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Summary. This paper gives componentwise perturbation analyseg)for
andR in the QR factorizatiom = QR, QTQ = I, R upper triangular, for

a given reain x n matrix A of rankn. Such specific analyses are important
for example when the columns dfare badly scaled. First order perturbation
bounds are given for bot§) and R. The analyses more accurately reflect
the sensitivity of the problem than previous such results. The condition
number forR is bounded for a fixea when the standard column pivoting
strategy is used. This strategy also tends to improve the conditiéh of
so usually the compute@ and R will both have higher accuracy when we
use the standard column pivoting strategy. Practical condition estimators are
derived. The assumptions on the form of the perturbatighare explained
and extended. Weaker rigorous bounds are also given.

Mathematics Subject Classification (19915A23, 65F35

1 Introduction

The QR factorization is an important tool in matrix computations (see for
example [6, Chap. 5]): given an x n real matrixA with full column rank,
there exists a uniquer x n real matrix@ with orthonormal columns, and
a unigue nonsingular upper triangularx n real matrix R with positive
diagonal entries such that
A=QR.
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The matrix@ is referred to as the orthogonal factor, aRdhe triangular
factor.

Let AA be anm x n real matrix such thatt + A A still has full column
rank, thend + AA has the unique QR factorization

A+ AA=(Q+ AQ)(R + AR),

where(Q + AQ)™(Q + AQ) = I andR + AR is upper triangular with
positive diagonal elements. The goal of the perturbation analysis for the
QR factorization is to determine bounds pAQ)|| (or |[AQ|) and ||AR||
(or |ARJ) in terms of (a bound on)AA|| (or |AAJ), where for a matrix
C = (cij), |C| is defined by(|c;;]).

The perturbation analysis for the QR factorization has been considered
by several authors. Given (abound ¢@) A ||, the first results were presented
by Stewart [12]. Analyses based on boundg|d || are sometimes called
normwise or norm-based perturbation analyses. Stewart’s results were mod-
ified and improved by Sun [14]. Similar results to those of Sun [14] were
obtained by Stewart [13] by a different approach. Later Sun [16] gave new
strict perturbation bounds f@p alone. More recently Chareg al. [4] gave
new first-order perturbation analyses using the so called refined matrix equa-
tion and matrix-vector equation approaches. Analyses based on bounds on
|AA| have been called componentwise analyses. Given a boupd.4p
Sun [15] presenteditrict but somewhat complicated bounds e | and
|AR|. In [18], Zha considered the following class of perturbations:

(1.1) IAA| < eClAl;  CeR™™, 0<e; <1,

and presented first-order perturbation bounds||d@|| and || AR||. An
important motivation for considering such a class of perturbations is that the
equivalent backward rounding error from a rounding error analysis of the
standard QR factorization fits in this class, see Higham [7, Chap. 18] and
the last paragraph of Sect. 2 here.

The main purpose of this paper is to establish new first-order perturbation
analyses under the condition (1.1). The perturbation bounds that are derived
here are significantly sharper than the equivalent results in Zha [18, Theo-
rem 2.1]. Simpleigorous perturbation bounds are also presented. Thus the
present paper will, among other things, increase our understanding of the
errors we can expect in computiGgandR in A = QR.

In Sect. 2 we discuss the generality of the class of perturbations (1.1),
how this class may be extended, and how the equivalent backward rounding
error for the Householder QR factorization belongs to this class. In Sect. 3
we define our notation. In Sect. 4 we obtain expression@{o) and R(0)
in the QR factorizatiod +tG = Q(t)R(t). These basic sensitivity expres-
sions will be used to obtain our new perturbation bounds in Sects. 7 and 8,
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butin Sect. 5 they are used to derive simple 2- and F-norm versions of Zha's
results [18, Theorem 2.1] on the sensitivity ®fand (). Section 6 derives
basic rigorous bounds that will help us understand some of the more refined
first-order bounds. In Sect. 7 we give a refined perturbation analysig,for
showing why the standard column pivoting strategyAazan be beneficial

for certain aspects of the sensitivity@f In Sect. 8 we analyze the perturba-
tionin R by the matrix—vector equation approach, then we combine this with
the matrix equation approach to get useful estimates. The ideas behind these
two approaches were discussed in the norm-based perturbation analysis for
the QR factorization [4]. Here these approaches show that the sensitivity of
R can be significantly improved by pivoting. We give humerical results and
suggest practical condition estimators in Sect. 9. We summarize our findings
and point out possible future work in Sect. 10.

2 The class of perturbations, and rounding effects

We now discuss the generality of the assumption (1.1). Taking I in
(1.1) gives bounds on each element;;| of the form

|AA] < e]A],

which covers the case of small relative errors in the elements. Now suppose
that we only have the column information

HA(IjHl S € HCLjHl, ] = 1,...,n.

