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STOPPING CRITERIA FOR THE ITERATIVE SOLUTION OF
LINEAR LEAST SQUARES PROBLEMS*

X.-W. CHANG', C. C. PAIGET, AND D. TITLEY-PELOQUINT

Abstract. We explain an interesting property of minimum residual iterative methods for the
solution of the linear least squares (LS) problem. Our analysis demonstrates that the stopping
criteria commonly used with these methods can in some situations be too conservative, causing any
chosen method to perform too many iterations or even fail to detect that an acceptable iterate has
been obtained. We propose a less conservative criterion to determine whether a given iterate is an
acceptable LS solution. This is merely a sufficient condition, but it approaches a necessary condition
in the limit as the given iterate approaches the exact LS solution. We also propose a necessary
and sufficient condition to determine whether a given approximate LS solution is an acceptable LS
solution, based on recent results on backward perturbation analysis of the LS problem. Although
both of the above new conditions use quantities that are too expensive to compute in practical
situations, we suggest potential approaches for estimating some of these quantities efficiently. We
illustrate our results with several numerical examples.
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1. Introduction. Given A € R™*™ and b € R™, the linear least squares (LS)
problem is

(1.1) min ||b — Az|s.

See, for example, [2] and [6] for useful background. We assume throughout that A
has full column rank. Under this assumption, & is the unique solution of (1.1) if and
only if AT(b— A%) = 0.

In this paper we discuss stopping criteria for the iterative solution of large sparse
LS problems. To make the exposition concrete we concentrate on the widely used
algorithm LSQR of Paige and Saunders [12, 13]. Note, however, that much of our
discussion, and our stopping criteria, are applicable to other iterative methods for
the solution of large sparse LS problems. (The practical implementations of these
stopping criteria will of course vary from method to method.)

In section 2 we define what we mean by an acceptable LS solution and a backward
stable LS solution. In section 3 we briefly summarize algorithm LSQR and state the
stopping criteria originally proposed for LSQR in [12, section 5]. These are based
on sufficient (but not necessary) conditions for a given iterate to be an acceptable
LS solution. Note that LSQR’s stopping criteria are also frequently used with other

*Received by the editors May 13, 2008; accepted for publication (in revised form) by M. H.
Gutknecht May 14, 2009; published electronically July 30, 2009.

http://www.siam.org/journals/simax/31-2/72407 . html

TSchool of Computer Science, McGill University, 3480 University Street, McConnell Engineer-
ing Building, Room 318, Montreal, QC, H3A 2A7, Canada (chang@cs.mcgill.ca, paige@cs.mcgill.ca,
dtitle@cs.mcgill.ca). The research of the first author was supported by NSERC of Canada grant
RGPIN217191-07. The research of the second author was supported by NSERC of Canada
grant RGPIN9236. The research of the third author was supported by NSERC of Canada PGS-D
Fellowship.

831

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



832 X.-W. CHANG, C. C. PAIGE, AND D. TITLEY-PELOQUIN

iterative methods for the solution of large sparse LS problems; see, for example, [4,
sections 2.4 and 3.3].

In section 4 we analyze these stopping criteria. We explain an interesting property
of minimum residual iterative methods and use this to show that LSQR’s stopping
criteria can in some situations be too conservative. The use of these criteria can cause
any chosen iterative method to perform too many iterations, or in the worst case, to
fail to detect that an acceptable iterate has been obtained.

In sections 5 and 6 we propose two conditions to determine whether a given
iterate z;, € R™ is an acceptable LS solution. The condition in section 5 is merely
sufficient, but it approaches a necessary condition in the limit as xj approaches the
exact LS solution Z. The condition in section 6 is both necessary and sufficient. To
our knowledge, the latter new result is the only known such condition.

We give some numerical examples in section 7 in which we compare these condi-
tions with LSQR’s stopping criteria. Section 8 contains our discussion and conclusions.

1.1. Notation. We generally use upper-case letters for matrices, lower-case Ro-
man letters for vectors and indices, and lower-case Greek letters for scalars. e; denotes
the jth column of the unit matrix I. The true LS solution of (1.1) is denoted by &
with 7 = b — Az, whereas x, is used for the kth iterate of an algorithm (often LSQR
here) with 7, = b — Axy. For vectors, || - || denotes the 2-norm. For matrices we use
[I-ll2 and || - || for the 2- and Frobenius norm, respectively, while || - |2, denotes the
use of either (consistently within an expression). We use R(A) to denote the range
of A, and P4 and Pj for the orthogonal projectors onto R(A) and the orthogonal
complement of R(A), respectively. Assuming that A has full column rank, its Moore—
Penrose generalized inverse is given by AT = (ATA)"' AT, and thus for a nonzero
vector v, vT = vT/||v||%. Finally, k2 r(A) = || All2,r||AT||2,F.

For the reader’s convenience we give a reference table of the important quantities
used in the stopping criteria discussed in this paper, together with the first equation
number where each appears, and an indication of its use, or what it is.

&.p(zk,a,8)  (2.5)  (used in testing) for acceptable LS solutions

o, r(zk, 0, B)  (3.3) for acceptable nearly compatible system solutions

Yo, r(rg, o, F) (5.1) an asymptotically tight upper bound on & p(zg, o, )
w(xg,d) (6.1) the minimal backward error for a compatible system
w(xg, 0) (6.3) the minimal backward error for a LS problem.

2. Acceptable and backward stable least squares solutions. Most prac-
tical LS problems contain uncertainties in the data, and instead of solving (1.1) with
ideal data A and b, we can at best solve a nearby problem

(2.1) min[|(b + f) — (A+ E)z],

where E/ and f are small in some sense. Commonly, F and f have small norms relative
to the norms of A and b, and we thus consider only the case

(2:2) IE|

2.F < aflA|

o.r and [|f] < 3]l

for some « and § satisfying 0 < «, 8 < 1 (where we hope that estimates of o and
[ are known). In practical applications it is often the case that a < [, because b
is often a vector of measurements that is subject to much larger measurement errors
than the matrix A.
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STOPPING CRITERIA FOR LS PROBLEMS 833

We say that an iterate xp, € R” is an acceptable LS solution when it is the exact
LS solution of a problem within the accepted range of relative errors in the data. In
other words, for any given a and (3, an iterate xj, is an acceptable LS solution if and
only if there exist perturbations E and f satisfying

(23)  (A+E)"b+f—(A+E)x;] =0, |[|E|2r <allA

2.k |IfI < Aol

Obviously this is the case if and only if

(24) 62,F($k7 avﬁ) S 17

where

So,p (2, 0, B) = ;En}r} {5 A+ E)Tb+ f—(A+ E)x] =0,
(2.5) ok
|Elle.r < €allAllo,e, 171 < €81011}.

To summarize, for any chosen « and (3, an iterate xj is an acceptable LS solution if
and only if it satisfies (2.4).

Even if we have perfect data A and b, we cannot expect to solve (1.1) exactly in
floating-point arithmetic. The best we can generally hope to do is to solve a problem
of the form (2.1) with & = O(u) and 8 = O(u) in (2.2), u being the machine’s unit
roundoff. We say that an iterate xy, is a backward stable LS solution when it satisfies
(2.4) with @ = O(u) and 8 = O(u). A backward stable LS solution is thus simply an
acceptable LS solution with a specific choice of o and S.

