
Digital Object Identifier (DOI) 10.1007/s002110000236
Numer. Math. (2001) 88: 319–345 Numerische

Mathematik

Componentwise perturbation analyses
for the QR factorization�

Xiao-Wen Chang, Christopher C. Paige

School of Computer Science, McGill University, Montreal, Quebec, Canada H3A 2A7;
e-mail: chang@cs.mcgill.ca, paige@cs.mcgill.ca

Received April 11, 1999 / Published online October 16, 2000 –c© Springer-Verlag 2000

Summary. This paper gives componentwise perturbation analyses forQ
andR in the QR factorizationA = QR,QTQ = I,R upper triangular, for
a given realm×nmatrixA of rankn. Such specific analyses are important
for examplewhen the columnsofAare badly scaled. First order perturbation
bounds are given for bothQ andR. The analyses more accurately reflect
the sensitivity of the problem than previous such results. The condition
number forR is bounded for a fixedn when the standard column pivoting
strategy is used. This strategy also tends to improve the condition ofQ,
so usually the computedQ andR will both have higher accuracy when we
use the standard column pivoting strategy. Practical condition estimators are
derived. The assumptions on the form of the perturbation∆A are explained
and extended. Weaker rigorous bounds are also given.

Mathematics Subject Classification (1991):15A23, 65F35

1 Introduction

The QR factorization is an important tool in matrix computations (see for
example [6, Chap. 5]): given anm×n real matrixA with full column rank,
there exists a uniquem × n real matrixQ with orthonormal columns, and
a unique nonsingular upper triangularn × n real matrixR with positive
diagonal entries such that

A = QR.
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The matrixQ is referred to as the orthogonal factor, andR the triangular
factor.

Let∆A be anm×n real matrix such thatA+∆A still has full column
rank, thenA + ∆A has the unique QR factorization

A + ∆A = (Q + ∆Q)(R + ∆R),

where(Q + ∆Q)T(Q + ∆Q) = I andR + ∆R is upper triangular with
positive diagonal elements. The goal of the perturbation analysis for the
QR factorization is to determine bounds on‖∆Q‖ (or |∆Q|) and‖∆R‖
(or |∆R|) in terms of (a bound on)‖∆A‖ (or |∆A|), where for a matrix
C = (cij), |C| is defined by(|cij |).

The perturbation analysis for the QR factorization has been considered
by several authors.Given (aboundon)‖∆A‖, the first resultswerepresented
by Stewart [12]. Analyses based on bounds on‖∆A‖ are sometimes called
normwise or norm-based perturbation analyses. Stewart’s results weremod-
ified and improved by Sun [14]. Similar results to those of Sun [14] were
obtained by Stewart [13] by a different approach. Later Sun [16] gave new
strict perturbation bounds forQ alone. More recently Changet al. [4] gave
newfirst-order perturbation analyses using the so called refinedmatrix equa-
tion and matrix-vector equation approaches. Analyses based on bounds on
|∆A| have been called componentwise analyses. Given a bound on|∆A|,
Sun [15] presentedstrict but somewhat complicated bounds on|∆Q| and
|∆R|. In [18], Zha considered the following class of perturbations:

|∆A| ≤ εC|A|; C ∈ Rm×m, 0 ≤ cij ≤ 1,(1.1)

and presented first-order perturbation bounds on‖∆Q‖ and ‖∆R‖. An
important motivation for considering such a class of perturbations is that the
equivalent backward rounding error from a rounding error analysis of the
standard QR factorization fits in this class, see Higham [7, Chap. 18] and
the last paragraph of Sect. 2 here.

Themain purpose of this paper is to establish newfirst-order perturbation
analyses under the condition (1.1). The perturbation bounds that are derived
here are significantly sharper than the equivalent results in Zha [18, Theo-
rem 2.1]. Simplerigorousperturbation bounds are also presented. Thus the
present paper will, among other things, increase our understanding of the
errors we can expect in computingQ andR in A = QR.

In Sect. 2 we discuss the generality of the class of perturbations (1.1),
how this class may be extended, and how the equivalent backward rounding
error for the Householder QR factorization belongs to this class. In Sect. 3
we define our notation. In Sect. 4 we obtain expressions forQ̇(0) andṘ(0)
in the QR factorizationA+ tG = Q(t)R(t). These basic sensitivity expres-
sions will be used to obtain our new perturbation bounds in Sects. 7 and 8,
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but in Sect. 5 they are used to derive simple 2- and F-norm versions of Zha’s
results [18, Theorem 2.1] on the sensitivity ofR andQ. Section 6 derives
basic rigorous bounds that will help us understand some of the more refined
first-order bounds. In Sect. 7 we give a refined perturbation analysis forQ,
showing why the standard column pivoting strategy forA can be beneficial
for certain aspects of the sensitivity ofQ. In Sect. 8 we analyze the perturba-
tion inR by thematrix–vector equation approach, thenwe combine thiswith
thematrix equation approach to get useful estimates. The ideas behind these
two approaches were discussed in the norm-based perturbation analysis for
the QR factorization [4]. Here these approaches show that the sensitivity of
R can be significantly improved by pivoting. We give numerical results and
suggest practical condition estimators in Sect. 9.We summarize our findings
and point out possible future work in Sect. 10.

2 The class of perturbations, and rounding effects

We now discuss the generality of the assumption (1.1). TakingC = I in
(1.1) gives bounds on each element|∆aij | of the form

|∆A| ≤ ε |A|,
which covers the case of small relative errors in the elements. Now suppose
that we only have the column information

‖∆aj‖1 ≤ ε ‖aj‖1, j = 1, . . . , n.

This implies|∆aij | ≤ ‖∆aj‖1 ≤ ε eT|aj | with e = [1, 1, . . . , 1]T, which
implies (1.1) withC = eeT. Similarly (1.1) withC = eeT implies‖∆aj‖1
≤ εm‖aj‖1. Since for anyv ∈ Rm,

‖v‖∞ ≤ ‖v‖1 ≤ m1/2‖v‖2 ≤ m1/2‖v‖1 ≤ m3/2‖v‖∞,

etc., we see that (1.1) essentially handles any information of the form

‖∆aj‖p ≤ ε ‖aj‖p, j = 1, . . . , n, p = 1, 2,∞.(2.1)

Thus (1.1) is an elegant way of handling most bounds on the elements or the
columns ofA. However to cover cases where some columns of∆A have
different relative bounds than others, as might happen when the columns
of A are obtained by experimental observation at different times or with
different instruments, we can extend (1.1) to

|∆A| ≤ εC|A|D; C ∈ Rm×m, 0 ≤ cij ≤ 1; D=diag(δ1, . . . , δn) > 0.
(2.2)
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This then includes the extension of (2.1)

‖∆aj‖p ≤ ε δj‖aj‖p, j = 1, . . . , n.(2.3)

For the QR factorizationA = QR, (2.2) leads to

|∆A| ≤ εC|Q|·|R|D (for clarity “·” indicates multiplication),
and where Zha [18] considered‖ |R| · |R−1| ‖p, which is independent of
column scaling, we can define the (extended) condition number

condp(R,D) ≡ ‖ |R|·D·|R−1| ‖p, p = 1, 2,∞.(2.4)

This condition number is also independent of column scaling, and can be
arbitrarily smaller than‖RD‖p‖R−1‖p. For brevity we give the analysis
withoutD and assume (1.1) only, but all the results can trivially be extended
to changes inA of the form (2.2).

The equivalent backward error for a numerically stable QR factorization
is important for this exposition. For anm×nmatrixA of rankn letA = QR
be the exact, andA ≈ QcRc the computed QR factorization ofA obtained
via Householder transformations. Higham [7, Theorem 18.4]) showed

A + ∆A = Q̃Rc, |∆A| ≤ εC|A|, ε = γm,nu,(2.5)

whereQ̃TQ̃ = I, γm,n is a moderate constant depending onm andn, u
is the unit roundoff,C ≥ 0 and‖C‖F = 1. The bound on∆A has the
form (1.1), so the perturbation analyses here will allow us to obtain good
bounds on the errors̃Q − Q andRc − R. Also the computedQc satisfies
Qc = Q̃ + ∆, where|∆| ≤ γm,nuC2|Q̃| with C2 ≥ 0, ‖C2‖F = 1. Since
Qc − Q = ∆ + (Q̃ − Q) we have

‖Qc − Q‖F ≤ n1/2γm,nu + ‖Q̃ − Q‖F .(2.6)

For the whole of this paper we assume perturbations satisfying (1.1).

