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Backward perturbation analysis for scaled total least-squares
problems
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SUMMARY

The scaled total least-squares (STLS) method unifies the ordinary least-squares (OLS), the total least-
squares (TLS), and the data least-squares (DLS) methods. In this paper we perform a backward perturbation
analysis of the STLS problem. This also unifies the backward perturbation analyses of the OLS, TLS and
DLS problems. We derive an expression for an extended minimal backward error of the STLS problem.
This is an asymptotically tight lower bound on the true minimal backward error. If the given approximate
solution is close enough to the true STLS solution (as is the goal in practice), then the extended minimal
backward error is in fact the minimal backward error. Since the extended minimal backward error is
expensive to compute directly, we present a lower bound on it as well as an asymptotic estimate for it,
both of which can be computed or estimated more efficiently. Our numerical examples suggest that the
lower bound gives good order of magnitude approximations, while the asymptotic estimate is an excellent
estimate. We show how to use our results to easily obtain the corresponding results for the OLS and DLS
problems in the literature. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Given an approximate solution to a certain problem, backward perturbation analysis involves
finding a perturbation in the data of minimal size such that the approximate solution is an exact
solution of the perturbed problem. The size of the minimal perturbation is referred to as the minimal
backward error. In matrix computations, backward perturbation analyses are useful in two respects.
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One is to check if a computed solution is a backward stable solution. Sometimes we may not know
if an algorithm for solving a problem is numerically stable, but if the relative minimal backward
error is of the order of unit round-off, then the computed solution is a backward stable solution
and we can be satisfied with it. The other is to use backward perturbation analysis results to design
effective stopping criteria for the iterative solution of large sparse problems; see, e.g. [1–4].

There has been a lot of work on the backward perturbation analysis of matrix problems, especially
in recent years. Interested readers can find some references on backward perturbation analysis of
linear systems (including least-squares problems) in [5].

This paper will give a backward perturbation analysis for scaled total least-squares (STLS)
problems. STLS unifies ordinary least squares (OLS), total least squares (TLS) and data least
squares (DLS); see Paige and Strakoš [6, 7] and Rao [8]. The backward perturbation analysis of
STLS to be given in this paper also unifies the backward perturbation analyses of OLS, TLS
and DLS, thus this paper unifies and generalizes the work in [5, 9]. We derive formulas for an
‘extended’ minimal backward error in Section 3. This extended minimal backward error is at worst
a lower bound on the minimal backward error. But we show both in theory (see Section 3) and
using numerical tests (see Section 7) that if the given approximate solution is a good enough
approximation to the exact solution of the STLS problem, then the extended minimal backward
error is the actual minimal backward error. It is time consuming to compute the extended minimal
backward error directly, hence in Sections 5 and 6 we derive a lower bound on it and an asymptotic
estimate for it, respectively, both of which can be computed or estimated more efficiently.

From these results, we show how to easily obtain the groundbreaking minimal backward error
results for OLS problems given by Waldén et al. [9], and the extended minimal backward error
results for DLS problems given by Chang et al. [5]; see Sections 4–6.

We use I =[e1, . . . ,en] to denote the unit matrix. For any matrix B∈Rm×n , its 2-norm and
F-norm are denoted by ‖B‖2 and ‖B‖F , respectively, its Moore–Penrose generalized inverse is
denoted by B†, its smallest singular value (the pth largest singular value with p=min{m,n})
by �min(B), its smallest eigenvalue is denoted by �min (when B is symmetric) and its condition
number in the 2-norm by �2(B). For any matrix B=[b1, . . . ,bn], define vec(B)=[bT1 , . . . ,bTn ]T.
For any vector v∈Rn , its 2-norm is denoted by ‖v‖ and its Moore–Penrose generalized inverse is

v†≡
{
0 if v=0

vT/‖v‖2 if v �=0

2. SCALED TOTAL LEAST-SQUARES PROBLEMS

For given A∈Rm×n, b∈Rm and �>0, the scaled total least-squares (STLS) problem with data
[A,b] can be formulated as (see [8])

STLS distance≡�S ≡ min
E, f,x

‖[E, f �]‖F subject to (A+E)x=b+ f (1)

A theoretically equivalent but different formulation can be found in [6]. The STLS problem (1)
may not have a solution, but it does have a unique solution if the following condition holds (see
[6], (1.11)):

rank(A)=n and b �⊥Umin (2)
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where Umin is the left singular vector subspace of A corresponding to its minimal singular value
�min(A). From now on, we assume that (2) holds.

It was shown in [10] that �2S in (1) is the global minimum of the function

�2(x)≡ ‖b−Ax‖2
�−2+‖x‖2 (3)

It can be proven (see [11, Theorem 2.7]; [6, Section 6]) that when (2) holds, x̂ solves (1) if and
only if it satisfies

AT(b−Ax̂) = − ‖b−Ax̂‖2
�−2+‖x̂‖2 x̂ (4)

‖b−Ax̂‖2
�−2+‖x̂‖2 < �2min(A) (5)

Note that (4) can be obtained by setting the derivative of �2(x) in (3) equal to zero. All stationary
points of �2(x) therefore satisfy (4). The global minimum must also satisfy (5). It is easy to observe
from (4) and (5) (see also [6, Section 6]) that when �=1, x̂ becomes the TLS solution, when
�→0, x̂ converges to the OLS solution (note that in this case the left-hand side of (5) becomes
zero and (5) holds automatically), and when �→∞, x̂ converges to the DLS solution.

3. BACKWARD ERROR ANALYSIS

Suppose we have obtained a nonzero approximation y∈Rn to the solution vector x̂ of (1). In order
to find the closest STLS problem whose solution is actually y, we see from (3) that we need to
solve a backward error problem of the form

min
�A,�b

‖[�A,�b�]‖F subject to y=argmin
x

‖b+�b−(A+�A)x‖2
�−2+‖x‖2 (6)

Here, the chosen scalar �>0 (different, sometimes, from � in (1)) allows a different emphasis on
each data error. The above is the objective function that we use here to define ‘closest’.