Note that for any scalar 7 > 0, we can verify that & p(zg, 7,7) -7 = &, p (2, 1, 1)
by using (2.5) to define & p(zk, 7, 7) - 7, and then replacing each quantity {7 in the
resulting right-hand side by the new variable £, giving &, r(2k,1,1). Thus
(2.6) Sk, 1,1) <17 & &p(re, 7)<l
A backward stable iterate xj therefore satisfies & g (21, 1,1) = O(u). Following the
nomenclature in [9, sections 7.1 and 20.7], we call the quantity & g(zx,1,1) the
optimal normuwise relative backward error for LS problems.

If & p(zk, @, B) < 1, many known upper bounds on the relative error || —z|| /|| Z||
exist as a function of a and g; see, for example, [9, section 20.1] and [6, section 5.3.7].
Therefore, in most practical applications (but not necessarily ill-posed problems), we
can be satisfied with a given z; € R™ as an approximate solution to (1.1) when it
satisfies & p(xg, o, #) < 1 with an appropriate choice of a and §.

Unfortunately, finding an analytical expression for & p(xf, a, §) in (2.5) remains
an open question. Some easily computable upper bounds on & p(xy, o, 3) are known,
and these can be used to give sufficient conditions for & p(zg, o, ) < 1. Such condi-
tions are commonly used as stopping criteria for the iterative solution of large sparse
LS problems; see, for example, [12, section 5], [4, sections 2.4 and 3.3], and [2, p. 309].
We outline some of these in the next section.

3. Algorithm LSQR and its stopping criteria. In this section we give a brief
overview of algorithm LSQR [12, 13] and its stopping criteria. The bidiagonalization
“Bidiag 2” in [12, section 3] is that given by Golub and Kahan in [5, equation (2.4)],
but with the initial vector ¢z = ATb/||ATb||. For LS solutions it is preferable to
use the variant “Bidiag 1”7 in [12, section 3], which in theory after k steps produces
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matrices Upy, € R™**+D and V;, € R™** such that Uy (e101) = b, where 31 = |||,
and

T T T T
AV = U1 Btk A" Ugt1 = Vi By g + Vkr1ak41€g11 = Vir1 By,
aq
B2 a2
_ . k+1)xk _
Biy1k = Bz - e RFFDXE - By 1 = [Bregiklent1ont]-
(675
Br+1

In theory Ugi; and Vi both have orthonormal columns, but in practice rounding
errors cause a loss of orthogonality.

In the kth step we find the minimum residual approximate solution of the form
2 = Viyr, where y;, € R solves

(3.1) myin b — AVyyll = myin 1Ukt1(e11 — Bry1xy)ll = myin lle1f1 — Bry1,xyll-

Thus z, = Viyr and rp, = b — Axy, (for k = 1,2,...) are successive approximations
to the true solution & and residual #. The bidiagonal LS problem in (3.1) can easily
be solved for yj using the QR factorization of Byy1 . A careful implementation [13]
of LSQR requires only two matrix-vector products per iteration and stores only the
latest columns of Uy and V.

Listed below are the stopping criteria used in LSQR. Given an iterate zj; with
corresponding residual rp, = b — Axy, the algorithm stops if one of the following three
conditions is satisfied:

L lrell < af|All2,pllzx + B1|b]|  (a test for compatible systems),
(3.2) 2. | AT/ lIrell < allAll2.r (a criterion for LS problems),
3. ko r(A)>7 (a regularizing criterion).

The parameters o and [ (distinct from the elements oy and Sy of Byy1 ) are set
according to the accuracy of the data; see (2.2). From now on we assume the sensible
case that 0 < «, 8 < 1. If rough estimates of these relative errors are not known, «
and 3 could be set to a small multiple of the unit roundoff u. The parameter v is
the maximum condition number we are willing to tolerate. (In LSQR, kp(Bit1.k)s
which is no greater than xkr(A), is checked against v.) Note that criterion 2 in (3.2)
assumes 7 # 0. If the residual is zero, then xy is clearly the exact solution z of (1.1).

LSQR provides the user with cheap estimates of ||rgx|| and ||ATry| at each iter-
ation; see, for example, [12, section 5]. Cheap lower bounds on [|A|r and kr(A)
are also available, and lower bounds on ||Al|2 and x2(A) can be computed reason-
ably cheaply at each iteration. These lower bounds are monotonically increasing with
k and are thus successively better approximations to ||A|2,r and k2 p(A). Similar
estimates are also usually available in other iterative methods for the solution of LS
problems, such as CGLS (see, for example, [2, section 7]). When using such estimates,
one should keep in mind that they are not always accurate and can give misleading
results. We demonstrate this with an example in section 4.3.

We now show that LSQR’s stopping criteria 1 and 2 correspond to particular
upper bounds on & p(zk, @, ) in (2.5). LSQR’s stopping criteria 1 and 2 thus give
sufficient but not necessary conditions for xj; to be an acceptable LS solution.
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STOPPING CRITERIA FOR LS PROBLEMS 835

Criterion 1 in (3.2) can be obtained by tightening the normal equations constraint
for LS in (2.5) to an equality constraint for compatible systems. Since this cannot
decrease the resulting minimum value of &, it follows that

52,F(xk7 «, ﬁ) S 7727F(xk7 «, ﬁ)
(33)  =min{n: (A+E)ae=b+ 1, | Elor < nallA
E,fm

2 |1 < 0Bl }-

Rigal and Gaches [14] showed that

el
ol AT, el [+ BT

They proposed the condition 72 7 (xk, @, 3) < 1, in other words,
(3.5) [rell < allAllz,pllzk]| + B[|6]

(3.4) n2,r(Tk, o, B) =

as a stopping criterion for the iterative solution of compatible linear systems. Note
that for any scalar 7 > 0,

(3.6) 7727F(xk77'77') <1 < 7727F(xk7 1, 1) <T.

The quantity

_ [l
L V1 S FA R
is known in the literature as the optimal normwise relative backward error for com-
patible systems; see [9, Theorem 7.1].

Since the LS method is often used for solving nearly compatible overdetermined
linear systems, the condition (3.5) can be used as a stopping criterion for the iterative
solution of LS problems, hence criterion 1 in (3.2). From (3.3) and (3.4), if (3.5) holds,
then & p(zg, o, B) < 1, and the iterate xj is an acceptable LS solution. Similarly,
if o, p(xk,1,1) = O(u), then & p(zr,1,1) = O(u), and xy, is a backward stable LS
solution; see (2.6).

Criterion 2 in (3.2) can be obtained from the fact that any feasible perturbations
E and f in (2.5) must lead to an upper bound on the minimum & r(z, o, 5). Stewart
[16, section 3] observed that the perturbations Ey = —rkr;LA and fo = 0 satisfy the
normal equations constraint in (2.5). With £ = Ey and f = fo, (2.5) gives

. | Eol|2,r [ AT ]|
3.7 Tp,a, B) <min{&: ||Eglle.r < £allA = — = .
( ) fQ,F( k ﬁ) é {6 H OHZ,F 5 || ||2,F} OZHAHQ)F O‘HAHZFHTICH

Therefore if criterion 2 in (3.2) is satisfied, then & p(zg, o, §) < 1, and, from (2.4),
7, is an acceptable LS solution. Furthermore, if |ATry|/||rx|| = O(w)| All2.F, then
&,r(zk,1,1) = O(u), and zy is a backward stable LS solution—see the line following
(2.6). Note that A7y is the residual vector of the normal equations at xy, and the
quantity |[ATry||/||rk| is the norm of a backward perturbation matrix in A only.