3 Notation

In this paper, for any matrixX ∈ Rm×n, we denote by(X)i,: the ith row
of X, and by(X):,j thejth column ofX.

For any nonsingular matrixX we define

κ2(X) ≡ ‖X‖2‖X−1‖2, cond2(X) ≡ ‖ |X|·|X−1| ‖2.(3.1)

Notice‖ |X−1|·|X| ‖ is the standard Bauer–Skeel condition number, but the
present variant seems more intuitive for column scaling.
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For anm × n matrixQ such thatQTQ = I we can findQ̄ such that
[Q, Q̄] is square and orthogonal, then define

η1 ≡ ‖ |QT|·C ·|Q| ‖F , η2 ≡ ‖ |Q̄T|·C ·|Q| ‖F , η3 ≡ ‖C|Q| ‖F .(3.2)

Since‖ |QT| ‖F = ‖ |Q| ‖F = n1/2, ‖ |Q̄T| ‖F = (m − n)1/2, and in (1.1)
‖C‖F ≤ m, if we use the fact that‖AB‖F ≤ ‖A‖F ‖B‖F we obtain

η1 ≤ mn, η2 ≤ ((m − n)n)1/2m, η3 ≤ mn1/2.

To simplify the presentation, for anyn×nmatrixX, we define the upper
and lower triangular matrices

up(X) ≡




1
2x11 x12 · x1n

0 1
2x22 · x2n

· · · ·
0 0 · 1

2xnn


 , low(X) ≡ up(XT)T,(3.3)

so thatX = low(X)+up(X). For anyn×n (n > 1) matrixX and positive
definiteD = diag(δ1, . . . , δn), we can show (for a proof, see Lemma 5.1 in
[4]; it is straightforward by considering elements)

‖up(X)+D−1up(XT)D‖F ≤ ρD‖X‖F , ρD ≡
[
1+ max

1≤i<j≤n
(δj/δi)2

]1/2
.

(3.4)
In particular withD = I,

‖up(X + XT)‖F ≤
√

2 ‖X‖F ;

‖up(X)‖F ≤ 1√
2
‖X‖F if X = XT.(3.5)

It is also easy to see that for anyn × n (n > 1) matrixX

‖X − up(X + XT)‖F = ‖low(X) − [low(X)]T‖F ≤
√

2 ‖X‖F .(3.6)

Whenn = 1, we have the following equalities:

‖up(X)+D−1up(XT)D‖F =‖up(X+XT)‖F = 2 ‖up(X)‖F =‖X‖F ,

‖X − up(X + XT)‖F = 0.

In this paper we assume that the matrixA has more than one column, i.e.,
n > 1. The casen = 1 is trivial and straightforward bounds can be derived
by using these last equalities.
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4 Rate of change ofQ and R

Here we derive the basic results on howQ andR change asA changes. The
following theorem summarizes several results that we use later.

Theorem 4.1 LetA ∈ Rm×n be of full column rankn with the QR factor-
izationA = QR, and let∆A be a realm × n matrix satisfying

∆A = εG; ε ≥ 0, |G| ≤ C|A|, C ∈ Rm×m, 0 ≤ cij ≤ 1.(4.1)

LetA† denote the Moore-Penrose inverse ofA. If

ε ‖ |A†|·C ·|A| ‖2 < 1,(4.2)

thenA + tG has the unique QR factorization

A(t) ≡ A + tG = Q(t)R(t), QT(t)Q(t) = I, |t| ≤ ε,(4.3)

where
RTṘ(0) + ṘT(0)R = RTQTG + GTQR,(4.4)

Ṙ(0) = up[QTGR−1 + (QTGR−1)T]R,(4.5)

Q̇(0) = GR−1 − Qup[QTGR−1 + (QTGR−1)T].(4.6)

In particular,A + ∆A has the unique QR factorization

A + ∆A = (Q + ∆Q)(R + ∆R),(4.7)

where∆R and∆Q satisfy

∆R = εṘ(0) + O(ε2),(4.8)

∆Q = εQ̇(0) + O(ε2).(4.9)

Proof. Since‖X‖2 ≤ ‖|X|‖2, if (4.2) holds, then for all|t| ≤ ε,

‖tA†G‖2 ≤ ε‖ |A†|·C ·|A| ‖2 < 1.

Also from

QT(A + tG) = R + tQTG = R(I + tR−1QTG) = R(I + tA†G)

we see thatQT(A + tG) is nonsingular. Hence for all|t| ≤ ε, A + tG has
full column rank and the unique QR factorization (4.3). Takingt = ε shows
that (4.7) is unique, and thenR(0) = R, R(ε) = R + ∆R,Q(0) = Q and
Q(ε) = Q + ∆Q.

It is easy to verify thatQ(t) andR(t) are twice continuously differen-
tiable for |t| ≤ ε from a standard algorithm for the QR factorization. If we
differentiateR(t)TR(t) = A(t)TA(t) with respect tot and sett = 0, and
useA = QR, we obtain (4.4). This we will see is a linear equationuniquely
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defining the elements of upper triangularṘ(0) in terms of the elements of
QTG. From upper triangulaṙR(0)R−1 in

Ṙ(0)R−1 + (Ṙ(0)R−1)T = QTGR−1 + (QTGR−1)T,

we see with (3.3) that (4.5) holds. Differentiating (4.3) att = 0 gives

G = QṘ(0) + Q̇(0)R,

which with (4.5) gives (4.6). Finally the Taylor expansions forR(t) and
Q(t) aboutt = 0 give (4.8) and (4.9) att = ε. ��

The perturbation∆A in (4.1) satisfies (1.1), and we will always assume
(4.2) holds, so the results of this theoremwill apply for the rest of this paper.

5 Zha’s first-order bounds

We can use the notation of (3.1) and (3.2) to derive the combined 2-norm
and F-norm results which are analogous to Zha’s [18] first-order consistent
monotone norm results, but are a little simpler in form and derivation. We
then give examples to show how these can be too pessimistic. From (4.5),
we have by using (3.5) and (4.1) that

‖Ṙ(0)‖F ≤ ‖up[QTGR−1 + (QTGR−1)T]‖F ‖R‖2

≤
√

2 ‖QTGR−1‖F ‖R‖2 ≤
√

2 ‖ |QT|·C ·|A|·|R−1| ‖F ‖R‖2

≤
√

2 ‖ |QT|·C ·|Q|·|R|·|R−1| ‖F ‖R‖2 ≤
√

2 η1cond2(R)‖R‖2.

Similarly, from (4.6), (3.6), (4.1), if[Q, Q̄] is square and orthogonal,

‖Q̇(0)‖2
F = ‖QTQ̇(0)‖2

F + ‖Q̄TQ̇(0)‖2
F

= ‖QTGR−1−up[QTGR−1+(QTGR−1)T]‖2
F +‖Q̄TGR−1‖2

F

≤ 2 ‖QTGR−1‖2
F + ‖Q̄TGR−1‖2

F ≤ 2 ‖GR−1‖2
F ,

‖Q̇(0)‖F ≤
√

2 ‖C|Q|·|R|·|R−1| ‖F ≤
√

2 η3cond2(R).

Thus with (4.8) and (4.9) we get the following bounds:

‖∆R‖F

‖R‖2
≤ η1ϕ(A)ε + O(ε2),(5.1)

‖∆Q‖F ≤ η3ϕ(A)ε + O(ε2),(5.2)

ϕ(A) ≡
√

2 cond2(R).(5.3)

Apart from the multipliersη1 andη3 (see also (6.6), (6.5)),ϕ(A) can be
thought of as (an upper bound on) the condition number for bothQ andR
(for small enough∆A) whenwe use the combination of2 andF norms. The
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constant
√

2 involved in the definition ofϕ(A)maybe removed, but we keep
it heresince it is useful for comparisonwith themodified results tobegiven in
Sect. 8. Notice thatϕ(A) is invariant under any column scaling ofA. This is
a significant improvement on the normwise perturbation results published
before [4] when the perturbation∆A satisfies (1.1), but sometimes these
perturbation bounds do not reflect the true sensitivity of theQR factorization
very well, as we see from the following example.