In order to solve (6), we first need to characterize the set of [�A,�b] satisfying the equality in
(6). It follows from (4) and (5) that y is the exact STLS solution for the data set [A+�A,b+�b]
if and only if [�A,�b] is in the following set:

CA,b(�) ≡
{
[�A,�b] :(A+�A)T[b+�b−(A+�A)y]

= ‖b+�b−(A+�A)y‖2
�−2+‖y‖2 y,

‖b+�b−(A+�A)y‖2
�−2+‖y‖2 <�2min(A+�A)

}
(7)

A natural idea to solve (6) is to find an explicit expression for the set CA,b(�) and then minimize
‖[�A,�b�]‖F over this set. Unfortunately, the inequality in (7) makes it difficult to derive a
general expression for [�A,�b]∈CA,b(�), hence we initially ignore it and consider a larger set

C+
A,b(�)≡

{
[�A,�b] :(A+�A)T[b+�b−(A+�A)y]=−‖b+�b−(A+�A)y‖2

�−2+‖y‖2 y

}
(8)
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The following result from Theorem 3.2 of [12] gives an explicit relation between �A and �b for
any [�A,�b]∈C+

A,b(�).

Lemma 3.1
[�A,�b]∈C+

A,b(�) if and only if

A+�A=−�2ww†(b+�b)yT+(I −ww†)[(b+�b)y†+Z(I − yy†)] (9)

for w∈Rm and Z ∈Rm×n .

Based on Lemma 3.1, we now solve the extended minimal backward error problem

�(y,�,�)≡ min
[�A,�b]∈C+

A,b(�)
‖[�A,�b�]‖F (10)

Theorem 3.1
Suppose we are given A∈Rm×n, b∈Rm , nonzero approximate STLS solution y∈Rn, �>0 and
�>0; and suppose that (2) holds. Let r ≡b−Ay and

N ≡
⎡⎣A(I − yy†),

�‖r‖√
1+�2‖y‖2

(I −rr†),
�√

�2‖y‖2+�4‖y‖4
(Ay+�2‖y‖2b)

⎤⎦ (11)

M ≡ M(y,�,�)≡ A(I − yy†)AT− �2

1+�2‖y‖2 rr
T+ �2

�2‖y‖2+�4‖y‖4 (Ay+�2‖y‖2b)

×(Ay+�2‖y‖2b)T=NNT− �2‖r‖2
1+�2‖y‖2 I (12)

Then M has at most one negative eigenvalue, and

�2(y,�,�)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�2‖r‖2

1+�2‖y‖2 if �min(M)�0

�2‖r‖2
1+�2‖y‖2 +�min(M)=�2min(N ) if �min(M)<0

(13)

Furthermore, �(y,�,�) is given by the following backward perturbations in A and b:

�̂A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2

1+�2‖y‖2 ry
T if �min(M)�0

�2

1+�2‖y‖2 ry
T−w∗wT∗

[
A+ �2(�2−�2)

�

2

+�4‖y‖2byT

+ �4+2�4�2‖y‖2+�4

(1+�2‖y‖2)(�2+�4‖y‖2)ry
T

] if �min(M)<0

(14)
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�̂b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

1+�2‖y‖2 r if �min(M)�0

− 1

1+�2‖y‖2 r−w∗wT∗

[
�2(1+�2‖y‖2)
�2+�4‖y‖2 b

− (�2+�2)(1+�2‖y‖2)
(1+�2‖y‖2)(�2+�4‖y‖2)r

]
if �min(M)<0

(15)

where w∗ is the unit eigenvector of M corresponding to �min(M), or equivalently the unit left
singular vector of N corresponding to �min(N ).

Proof
On the right-hand side of the second equality of (12), both the first and the third terms are
nonnegative definite, while the second term is a rank one matrix. By [13, Theorem 4.3.4(b)] with
k=1, M has at most one negative eigenvalue.

From Lemma 3.1, we see that �A and �b are functions of w and Z . Therefore, to solve (10),
we need to find the optimal w and Z . We discuss two cases separately.

Case 1: The optimal w=0. The proof is almost the same as the corresponding part in the proof
of Theorem 2.2 in [5]. But for readers’ convenience, we give it here. In this case, from (9) we have

�A=(b+�b)y†+Z(I − yy†)−A (16)

Given a nonzero y, we can find Y2∈Rn×(n−1) such that Y =[y/‖y‖,Y2] is orthogonal. Thus
�AY =[(b+�b)/‖y‖,0]+Z [0,Y2]−[Ay/‖y‖, AY2]=[(r+�b)/‖y‖, (Z−A)Y2]

Therefore, we have

‖[�A,�b�]‖2F = ‖r+�b‖2/‖y‖2+‖(Z−A)Y2‖2F +�2‖�b‖2

= 1

‖y‖2
∥∥∥∥∥
[

I

�‖y‖I

]
�b+

[
r

0

]∥∥∥∥∥
2

+‖(Z−A)Y2‖2F

It follows that the optimal �̂b and Ẑ satisfy

�̂b=−
[

I

�‖y‖I

]†[
r

0

]
=− 1

1+�2‖y‖2 r, Ẑ = A (17)

Then from (16) the optimal �̂A satisfies

�̂A=
(
b− 1

1+�2‖y‖
)
ry†−Ayy†= �2

1+�2‖y‖2 ry
T (18)

leading to

‖[�̂A, �̂b�]‖2F = �2‖r‖2
1+�2‖y‖2 (19)

Case 2: The optimal w �=0. Let Y be as in Case 1. Since ww† is independent of the length
of w, we can assume that ‖w‖=1 in (9). Construct W =[w,W2]∈Rm×m such that it is orthogonal.
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Then we have from (9)