Criterion 3 in (3.2) tells us to stop if our “reduced representation” (3.1) of the
problem becomes too ill-conditioned; it is an attempt to regularize ill-conditioned
problems. As the focus of this paper is not on regularization of ill-conditioned prob-
lems, we will not discuss criterion 3 further.

In the next section we give new insights into the behavior of the quantities ||7||
and [[ATrg||/|7x|| that are used in LSQR’s stopping criteria 1 and 2 in (3.2).
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4. Analysis of LSQR’s stopping criteria 1 and 2.

4.1. An interesting observation. On all problems we have tested we have
made the following observation:
LSQR first reduces the residual norm ||rg||, while ||ATrg||/|rl re-
mains roughly constant or tends to oscillate in ill-conditioned prob-
lems. The residual norm ||rg| then reaches a plateau (after which it
remains almost constant), at which point the quantity ||ATry|/|lrkl
starts to decrease, and decreases until it too reaches a plateau.
This surprising behavior, for which we propose an explanation below, is clearly
illustrated in Figure 1 (repeated in more detail as “Test Problem 3” in Figure 3).
The oscillation of ||AT7|| has often been observed in various iterative methods
for the solution of large sparse LS problems. For example, it is stated in [12, section
6.2] that in practice in LSQR “|AT7¢||/|7%|| can vary rather dramatically with k, but
it does tend to stabilize for large k.” Bjorck [2, p. 289] states that in CGLS “||ATry||
will often exhibit large oscillations when x(A) is large.” In [4] Choi uses MINRES (see
[11, section 6]) and a new variant thereof to solve singular symmetric linear systems.
Since these have either no solution or infinitely many solutions, they can be solved as
(possibly compatible, rank-deficient) LS problems. Like LSQR but unlike MINRES,
algorithm MINRES-QLP given in [4] converges to the minimum 2-norm LS solution.
It is remarked [4, p. 27] that ||ATry| “is often observed to be oscillating.”

Test Problem 3: Random A

Phase 1 Phase 2 Phase 3

10 20 30 40 50 60 70 80
LSQR lteration Number

Fic. 1. Behavior of ||ri|l (o) and | AT v/ 7%l (V)

4.2. A possible explanation. Assume that m x n A has full column rank, and
let the singular value decomposition (SVD) of A be

. b T _ T_n T
A_U%%/_wm/_z?mw’

where U = [Ul Ug} = [ur, .. Um] € R™*™ and V = [vq,...,v,] € R™*™ (distinct
from Uy and Vj in section 3) are orthogonal matrices and ¥ = diag(oy,...,0,) with
o1 > -+ > o, > 0. With this notation, the orthogonal projectors onto the range of
A and onto the orthogonal complement of the range of A are, respectively,

Py =UU! and Py =U,UL.
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STOPPING CRITERIA FOR LS PROBLEMS 837

If & is the true LS solution with corresponding residual # = b — AZ, then
(4.1) Piry = UUT (b — Axy) = UsUJb = Pib =17

for all k, so that

(4.2) 7l = [ Parsl® + [ Parill? = [ Park|® + [17]%.

Note that in theory LSQR decreases ||7x|| every step (see [12, equation (5.2) and
p. 50]) so it also decreases ||Pari|| every step. Furthermore, because V,, in section 3
is theoretically orthogonal, in theory ||Parg|| = 0 when k = n (and possibly even for
some k < n). Thus in LSQR || Parg|| converges strictly monotonically to 0. We need
the following lemma.

LEMMA 4.1. Given A € R™*™ with the above-defined SVD, b € R™, and z), € R",
define r, = b — Axy. Then

(4.3) AT || = G|l Parsl|

for some &y, in the closed interval [0y, 01].
Proof. Using the SVD of A,

n
|AT 2 = OS2 0T = (@ )o? = 0F S (uln)?

i=1 i=1

for some Gy, € [0y, 01]. Now because

1Pare]|* = rf iU ry =D (ufre)?,
i=1

it immediately follows that ||AT 74| = ox|| Pari]|- a

In well-conditioned problems the singular values of A are all very roughly of similar
orders of magnitude. Therefore in well-conditioned problems the order of magnitude
of &, is very roughly constant as a function of k. In ill-conditioned problems, 5 can
oscillate wildly but always lies between the extreme singular values of A. Note that
the behavior of 75 as a function of k depends on the size of the residual norms and
on how the residuals are aligned with respect to the left singular vectors uy to w,.

We can now describe what appears to be the main basis for the interesting obser-
vation. We do so by dividing the LSQR iteration process into three phases, illustrated
in Figure 1, any of which need not exist.

Phase 1. This phase is defined by those iterates for which in (4.2)

(4.4) [Parell > [|PA7ell = 171
and so from (4.2),
(4.5) 7 1* = [ Parsll? + 1711 & || Pars .

Thus in phase 1 ||rg]| =~ ||Park| and LSQR decreases ||rg||, while from (4.5) and
Lemma 4.1,

[ATr]l  oxllParell

(4.6) = R O,
75l 75l
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which must lie between the extreme singular values of A. Thus in phase 1 Stewart’s
|AT7¢||/||l7%|| is roughly constant in well-conditioned problems and can oscillate in
ill-conditioned problems.

The sum of squares in (4.5) makes (4.6) a particularly good approximation even

when || P47 || is not very much larger than || P57y | = ||#||. For example if ||Pary| =
2|7, we get ||rell = (V5/2)||Park|, leading to a relative error of only (||rg| —
[Paril])/l|Parkl = 12%. If ||Parg]l = 10||7||, the relative error becomes approxi-

mately 0.5%.

Usually the iteration starts in phase 1, because usually |[ro|| > ||#] and thus
[[Paroll > [|7|]; see (4.5) with k = 0. However, it may happen that | Paro| < |7, for
example, if xg is a very good approximation to z. In this case there is no phase 1 and
the iteration starts in either phase 2 or phase 3 below.

Phase 2. First suppose that the linear system is not compatible to machine pre-
cision. We consider the compatible case afterwards.

As LSQR decreases || Pary||, there is a first & such that

(4.7) [Pars]l < |1 Parsll = l171];

see (4.1) and (4.2). This is the start of phase 2, in which the residuals are now
dominated by their projection onto the orthogonal complement of R(A). In this phase
|[Pari|l continues to decrease but ||ri|| hardly decreases because it is dominated by
| Pi7|l = ||#]|, which is constant.

Because ||Parg] still decreases while ||7k|| remains roughly constant, from (4.3)
the quantity ||ATry||/||7x|l = Gx||Pars|/||7x| tends to decrease. Thus in phase 2 it is
|l7x|| that remains nearly constant, while |[ATry| /|7 tends to decrease.

As LSQR continues to decrease || Pary|| (recall that ||Parg|| — 0 in theory), there
is a first k& such that

(4.8) [Park|l = O@) (| Allz, e llzx |l + [1]])-

This implies that xj is a backward stable LS solution; see section 5 for a detailed
explanation.