Example 5.1Consider the following two matrices (the first one is quoted
from [18], the new one gives even worse results).

A1 =


1 1

0 10−10

1 1


 , A2 =

[
1 1−10−10

1 1+10−10

]
.(5.4)

Computing theQR factorization ofA1 andA2 inMATLABwith unit round-
off u ≈ 1.11 × 10−16 (all our computations were performed in MATLAB
5.2 on a Pentium-II running LINUX), we obtained the following computed
factors, shown here to 5 figures (to make the diagonal elements ofR1c and
R2c positive, some signs have been altered).

Q1c =


7.0711e−01 −1.2539e−06

0 1.0000e+00
7.0711e−01 1.2539e−06


 , R1c =

[
1.4142 1.4142e+00
0 1.0000e−10

]
,

Q2c =
[

7.0711e−01 −7.0711e−01
7.0711e−01 7.0711e−01

]
, R2c =

[
1.4142 1.4142e+00
0 1.4142e−10

]
.

These have errors

eQ1 = ‖Q1c − Q1‖F ≈ 1.7×10−6, eR1 = ‖R1c−R1‖F

‖R1‖2
≈ 2.2 × 10−16,

eQ2 = ‖Q2c − Q2‖F ≈ 1.9×10−16, eR2 = ‖R2c−R2‖F

‖R2‖2
≈ 3.3 × 10−17,

(5.5)

whereA1 = Q1R1 andA2 = Q2R2 are the exact QR factorizations. The
condition numbers (5.3) are

ϕ(A1) ≈ 4.0 × 1010, ϕ(A2) ≈ 2.8 × 1010.(5.6)

MATLAB computes the QR factorization using Householder transforma-
tions. Comparing (2.5) with (4.7) we see∆Q = Q̃−Q and∆R = Rc −R,
so (2.6) and (5.2) withε = γm,nu in (2.5) show that

‖Qc − Q‖F ≤ γ′
m,nϕ(A)u + O(u2),(5.7)
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whereγ′
m,n is amoderate constant depending onm andn. Finally (5.1) with

ε = γm,nu in (2.5) shows that

‖Rc − R‖F

‖R‖2
≤ γ′′

m,nϕ(A)u + O(u2),(5.8)

where againγ′′
m,n is a moderate constant depending onm andn. For more

details of such arguments, see [7, pp.367–368, 382] and [18]. From the
computed results, we see forQ1 the bound (5.7) matches the actual error
eQ1 in (5.5) very well, but forQ2,R1 andR2 the bounds (5.7) and (5.8) are
bad overestimates of the corresponding errors.��
Although thematrices (5.4) are contrived, they do represent a fairly common
case whenA has a very large condition number: each matrix has only one
verysmall singular value.Bychoosingsuchexampleswith small dimensions
we are able to illustrate the drawbacks of the bounds in [18] simply and
directly, showing that it is necessary to obtain stronger perturbation bounds.

6 Rigorous bounds

Later we will derive tighter first-order bounds, but in order to explain some
subtleties of these we first obtain some simple but weak rigorous bounds.
From the QR factorization (4.7), withA = QR,

RT∆R + ∆RTR + ∆RT∆R = RTQT∆A + ∆ATQR + ∆AT∆A.

Multiplying on the left byR−T and the right byR−1 we see that

∆RR−1 + R−T∆RT = QT∆AR−1 + R−T∆ATQ

+ R−T (∆AT∆A − ∆RT∆R)R−1.

Since∆RR−1 is upper triangular, this gives with (3.3)

∆RR−1 = up[QT∆AR−1 +R−T∆ATQ+R−T (∆AT∆A−∆RT∆R)R−1].

Using (3.5) we obtain

‖∆RR−1‖F ≤
√

2 ‖QT∆AR−1‖F + (‖∆AR−1‖2
F + ‖∆RR−1‖2

F )/
√

2,√
2 ‖∆RR−1‖F ≤ ‖∆AR−1‖F (2 + ‖∆AR−1‖F ) + ‖∆RR−1‖2

F .

(6.1)

Also from (Q + ∆Q)(R + ∆R) = QR + ∆A we see that

∆QR + (Q + ∆Q)∆R = ∆A,

∆Q = ∆AR−1 − (Q + ∆Q)∆RR−1,

‖∆Q‖F ≤ ‖∆AR−1‖F + ‖∆RR−1‖F .(6.2)
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If we replace∆A here bytG, |t| ≤ ε satisfying (4.2) as in Theorem 4.1,
then (6.1) and (6.2) still hold with∆Q and∆R continuous functions oft.
Let ρ(t) ≡ ‖∆RR−1‖F , δ(t) ≡ ‖∆AR−1‖F , β(t) ≡ δ(t)(2 + δ(t)), then
ρ(0) = δ(0) = β(0) = 0, and from (6.1)

ρ(t)(
√

2 − ρ(t)) ≤ β(t).

Here the left hand side has its maximum of1/2 with ρ(t) = 1/
√

2. If
β(t) < 1/2 for |t| ≤ ε then the left hand side cannot attain its maximum,
and so for|t| ≤ ε, ρ(t) < 1/

√
2. This means that

√
2 − ρ(t) > 1/

√
2, and

ρ(t) ≤ β(t)/(
√

2−ρ(t)) ≤
√

2β(t) =
√

2δ(t)(2+δ(t)), |t| ≤ ε.(6.3)

But with δ(t) ≥ 0, β(t) ≡ δ(t)(2 + δ(t)) = (δ(t) + 1)2 − 1 < 1/2 if and
only if δ(t) <

√
3/

√
2 − 1, and the following rigorous bounds hold.

Theorem 6.1 Assume that the conditions and assumptions of Theorem 4.1
hold together with

ε‖GR−1‖F ≡ ‖∆AR−1‖F <
√

3/
√

2 − 1 ≈ .3178.(6.4)

ThenA + ∆A = A + εG has the unique QR factorization

A + ∆A = (Q + ∆Q)(R + ∆R),

where with the notation of (3.1) and (3.2),

‖∆Q‖F ≤ (1 +
√

2 +
√

3)η3cond2(R)ε,(6.5)
‖∆R‖F

‖R‖2
≤ (

√
2 +

√
3)η3cond2(R)ε.(6.6)

Proof. Since|G| ≤ C ·|Q|·|R| from (4.1), (6.3) and (6.4) show

‖∆RR−1‖F ≤ √
2 ‖∆AR−1‖F (2+

√
3/2−1) = (

√
2+

√
3)‖∆AR−1‖F

≤ (
√

2 +
√

3)ε ‖C|Q|·|R|·|R−1|‖F ≤ (
√

2 +
√

3)η3cond2(R)ε,

This result with (6.2) gives (6.5). Finally (6.6) follows since
‖∆R‖F ≤ ‖∆RR−1‖F ‖R‖2. ��

Remark 6.2The bounds (6.5) and (6.6) are clearly the rigorous versions of
the first order bounds (5.2) and (5.1), which were analogous to Zha’s [18,
Theorem 2.1] results. Thus (6.5) and (6.6) are just as weak as (5.2) and (5.1)
were shown to be by Example 5.1.��
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7 Refined analysis forQ

The expression (5.2) gives an importantoverall bound on the change∆Q
in Q. But by looking at how∆Q is distributed betweenR(Q), the range
of Q, and its orthogonal complementR⊥(Q), we will obtain better results.
These show more clearly where any ill-conditioning lies.

Take amatrixQ̄ ∈ Rm×(m−n) such that[Q, Q̄] is square and orthogonal.
Then from (4.9) we see that

∆Q = εQQTQ̇(0) + ε Q̄Q̄TQ̇(0) + O(ε2),

and the key is to bound the first term on the right separately from the second.
SinceQ is an orthonormal matrix,QTQ̇(0) = 0 whenn = 1, and results
involvingQTQ̇(0) will only be nontrivial whenn > 1.

For the part ofQ̇(0) orthogonal toR(Q), we see from (4.6) that

Q̄TQ̇(0) = Q̄TGR−1,(7.1)

and combining this with (4.1) gives

‖Q̄Q̄TQ̇(0)‖F = ‖Q̄Q̄TGR−1‖F ≤ ‖ |Q̄T|·C ·|Q| ‖F ‖ |R|·|R−1| ‖2.