WT�AY =
[−�2wT(b+�b)‖y‖−wTAy/‖y‖ −wTAY2

WT
2 (b+�b)/‖y‖−WT

2 Ay/‖y‖ WT
2 ZY2−WT

2 AY2

]
Thus, it follows that

‖[�A,�b�]‖2F = [�2‖y‖wT(b+�b)+wTAy/‖y‖]2+‖wTAY2‖2F
+‖WT

2 (r+�b)‖2/‖y‖2+‖WT
2 (Z−A)Y2‖2F +�2‖�b‖2

= [�2‖y‖wT(b+�b)+wTAy/‖y‖]2+‖wTA(I − yy†)‖2F
+‖(I −wwT)(r+�b)‖2/‖y‖2+‖WT

2 (Z−A)Y2‖2F +�2‖�b‖2

= 1

‖y‖2

∥∥∥∥∥∥∥∥
⎡⎢⎢⎣

�2‖y‖2wT

I −wwT

�‖y‖I

⎤⎥⎥⎦�b+

⎡⎢⎢⎣
�2‖y‖2wTb+wTAy

(I −wwT)r

0

⎤⎥⎥⎦
∥∥∥∥∥∥∥∥
2

+‖wTA(I − yy†)‖2F +‖WT
2 (Z−A)Y2‖2F (20)

Obviously Ẑ = A is optimal, and if w is fixed, the optimal �̂b satisfies

�̂b = −

⎛⎜⎜⎝
⎡⎢⎣�2‖y‖2wT

I −wwT

�‖y‖I

⎤⎥⎦
T⎡⎢⎢⎣

�2‖y‖2wT

I −wwT

�‖y‖I

⎤⎥⎥⎦
⎞⎟⎟⎠

−1⎡⎢⎢⎣
�2‖y‖2wT

I −wwT

�‖y‖I

⎤⎥⎥⎦
T⎡⎢⎣�2‖y‖2wTb+wTAy

(I −wwT)r

0

⎤⎥⎦
= − 1

�2+�4‖y‖2wwT(�2Ay+�4‖y‖2b)− 1

1+�2‖y‖2 (I −wwT)r (21)

where we used the Sherman–Morrisson–Woodbury formula to simplify the inverse. Thus, with the
above Ẑ and �̂b, using wTw=1 we have from (20) that

‖[�A, �̂b�]‖2F = �2

�2‖y‖2+�4‖y‖4wT(Ay+�2‖y‖2b)(Ay+�2‖y‖2b)Tw

+ �2

1+�2‖y‖2 r
T(I −wwT)r+wTA(I − yy†)ATw

= wT

[
A(I − yy†)AT+ �2‖r‖2

1+�2‖y‖2 (I −rr†)

+ �2

�2‖y‖2+�4‖y‖4 (Ay+�2‖y‖2b)(Ay+�2‖y‖2b)T
]

w

= wTNNTw= �2‖r‖2
1+�2‖y‖2 +wTMw (22)
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Then the minimal value is reached when w is equal to w∗, the unit left singular vector of N
corresponding to its smallest singular value �min(N ), or equivalently, the unit eigenvector of M
corresponding to its smallest eigenvalue.

If �min(M)�0, from (19) and (22), we can see that the minimum value of ‖[�A, �̂b�]‖F
is reached in Case 1 and the top equalities in (13), (14) and (15) follow from (19), (18) and
(17), respectively. If �min(M)<0, from (19) and (22), we can see that the minimum value of
‖[�A, �̂b�]‖F is reached in Case 2 and the bottom equality in (13) follows from (22). In this case,
the bottom equality in (15) can be obtained from (21) by some simple algebraic operations and
the bottom equality in (14) can easily be proved from (9) with the optimal w, �b and Z found in
Case 2. �

Corollary 3.1
With the notation and conditions of Theorem 3.1 and the STLS solution x̂ of (4) and (5), define
M̂≡M(x̂,�,�) (see (12)) and r̂ ≡b−Ax̂ . Then

lim
y→x̂

�(y,�,�)=�(x̂,�,�)=0 (23)

Proof
First, we consider the case that r̂ �=0. Multiplying both sides of (4) by x̂ from the left, we obtain

x̂TATr̂ =−‖x̂‖2(b−Ax̂)Tr̂

�−2+‖x̂‖2 = ‖x̂‖2
�−2+‖x̂‖2 x̂

TATr̂− ‖x̂‖2
�−2+‖x̂‖2 b

Tr̂

leading to x̂TATr̂+�2 x̂T x̂bTr̂ =0. Multiplying both sides of (4) by I − x̂ x̂† from the left, we
immediately obtain (I − x̂ x̂†)ATr̂ =0. Therefore, from (12),

M̂r̂ = A(I − x̂ x̂†)ATr̂− �2‖r̂‖2
1+�2‖x̂‖2 r̂+ �2

�2‖x̂‖2+�4‖x̂‖4 (Ax̂+�2‖x̂‖2b)(x̂TAT+�2‖x̂‖2bT)r̂

= −�2‖r̂‖2
1+�2‖x̂‖2 r̂ ≡ �̂r̂

But by Theorem 3.1, M̂ has at most one negative eigenvalue. Thus, �min(M̂)= �̂<0 and from the
bottom of (13) �(x̂,�,�)=0. When y is close enough to x̂, �min(M)<0. Therefore,

lim
y→x̂

�(y,�,�)= lim
y→x̂

(
�2‖r‖2

1+�2‖y‖2 +�min(M)

)1/2

=
(

�2‖r̂‖2
1+�2‖x̂‖2 +�min(M̂)