Phase 3. This phase begins when LSQR has decreased || Pary|| to the level in (4.8).
In all our numerical experiments we have found that ||Parg| does not decrease below
this level, even though in theory [[Parg| — 0. This is true even for compatible
systems where in theory ||| — 0. The numerical examples in section 7 illustrate
this behavior.

Now suppose that the linear system is compatible to the level of machine precision,
meaning that the true LS solution & satisfies 12, p(Z,1,1) = O(u); see (3.3) and (3.6).
In this case, in apparently all but the most extreme circumstances, LSQR converges
to an iterate xp that also solves Ax = b to the level of machine precision. In other
words, for these problems there is usually a k such that 1 p(zx, 1,1) = O(u) and thus

(4.9) [l = O() (|| All2, 7|z [l + 116]);

see (3.4) and (3.6). In this case there is effectively no phase 2 (and phase 3 starts
immediately after phase 1) because if (4.9) is satisfied, then clearly so is (4.8).

In phase 3 neither ||ry|| nor ||AT7¢||/||rk| decreases further. If the system is not
compatible to machine precision, then as in phase 2 ||ry|| is dominated by || P1ry|| =
[I7]|, which is constant. If the linear system is compatible to machine precision, then
|lrs || satisfies (4.9) and is therefore roughly constant. Thus we have

(4.10) Il A~ max {[|#]], O(w) (| All2.rllzell + [[b]) }
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and from (4.3) and (4.8) we obtain

[ATre]l _ onllParell

_ O@)((|All2,llzx]l + lIo])
[k [l

[[7x]|

(4.11) = 0k
In phase 3 the ratio oy usually remains almost constant (even for ill-conditioned
problems; see the convergence plots in Figure 4). This is due to r; being nearly
constant in this phase, so from Lemma 4.1 &, is also almost constant. Therefore
|AT7¢||/||l7%|| also remains nearly constant.

Summary. In summary, initially || ATry|/||r|| ~ 6k € [on, 01] is roughly constant
in well-conditioned problems and oscillates between the extreme singular values of A
in ill-conditioned problems. This quantity starts to decrease only once [|rg| is no
longer dominated by || Par||, which happens when |7 || reaches the plateau in (4.10).
Eventually |[ATry||/||7x|l also reaches the plateau in (4.11), where it too remains
almost constant.

4.3. Relation to the stopping criteria 1 and 2. We can relate the above
observations to the stopping criteria 1 and 2 in (3.2), which give sufficient but not
necessary conditions for zj to be an acceptable LS solution. Since the theoretically
strictly monotonically decreasing ||ri|| no longer decreases significantly after phase 1
and plateaus at the level given in (4.10), LSQR’s criterion 1 may never be triggered in
significant-residual problems (for which the maximum in (4.10) is given by [|#]|). On
the other hand, because ||ATry||/||7%|| reaches a plateau (4.11) at the start of phase 3,
LSQR’s criterion 2 may never be triggered in nearly compatible systems (for which
(4.9) holds in phase 3 and (4.11) is thus roughly of the order of 5%). So both stopping
criteria are needed—but even then there can be difficulties.

We illustrate this with an example in Figure 2 (repeated with different detail as
“Test Problem 3” in Figure 3). Suppose that we would like to obtain a backward
stable LS solution, so we set « = 3 = u in (2.5) and (3.2). It is easy to see from the
plotted tolerances in Figure 2 that neither stopping criterion in (3.2) is ever triggered,
regardless of the number of iterations performed. This demonstrates that LSQR’s
stopping criteria can be much too conservative, and can lead a user to incorrect
conclusions about whether or not LSQR (or any other algorithm) has converged to a
required tolerance.

In the next section we give a new tighter estimate of & p(xy, o, §). This result
indicates that in the above example in fact {2(xg, 1,1) = O(u) (see (2.6)) when k = 63.
In other words, a backward stable iterate (in the 2-norm) is obtained at the end of
phase 2.

We note that although the quantity || ATry||/||7%|| plateaus in what we have called
phase 3, in practice LSQR’s approzimation to ||ATrg||/||rk| generally does not, as
shown in Figure 2. Therefore stopping criterion 2 in (3.2) may be triggered if we use
LSQR’s approximation in our computation, even though the actual [|ATry|/||rk| >
al|All2,r. In the above example this leads to stopping criterion 2 (in the 2-norm
with @ = u) being triggered at the iteration k = 83, late in phase 3 and well after a
backward stable iterate has actually been obtained.

5. A new upper bound on &3 r(xk, a, 3). We now give a new upper bound
on & p(xy, o, f) defined in (2.5), and show that it becomes asymptotically tight in
the limit as xj approaches the true LS solution Z of (1.1). This bound could be used
to improve LSQR’s stopping criteria significantly.
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Test Problem 3: Random A

o V¥

N s A SOt |

5 Ph.1 Ph. 2 Ph. 3

10 20 30 40 50 60 70 80 90 100
LSQR lteration Number

=—k—  residual norm ||rg||
—¥—  Stewart’s | ATrll/lIi

LSQR’s approzimation to ||ATry|| /|||l
----- tolerance u(||All2llzx]l + bl

----- tolerance ul| Al|2

Fic. 2. Behavior of ||rg|| and ||ATrg|l/|7kll-

THEOREM 5.1. Given A € R"™*"™ b € R™, and x, € R™, define r, = b — Axy,
and use the definition of &2 p(zk, o, B) in (2.5). Then

[ Park||
(51) g?,F(xkvavﬁ) SwZ,F(xkvavﬁ) = .
ol All,rllzkll + Bl
Proof. Consider the perturbations
ol Alla,rllzk i
E* = : Parga,,
o[ Allz, ||k + Bllb] .
Al
ff=- Pary,
af[Allz,pllzel + Bl
so that
E* * Par
(5.2) 1E 2. IS [ Par]| = o (h, v, ).

afAlla,r BlIbl allAlle,#llzel + Bllb]l

Also notice that b+ f* — (A + E*)x), = r, — Pary, = P4ry. From this we see that
E* and f* satisfy the normal equations constraint in (2.5). It then follows from (2.5)
and (5.2) that

§2.7(wk, @, ) < min {&: 1B |2 < EallAllzp, ] < EBIIBI} = 2, p (i, o, B),

so that (5.1) holds. a
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Recall that an iterate xj is an acceptable LS solution if and only if it satisfies
&, (zk,a, ) <1 (see (2.5)). As a result of Theorem 5.1, if

(5.3) ‘ LStest1: Yo, p(zp, o, ) <1 ‘

or, equivalently,
(5.4) [ Parkll < ol Allz,pllzkl| + B0l

then & p(zk, o, f) < 1 and xy is an acceptable LS solution. Comparing the above
to LSQR’s stopping criterion 1 in (3.2), we immediately see that (5.4) gives a less
pessimistic criterion. In fact the upper bound s ¢ in (5.1) can be much tighter than
n2,r in (3.3) (see also (3.4)), especially during what we have called phases 2 and 3
when ||P4rg] is no longer the main component of ||ry]|.