Thus with (3.2) and (3.1) we have

Q̄Q̄T∆Q = εQ̄Q̄TQ̇(0) + O(ε2),
‖Q̄Q̄T∆Q‖F ≤ η2cond2(R)ε + O(ε2),(7.2)

andcond2(R) can be regarded as the condition number for the part of∆Q
in R(Q̄). Note the similarity with (5.2).

Now we deal with that part of∆Q lying in R(Q), first we show there is
an importantlowerbound on‖QQT∆Q‖2. SinceQ+∆Q has orthonormal
columns,

(Q + ∆Q)T(Q + ∆Q) = I + QT∆Q + ∆QTQ + ∆QT∆Q = I,

‖∆QT∆Q‖2 = ‖∆Q‖2
2 = ‖QT∆Q + ∆QTQ‖2 ≤ 2 ‖QT∆Q‖2,(7.3)

and we have the useful lower bound

‖QQT∆Q‖2 = ‖QT∆Q‖2 ≥ 1
2
‖∆Q‖2

2.

To obtain a good upper bound, we will manipulate the equations to avoid
using the triangle equality (||X + Y ‖ ≤ ‖X‖ + ‖Y ‖) etc.where possible.
We see from (4.6) and (3.3) that

QTQ̇(0) = QTGR−1 − up[QTGR−1 + (QTGR−1)T]
= low(QTGR−1) − [low(QTGR−1)]T,(7.4)
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which is skew symmetric with clearly zero diagonal. Now partitionQ, G
andR as follows

Q =
n − 1 1
[Qn−1, q], G =

n − 1 1
[Gn−1, g], R =

n − 1 1[
Rn−1 r

0 rnn

]
.

This allows us to rewrite (7.4) as

QTQ̇(0) = low([QTGn−1R
−1
n−1, Q

T(−Gn−1R
−1
n−1r + g)/rnn])

− {low([QTGn−1R
−1
n−1, Q

T(−Gn−1R
−1
n−1r + g)/rnn])}T

= low([QTGn−1R
−1
n−1, 0]) − {low([QTGn−1R

−1
n−1, 0])}T.(7.5)

From (4.1) it follows that

|Gn−1| ≤ C|Qn−1|·|Rn−1|,(7.6)

and using (3.6), we have from (7.5) and (7.6) that

‖QQTQ̇(0)‖F ≤
√

2 ‖QTGn−1R
−1
n−1‖F

≤
√

2 ‖ |QT|·C ·|Qn−1| ‖F ·‖ |Rn−1|·|R−1
n−1| ‖2

≤
√

2 ‖ |QT|·C ·|Q| ‖F ‖ |Rn−1|·|R−1
n−1| ‖2.

This with (4.9), (3.2) and (3.1) gives our bound

‖QQT∆Q‖F ≤
√

2 η1cond2(Rn−1)ε + O(ε2).(7.7)

If we define
κQ(A) ≡

√
2 cond2(Rn−1),(7.8)

then we can regard this as the the condition number (for small enough∆A)
for that part of∆Q in R(Q), and summarize the results forQ.

Theorem 7.1 Suppose all the assumptions of Theorem 4.1 hold, andQ̄ ∈
Rm×(m−n) is a matrix such that[Q, Q̄] is orthogonal. Then
A + ∆A = A + εG has the unique QR factorization

A + ∆A = (Q + ∆Q)(R + ∆R),

such that

‖Q̄Q̄T∆Q‖F ≤ η2 cond2(R)ε + O(ε2),(7.9)
1
2
‖∆Q‖2

2 ≤ ‖QQT∆Q‖F ≤ η1κQ(A)ε + O(ε2).(7.10)

If ε‖GR−1‖F ≡ ‖∆AR−1‖F <
√

3/
√

2 − 1 holds as well, then

‖∆Q‖F = [‖QQT∆Q‖2
F+‖Q̄Q̄T∆Q‖2

F ]1/2 ≤ (1+
√

2+
√

3)η3cond2(R)ε.
(7.11)
Here η1, η2 and η3 are defined in(3.2), cond2(·) is defined in(3.1), and
κQ(A) is defined by(7.8). ��
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Proof. The unique QR factorization follows from Theorem 4.1, (7.9) is just
(7.2), (7.10) follows from (7.3) and (7.7)–(7.8), while (7.11) is just (6.5) in
Theorem 6.1, since (6.4) holds.��

In some problems we are interested in the change inQ lying in R(Q),
that isQQT∆Q. For example whenA is squareQ̄ is nonexistent, and the
change inQ necessarily lies inR(Q). Theorem 7.1 shows the upper bound
on‖QQT∆Q‖F can be smaller than was previously thought in for example
[18], see (5.2). In particular ifA has only one small singular value and
its columns are not badly scaled (both matrices in Example 5.1 are of this
form), and we use the standard column pivoting strategy in computing the
QR factorization (see, for example, [6, p248]), then usually we will have
cond2(Rn−1) � cond2(R). For the twomatrices inExample 5.1, the values
of cond2(Rn−1)are1and1, while the values ofcond2(R)are about3×1010

and2 × 1010, with or without column pivoting.
In some special cases standard column pivoting may not give

cond2(Rn−1) � cond2(R), for example the Kahan matrices (see [10]).
For these a rank revealing pivoting strategy such as in [9] is required to
obtain a significant improvement ofcond2(Rn−1) overcond2(R), see the
κQ(A) orκQ(AP ) (

√
2 cond2(Rn−1)) andϕ(A) orϕ(AP ) (

√
2 cond2(R))

columns in Tables 9 and 10 of Sect. 9.
Now we return to the erroreQ2 in (5.5) for the example withA2 in (5.4).

Whenm = n, Q̄ does not exist, so (7.10) gives

‖∆Q‖F ≤ η1κQ(A)ε + O(ε2),

and by a similar argument to that for (5.7), we have for the MATLAB QR
factorization

‖Qc − Q‖F ≤ γ′
n,nκQ(A)u + O(u2).(7.12)

ForA2,m = n = 2, soκQ(A2) =
√

2 in (7.8). We see forQ2 the bound
of O(10−16) using (7.12) matches the observedeQ2 of 1.9 × 10−16 in (5.5)
well, whereas the bound ofO(10−6) using (5.7) was very weak.

Remark 7.2Whenm>n it is possible to have‖∆Q‖F �‖QQT∆Q‖F , and
(7.10) must be used carefully. Of course (7.10) isasymptoticallycorrect, but
whenε is large enough, theO(ε2) term can dominate in the upper bound
in (7.10) when the overall‖∆Q‖F is large. That is, themultiplier in the
O(ε2) term can be very large. This is illustrated nicely in the computational
example withA1 in (5.4), for therem = 3, butn = 2 soκQ(A1) =

√
2,

also from (2.5)–(2.6)

A1 + ∆A1 = Q̃1R1c, Q̃T
1 Q̃1 = I,

‖Q̃1 − Q1c‖F = O(10−16), ‖∆A1‖F = O(10−16).
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We see from the argument preceding (2.6), andeQ1 in (5.5), that

∆Q1 ≡ Q̃1 − Q1 ≈ Q1c − Q1, eQ1 ≡ ‖Q1c − Q1‖F ≈ 1.7 × 10−6,

ϕ(A1) ≡ √
2 cond2(R1) ≈ 4.0 × 1010,

see (5.6). However we also found using MATLAB that

‖Q1Q
T
1 (Q1c − Q1)‖F ≈ 2.5 × 10−12,

so that necessarily

‖Q1Q
T
1 ∆Q1‖F = ‖Q1Q

T
1 (Q̃1 − Q1)‖F ≈ 2.5 × 10−12,

which is much larger than the first-order term in the upper bound in (7.10),
whose value isO(10−16). But from our computations the lowest bound in
(7.10) is1

2‖∆Q1‖2
2 ≈ 2.4 × 10−12, which is also much larger than the first-

order term, so theO(ε2) term dominates theε term in (7.10) even though
ε ≈ 10−16, explaining this result. ��

Theorem 7.1 can be used effectively as follows. Estimatecond2(R)ε
andκQ(A)ε. Since (7.11) is rigorous, theO(ε2) term in (7.9) can never ob-
scure theη2cond2(R)ε term, so use this latter as the (approximate) bound.
(η3cond2(R)ε)2 gives an indication of how large the lower bound in (7.10)
could be. TheO(ε) term in the upper bound of (7.10) is an excellent asymp-
totic bound, but if(η3cond2(R)ε)2 � η1 κQ(A)ε, then theO(ε2) term may
dominate in (7.10), and we are forced to useη3cond2(R)ε as the (approxi-
mate) upper bound for‖QQT∆Q‖F as well.