)1/2

=0

Now we consider the case that r̂ =0. Since �(x̂,�,�)�0, from (13) we must have �min(M̂)�0.
Thus from (13)

lim
y→x̂

�(y,�,�) = lim
y→x̂

min

⎧⎨⎩
(

�2‖r‖2
1+�2‖y‖2

)1/2

,

(
�2‖r‖2

1+�2‖y‖2 +�min(M)

)1/2
⎫⎬⎭

=min

⎧⎨⎩
(

�2‖r̂‖2
1+�2‖x̂‖2

)1/2

,

(
�2‖r̂‖2

1+�2‖x̂‖2 +�min(M̂)

)1/2
⎫⎬⎭

= �(x̂,�,�)=0 �
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Since CA,b(�)⊆C+
A,b(�),

�(y,�,�)≡ min
[�A,�b]∈C+

A,b(�)
‖[�A,�b�]‖F� min

[�A,�b]∈CA,b(�)
‖[�A,�b�]‖F

The following theorem, which is analogous to Theorem 2.8 of [5] states that if y is close enough
to the true solution x̂ , as is the goal in practice, then �(y,�,�) is in fact the minimal backward
error.

Theorem 3.2
With the notation and conditions of Theorem 3.1 and the STLS solution x̂ of (4) and (5), there
exists �>0 such that for all y satisfying ‖y− x̂‖��, �(y,�,�) is the true minimal backward error.

Proof
The proof is similar to that for Theorem 2.8 of [5]. For any given y, Theorem 3.1 shows that �̂A
satisfying (14) and �̂b satisfying (15) are the minimizers of (10). Notice that when y→ x̂ we have
from Corollary 3.1 that �(y,�,�)→0, in other words �̂A→0 and �̂b→0. Thus

lim
y→x̂

(
‖b+�̂b−(A+�̂A)y‖2

�−2+‖y‖2 −�2min(A+�̂A)

)
= ‖b−Ax̂‖2

�−2+‖x̂‖2 −�2min(A)

Since

‖b−Ax̂‖2
�−2+‖x̂‖2 −�2min(A)<0

see (5), there must exist �>0 such that when ‖y− x̂‖<�,

‖b+�̂b−(A+�̂A)y‖2
�−2+‖y‖2 −�2min(A+�̂A)<0

Therefore, when ‖y− x̂‖<�, [�̂A, �̂b]∈CA,b(�) and thus �(y,�,�)=min[�A,�b]∈CA,b(�) ‖[�A,

�b�]‖F , hence �(y,�,�) is in fact the true minimal backward error. �

We will give numerical examples in Section 7 showing that when y is the reasonable approx-
imation to the exact solution of the STLS problem (1), �̂A and �̂b usually satisfy the inequality
in (7). In such cases, �(y,�,�) is the actual minimal backward error.

4. MINIMAL BACKWARD ERRORS FOR OLS AND DLS PROBLEMS

The OLS minimal backward error problem and the DLS extended minimal backward error problem
(see [5]) are, respectively,

�OLS(y,�) ≡ min
[�A,�b]∈C+

A,b(0)
‖[�A,�b�]‖F

�DLS(y,�) ≡ min
[�A,�b]∈C+

A,b(∞)

‖[�A,�b�]‖F
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where we have used C+
A,b(∞) to denote

lim
�→∞C+

A,b(�)

From (13) we see that �(y,�,�) is a continuous function of �. Then from the definition of �(y,�,�)

in (10), we have

�OLS(y,�)= lim
�→0

�(y,�,�), �DLS(y,�)= lim
�→∞�(y,�,�) (24)

In this section, we show that using Theorem 3.1 we can easily obtain the backward error results
for the OLS problem obtained in [9] and the backward error results for the DLS problem
obtained in [5].
4.1. Minimal backward error for OLS

From (12) we have

MOLS≡ lim
�→0

M(y,�,�)= AAT− �2

1+�2‖y‖2 rr
T

Then by the continuity of eigenvalues,

lim
�→0

�min(M(y,�,�))=�min

(
lim
�→0

M(y,�,�)

)
=�min(MOLS)

Then from (24) and (13), we obtain

�2OLS(y,�)= lim
�→0

�2(y,�,�)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�2‖r‖2

1+�2‖y‖2 if �min(MOLS)�0

�2‖r‖2
1+�2‖y‖2 +�min(MOLS) if �min(MOLS)<0

This is identical to the formula for the OLS minimal backward error, with perturbations in both
A and b, derived in [9].
Furthermore, the optimal perturbations �̂A and �̂b in (14) and (15) become

�̂AOLS≡ lim
�→0

�̂A=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2

1+�2‖y‖2 ry
T if �min(MOLS)�0

�2

1+�2‖y‖2 ry
T

−wOLSw
T
OLS

[
A+ �2

1+�2‖y‖2 ry
T

]
if �min(MOLS)<0

�̂bOLS≡ lim
�→0

�̂b=

⎧⎪⎪⎨⎪⎪⎩
− 1

1+�2‖y‖2 r if �min(MOLS)�0

− 1

1+�2‖y‖2 (I −wOLSw
T
OLS)r if �min(MOLS)<0
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where wOLS is the unit eigenvector of MOLS corresponding to �min(MOLS). The formulas for
�̂AOLS and �̂bOLS were also derived in [9].

4.2. Extended minimal backward error for DLS

From (12) we have

MDLS≡ lim
�→∞M(y,�,�)= A(I − yy†)AT− �2

1+�2‖y‖2 rr
T+�2bbT

Once again using the continuity of eigenvalues,

lim
�→∞�min(M(y,�,�))=�min

(
lim

�→∞M(y,�,�)

)
=�min(MDLS)

Then from (24) and (13), we obtain

�2DLS(y,�)≡ lim
�→∞�2(y,�,�)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�2‖r‖2

1+�2‖y‖2 , �min(MDLS)�0

�2‖r‖2
1+�2‖y‖2 +�min(MDLS), �min(MDLS)<0

This is the formula for the DLS extended minimal backward error, with perturbations in both A
and b, derived in [5].