We can use Theorem 5.1 to explain why ||Parg|| levels off at the end of phase 2,
as illustrated in Figure 3 and noted after (4.8). If (4.8) holds, then from (5.1) we have
&,r(zk,1,1) = O(u) and thus from (2.6) zj is a backward stable LS solution. As
discussed in section 2, this is the best we can generally hope to achieve in floating-
point arithmetic. Therefore, we cannot generally expect that ||Parg|| will decrease
below the level given in (4.8).

We now show that our new upper bound ¥ p(zg,a, ) in (5.1) becomes asymp-
totically tight with & p(zk, @, ) in (2.5) in the limit as xj, approaches the true LS so-
lution #. Note that in theory as zy — &, V2 r(zk, o, f) — 0 and so & p(zk, @, 3) — 0;
see (5.1). The following theorem shows that both converge at the same rate.

THEOREM 5.2. Using the notation of Theorem 5.1 and letting & denote the true
LS solution of (1.1),

(5.5) lim $2F @k 0 0)

=1
Tp—E wZF(xka «, ﬁ)

Proof. We have shown in Theorem 5.1 that & p(ag, o, 8) < 2 p(zk, «, ) for all
. € R™. Therefore,

im 2P @k @ B)
Tp—T 1/127F(xka Q, ﬁ)

IN

1.
On the other hand, notice that the optimal perturbations Ej, and fy in (2.5) must
satisfy
(A+ Ek)T(Tk + fx — Ekxk) =0,
so that PA"I‘Ek (Tk + fk — Ekxk) = 0 and thus PA+E‘krk = PA"I‘Ek (EAkafk — fk) Using

the fact that ||P, z || <1 along with the other constraints in (2.5), it follows that
the optimal & p(zk, o, §) in (2.5) must satisfy

1Pay il < U Ekll2rllll + 1 fell < &2 2k, @, B) - (all Allo,pllzil + BlIb)),
so that with (5.1),

1Pyy i, 7l 1Pyr s, el

6 ,F($k70475)2 :1/) ,F(xkvavﬁ)
’ ol | Allz, pllz&ll + BB — [ Parl
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In the limit as z; — 4 we have HEngF — 0 and thus Py, g,k — Pary; see, for
example, [15, sections 3 and 4]. Therefore,

lim fQ,F(xka «, ﬂ)

1. 0
Tp—E 1/’27F(xk7 O[,ﬁ)

Y

Remark 5.1. From the above proof we can easily observe that if we impose the
constraint R(A+ E) = R(A) on E in (2.5), then & p(xk, o, 8) = Y2 p(zk, o, 5). This
constraint may make sense in some situations.

Stewart [15, section 5] proved a result similar to but weaker than Theorem 5.1.
Using 7# = b — A% to denote the true LS residual, he observed that the perturbations
Ey = (ry — f)xz and f; = 0 satisfy the normal equations constraint in (2.5), so that

. | E1l2,p e — 7|l
5.6 Tr,a,f) <min{¢&: ||F <&allAllo.rt = — = .
(56) Eoplannd) < min{e: [Bilor < coldla ) = Lomer — ol

Since r, = Pary + Piry = Pary + 7, the bound in (5.6) is equivalent to

[ Par|l

& (w0, ) < — I ATRL
? al|All2,7 lzx|

By also considering perturbations in b, we obtain the new and tighter upper bound
Yo, r(k, @, ) in (5.1), which is asymptotically tight with & g (2, o, ) for all values
of o and (3.

Stewart noted in [16, section 3] that his bound in (5.6) could be computed only
if the LS problem were contrived so that 7 was known a priori. Since this is generally
not the case in practical applications, the bound in (5.6) cannot generally be used
in practice. Of course, in practical applications ||Pary| is also not available a priori
and is too expensive to compute directly. However, by thinking of our new bound
Yo, p(z, o, ) in (5.1) in terms of the projection || Pary|| instead of the quantity |ry —
7||, we can try to find new ways to estimate &2 p(zx, o, 3) by estimating || Pary||. The
following bounds, for example, follow immediately from Lemma 4.1:

ATTk ATTk
LAT vkl g < AT
o1 On

(5.7)

where o1 and o, are the largest and smallest singular values of A, respectively. Note
that [|[ATry| is generally easily computable and estimates of the extreme singular
values of A are available in LSQR.

For very well-conditioned problems, corresponding to o1 & o,,, the bounds in (5.7)
are fairly tight. In our numerical tests we found that even for ill-conditioned problems
the lower bound in (5.7) is usually much tighter than the upper bound. In other words,
0k in Lemma 4.1 usually lies close to the largest singular value of A, especially late
in phase 2 and in phase 3 of the iteration process. A better understanding of the
behavior of 7 with k could lead to an efficiently computable estimate of ||Pary|| in
(5.4). We leave this for a future investigation.

Here we suggest another potential approach for estimating the projection || Pary||
efficiently in LSQR. Using the fact that P4 = AA" and P4A = A, and letting # = Afb
denote the true LS solution of (1.1), we obtain

| Parell = [|AAT (b — Azy)|| = || A(E — @) || = [|& — 2k a7 a-
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The quantity ||Paryl|| is therefore the so-called energy norm of the error at step k.
Several estimates of the energy norm of the error have been proposed for the method
of conjugate gradients; see, for example, the discussion in [17] and an extension to
CGLS in [1]. We expect that it will be possible to use these ideas to estimate ||Par]|
efficiently in LSQR. We leave the details for future work.

6. A necessary and sufficient condition for &2 p(xk,a,3) < 1. We now
show how the groundbreaking theoretical results of Waldén, Karlson, and Sun, namely,
[18, Theorem 2.2 and Corollary 2.1] can be used to give a necessary and sufficient
condition to determine whether an iterate x; is an acceptable LS solution.

The minimization problems in Lemma 6.1 are commonly called normwise back-
ward error or minimal backward error problems; see [9, section 7] and [18].

LEMMA 6.1. Given A € R™*" b € R™, 0 # x € R", and 0 > 0, define
ry = b— Axy. Then for compatible systems we have (see [9, Exercise 7.8, p. 134])

. 0|7l
6.1) w(xzr,0) = min {||[AA,0AD A4+ AA)x, =b+ AbY = —mn——,
(61) wlo0)= min ([[A4,088]r 5 (A+ Ad)a J= T
(6.2) w(xg,00) = lim w(zg,0) = min{||AA||lr: (A+AA)x, =b} = Il .
6—o0 AA (e

If we replace the above equality constraints by the LS normal equations, then with the
above-defined w(xy, ) and w(xy, 00), we have (see [18]; see also [9, section 20.7])

,U*(xkv 0)
(6.3) = min {J[A4,600]]r: (A+AA)T[(b+AD) — (A+ Ad)ay] =0}

= min {w(xk, 0), omin([A,w(xk, 0)-(I— rkr};)])},
plag,00) = lim p(wy, 6)

(6.4) :IEijl{HAAHF: (A+ AA)T[b— (A+ Ad)zy] :o}

= min {w(xm ), omin([A,W(ﬂck, o) - (I — rk?‘l)])},

where owmin(-) denotes the smallest singular value.