8 Perturbation analyses forR

In Sect. 4 we saw (4.4) gives a basis for deriving first-order perturbation
bounds forR in the QR factorization of a full column rank matrixA. In
[4] it was shown there were two effective approaches to carrying out such
derivations. Thesewerenamed thematrix–vector equationapproach, and the
(refined) matrix equation approach. The matrix–vector equation approach
will be used to provide a good measure of the conditioning ofR, and a
tight lower bound on the resulting condition number. We will then use ideas
from the refined matrix equation approach to obtain an upper bound on this
condition number, and a useful approach to estimating it in practice.

8.1 Matrix–vector equation analysis forR

The first approach views the matrix equation (4.4) as a large matrix–vector
equation. For any matrixC ≡ (cij) ≡ [c1, . . . , cn] ∈ Rn×n, denote byc(i)j
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the vector of the firsti elements of columncj . With this, we define (“u”
denotes “upper”)

uvec(C) ≡



c
(1)
1

c
(2)
2
·

c
(n)
n


 .

It is the vector formed by stacking the columns of the upper triangular part
of C into one long vector.

The matrix equation (4.4) can be rewritten as the following form (for the
derivation, see [2,4], or just write down the “uvec” of (4.4) for then = 2
case).

WRuvec(Ṙ(0)) = ZRvec(QTG),(8.1)

whereWR ∈ Rn(n+1)
2 × n(n+1)

2 andZR ∈ Rn(n+1)
2 ×n2

are

WR ≡




r11
r12 r11

r12 r22
· · · ·

r1n r11
r1n r2n r12 r22

· · · ·
r1n r2n · rnn



,

ZR ≡




r11
r12 r22 r11

r12 r22
· · · · · · ·

r1n r2n · rnn r11
r1n r2n · rnn r12 r22

· · · ·
r1n r2n · rnn



.

SinceR is nonsingular,WR is also, and from (8.1)

uvec(Ṙ(0)) = W−1
R ZRvec(QTG).(8.2)

In [4] we only assumed a bound on‖G‖F , and the tight condition number
for R was immediately seen to be‖W−1

R ZR‖2. Here the analysis has to be
more subtle to take account of the important additional information in (4.1).

From (4.1)

|QTG| ≤ |QT|·|G| ≤ |QT|·C ·|A| ≤ |QT|·C ·|Q|·|R|,
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and with this (8.2) gives

|uvec(Ṙ(0))| ≤ |W−1
R ZR|vec(|QTG|) ≤ |W−1

R ZR|vec(|QT|·C ·|Q|·|R|).
The second inequality here appears to lead to upper bounds which are not in
general tight, but this seems unavoidable. Note for any matrixY ∈ Rp×m

andN ∈ Rm×n,

vec(Y N) = (NT ⊗ Ip)vec(Y ),(8.3)

where⊗ denotes the Kronecker product (see for example [11, p. 410]). It
follows that

|uvec(Ṙ(0))| ≤ |W−1
R ZR|·|RT ⊗ In|vec(|QT|·C ·|Q|).(8.4)

Taking the 2-norm, we obtain

‖Ṙ(0)‖F ≤ ‖ |W−1
R ZR|·|RT ⊗ In| ‖2 ‖ |QT|·C ·|Q| ‖F .

Finally using the Taylor expansion (4.8) and the notation in (3.2),

‖∆R‖F

‖R‖2
≤ η1

‖ |W−1
R ZR|·|RT ⊗ In| ‖2

‖R‖2
ε + O(ε2).(8.5)

Thus for perturbations of the form (4.1) we can regard the quantity

κR(A) ≡ ‖ |W−1
R ZR|·|RT ⊗ In| ‖2

‖R‖2
(8.6)

as the condition number forR in the QR factorization ofA.
Nowwe obtain a lower bound forκR(A). It is not difficulty to verify (see

the Appendix of [2]) from the structures ofWR andZR that the first row of
W−1

R ZR is
(1, 0, . . . , 0︸ ︷︷ ︸

n

, 0, . . . , 0︸ ︷︷ ︸
(n−1)n

),

and thei(i − 1)/2 + 1-th row ofW−1
R ZR is, for i = 2, . . . , n,

(0, r2i/r11, . . . , rii/r11, 0, . . . , 0︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
(i−2)n

, 1, 0, . . . , 0︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
(n−i)n

).

Thus by simple multiplications, we see that the firstn elements of thei(i−
1)/2 + 1-th row of |W−1

R ZR|·|RT ⊗ In| are
(|r1i|, |r2i|, . . . , |rii|, 0, . . . , 0︸ ︷︷ ︸

n−i

), i = 1, . . . , n.



Componentwise QR perturbation analyses 335

That is to say there exists a permutation matrixP such that

P |W−1
R ZR|·|RT ⊗ In| =

( |RT| ×
× ×

)
.

Hence we have

κR(A) =
‖ |W−1

R ZR|·|RT ⊗ In| ‖2

‖R‖2
≥ 1,(8.7)

where it can be seen from the matricesWR andZR following (8.1) that this
lower bound is attained withR = I.

The difficulty with the condition numberκR(A) is that it is expensive
to compute or even estimate directly. In Sect. 8.2 we will obtain bounds
suggesting a practical condition estimator.

8.2 Obtaining upper bounds using matrix equation ideas

The matrix equation description (4.5) showingṘ(0) = up[QTGR−1 +
(QTGR−1)T]R, is just another way of saying the same thing as
uvec(Ṙ(0)) = W−1

R ZRvec(QTG) in (8.2). So for anyX ∈ Rn×n,

W−1
R ZRvec(X) = uvec{up[XR−1 + (XR−1)T]R}.(8.8)

It is clear from the right hand side of this that each element ofW−1
R ZR is a

sum of terms, where each term is a product of an element ofR−1 with an
element ofR. It follows that for anyX ≥ 0 ∈ Rn×n,

|W−1
R ZR|vec(X) ≤ uvec{up[X|R−1| + (X|R−1|)T]|R|}.(8.9)

This can also be proven by comparing theith elements of both sides of (8.9)
(i = 1, 2, . . . , n(n + 1)/2). LetDi = diag(sign((W−1

R ZR)i,:)) and define
Xi ∈ Rn×n by vec(Xi) = Di · vec(X). Then forX ≥ 0

(|W−1
R ZR|vec(X))i = (W−1

R ZR)i,: ·Di ·vec(X)
= (W−1

R ZR)i,: ·vec(Xi)

= (uvec{up[XiR
−1 + (XiR

−1)T]R})i, see(8.8),
≤ (uvec{up[|Xi|·|R−1| + (|Xi|·|R−1|)T]|R|})i.

Notice thatX ≥ 0 and|Xi| = X, so (8.9) indeed holds. Now we defineM
to be our matrix of interest in (8.6), that is

M ≡ |W−1
R ZR|·|RT ⊗ In|, κR(A) ≡ ‖M‖2/‖R‖2.(8.10)

For later use, notice from (8.3) that for anyY ∈ Rn×n

|W−1
R ZR|vec(Y |R|) = Mvec(Y ).
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Wewant to find practical bounds for‖M‖2. WriteDn for the set of alln×n
real positive definite diagonal matrices. For anyD ∈ Dn, let R = DR̄.
Notice that for anymatrixB we haveup(B)D = up(BD). Now from (8.9)
with X ≡ Y |R| andY ≥ 0, it follows that

‖Mvec(Y )‖2

‖vec(Y )‖2
=

‖|W−1
R ZR|vec(Y |R|)‖2

‖vec(Y )‖2

≤ ‖uvec{up[Y |R|·|R−1| + (Y |R|·|R−1|)T]|R|}‖2

‖vec(Y )‖2

= ‖up[Y |R|·|R−1| + (Y |R|·|R−1|)T]|R| ‖F/‖Y ‖F

= ‖up[Y |R|·|R̄−1| + D−1(Y |R|·|R̄−1|)TD]|R̄| ‖F/‖Y ‖F

≤ ρD‖Y |R|·|R̄−1| ‖F ‖R̄‖2/‖Y ‖F , see (3.4)

≤ ρD‖ |R|·|R−1|D‖2‖D−1R‖2.

