL reduction algorithms may pro-
duce different ’s. In Algorithm 1, when the Lovász condition
for two consecutive columns is not satisfied; then, a column per-
mutation takes places to ensure the Lovász condition to be satis-
fied. If an algorithm that computes the LLL reduction does not
do permutations as Algorithm 1 does, e.g., the algorithm per-
mutes two columns that are not consecutive or permutes two
consecutive columns but the corresponding Lovász condition is
not satisfied after the permutation, then we cannot guarantee this
specific LLL reduction will increase .
It is interesting to note that [17] showed that all the size re-

ductions on the off-diagonal entries above the superdiagonal of
have no effect on the residual norm of the Babai point. Here,

we see that those size reductions are not useful from another
perspective.
If we do not do size reductions in Algorithm 1, the algo-

rithmwill do only column permutations.We refer to this column
permutation strategy as LLL-permute. The column permutation
strategies SQRD [15] and V-BLAST [16] are often used for
solving box-constrained ILS problems (see [4] and [18]). In the
following, we give simple numerical test results to see how the
four methods (SQRD, V-BLAST, LLL-permute with and
LLL with ) affect .
We performed our MATLAB simulations for the following

two cases.
1) Case 1. , where is a
MATLAB built-in function to generate a random
matrix, whose entries follow the normal distribution

.
2) Case 2. are random orthogonal ma-
trices obtained by the QR factorization of random matrices
generated by and is a diagonal matrix
with .

In the tests for each case for a fixed , we gave 200 runs
to generate 200 different ’s. For , Figs. 1 and 2 dis-
play the average success probabilities of the Babai points cor-
responding to various reduction or permutation strategies over
200 runs versus , for Cases 1 and 2, re-
spectively. In both figures, “QR” means the QR factorization is
used, giving .
From Figs. 1 and 2, we can see that on average the LLL re-

duction improves much more significantly than the other
three, V-BLAST performs better than LLL-permute and SQRD,
and LLL-permute and SQRD have similar performance. We ob-
served the same phenomenon when we changed the dimensions
of .
Figs. 1 and 2 indicate that on average SQRD and V-BLAST

increase . However, unlike LLL-permute, both SQRD and
V-BLAST may decrease sometimes. Table I gives the
number of runs out of 200 in which SQRD and V-BLAST
decrease for various and . From the table, we can see



CHANG et al.: EFFECTS OF THE LLL REDUCTION ON THE SUCCESS PROBABILITY OF THE BABAI POINT 4921

Fig. 1. Average success probability versus for Case 1, .

Fig. 2. Average success probability versus for Case 2, .

TABLE I
NUMBER OF RUNS OUT OF 200 IN WHICH DECREASES

that for both Cases 1 and 2, the chance that SQRD decreases
is much larger than V-BLAST and when increases, the

chance that SQRD decreases tends to decrease. For Case 2,
when increases, the chance that SQRD decreases tends
to decrease, but this phenomenon is not seen for Case 1.

B. Effects of on the Enhancement of

Suppose that and are obtained by applying Algorithm
1 to with and , respectively and .

A natural question is what is the relation between and
? In the following, we try to address this question. First,

we give a result for .
Theorem 4: Suppose that and are obtained by applying

Algorithm 1 to with and , respec-
tively, and . If , then

(24)

Proof: Note that only two columns are involved in the re-
duction process and the value of only determines when the
process should terminate. In the reduction process, the upper tri-
angular matrix either first becomes -LLL reduced and then
becomes -LLL reduced after some more permutations or be-
comes -LLL reduced and -LLL reduced at the same time.
Therefore, by Lemma 1, the conclusion holds.
However, the inequality (24) in Theorem 4 may not hold

when . In fact, for any given , we can give an
example to illustrate this.
Example 3: Let and satisfy and

. Let and satisfy and
. Let

(25)

Note that is size reduced already.
Suppose that we apply Algorithm 1 with to , leading

to . The first two columns of do not permute as the Lovász
condition holds. However, the Lovász condition does not hold
for the last two columns and a permutation is needed. Then by
Lemma 1, we must have .
Applying Algorithm 1 with to , we obtain

whose diagonal entries are the same as those of with a dif-
ferent order. Then, we have . Therefore,