The question is how to use u(xg,d) or pu(zk,00) to determine whether zy is an
acceptable LS solution as defined in (2.4) and (2.5). Let AA be the optimal perturba-
tion in (6.4). If u(xy, 00) = ||ZI\4HF < al|A||F, then clearly E = AA and f = 0 satisfy
the constraints in (2.3) in the Frobenius norm and give ép (2, a, ) <1 in (2.4). On
the other hand, Gu [8, Theorem 3.1] showed that for any F, f, «, and § such that

(A+E)T b+ f—(A+E)ar] =0, [Elor <ollAllar,  |If] < Bl

so that &p(zp, , B) < 1 (see (2.5)), there exists a AA satisfying the constraint in
(6.4) with

AA 1
|AA]2 F <a+28 +CV’
| All2, 7 1-243

ensuring that p(xg,00) $ (o + 20)|| 4| in (6.4) when o, 8 < 1. So for any « and
satisfying 0 < «, 8 < 1, we have

,U(ka,OO) < a|‘A|‘F = fF(xkvavﬁ) < 17

Ep(er, o, 0) <1 = plar,00) 5 (a+26)||AllF.

(6.5)

(6.6)
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From this we see that if 5 < «, then checking the condition p(zy,c0) < «f|Allr is a
reliable way to determine whether z, is an acceptable solution in the Frobenius norm,
and in particular for checking whether it is a backward stable LS solution.

Unfortunately, when o < 3, the condition u(zy,c0) < «|A||r is sufficient only
for xx to be an acceptable solution. In other words, when a < (3,

Er(ap,a,0) <1 # p(rg,00) < ol Al p,

and in this case the criterion pu(zx, 00) < || Al|p might not detect that an acceptable
iterate has been obtained until many unnecessary iterations have been performed, if
it detects it at all. Recall from section 2 that the case a < (§ often occurs in practical
LS applications, because b is often a measurement vector that is subject to much
larger measurement errors than the matrix A.

We now consider how to use pu(xy,#) with an appropriate finite 6 in (6.3) to
determine whether z;, is an acceptable LS solution for any choice of @ and § in (2.5).
The following lemma for compatible systems was proven in [3, section 2].

LEMMA 6.2. Using the notation of Lemma 6.1, if B8||b]| > 0, then the choice

; a|| A2, )”2
0=0p=|———"—
o (ﬁ|b|-||xk||

makes the optimal AA and Ab in (6.1) equal to the optimal E and f in (3.3).

Note that the relationship between w(xy,0) in (6.1) and 12 7 (zy, o, §) in (3.3) for
compatible systems parallels that between p(xg,6) in (6.3) and &2 p(2k, o, §) in (2.5)
for LS problems. We have not found an exact equivalence to Lemma 6.2 for the LS
case, but we do have a very strong result, which we give in the following theorem.

THEOREM 6.3. Given full column rank A € R™*" b € R™, and 0 # x € R",
define r, = b — Axy, Ep(ag, o, B) as in (2.5) and p(xy,0) as in (6.3). Let

)5 alAlr
Al
Then,
(67) §F($k7a7ﬁ) S M(xk79) S \/§€F(xk7a7ﬁ)'
o[ Allp

Proof. Let AA and Ab represent the optimal perturbations in (6.3) with 6 = 6.
Clearly E = AA and f = Ab cannot improve on the optimal p(xy, a, §) in (2.5), and
so cither [[AA|[p 2 Ep(zk, o, B)a|| Al p or [|Ab]| = Ep(zk, a, B)B]|b]|, or both, giving

|AA||F [|AD]
oAl Bl

—} Z §F($k,06,ﬂ)-

Thus we have

0) = (A 685 = || AAY + CIAlE, 52
—— alla A
> mae {152 4l 50

> &p(an, o, B)al|Allp,
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proving the first inequality in (6.7).
On the other hand, for the optimal £ and f in (2.5), we have

1Bl < &r(ar, . BalAlr,  If] < &r (e, o, 5)B]bI,

where £ and f cannot improve on the optimal AA and Ab in (6.3) with 6 = 4.
Therefore,

(k. 0) = [|[AA, 080 < |[[E,61]]r
a2|| Al|2

< \/5%(% a, B)a?||All% + W&%(% a, 8)53||b]]?

= V26 (y, @, Bal| Al F,

leading to the second inequality in (6.7). o

Theorem 6.3 dealt with &g (xy,a, ) and u(zy, ) defined for the perturbed LS
normal equations (A+E)T [b+f—(A+E)xi] = 0. But the same analysis can be applied
to ne(zk, o, B) in (3.3) and w(xy,d) in (6.1), which were defined for the perturbed
compatible system (A + E)x, = b+ f. Carrying out the argument in Theorem 6.3

with &p(zk, o, B) replaced by np(zk, a, 3), and u(xy, 0) replaced by w(zy,0), gives

w(xk,é)
ol Allr

Recall from section 2 that z, is an acceptable LS solution if and only if it satisfies
&o.r(xk, o, 3) < 1, but that at present no explicit formula is known for computing
&, r(zk, «, 3). Theorem 6.3 implies that

w(zy, 0) < allAllp = Ep(zr, o, B) <1,
Er(ap,a,B) <1 = p(zr,0) < V2a| Al p.

(Compare this to (6.6) in which [ is present in the second expression—a subtle but
very important difference when o < (3.) The following is therefore a nearly optimal
test for an acceptable Frobenius norm LS solution for any choice of o and 3:

allAllr
3Tl

As a consequence of Theorem 6.3 we can now determine almost exactly when an
iterate xy is an acceptable LS solution by using the result of Waldén, Karlson, and
Sun [18] in Lemma 6.1. Unfortunately, Lemma 6.1 gives an expression for u(xy,0)
that costs O(m?) flops to compute, and is thus too expensive to be useful in large
sparse applications. Nevertheless we can still use (6.9) to test the effectiveness of
LSQR’s stopping criteria 1 and 2 as well as our new condition LStestl (5.3). We
can also try to develop more effective stopping criteria for the iterative solution of
large sparse LS problems by finding bounds on or estimates for u(xy, ) instead of
&o.r(xk, @, B).

A few estimates of u(zy,00) exist in the literature; see, for example, [7, section
4] and the references therein. We point out that some of these can be generalized

to estimate p(zk,0), but to our knowledge none of these estimates is both provably

reliable and computable in O(mn) flops, so at present no estimate of wp(xg,0) is
truly suitable for use in large sparse applications. We leave the efficient and reliable

estimation of p(zy,0) for a future investigation.

S \/inF(xkaaaﬁ)'

nF(xka «, ﬁ) S

(6.8)

(6.9) LStest2:  p(zr,0) < al|Al|p, where 6 =
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7. Illustrations. To illustrate our results, we run LSQR on various test prob-
lems and plot at each iteration the following:

(i) the residual norm ||ry|,

(i) Stewart’s [[ATrg|l/||7ll,

(iii) the norm of the projections ||Pary| and || P17l

(iv) the ratio oy = ||ATr¢||/||Pare|| from (4.3).
The projections are computed by obtaining the QR factorization of A using MAT-
LAB’s built-in function qr, and the quantities |rx||, ||[AT7%|, || A2, and ||A|# are
computed explicitly. (In other words, we do not use LSQR’s approximation to the
above quantities, because our goal here is to illustrate the actual convergence behav-
ior, described in section 4.1, of the true ||rg| and ||ATrg||/||7]|.) We also show at
which iteration phases 1 and 2 end with vertical lines, indicating the first k£ for which
(4.7) and (4.8) hold, respectively. Admittedly, the O(u) term in (4.8) is somewhat
vague; for our illustrations we plot the vertical line at the first k for which || Par||
settles near u(|| A||2||zx ||+ [|b]]). Also note that only one vertical line is plotted in test
problems 1 and 4 because there is effectively no phase 2 or 1, respectively, in these
problems.