But sinceM ≥ 0, ‖M‖2 = maxY ≥0,Y /=0 ‖Mvec(Y )‖2/‖vec(Y )‖2, so

‖M‖2 ≤ ρD‖ |R|·|R−1|D‖2‖D−1R‖2, ∀D ∈ Dn.(8.11)

WhenD = I, ρD =
√

2, and this last with (8.5) and (8.10) gives

‖∆R‖F

‖R‖2
≤

√
2η1cond2(R)ε + O(ε2),

which is exactly our 2– and F–norm analogy (5.1) of Zha’s [18, Theorem
2.1] bound. Clearly by choosingD carefully we will usually get a better
result than this. Now we define (withρD as in (3.4))

κ′
R(A) ≡ inf

D∈Dn

κ(R,D),(8.12)

κ(R,D) ≡ ρD‖ |R|·|R−1|D‖2‖D−1R‖2/‖R‖2.(8.13)

This gives bounds on the true condition numberκR(A) in (8.6) and (8.7)
(with ϕ(A) in (5.3)) of

1 ≤ κR(A) ≤ κ′
R(A) ≤ κ(R, I) =

√
2 cond2(R) = ϕ(A).(8.14)

The above analysis, with (8.5), leads to the following theorem.

Theorem 8.1 Assume that the conditions and assumptions of Theorem 4.1
hold, thenA + ∆A = A + εG has the unique QR factorization

A + ∆A = (Q + ∆Q)(R + ∆R),

where

‖∆R‖F

‖R‖2
≤ η1κR(A)ε + O(ε2),(8.15)

1 ≤ κR(A) ≤ κ′
R(A) ≤ ϕ(A),(8.16)
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with η1, κR(A), κ′
R(A) andϕ(A) defined by(3.2), (8.6), (8.12)with (8.13),

and(5.3). ��
Whenweuse the standard columnpivoting strategy inAP = QR, where

P is the permutation matrix, we get a very nice result. Here the elements of
the resultingR satisfy, fori = 1, . . . , n,

r2
ii ≥

j∑
k=i

r2
kj , for each j = i, . . . , n.

It follows thatr11 ≥ r22 ≥ . . . ≥ rnn, andrii ≥ |rij |. TakeD = diag(rii),
thenρD ≤ √

2, andR̄ ≡ D−1R is unit upper triangular with1 = r̄ii ≥ |r̄ij |
for all j ≥ i, and it is easy to show that forj > i, |(R̄−1)ij | ≤ 2j−i−1 (see,
for example, [7, Lemma 8.6]). Thus from (8.13) we have

κ′
R(AP ) ≤ κ(R,D) ≤

√
2n ‖R̄−1‖F ‖R̄‖F ≤

√
n2(1+n)(4n+6n−1)/3.

We see that when the standard pivoting strategy is used, the sensitivity ofR
is bounded for anyn. We summarize this as a theorem.

Theorem 8.2 LetA ∈ Rm×n be of full column rank, with theQR factoriza-
tionAP = QR when the standard column pivoting strategy is used. Then
in (8.16)

1 ≤ κR(AP ) ≤ κ′
R(AP ) ≤

√
n2(1 + n)(4n + 6n − 1)/3. ��(8.17)

In contrast,ϕ(A) in (5.3) can be arbitrarily large for fixedn, even when

standard column pivoting is used. For example,A = R =
[

1 1/2
0 ε

]
, with

very smallε > 0. It is easy to seeϕ(A) = O(1
ε ). So the bounds (5.1) can

severely overestimate the sensitivity ofR.
Clearly κ′

R(A) in (8.12) is a candidate for estimating the condition
numberκR(A) of R in the QR factorization. We now give some insight
as to whyR in the QR factorization is often less sensitive than the ear-
lier condition estimatesϕ(A) =

√
2 cond2(R) suggested. We know that

cond2(R) = ‖ |R|·|R−1| ‖2 only takes out the effect of bad column scaling
in R, whereas according to [17, Thm. 3.3], we have

‖ |R|·|R−1|Dr‖2‖D−1
r R‖2 ≤ √

n inf
D∈Dn

‖ |R|·|R−1|D‖2‖D−1R‖2,

whereDr = diag(‖(R)i,:‖2). Thus‖ |R| · |R−1|Dr‖2‖D−1
r R‖2 takes out

the effect of bad columnandrow scaling inR. Thus for anR with poor row
scaling, ifρD is not large, thenκ′

R(A) will be much smaller thanϕ(A).
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Now we return to the example in Sect. 5. By a similar argument to that
for (5.8), we have for the MATLAB QR factorization

‖Rc − R‖F

‖R‖2
≤ γ′′

m,nκR(A)u + O(u2).(8.18)

For the matricesA1 andA2, we take row scalingD1 = diag(2, 10−10) and
D2 = diag(2,

√
2 × 10−10), respectively, then with (8.12)–(8.14)

κR(A1) ≤ κ(R1, D1) ≈ 2.3, κR(A2) ≤ κ(R2, D2) ≈ 2.3.

The analysis by Zha [18] leads to condition numbers of aboutϕ(A1) ≈
4.0 × 1010, ϕ(A2) ≈ 2.8 × 1010, see (5.1), (5.2). Obviously the new error
bound (8.18) gives good estimates for botheR1 andeR2 in (5.5), in contrast
to [18].

9 Condition estimation and numerical experiments

In Sect. 7 we gave first-order perturbation bounds for the change inQ lying
inR(Q), and the change inQ lying in the orthogonal complement ofR(Q),
and definedκQ(A) =

√
2 ‖ |Rn−1|·|R−1

n−1| ‖2 as the (asymptotic) condition
number for the former.

In Sect. 8.2 we presented a perturbation bound for theR factor, and
definedκR(A) as a corresponding condition number. In practice we would
like to chooseD such that

κ(R,D) ≡ ρD‖ |R|·|R−1|D‖2‖D−1R‖2/‖R‖2

is a good approximation to the infimumκ′
R(A) of κ(R,D), where we know

κR(A) ≤ κ′
R(A).

It seems there isnoobviousway tocheaply find thebestD.Ournumerical
experiments indicate if we chooseD to equilibrate the rows ofD−1R, i.e.,
D = Dr ≡ diag(‖(R)i,:‖2), we usually obtain a good estimate ofκR(A).
But sometimes it can lead to largeρD and result in an overestimate. However
in such situations we found the previous estimateϕ(A) = κ(R, I) gave a
goodapproximation.Sowemayusemin{κ(R,Dr), κ(R, I)}asanestimate
of the condition numberκR(A). The remaining problem is in practice how
to cheaply estimate‖ |R| · |R−1|D‖2 with D = Dr or D = I. Since
‖ |R|·|R−1|D‖2 and‖ |R|·|R−1|D‖1 differ by at most a factor of

√
n, we

can estimate the latter instead of the former. Following van der Sluis [17,
Thm. 2.6],

‖ |R|·|R−1|D‖1 = ‖RD−1
c ‖1‖DcR

−1D‖1, Dc ≡ diag(‖(R):,j‖1).(9.1)
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Notice ‖DcR
−1D‖1 can be estimated inO(n2) flops (see for example

Higham [7, Chap. 14]). Thus bothκ(R,Dr) andκ(R, I) can be estimated
in a total ofO(n2) flops.

Our numerical experiments also suggest that another option forD may
give a good approximation. WithDc as given in (9.1), chooseD = diag(δj)
to approximately equilibrate the columns ofDcR

−1 in (9.1) while keeping
ρD ≤ √

2. To do this, takeδ1 = 1/‖(DcR
−1):,1‖2, then forj = 2, . . . , n

takeδj = 1/‖(DcR
−1):,j‖2 if ‖(DcR

−1):,j‖2 ≥ ‖(DcR
−1):,j−1‖2; other-

wiseδj = δj−1. For thisD we write

De ≡ D(9.2)

to indicate this choice in the tables (“e” denotes “equilibration”). The prob-
lem is that to our knowledge there is no known way to estimate the 2-norm
of each column of the inverse of an upper triangular matrix inO(n2) flops
yet. This is an interesting problem in itself.