.
With given in (25), we define as

, it is easy to show that we still have

, where and were obtained by ap-
plying Algorithm 1 to with and , respectively.
Although the aforementioned example shows that larger

may not guarantee to produce higher when , we can
expect that the chance that is much higher
than the chance that . Here, we give an
explanation. If is not -LLL reduced, applying Algorithm
1 with to produces with .
Although may not be equal to , we can expect that the
difference between these two -LLL reduced matrices is small.
Thus it is likely that .
Here, we give numerical results to show how affects

(i.e., ). We used the matrices defined in Cases 1
and 2 of Section IV-A. As earlier, in the tests for each case, we
gave 200 runs to generate 200 different ’s for a fixed . For

, Figs. 3 and 4 display the average over 200
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Fig. 3. Average after the LLL reduction for Case 1, .

Fig. 4. Average after the LLL reduction for Case 2, .

TABLE II
SUCCESS PROBABILITY

runs versus for Cases 1 and 2, respectively.
The three curves in both figures correspond to .
For comparisons, we give the corresponding in
Table II.
From Table II and Figs. 3 and 4, we can see that the LLL re-

duction has a significant effect on improving . Figs. 3 and 4
show that as increases, on average increases too, in partic-
ular for large . But we want to point out that we also noticed
that sometimes a larger resulted in a smaller in the tests.
Table III gives the exact number of runs out of those 200 runs
in which decreases when increases from to for

. From Table III, we can see that most of the
time does not decrease when increases. We would like to
point out that in our numerical tests, we tried various dimension
size for the two test cases and observed the same phenomena.

TABLE III
NUMBER OF RUNS IN WHICH DECREASES WHEN INCREASES

C. Some Upper Bounds on After the LLL Reduction

We have shown that the LLL reduction by Algorithm 1 can
enhance the success probability of the Babai point. A natural
question is how much is the enhancement? If the LLL reduction
has been computed by Algorithm 1, then we can easily obtain
the ratio by using the formula given
in (11). If we only know the R-factor of the QR factorization of
, usually it is impossible to know the ratio exactly. However,
we will derive some bounds on , which involve only
the R-factor of the QR factorization of . From these bounds,
one can immediately obtain bounds on the ratio.
Before giving an upper bound on , we give the

following result, see, e.g., [19, Th. 6].
Lemma 3: Let be the R-factor of the QR factorization of

and let be the upper triangular matrix after the th column
permutation and triangularization in the LLL reduction process
by Algorithm 1; then, for

(26)

When the LLL reduction process finishes, the diagonal entries
of the upper triangular matrix certainly satisfy (26). Then, using
the second inequality in (26), we obtain the following result
from (11).
Theorem 5: Suppose that the ILS problem (3) is transformed

to the ILS problem (9) after the LLL reduction by Algorithm 1.
The success probability of the Babai point for the ILS problem
(9) satisfies

(27)

where .
In the following, we give another upper bound on the success

probability of the Babai point, which is invariant to the unimod-
ular transformation to . The result was essentially obtained in
[20], but our proof is much simpler.
Lemma 4: Let be an upper triangular matrix with

positive diagonal entries; then

(28)

where the equality holds if and only if all the diagonal entries
of are equal.
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Proof: Let and for
. Define . To prove

(28), it suffices to show that

(29)

It is easy to verify that

where was defined in the proof of Lemma 1. According to
the proof of Lemma 1, for . Thus, ,
i.e., is a strictly concave function. Therefore, (29) must
hold and the equality holds if and only if all are equal, or
equivalently all are equal.
Suppose that the ILS problem (3) is transformed to the ILS

problem (9) after the LLL reduction by Algorithm 1. Then,
. Thus, by Lemma 4, we have

(30)

The upper bound is reachable if and only if all the diagonal
entries of are equal to . If the gap between the
largest diagonal entry and the smallest diagonal entry of is
large, the upper bound in (30) will not be tight. In the following,
we give an improved upper bound.
Theorem 6: Under the same assumption as in Theorem 5, if

there exist indices such that

(31)

where

with and , then

(32)

where

Proof: Partition as follows:

where the diagonal entries of which are in block
are

for . The condition (31) is to ensure that
in the LLL reduction process by Algorithm 1, there are no
column permutations between s. Now, we prove this claim.
Suppose that Algorithm 1 has just finished the operations on

and is going to work on . At this moment, is
LLL reduced. In the LLL reduction of , no column
permutation between the last column of and the first column
of occurred. In fact, by (26) in Lemma 3 and the inequality

from (31), after a permutation, say the th permuta-
tion, in the LLL reduction of by Algorithm 1