It is also straightforward to verify that the optimal perturbations �̂A and �̂b in (14) and (15)
become

�̂ADLS≡ lim
�→∞ �̂A=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2

1+�2‖y‖2 ry
T if �min(MDLS)�0

�2

1+�2‖y‖2 ry
T

−wDLSw
T
DLS

[
A−by†+ 1+2�2‖y‖2

1+�2‖y‖2 ry†
] if �min(MDLS)<0

�̂bDLS≡ lim
�→∞ �̂b=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

1+�2‖y‖2 r if �min(MDLS)�0

− 1

1+�2‖y‖2 (I −wDLSw
T
DLS)r−wDLSw

T
DLSb if �min(MDLS)<0

where wDLS is the unit eigenvector of the matrix MDLS corresponding to its smallest eigenvalue.
These formulas were also given in [5].
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5. A LOWER BOUND ON �(y,�,�)

The formula (13) for �(y,�,�) involves the smallest singular value of the m×(m+n+1) matrix N ,
which is expensive to compute directly. In this section we suggest a (hopefully) good lower bound
on �(y,�,�), which can easily be estimated.

Theorem 5.1
With the notation and conditions of Theorem 3.1,

�(y,�,�)� min
[�A,�b]∈C+

A,b(�)
‖[�A,�b�]‖2��lb(y,�,�)≡ 2	0√

	21+4	0+	1

(25)

where

	0 ≡ ‖(�−2+‖y‖2)ATr+‖r‖2y‖
(�−2+‖y‖2)

√
�−2+‖y‖2+‖y‖(�−2+‖y‖2)

(26)

	1 ≡ (�−2+‖y‖2)
√

�−2+‖y‖2‖A‖2+(�−2+‖y‖2)‖r‖+2
√

�−2+‖y‖2‖y‖‖r‖
(�−2+‖y‖2)

√
�−2+‖y‖2+‖y‖(�−2+‖y‖2)

(27)

Proof
Obviously the first inequality in (25) holds. For any [�A,�b]∈C+

A,b(�), we have from (8) that

(�−2+‖y‖2)
(
A+[�A,�b�]

[
I

0

])T(
r+[�A,�b�]

[−y

�−1

])
=−

∥∥∥∥∥r+[�A,�b�]
[−y

�−1

]∥∥∥∥∥
2

y

Denoting F≡[�A,�b�] and 
≡�−2+‖y‖2, we get


ATr+‖r‖2y = −
ATF

[−y

�−1

]
−
[I,0]FT

(
r+F

[−y

�−1

])

−2rTF

[−y

�−1

]
y−[−yT, �−1]FTF

[−y

�−1

]
y

Taking the 2-norm of both sides of this equation, we obtain the inequality

‖
ATr+‖r‖2y‖ �
(


‖A‖2
∥∥∥∥∥
[−y

�−1

]∥∥∥∥∥+
‖r‖+2‖r‖‖y‖
∥∥∥∥∥
[−y

�−1

]∥∥∥∥∥
)

‖F‖2

+
⎛⎝


∥∥∥∥∥
[−y

�−1

]∥∥∥∥∥+‖y‖
∥∥∥∥∥
[−y

�−1

]∥∥∥∥∥
2
⎞⎠‖F‖22
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that is, with (26) and (27), the quadratic inequality in terms of �≡‖F‖2:
	0�	1�+�2

Since � and 	0 are nonnegative, ���+, where �+ is the positive root of 	0=	1�+�2, hence

���+ = 1

2

(√
	21+4	0−	1

)
=2	0

(√
	21+4	0+	1

)−1

giving the second inequality in (25). �

The lower bound �lb(y,�,�) in (25) can be estimated in O(mn) flops, since ‖A‖2 can usually
be estimated by a standard norm estimator in O(mn) flops, see, for example, [14, Section 15.2].
In fact a good estimate of ‖A‖2 might already be available from whatever method is used for
obtaining y, and in this case the cost will essentially be the 4mn flops required for computing
AT(b−Ay).
This bound can be compared with the lower bounds for the OLS minimal backward error such

as those discussed in [9, 15]. If in (25) we take �→0 to obtain a bound for the OLS problem and
then take �→∞ to restrict the perturbations to A only, we obtain

�OLS(y,∞) ≡ lim
�→∞

�OLS(y,�)= lim
�→∞

lim
�→0

�(y,�,�)

� 2‖ATr‖
‖A‖2‖y‖+‖r‖+√(‖A‖2‖y‖+‖r‖)2+4‖ATr‖‖y‖

This is exactly one of the bounds given in [9].
If in (25) we take �→∞ to obtain a lower bound for the DLS extended minimal backward

error and then take �→∞ to restrict the perturbations to A only, we obtain

�DLS(y,∞)≡ lim
�→∞

�DLS(y,�)= lim
�→∞

lim
�→∞�(y,�,�)� 2	̂0√

	̂
2
1+4	̂0+ 	̂1

where

	̂0=
∥∥‖y‖2ATr+‖r‖2y∥∥

2‖y‖3 , 	̂1= ‖A‖2‖y‖+3‖r‖
2‖y‖

This lower bound for the DLS problem was derived in [5].

6. AN ASYMPTOTIC ESTIMATE FOR �(y,�,�)

Computing �(y,�,�) exactly is expensive and the lower bound (25) may not be very tight. In this
section, by following [5, 16], we give an asymptotic estimate for �(y,�,�) and show how it is
related to other asymptotic estimates in the literature for the OLS and DLS problems.