We showedwith (5.4) that it is easy to construct artificial exampleswhere
the previous bounds (5.1)–(5.3) are exceptionally poor, while the new ones
here are very good. The examples we now give are intended to develop a
feeling for more usual behaviour.

We give three sets of examples, each with and without pivoting, to show
how good the new condition numbers are compared with the previous ones,
how well the new error bounds match the actual errors in the computed fac-
tors, and how well the condition estimates approximate these new condition
numbers. In all these experiments we computed the condition numbers and
conditionestimates.For thefirst andsecondsetsof examples, seeTables1–8,
we also computed (c.f. (7.12) and (8.18), withP = I for no pivoting):

eQ = ‖Qc − Q‖F , bQ = κQ(AP )u,

eR =
‖Rc − R‖F

‖R‖2
, bR = κR(AP )u.(9.3)

HereQc andRc are the computed QR factors ofA in single precision by
means of a MATLAB programchop.m provided by Higham [8],Q andR
are the computed QR factors ofA by MATLAB (in double precision), and
u ≈ 5.96 × 10−8 is the single precision unit roundoff. SoeQ andeR are
very good approximations to the norms of the actual errors in the computed
Qc andRc, andbQ andbR are approximations to the error bounds (note the
matrices in our examples are square and here we ignore the constantγ′

n,n in
(7.12) andγ′′

m,n in (8.18)).
Each matrix in the first set has the formA = D1BD2, whereD1 =

diag(1, d1, . . . , d
n−1
1 ),D2 = diag(1, d2, . . . , d

n−1
2 ) andB is ann × n ran-

dom matrix produced by the MATLAB functionrandn, so theseA are
graded. The results forn = 20, d1, d2 ∈ {0.8, 1, 2}, and the same matrix
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B, are shown in Tables 1–4. The results are given forQ, then forR, first
without, then with standard pivoting.

Eachmatrix in the second set has the formA = Q(D1UD2), whereU is
the upper triangular part of a randommatrix producedalso byrandn, andD1
andD2 are the same as in the first set of examples.Q is a random orthogonal
matrix producedbyqmult.m in [8]. This gives the less likely caseof graded
R when no pivoting is used. The results forn = 20, d1, d2 ∈ {0.8, 1, 2},
the same matrixU , but differentQ for each case, are shown in Tables 5–8.

The third set involvesn × n Kahan matrices (see [10]):

A = R = diag(1, s, · · · , sn−1)




1 −c · −c
1 · −c

· ·
1


 ,

wherec = cos(θ), s = sin(θ). The results forn = 5, 10, 15, 20, 25 with
θ = π/8 are shown in Table 9 without pivoting, and in Table 10 forAP
whereP is a permutation such that the first columnmoves to the last column
position and the remaining columns are moved left one position — this
permutation is adopted in the rank-revealing QR factorization for Kahan
matrices, see for example Hong and Pan [9].

We now comment on the tables. Ideally we haveAP = QR, withP = I
for no pivoting. Remember thatϕ(AP ) = κ(R, I), see (8.14).

1. We used square matrices in the examples, soQQT∆Q = ∆Q. The new
measure of sensitivityκQ(AP ) of Q, see (7.8), (7.10), is never larger
than the oldϕ(AP ) = κ(R, I), see (5.2), (5.3). In Tables 7, 10 the new
measure gives a significant improvement over the old, and even in the
other tables the difference makes it worthwhile using the new measure.

2. For the sensitivity ofR, the old measureκ(R, I) compares poorly with
the new measureκR(A) and estimatesκ(R,Dr) andκ(R,De) in all
except Table 6, where it is clearly superior toκ(R,Dr) in the last three
cases (it is also marginally better in the fifth and sixth cases). In all
but these three anomalous casesκ(R,Dr) gave an excellent estimate of
κR(AP ), while in these anomalous casesκ(R, I) gave a good estimate,
supporting the suggestion of takingmin{κ(R,Dr), κ(R, I)}. In all the
cases whereκ(R, I) is very large, the new measureκR(AP ) is signifi-
cantly smaller. This suggestsR in the QR factorization is not nearly as
sensitive to perturbations of the form (1.1) as was previously thought,
see [18].

3. When standard column pivoting is usedκR(AP ) can be improved signif-
icantly, and in fact in Tables 4 and 8,κR(AP ) isO(1). κQ(AP ) can also
be improved significantly, compare Table 5 with 7. But the old measure
for both,κ(R, I), does not change much.
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Table 1. A = D1BD2 without pivoting, sensitivity ofQ

d1 d2 κQ(A) ϕ(A) = κ(R, I) eQ bQ

0.8 0.8 3.5e+02 3.9e+03 1.3e-06 2.1e-05
0.8 1 3.5e+02 3.9e+03 1.5e-06 2.1e-05
0.8 2 3.5e+02 3.9e+03 1.5e-06 2.1e-05
1 0.8 3.5e+01 3.5e+02 1.1e-06 2.1e-06
1 1 3.5e+01 3.5e+02 1.1e-06 2.1e-06
1 2 3.5e+01 3.5e+02 1.1e-06 2.1e-06
2 0.8 1.1e+06 7.4e+06 1.7e-02 6.6e-02
2 1 1.1e+06 7.4e+06 2.8e-02 6.6e-02
2 2 1.1e+06 7.4e+06 2.8e-02 6.6e-02

Table 2. A = D1BD2 without pivoting, sensitivity ofR

d1 d2 κR(A) κ(R, Dr) κ(R, De) κ(R, I) eR bR

0.8 0.8 1.9e+00 5.8e+00 7.7e+00 3.9e+03 2.0e-07 1.1e-07
0.8 1 1.2e+01 5.0e+01 4.2e+01 3.9e+03 2.6e-07 7.1e-07
0.8 2 1.3e+01 1.9e+02 6.2e+01 3.9e+03 2.0e-07 7.7e-07
1 0.8 1.1e+00 2.8e+00 3.8e+00 3.5e+02 1.3e-07 6.6e-08
1 1 9.2e+00 2.8e+01 3.1e+01 3.5e+02 4.1e-07 5.5e-07
1 2 1.1e+01 2.2e+02 4.8e+01 3.5e+02 3.2e-07 6.3e-07
2 0.8 2.0e+00 1.2e+01 1.6e+01 7.4e+06 6.2e-08 1.2e-07
2 1 1.7e+01 2.1e+02 9.0e+01 7.4e+06 1.2e-07 1.0e-06
2 2 5.2e+01 1.1e+03 4.1e+02 7.4e+06 4.2e-07 3.1e-06

4. The error boundsbQ andbR match the corresponding actual errorseQ

andeR very well, see (9.3). The numerical results show that standard
pivoting can significantly improve the accuracy of both the QR factors,
compare Table 5 with 7, and 6 with 8.

5. The Kahan matrix is theoretically already in standard column pivoting
form, andκR(A) grows significantly asn increases, though not as fast as
the bound in (8.17). But rank-revealing pivoting broughtκR(AP ) back
down toO(1).

10 Summary and future work

Componentwise perturbation analyses have been given for the QR factor-
ization of a matrixA with the form of perturbations we could expect from
the equivalent backward error inA resulting from numerically stable com-
putations. For theQ factor we derived the condition numbers for that part
of ∆Q in R(A), and that part inR⊥(A). Both can be estimated inO(n2)
flops. For theR factor, we first derived the new condition number, and then
suggested practical condition estimators. These provide estimates inO(n2)
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Table 3. A = D1BD2 with standard pivoting, sensitivity ofQ

d1 d2 κQ(AP ) ϕ(AP ) = κ(R, I) eQ bQ

0.8 0.8 3.3e+02 3.7e+03 1.0e-06 2.0e-05
0.8 1 3.5e+02 3.8e+03 1.2e-06 2.1e-05
0.8 2 5.0e+02 3.7e+03 1.9e-06 3.0e-05
1 0.8 3.4e+01 3.5e+02 9.4e-07 2.0e-06
1 1 4.2e+01 3.5e+02 1.0e-06 2.5e-06
1 2 5.5e+01 3.4e+02 1.4e-06 3.3e-06
2 0.8 1.1e+06 7.4e+06 1.6e-02 6.6e-02
2 1 1.4e+06 7.5e+06 2.2e-02 8.2e-02
2 2 1.5e+06 7.4e+06 2.0e-02 9.1e-02