Thus, for any satisfying , the Lovász condition
(6) is satisfied for columns and and no permutation
between these two columns would occur. Now, the algorithm
goes to work on the first column of . Again, we can similarly
show that no column permutation between the last column of
and the first column of will occur, so the algorithm will

not go back to . The algorithm continues and whenever the
current block is LLL reduced, it goes to next block and will not
come back to the previous block. Then, by applying the result
given in (30) for each block , we obtain the first inequality in
(32). The second inequality in (32) is obtained immediately by
applying Lemma 4.
If indices for defined in Theorem 6 do not

exist, we assume ; then, the first inequality in (32) still
holds as its right-hand side is just .
We now show how to find these indices if they exist. It is easy

to verify that (31) is equivalent to

(33)

for . Define two vectors as follows:
for

;
. Then, (33) is equivalent to

Thus, we can compare the entries of and from the first to the
last to obtain all indices . It is easy to observe that the total
cost is .
Let , and denote the three upper bounds on
given in (27) and (32), respectively, i.e.,

In the following, we first give some special examples to compare
, and .

Example 4: Let , where and

is any real number. Then

By the definition of given in (11), and
when . Thus, when is very small, and

are much sharper than .
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TABLE IV
AVERAGE AND BOUNDS FOR CASE 1,

Example 5: Let

where is any real number. Then

From the definition of , we see that when

Therefore, when is very small, is much sharper than ,
which is also much sharper than .
Now, we use more general examples to compare the three

upper bounds and also compare them with . In
additional to Cases 1 and 2 given in Section IV-A, we also tested
the following case.
Case 3. , where is a random orthogonal matrix

obtained by the QR factorization of a random matrix generated
by and is an upper triangular matrix with
following the distribution with freedom degree and with
( ) following the normal distribution .
Case 3 is motivated by Case 1. In Case 1, the entries of the

R-factor of the QR factorization of have the same distribu-
tions as the entries of in Case 3, except that the freedom de-
gree for is , see [21, p99].
In the numerical experiments, for a given and for each case,

we gave 200 runs to generate 200 different ’s.
All the six tables given below display the average values

of (corresponding to QR), (corre-
sponding to LLL with ), , and . For each case,
we give two tables. In the first table, is fixed and varies,
and in the second table, varies and is fixed. In Tables V and
IX, was fixed to be 0.4, while in Table VII, was fixed to be
0.1. We used different values of for these three tables so that

is neither close to 0 nor close to 1; otherwise, the
bounds would not be much interesting.
For Case 1, from Tables IV and V, we observe that the upper

bounds and are sharper than the upper bound , espe-
cially when is small, and the former are good approximations
to .
For Case 2, from Table VI, we observe that the upper bound
is extremely loose when is large, and and are much

TABLE V
AVERAGE AND BOUNDS FOR CASE 1,

TABLE VI
AVERAGE AND BOUNDS FOR CASE 2,

TABLE VII
AVERAGE AND BOUNDS FOR CASE 2,

TABLE VIII
AVERAGE AND BOUNDS FOR CASE 3,

TABLE IX
AVERAGE AND BOUNDS FOR CASE 3,

sharper for all those . From Table VII, we see that when
becomes larger, the upper bounds and become worse, al-
though they are still sharper than . Tables VI and VII show
that is equal to . Actually, it is indeed true.
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For Case 3, from Tables VIII and IX, we observe that the
success probability of the Babai point improves after the LLL
reduction, but not as much as Cases 1 and 2. We also observe
that is sharper than , both are much sharper than , and
is a reasonable approximation to .
Based on the numerical experiments and Theorem 6, we sug-

gest taking as an upper bound on in
practice.
Although the upper bound is a good approxi-

mation to in the earlier numerical tests, we want
to point out that this upper bound can be very loose. Here is a
contrived example: suppose all the off-diagonal entries of in
Example 5 are zero. Then