As in the previous sections, denote r ≡b−Ay and also 
=�−2+‖y‖2. Let

h(A,b, y)≡ ATr+ ‖r‖2
�−2+‖y‖2 y= ATr+‖r‖2
−1y (28)
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Recall from Section 3 that if x̂ is the true STLS solution, h(A,b, x̂)=0. Then �(y,�,�)=
‖[�̂A, �̂b�]‖F , where {�̂A, �̂b} is the solution to h(A+�A,b+�b, y)=0 that minimizes
‖[�̂A, �̂b�]‖F . By Taylor’s expansion, for small enough E ∈Rm×n and f ∈Rm ,

h(A+E,b+ f, y)≈h(A,b, y)+ JAvec(E)+ Jb f =h(A,b, y)+[JA,�−1 Jb]
[
vec(E)

f �

]

where JA∈Rn×mn and Jb∈Rn×m are the Jacobian matrices of h with respect to vec(A) and b,
respectively. Therefore, an approximation to [�̂A, �̂b�] is [E, f �] such that

‖[E, f �]‖F =min s.t. h(A,b, y)+[JA,�−1 Jb]
[
vec(E)

f �

]
=0 (29)

In other words, [
vec(E)

f �

]
=−[JA,�−1 Jb]†h(A,b, y) (30)

Thus, we obtain the following approximation to �(y,�,�):

�̄(y,�,�)≡‖[E, f �]‖F =
∥∥∥∥∥
[
vec(E)

f �

]∥∥∥∥∥=‖[JA,�−1 Jb]†h(A,b, y)‖ (31)

We say that �̄(y,�,�) is an asymptotic estimate of �(y,�,�) due to the following result.

Theorem 6.1
Using the notation of Theorem 3.1 with �(y,�,�) defined as in (10) and �̄(y,�,�) as in (31),

lim
y→x̂

�̄(y,�,�)

�(y,�,�)
=1

Proof
The proof is similar to that for Theorem 4.1 of [5]. A Taylor expansion of h(A+�̂A,b+�̂b, y)
gives

0=h(A+�̂A,b+�̂b, y)=h(A,b, y)+[JA,�−1 Jb]
[
vec(�̂A)

�̂b�

]
+O(‖[�̂A, �̂b]‖2F ) (32)

Substituting the resulting expression for h(A,b, y) into (30) gives[
vec(E)

f �

]
=[JA,�−1 Jb]†[JA,�−1 Jb]

[
vec(�̂A)

�̂b�

]
+O(‖[�̂A, �̂b]‖2F )

Taking the 2-norm of each side and noticing that [JA,�−1 Jb]†[JA,�−1 Jb] is an orthogonal projec-
tion matrix, we obtain

�̄(y,�,�)��(y,�,�)+O(‖[�̂A, �̂b]‖2F ) (33)
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On the other hand, from (29) and (32) we obtain

[JA,�−1 Jb]
[
vec(�̂A)

�̂b�

]
=[JA,�−1 Jb]

[
vec(E)

f �

]
+O(‖[�̂A, �̂b]‖2F )

Since [JA,�−1 Jb] has full row rank (this will be demonstrated below), we can write

[JA,�−1 Jb]
[
vec(�̂A)

�̂b�

]
=[JA,�−1 Jb]

([
vec(E)

f �

]
+O(‖[�̂A, �̂b]‖2F )

)
Since [

vec(�̂A)

�̂b�

]
is the vector satisfying the above equality with minimum 2-norm, we must have

�(y,�,�)��̄(y,�,�)+O(‖[�̂A, �̂b]‖2F ) (34)

The result follows from (33) and (34) with Corollary 3.1. �

In the following, we derive an explicit expression for �̄(y,�,�). Write A=[a1, . . . ,an] and
yT=[�1, . . . ,�n]. Given two column vectors f ∈Rm and g∈Rn , define the matrix � f/�gT≡
(� fi/�g j )∈Rm×n . With this notation, using (28) we obtain

Jb= �h
�bT

= AT+2
−1yrT, JA=
[

�h
�aT1

, . . . ,
�h
�aTn

]
(35)

Note that

�r
�aTk

=−�k I,
�‖r‖2
�aTk

=2rT
�r
�aTk

=−2�kr
T,

�(aTi r)

�aTk
=
ikr

T−�ka
T
i

where 
ik =1 if i=k and 
ik =0 otherwise. This gives

�h
�aTk

=ekr
T−�k A

T−2
−1�k yr
T (36)

From (35) and (36), we obtain

Jb J
T
b = ATA+2
−1(ATryT+ yrTA)+4‖r‖2
−2yyT

JA J
T
A =

n∑
k=1

(ekr
T−�k A

T−2
−1�k yr
T)(ekr

T−�k A
T−2
−1�k yr

T)T

= ‖y‖2ATA+
−1(2‖y‖2−
)(ATryT+ yrTA)+‖r‖2 I +4‖r‖2
−2(‖y‖2−
)yyT

= ‖y‖2ATA+
−1(‖y‖2−�−2)(ATryT+ yrTA)+‖r‖2 I −4‖r‖2
−2�−2yyT
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Denoting J ≡[JA,�−1 Jb] and introducing the scalars

�0≡
√

‖y‖2+�−2, �1≡ ‖y‖2−�−2+2�−2


�0
(37)

it follows that

JJT ≡ JA J
T
A +�−2 Jb J

T
b

= �20A
TA+�0�1(A

TryT+ yrTA)+‖r‖2 I +4‖r‖2
−2(�−2−�−2)yyT

= (�0A+�1ry
T)T(�0A+�1ry

T)+‖r‖2 I +[4‖r‖2
−2(�−2−�−2)−�21‖r‖2]yyT

= (�0A+�1ry
T)T(�0A+�1ry

T)+‖r‖2 I −‖r‖2�−2
0 yyT

= (�0A+�1ry
T)T(�0A+�1ry

T)+‖r‖2 I +‖r‖2‖y‖2�−2
0 (I − yy†)−‖r‖2‖y‖2�−2

0 I

= (�0A+�1ry
T)T(�0A+�1ry

T)+�−2�−2
0 ‖r‖2 I +�−2

0 ‖r‖2‖y‖2(I − yy†)

= �20B
TB

where

B≡

⎡⎢⎢⎣
A+�−1

0 �1ry
T

�−2
0 ‖r‖‖y‖(I − yy†)

�−1�−2
0 ‖r‖I

⎤⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A+ �2�2‖y‖2−�2+2�2

(1+�2‖y‖2)(1+�2‖y‖2)ry
T

�2‖r‖‖y‖
1+�2‖y‖2 (I − yy†)

�‖r‖
1+�2‖y‖2 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(38)

Notice from the last block of B that B has full column rank. Therefore, J ≡[JA,�−1 Jb] has full
row rank.