Table 4. A = D1BD2 with standard pivoting, sensitivity ofR

d1 d2 κR(AP ) κ(R, Dr) κ(R, De) κ(R, I) eR bR

0.8 0.8 1.6e+00 4.2e+00 6.5e+00 3.7e+03 2.1e-07 9.6e-08
0.8 1 5.6e+00 1.5e+01 1.7e+01 3.8e+03 2.4e-07 3.4e-07
0.8 2 1.0e+00 1.9e+00 5.8e+01 3.7e+03 1.1e-07 6.0e-08
1 0.8 1.1e+00 2.4e+00 3.7e+00 3.5e+02 9.2e-08 6.5e-08
1 1 6.1e+00 1.5e+01 1.7e+01 3.5e+02 3.7e-07 3.6e-07
1 2 1.0e+00 1.7e+00 4.3e+00 3.4e+02 7.2e-08 6.0e-08
2 0.8 1.3e+00 5.2e+00 1.0e+01 7.4e+06 6.1e-08 7.5e-08
2 1 3.8e+00 2.1e+01 2.4e+01 7.5e+06 7.0e-08 2.3e-07
2 2 1.0e+00 2.6e+00 7.6e+02 7.4e+06 8.5e-08 6.2e-08

Table 5. A = Q(D1UD2) without pivoting, sensitivity ofQ

d1 d2 κQ(A) ϕ(A) = κ(R, I) eQ bQ

0.8 0.8 2.3e+07 2.3e+07 4.6e-02 1.4e+00
0.8 1 2.3e+07 2.3e+07 1.4e-01 1.4e+00
0.8 2 2.5e+07 2.5e+07 2.8e+00 1.5e+00
1 0.8 4.8e+05 4.8e+05 8.2e-03 2.9e-02
1 1 4.8e+05 4.8e+05 5.0e-04 2.9e-02
1 2 4.8e+05 4.8e+05 4.7e-03 2.9e-02
2 0.8 7.3e+01 7.3e+01 1.9e-06 4.3e-06
2 1 7.3e+01 7.3e+01 4.1e-06 4.3e-06
2 2 7.3e+01 7.3e+01 3.2e-06 4.3e-06

flops. The analyses more accurately reflect the sensitivity of the problem
than previous such results. Both the analysis and numerical results show
that standard column pivoting can significantly decrease the sensitivity of
R, andQ as well, and so give more accurate QR factors. We also found a
rank-revealing pivoting strategy could improve the condition ofR andQ.

TheQ andR factors have practical meanings in several applications, see
for example [3]. Certainly in these cases it can be important to know how
accurate, or sensitive, these factors are. One contribution of this paper has
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Table 6. A = Q(D1UD2) without pivoting, sensitivity ofR

d1 d2 κR(A) κ(R, Dr) κ(R, De) κ(R, I) eR bR

0.8 0.8 3.2e+03 1.5e+04 1.6e+04 2.3e+07 1.2e-05 1.9e-04
0.8 1 8.0e+04 5.3e+05 4.0e+05 2.3e+07 4.7e-04 4.8e-03
0.8 2 2.1e+05 1.4e+06 1.0e+06 2.5e+07 2.3e-02 1.2e-02
1 0.8 4.2e+03 2.6e+04 2.0e+04 4.8e+05 7.1e-05 2.5e-04
1 1 9.9e+04 6.5e+05 4.7e+05 4.8e+05 8.9e-05 5.9e-03
1 2 1.6e+05 1.8e+06 7.3e+05 4.8e+05 1.5e-03 9.2e-03
2 0.8 5.2e+01 1.9e+04 1.0e+02 7.3e+01 5.6e-07 3.1e-06
2 1 5.2e+01 4.6e+05 1.0e+02 7.3e+01 3.4e-07 3.1e-06
2 2 5.2e+01 2.8e+06 1.0e+02 7.3e+01 9.4e-07 3.1e-06

Table 7. A = Q(D1UD2) with standard pivoting, sensitivity ofQ

d1 d2 κQ(AP ) ϕ(AP ) = κ(R, I) eQ bQ

0.8 0.8 9.2e+04 2.5e+07 2.1e-04 5.5e-03
0.8 1 9.5e+04 2.5e+07 3.0e-04 5.6e-03
0.8 2 9.5e+04 2.6e+07 2.8e-04 5.7e-03
1 0.8 2.9e+03 5.0e+05 2.0e-05 1.7e-04
1 1 2.9e+03 5.1e+05 1.8e-05 1.7e-04
1 2 3.0e+03 5.2e+05 3.8e-05 1.8e-04
2 0.8 3.2e+01 7.5e+01 2.3e-06 1.9e-06
2 1 3.2e+01 7.6e+01 1.6e-06 1.9e-06
2 2 3.1e+01 8.0e+01 1.4e-06 1.9e-06

Table 8. A = Q(D1UD2) with standard pivoting, sensitivity ofR

d1 d2 κR(AP ) κ(R, Dr) κ(R, De) κ(R, I) eR bR

0.8 0.8 2.3e+00 9.2e+00 1.3e+01 2.5e+07 1.0e-07 1.4e-07
0.8 1 5.4e+00 1.9e+01 1.9e+01 2.5e+07 1.1e-07 3.2e-07
0.8 2 1.0e+00 2.0e+00 6.1e+00 2.6e+07 3.2e-08 6.0e-08
1 0.8 3.5e+00 1.4e+01 1.6e+01 5.0e+05 1.2e-07 2.1e-07
1 1 4.6e+00 1.3e+01 1.4e+01 5.1e+05 2.0e-07 2.8e-07
1 2 1.0e+00 1.8e+00 3.8e+00 5.2e+05 3.8e-08 6.0e-08
2 0.8 1.0e+00 2.0e+00 3.1e+00 7.5e+01 9.2e-08 6.0e-08
2 1 1.0e+00 2.0e+00 3.1e+00 7.6e+01 3.1e-08 6.0e-08
2 2 1.0e+00 1.7e+00 3.6e+00 8.0e+01 1.6e-07 6.0e-08

Table 9. n × n Kahan matrices without pivoting

n κQ(A) κR(A) κ(R, Dr) κ(R, De) ϕ(A) = κ(R, I)

5 1.8e+02 6.5e+00 1.4e+01 1.5e+01 9.0e+02
10 5.8e+05 1.2e+02 3.5e+02 4.0e+02 2.9e+06
15 1.9e+09 2.5e+03 9.5e+03 1.1e+04 9.3e+09
20 6.0e+12 5.8e+04 2.6e+05 2.9e+05 3.0e+13
25 1.9e+16 1.4e+06 7.0e+06 7.6e+06 9.6e+16
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Table 10. n × n Kahan matrices with rank-revealing pivoting

n κQ(AP ) κR(AP ) κ(R, Dr) κ(R, De) ϕ(AP ) = κ(R, I)

5 2.8e+01 1.8e+00 4.9e+00 5.0e+00 8.9e+02
10 3.5e+03 2.3e+00 1.1e+01 1.1e+01 2.8e+06
15 4.2e+05 2.5e+00 1.8e+01 1.8e+01 9.1e+09
20 5.1e+07 2.6e+00 2.6e+01 2.4e+01 2.9e+13
25 6.3e+09 2.7e+00 3.3e+01 3.1e+01 9.4e+16

been to provide the theory whereby the sensitivity ofcomputedQR factors
maybeobtained.Wepropose that standardnumerical linear algebrasoftware
packages include the option of estimating the condition estimates given in
this paper for the QR factors. This can be done by using standard norm
estimators that are already available in the packages. These estimates can
then be used to supply measures of the accuracy of the computed factors. As
pointed out in Sect. 9, this estimation can be done inO(n2) flops. Compared
with theO(mn2) flops required for the computation of the QR factorization
itself by the Householder or givens transformations, this extra computation
does not costmuch. Such informationwill be very helpful to users interested
in either the accuracy of the computedQR factors, or their sensitivity to other
perturbations of the form (1.1).

In the future we would like to investigate how well the suggested practi-
cal condition estimates approximate the corresponding condition numbers.
Also we would like to apply the approaches here to the Householder QR
factorization with complete pivoting (see Cox and Higham [5]).

Acknowledgements.The referees’ suggestions improved the presentation greatly.
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