We use test problems 1 to 4 to illustrate how the effectiveness of LSQR’s stopping
criteria 1 and 2 in (3.2) depends on the size of the true residual norm ||#||. For
these simple test problems, each element of the matrix A € R390%120 ig randomly
chosen from a normal distribution with mean 0 and standard deviation 1, so that A is
almost certainly well-conditioned. This exhibits the interesting observation discussed
in section 4.1, and supports our explanation beautifully. Let s,, represent an n-vector
containing all ones, and let each element of an m-vector ¢,, be randomly chosen from
a normal distribution with mean 0 and standard deviation 1.

(i) In test problem 1, b= Asjag + 107 5t300 and ||| ~ 10714

(11) In test problem 2, b = Asyog + 10_10t300 and HTA” ~ 1079,
(iii) In test problem 3, b = Asjaq + 102309 and ||7|| ~ 10~%.
(iV) In test problem 4, b= A8120 + 100t300 and ||’I:H ~ 101.
Results for these test problems are illustrated in Figure 3.

We use test problems 5 to 8 to illustrate how increasing the condition number
ka(A) affects the behavior of ||7¢|| and [[AT7g||/||7k| in (3.2) and &) in (4.3). These
problems are set up so that they all have roughly the same true LS residual |7 ~ 1077,
and are presented by increasing condition number, with xa(A) ~ 7.1, 4.5 x 103,
1.5 x 108, and 3.8 x 10'2, respectively. Although the focus of this paper is not on
regularization of ill-conditioned problems, we include these examples to illustrate
the numerical behavior of LSQR, and our observation from section 4.1, on these
increasingly ill-conditioned problems.

For the test problems 5 to 8 we create A and b as in [12, section 8]. These problems
are called P(m,n,d,p). The matrix A € R™*"™ has singular values

oi = (LG —1+d)/d) -d/n)p,

where integer division by d is used to obtain repeated singular values. The true
solution Z and residual 7 are fixed, after which b is set to b = AZ + #. For all the
details see [12, p. 63]. Test problems 5 to 8 are P(500,200,4,1/2), P(800,200, 3, 2),
P(750,300,7,5), and P(400,150,6,9), respectively. Results for these problems are
illustrated in Figure 4.

For test problems 9 to 12 we use the large sparse sample problems Well1033,
Well1850, Tllc1033, and Tllc1850 from the Matrix Market [10], respectively. The
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—fe—  ratio 5), = [|[ATry||/||Pars]

=====  tolerance u(||All2||lz&l + l|bl])

Fi1G. 3. Test problems 1 to 4: well-conditioned examples with increasing true ||7|.

problems starting with “Well” denote well-conditioned problems, whereas those start-
ing with “Illc” denote ill-conditioned problems. The problems ending with the number
1033 involve a matrix A € R!033%320 whereas those ending with 1850 involve a ma-
trix A € R¥®0%712 Tp all these test problems we create the vector b as follows:
b=A[1,1,...,1)T+1078m,m—1,...,1]7. Results for these problems are illustrated
in Figure 5.

Each convergence plot in Figures 3 to 5 corresponds to one instance of a LS
problem. Tables 1 and 2 below give the number of iterations required to trigger the
following, for various values of o and 3:

(i) LSQR’s stopping criteria 1 and 2 from (3.2), in the Frobenius norm,
(ii) the new condition LStestl from (5.3),
(iii) the new condition LStest2 from (6.9).
The iteration counts in (i) above are given when the relevant norms in (3.2) are
computed explicitly (True) and using LSQR’s approximation (App.). Each row cor-
responds to an average number of iterations required, rounded to the nearest integer,
for the same matrix A with 100 different noisy vectors b = As,, + 107P¢,, (where s,
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B Test Problem 5: P(500,200,4,1/2) ) Test Problem 6: P(800,200,3,2)
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norm of projection ||Piry|| = |7
—te—  ratio 5 = [|[ATri|/||Paril|
----- tolerance u(||All2llzx]l + bl

FIG. 4. Test problems 5 to 8: increasingly ill-conditioned examples with ||#|| ~ 1077,

and t,, are defined above). The symbol oo is used when a particular condition is
never satisfied in any of the 100 tests, regardless of the number of LSQR iterations
performed. We compute the quantity p(zg, é) in (6.3), with 6 in Theorem 6.3, using
MATLAB’s built-in command svd.

We use test problems 1 to 4 in Table 1 (with p = 15, 10, 5, and 0, respectively) to
demonstrate the impact of the size of the true residual norm on the effectiveness of the
stopping criteria. We use test problems 9 and 11 in Table 2 (with p = 7) to test LSQR’s
stopping criteria on matrices from the Matrix Market. Ideally, methods such as LSQR
are applied to systems which (possibly after preconditioning) are well-conditioned, but
this is not always possible, and an understanding of the behavior of these methods
on ill-conditioned problems can be helpful in some practical cases, as well as giving
us greater insight into the general numerical behavior of these algorithms. For this
reason, we give numerical results for both a well-conditioned and an ill-conditioned
test problem in Table 2.

8. Discussion and conclusions. As a general trend, in the well-conditioned
test problems 1 to 5, the ratio 6y, = ||ATry||/||Park|| remains relatively constant. As
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FIG. 5. Test problems 9 to 12: sparse examples from the Matriz Market with ||#|| ~ 10~5.

the problems become more and more ill-conditioned, here in test problems 6 to 8, o
has a much more oscillatory behavior, as expected.

In most of the test problems, there is a very clear visual distinction in the con-
vergence plots between phases 1 and 2, and also between phases 2 and 3. In phase 1
we clearly observe that ||ry|| & ||Parg|| decreases while Stewart’s [|ATrg||/||7k| ~ 7
oscillates between the extreme singular values of A (which means it remains roughly
constant for the well-conditioned problems and can vary wildly for the ill-conditioned
problems). In phase 2 on the other hand, we see that ||ry|| ~ || P4 7x|| remains nearly
constant while |[ATry|/||rk| starts to decrease. Note that in phase 2 ||ATry|/||7|l
decreases at almost exactly the same rate as ||Pary||, as suggested by Lemma 4.1 and
the fact that ||r|| = ||7| is nearly constant in phase 2. Also note that there is no
phase 2 in test problem 1 because ||7|| satisfies (4.9) when k = 63, and no phase 1 in
test problem 4 because ||ro|| = ||7||; see the comments after (4.6). Finally, in phase 3,
both ||rx|| and || ATr||/||7%|| remain nearly constant.

The above patterns are most obvious in the well-conditioned problems and less
so in the very ill-conditioned problems. For example, in test problems 7 and 8, oy
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TABLE 1
The effectiveness of LSQR’s stopping criteria depends on the size of ||7|].