Defining

c≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�√
1+�2‖y‖2

r

0

‖r‖(�2−�2)

(1+�2‖y‖2)
√
1+�2‖y‖2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(39)

it is straightforward (but tedious) to verify that BTc=�−1
0 h(A,b, y). Using (31), we obtain

�̄(y,�,�) = ‖J †h(A,b, y)‖=‖JT(J JT)−1h(A,b, y)‖=‖(J JT)−1/2h(A,b, y)‖
= ‖(�20BTB)−1/2h(A,b, y)‖=‖B(BTB)−1BTc‖=‖BB†c‖ (40)
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Notice that BB† is an orthogonal projector onto the range of B and �̄(y,�,�) can be computed
by using the QR factorization of B. This computation is more efficient than computing the SVD
of N in (11) to obtain �(y,�,�).

The asymptotic estimate �̄(y,�,�) is analogous to an estimate of the minimal backward error
for the OLS problem whose various forms have been studied in [16–19], as well as for the DLS
problem, derived in [5]. In the following sections, we show exactly how these are related.

6.1. Relationship to an OLS asymptotic estimate

Theorem 4.4 in [16] gives an asymptotic estimate for the minimal backward error for the OLS
problem when only A is perturbed. This is extended in [17] and [19, Section 2.7] to the case
when both perturbations to A and b are allowed. Using our notation, with �0 defined in (37), the
estimate is

�̄OLS(y,�)≡‖(�20ATA+‖r‖2 I )−1/2ATr‖ (41)

It has the property that limy→x̂ �̄OLS(y,�)/�OLS(y,�)=1.
To compare our estimate �̄(y,�,�) with that in (41) we need to take the limit as �→0 to

specialize our result to the OLS problem. It can be verified from (38) and (28) that

lim
�→0

�20B
TB=�20A

TA− yrTA−ATryT+‖r‖2 I, lim
�→0

h(A,b, y)= ATr

Hence, from (40)

lim
�→0

�̄(y,�,�)=‖(�20ATA− yrTA−ATryT+‖r‖2 I )−1/2ATr‖ (42)

Notice that the terms involving ATryT in (42) are not present in (41). However, in the OLS
problem, ATr →0 when y→ x̂ . Therefore, in the limit as �→0 our estimate �̄(y,�,�) in (40) is
asymptotically equivalent to �̄OLS(y,�) in (41).

6.2. Relationship to a DLS asymptotic estimate

Section 4 in [5] introduced the following asymptotic estimate of the DLS extended minimal
backward error with perturbations only in A

�̄DLS(y,∞)≡‖BDLSB
†
DLScDLS‖ (43)

where

BDLS≡
[

A+ry†

‖r‖/‖y‖(I − yy†)

]
, cDLS≡

[
r/‖y‖
0

]

This estimate �̄DLS(y,∞) has the property that limy→x̂ �̄DLS(y,∞)/�DLS(y,∞)=1.
To compare our estimate �̄(y,�,�) with that in (43) we first take the limit as �→∞ to specialize

our result to the DLS problem, and then take the limit as �→∞ to restrict the perturbations to A
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only. From (38) and (39), when �→∞ and then �→∞, we obtain

lim
�→∞

lim
�→∞ B=

⎡⎢⎢⎣
A+ry†

‖r‖/‖y‖(I − yy†)

0

⎤⎥⎥⎦=
[
BDLS

0

]
, lim

�→∞
lim

�→∞c=
⎡⎢⎣
r/‖y‖
0

0

⎤⎥⎦=
[
cDLS

0

]

It immediately follows from (40) that lim�→∞ lim�→0 �̄(y,�,�)= �̄DLS(y,∞).

7. NUMERICAL EXAMPLES

To illustrate our results we provide some numerical examples.
Recall from Section 3 that the extended minimal backward error �(y,�,�) in (10) is a lower

bound on the true minimal backward error. Furthermore, from Theorem 3.2, if y is close enough
to the true solution x̂ , then �(y,�,�) is in fact the true minimal backward error. We will test how
close y must be to x̂ for this to be the case. We can verify whether or not �(y,�,�) is the true
minimal backward error as follows. If the inequality in (7) holds with the optimal �̂A and �̂b in
(14) and (15), then minimizing over C+

A,b(�) in (8) gives the same solution as minimizing over
CA,b(�) in (7), hence �(y,�,�) is indeed the true minimal backward error.

We performed our numerical examples in MATLAB version 7.4.0 on a 3.20GHz Intel Pentium 4
processor running Gentoo Linux. The functions randn and rand below are MATLAB built-in func-
tions that generate matrices whose elements are sampled from normal and uniform distributions,
respectively. We create our test problems as follows:

• We create two types of matrices A∈R120×80:
Type 1: A= Ã/‖ Ã‖F , Ã= randn(120,80). Usually �2(A)�10.
Type 2: A= Ã/‖ Ã‖F , Ã=U�V T, where U and V are the Q-factors of the QR factorization
of random matrices rand(120,120) and rand(80,80), respectively, and �=diag(�i ) with
logarithmically equally spaced singular values �i between 100 and 10−4. Note that here
�2(A)=104.