Thus, when

V. REDUCTION OF THE SEARCH COMPLEXITY BY
THE LLL REDUCTION

In this section, we rigorously show that applying the LLL re-
duction algorithm given in Algorithm 1 can reduce the compu-
tational complexity of sphere decoders, which is measured ap-
proximately by the number of nodes in the search tree.
The complexity results of sphere decoders given in the liter-

ature are often about the complexity of enumerating all integer
points in the search region

(34)

where is a constant called the search radius. A typical measure
of the complexity is the number of nodes enumerated by sphere
decoders, which we denote by .
For , define as follows:

(35)

where denotes the number of elements in the set. As given
in [22], can be estimated as follows:

(36)

where denotes the volume of an -dimensional
unit Euclidean ball.
This estimation would become the expected value to if
is uniformly distributed over a Voroni cell of the lattice

generated by . Then, we have (see, e.g., [23, Sec. 3.2]
and [24])

(37)

In practice, when a sphere decoder such as the Schnorr–Euchner
algorithm is used in the search process, after an integer point is
found, will be updated to shrink the search region. But or
here does not take this into account for the sake of simplicity.
The following result shows that if the Lovász condition (6) is

not satisfied, after a column permutation and triangularization,
the complexity decreases.
Lemma 5: Suppose that for some
for the matrix in the ILS problem (3). After the permutation

of columns and and triangularization, becomes , i.e.,
(see (7)). Then, the complexity of

the search process decreases after the transformation, i.e.,

(38)

Proof: Since for
, and , we have

completing the proof.
Suppose the Lovász condition (6) does not hold for a specific
and furthermore . The next lemma,

which is analogous to Lemma 2, shows that the size reduction
on performed before the permutation can decrease the
complexity further.
Lemma 6: Suppose that in the ILS problem (3) satisfies

and for some
. Let be defined as in Lemma 5. Suppose a size reduction
on is performed first and then after the permutation of
columns and and triangularization, becomes , i.e.,

. Then

(39)

Proof: By the same argument given in the proof of Lemma
5, we have

To show (39), we need only to prove . Since
and (see

the proof of Lemma 2), we have , completing the
proof.
From Lemmas 5 and 6, we immediately obtain the following

result.
Theorem 7: Suppose that the ILS problem (3) is transformed

to the ILS problem (9), where is obtained by Algorithm 1.
Then

where the equality holds if and only if no column permuta-
tion occurs during the LLL reduction process. Any size reduc-
tions on the superdiagonal entries of , which is immediately
followed by a column permutation during the LLL reduction
process, will reduce the complexity . All other size reductions
have no effect on .
The result on the effect of the size reductions is consistent

with a result given in [25], which shows that all the size reduc-
tions on the off-diagonal entries above the superdiagonal of
and the size reductions on the superdiagonal entries of that
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are not followed by column permutations have no effect on the
search speed of the Schnorr–Euchner algorithm for finding the
ILS solution.
Like Theorem 4 in Section IV-B, we can show that when
, larger will decrease the complexity more, but when ,
it may not be true, although our simulation results indicated that
usually it is true.
In Section IV-C, we gave some upper bounds on the success

probability of the Babai point after the LLL reduction. Here, we
can use (26) to give a lower bound on the complexity after the
LLL reduction. To save space, we will not give any details.

VI. SUMMARY AND FUTURE WORK

We have shown that the success probability of the Babai
point will increase and the complexity of sphere decoders will
decrease if the LLL reduction algorithm given in Algorithm 1
is applied for lattice reduction. We have also discussed how the
parameter in the LLL reduction affects and . Some upper
bounds on after the LLL reduction have been presented. In
addition, we have shown that is a better lower bound on the
success probability of ILS estimator than the lower bound given
in [1].
The implementation of LLL reduction is not unique. The KZ

reduction [26] is also an LLL reduction. But the KZ conditions
are stronger than the LLL conditions. Whether some implemen-
tations of the KZ reduction can always increase and decrease
and whether the improvement is more significant compared

with the regular LLL reduction algorithm given in Algorithm 1
will be studied in the future.
In this paper, we assumed the model matrix is determin-

istic. If is a random matrix following some distribution, what
is the formula of ? what is the expected value of the search
complexity? and how does the LLL reduction affect them?
These questions are for future studies.
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