Test Parameters LSQR 1 LSQR 2 LStestl | LStest2
problem @ B True App. | True App. (5.3) (6.9)
107 107 13 13 00 73 13 13
10—8 104 18 18 o 85 18 18
1 108 10-8 30 30 o0 85 30 30
|7 =~ 10~ | 10712 1078 34 34 00 98 34 34
107 10714 53 53 oo 103 53 53
10 % 101 13 13 58 58 13 13
108 10— 18 18 o0 72 18 18
2 10-8 10-8 30 30 o0 72 30 30
l#| ~10=2 | 102 1078 34 34 o0 84 34 34
1014 1014 00 oo o0 91 53 53
10~4 10~1 13 13 38 38 13 13
10-8 10— 18 18 54 54 18 18
3 108 10-8 0o 00 54 54 30 30
|I#|| ~10=* | 10-12 10-8 00 00 00 69 34 34
10— 10-14 ) o o 75 53 53
107 107 00 0o 13 13 14 13
10—8 104 ) o 30 30 18 18
4 108 10-8 0o oo 30 30 31 30
l#]| =~ 10" 10712 1078 00 00 46 46 35 35
107 10714 0o 00 54 54 54 53
TABLE 2

Testing LSQR’s stopping criteria on problems from the Matriz Market.

Test Parameters LSQR 1 LSQR 2 LStestl | LStest2
problem «a 8 True App. | True App. (5.3) (6.9)
10~4 10~4 69 69 172 172 69 69
9 10-8 10~4 111 111 207 207 111 111
Well1033 108 108 159 159 207 207 158 158
#||~10-6 | 10712 10°8 o0 o0 0o 242 164 164
lI71]
10~ 1014 0 0 0o 267 206 206
10~4 10~4 43 43 1346 1346 43 43
11 10—8 10—4 110 110 | 3563 3562 110 110
111c1033 108 108 | 3066 3066 | 3563 3562 3045 3049
|| ~10=¢ | 10712 10°8 00 00 co 4049 3154 3154
10~ 10714 00 00 0o 4610 3610 3614

oscillates a great deal and ||Pary|| decreases very slowly and in a staircase pattern,
making the boundaries between successive phases less clear.

We note that the amplitude of the phase 1 oscillations in &5 (and from (4.6)
also in [[ATrg||/|l7k|]) are sometimes very large when LSQR is near stalling; see, for
example, the plots for test problems 6 to 9. It would be interesting (but probably
very difficult) to try to understand this phenomenon more clearly.

It is important to note that in every plot, ||Park|| decreases monotonically to a
level determined by the machine precision (see the comments following (4.2), (4.8),
and Theorem 5.1), after which it remains nearly constant. This is a property of the
minimum residual method, here LSQR. One contribution of this paper is to show
how this decrease is first exhibited in the decrease of ||rg|| until it reaches its compu-
tational plateau, and is then exhibited in the decrease of the previously fairly level
on average, but sometimes quite oscillatory, || ATr¢||/|7x||. Since || Pary|| itself is not
in practice directly available (see the comments in section 5), this might in itself be
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useful information. Note from (4.2) and Lemma 4.1 that this is essentially a property
of ||7]] and the decreasing |||, not a property reserved to LSQR.

We note that these examples and this analysis shed light on the convergence of all
well-behaved minimum residual iterative methods for the LS problem. In particular
they give a good understanding of why Stewart’s ||ATrg||/||rx|| usually shows no
significant improvement at all during what we have described as phase 1. In fact,
only when |7 has effectively reached its plateau does Stewart’s ||ATrg||/||rx|| start
to decrease—which it tends to do throughout phase 2—until it too finally reaches
a plateau in phase 3. We have thus provided an explanation for this previously
puzzling result for minimum residual LS iterations. Thinking of the convergence of
LSQR in terms of projections of the residuals has also led to the potentially very
useful Theorems 5.1 and 5.2.

Theorem 6.3 allows us to determine almost exactly at which iteration xj; is an
acceptable solution—although this comes at a very high computational cost. As
mentioned in section 7, Tables 1 and 2 give the number of iterations required to trigger
the various stopping criteria. By examining these two tables to find at which iteration
the condition LStest2 is first satisfied, we see that LSQR’s stopping criteria 1 and 2 in
(3.2) can be much too pessimistic. In the nearly compatible test problem 1, LSQR’s
stopping criterion 1 is triggered exactly when an acceptable solution is obtained.
This is not surprising considering that this criterion is ideal for compatible systems;
see (3.3) and (3.5). On the other hand, in the very large-residual test problem 4,
it is criterion 2 that is more reliable because there is effectively no phase 1, and
| ATry||/||rx| starts decreasing from the first few iterations. It is still triggered a little
late when we set @ < [ (which is usually reasonable in practical applications, as
discussed in section 6). This is to be expected because the quantity ||ATry|/||rx| is
a backward error in A only (see the comments after (3.7)) and thus LSQR’s stopping
criterion 2 does not use § in any way.

Away from these two extremes, however, both of LSQR’s stopping criteria (with
norms computed explicitly) can be much too pessimistic. In fact, in all problems we
have tested in which

u(l Al #ll2] + lol]) < [I7]] < 7ol

neither the residual norm ||ry|l2 nor Stewart’s |[ATrg||/|7x|| reaches its respective
tolerances in (3.2) when o and ( are chosen sufficiently small. (For example, in all
test problems except problems 1 and 4, in Tables 1 and 2 there are cases where both
“True” LSQR stopping criteria fail to detect a backward stable iterate.) In contrast,
our two new conditions LStest1 (5.3) and LStest2 (6.9) detect acceptable iterates for
all choices of a and [ satisfying «, 5 > O(u).

We note that stopping criterion 2 in (3.2) is usually triggered if LSQR’s approz-
imation to ||ATry||/||rk| is used to test the criterion, because this approximation
does not usually plateau at the end of phase 2 (while ||ATr.||/||rx| actually does);
see Figure 2. In this case convergence is reported, even though in fact the actual
| AT /||Irell > al|All2,F. Criterion 2 using LSQR’s approximation to || ATr/||rkl
is usually triggered in practice in what we have called phase 3, some iterations after
LSQR has actually converged to a backward stable LS iterate.

Each iteration count in Tables 1 and 2 corresponds to an average using 100 dif-
ferent noisy vectors b. The iteration count for each individual test was almost always
within ~ 5% of the average. In almost all of our numerical tests, our new conditions
LStestl and LStest2 are triggered at almost exactly the same iteration. This seems
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to indicate that the asymptotically optimal criterion LStestl (¢ p(zk, a, 8) < 1 from
(5.3)) is just as reliable as the criterion LStest2 (u(zx, ) < a||A from (6.9)), which
we proved necessary and sufficient to within a factor of v/2 in section 6.

Finally, we note that although the above new conditions are very reliable for
detecting when an acceptable LS solution has been obtained, neither can at present
be estimated both reliably and efficiently enough to be used in practical large sparse
applications. In the future we intend to examine whether reliable estimates of || Por]|
and p(xg, 9) can be computed efficiently. We are optimistic that this is the case for
[|Park||, as noted in the last three paragraphs of section 5. Such estimates could be
used in LStest]l and LStest2 and would make ideal stopping criteria for the iterative
solution of large sparse LS problems.
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and suggestions have greatly improved the paper.
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