• In both cases we create b as follows: b= Ax , where x=[1, . . . ,1]T.
• We let A= A+(1/(

√
120×80))
A ·rand(120,80) and b=b+(1/(

√
120))
b‖b‖·rand(120,1)

so that the system is likely no longer compatible, with 
A=
b=10−6, . . . ,10−1.
• For simplicity we use �=�=1. Results with other parameters � and � are very similar.
• We compute the STLS solution x̂ by using the SVD of [A,b�] (see [6]) and let the approximate

solution y be

y= x̂+ 1√
80


x̂‖x̂‖·rand(80,1)

with 
x =0,10−6, . . . ,10−1.
• For each pair of 
A and 
x̂ and each type of matrix, we generate 1000 sample problems.

In our numerical tests, we use single precision to generate the data and to compute the STLS
solution x̂ . When verifying if the inequality in (7) holds with the optimal �̂A and �̂b in (14) and
(15), we must take into account the fact that the computations involved in verifying the inequality
are themselves subject to rounding errors. To see what effect this has on our results, we first use
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single precision to generate the data A and b, and to compute x̂ and y. We then use both single
and then double precision to compute the quantities

‖b+�̂b−(A+�̂A)y‖2
�−2+‖y‖2 and �2min(A+�̂A)

The number of failures to satisfy the inequality in (7) with optimal �̂A and �̂b, when verified
using single precision (S) and double precision (D), are presented in Tables I and II.

Tables I and II indicate that the inequality almost always holds when it is verified using double
precision, and holds less frequently for Type 2 matrices that are more ill-conditioned when it is
verified using single precision. This strongly suggests that the times in which the inequality failed
to hold in Tables I and II were likely due to rounding errors when actually verifying the inequality.

Table I. Number of failures to satisfy the inequality in (7) out of 1000 samples for Type 1 A.


x̂

0 10−6 10−5 10−4 10−3 10−2 10−1


A, 
b 10−6 S 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0

10−5 S 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0

10−4 S 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0

10−3 S 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0

10−2 S 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0

10−1 S 0 0 1 0 0 1 3
D 0 0 0 0 0 0 3

Table II. Number of failures to satisfy the inequality in (7) out of 1000 samples for Type 2 A.


x̂

0 10−6 10−5 10−4 10−3 10−2 10−1


A, 
b 10−6 S 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0

10−5 S 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0

10−4 S 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0

10−3 S 16 12 9 6 11 16 20
D 0 0 0 0 0 0 13

10−2 S 7 11 8 5 4 8 14
D 0 0 0 0 0 0 7

10−1 S 1 1 2 0 4 4 12
D 0 0 0 0 0 0 10
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Figure 1. Type 1 A : �lb(y,�,�) (dots) and �̄(y,�,�) (stars) versus �(y,�,�).

Note that x̂ in our tests is not the exact STLS solution but a computed solution (computed
by a numerically reliable algorithm). Therefore, each y is not a perturbation of the true STLS
solution but rather of a computed solution. However, we note that repeating the above experiment
with x̂ computed in double precision gave almost identical results. We conclude that when the
approximate solution y is a reasonable approximation to the true STLS solution, it is usually
reasonable to expect that �(y,�,�) in (10) is indeed the true minimal backward error.

The formula for �(y,�,�) in (13) involves the smallest singular value of an m×(m+n+1)
matrix, which is expensive to compute directly. In Sections 5 and 6 we gave two estimates for
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Figure 2. Type 2 A : �lb(y,�,�) (dots) and �̄(y,�,�) (stars) versus �(y,�,�).

�(y,�,�): the lower bound �lb(y,�,�) in (25) and the asymptotic estimate �̄(y,�,�) in (40). We
will test how good an approximation of these quantities are to �(y,�,�). In Figures 1 and 2 we
plot the lower bound �lb(y,�,�) versus �(y,�,�) in dots and the asymptotic estimate �̄(y,�,�)

versus �(y,�,�) in stars. The diagonal line is plotted for reference. Here, we show four cases for
each test problem, with all quantities computed in double precision. Results for all the other test
problems were very similar.

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 16:627–648
DOI: 10.1002/nla



BACKWARD PERTURBATION ANALYSIS FOR STLS PROBLEMS 647

These (as well as other) examples suggest that the lower bound �lb(y,�,�) gives good order
of magnitude estimates of �(y,�,�), while the asymptotic estimate �̄(y,�,�) gives an excellent
estimate of �(y,�,�).

8. CONCLUSIONS

Given an approximate STLS solution y, we have found an expression for an extended minimal
backward error �(y,�,�) in (10). This is an asymptotically tight lower bound on the true minimal
backward error. Our numerical tests suggest that when the approximate STLS solution y is a
reasonable approximation to the true STLS solution x̂, �(y,�,�) is the true minimal backward
error. We therefore believe that �(y,�,�) can be used in practice as a measure of backward error.

Since �(y,�,�) is very expensive to compute directly, we have given a lower bound on it,
�lb(y,�,�) in (25), as well as an asymptotic estimate for it, �̄(y,�,�) in (40). In all our numerical
tests the lower bound �lb(y,�,�) gives good order of magnitude estimates of �(y,�,�), while the
asymptotic estimate �̄(y,�,�) gives an excellent estimate of �(y,�,�). The lower bound can be
computed very efficiently. In the future we intend to find efficient and reliable ways to estimate
the asymptotic estimate �̄(y,�,�).

The main contribution of this paper is to provide a backward perturbation analysis for the
STLS problem, and in so doing unify the backward perturbation analyses for OLS, DLS and
TLS problems. In the extreme cases as �→0 and �→∞, the STLS problem becomes the OLS
and DLS problems, respectively. We have shown how �(y,�,�), its lower bound �lb(y,�,�) and
its asymptotic estimate �̄(y,�,�) specialize to corresponding estimates of backward error in the
literature for the OLS and DLS problems.
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