This implies|Aa;;| < ||Aaj|1 < eeT|a;| withe = [1,1,...,1]T, which
implies (1.1) withC = ee™. Similarly (1.1) withC = ee™ implies|| Aa, |1
< eml|a;||;. Since for any € R™,

1/2 1/2 3/2

[0]loo < flvlly < m Zlufla < m 7 Zlofly < m®=[|v]|co,

etc, we see that (1.1) essentially handles any information of the form
1)  Aajly <ellajlp, G=1,....n, p=1200.

Thus (1.1) is an elegant way of handling most bounds on the elements or the
columns ofA. However to cover cases where some columngdf have
different relative bounds than others, as might happen when the columns
of A are obtained by experimental observation at different times or with
different instruments, we can extend (1.1) to

AA| <eClAID; C e R™™, 0<¢; <1; D=diagéy,...,0,) > 0.
J
(2.2)
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This then includes the extension of (2.1)
(2.3) 1Aa;llp < edllasly, =1,....n
For the QR factorizatiodl = QR, (2.2) leads to
|AA| < eC|Q|-|R|D (for clarity “-” indicates multiplication),

and where Zha [18] consideréd R|-|R~!|||,, which is independent of
column scaling, we can define the (extended) condition number

(2.4) condy(R, D) = || |R|-D-|R™ |||, p=1,2,00

This condition number is also independent of column scaling, and can be
arbitrarily smaller tharj| RD||,||R~}|,. For brevity we give the analysis
without D and assume (1.1) only, but all the results can trivially be extended
to changes iM of the form (2.2).

The equivalent backward error for a numerically stable QR factorization
is important for this exposition. For an x n matrix A ofrankn let A = QR
be the exact, and ~ Q.R. the computed QR factorization ¢f obtained
via Householder transformations. Higham [7, Theorem 18.4]) showed

(2.5) A+ AA=QR., |AA<eC|A|, €=ymnu,

whereQTQ = I, Ym,n IS @ moderate constant dependingrarandn, u

is the unit roundoffC’ > 0 and||C||» = 1. The bound onAA has the
form (1.1), so the perturbation analyses here will allow us to obtain good
bounds on the erron@ — @ andR. — R. Also the computed), satisfies

Q. = Q + A, where|A| < 4, ,uCs|Q| with Cy > 0, [|Col» = 1. Since

Q. —Q=A+(Q— Q) we have

(2.6) 1Qc = Qllr < 0y nu+1Q — Q| .

For the whole of this paper we assume perturbations satisfying (1.1).

3 Notation

In this paper, for any matriX’ € R™*", we denote by.X), . theith row
of X, and by(X). ; thejth column ofX.
For any nonsingular matriX we define

(3.1)  m2(X) = X2l X Iz, conda(X) = | [X[-[X T |l2.

Notice|| |X || X| || is the standard Bauer—Skeel condition number, but the
present variant seems more intuitive for column scaling.
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For anm x n matrix @ such thatQ™Q = I we can find@ such that
[Q, Q] is square and orthogonal, then define

(32) m=[1Q"-C:|Ql s, m2=111Q"-C-Qlllr, 13 =1CIQ]r-

Sincel| Q™| || = [ Q| |- = n'/*, [||QT| || = (m —n)"/?, and in (1.1)
|IC||» < m, if we use the fact thatAB||» < ||A||»||B]|» we obtain

m < mn, n2 < ((m - n)n)1/2m7 3 < mn1/2~

To simplify the presentation, for amyx n matrix X , we define the upper
and lower triangular matrices

%xn I12 + Tin
0 Loy a9

(3.3) up(X) = e I low(X) = up(X )T,
0 0 %a:,m

so thatX = low(X)+up(X). Foranyn xn (n > 1) matrix X and positive
definiteD = diag(¢y, . .., d,), we can show (for a proof, see Lemma 5.1 in
[4]; itis straightforward by considering elements)

1/2

[up(X)+D~ up(X)Dlle < pol|Xlle. pp = |1+ max (5;/6)?] .
(3.4) -
In particular withD = 1,

lap(X + X T)[[» < V211X #;

1

35 up(X)|lr < —= X if X = XT,
(3.5) [Jup(X)||» < ﬂ\l P

It is also easy to see that for anyx n (n > 1) matrix X
(3.6) X —up(X + X )| r = [low(X) — [low(X)"|[» < V2| X[
Whenn = 1, we have the following equalities:

[up(X)+D = up(XT)D|l» = [up(X +X 1) » = 2 lup(X) || = || X ]|,
X —up(X + X1)|» =0.

In this paper we assume that the matdibhas more than one column, i.e.,
n > 1. The casen = 1 is trivial and straightforward bounds can be derived
by using these last equalities.
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4 Rate of change ol and R

Here we derive the basic results on h@vand R change as! changes. The
following theorem summarizes several results that we use later.

Theorem 4.1 Let A € R™*" be of full column rank: with the QR factor-
ization A = QR, and letAA be a realm x n matrix satisfying

(41) AA=€G; >0, |GI<CIAl, CeR™™, 0<¢; <1
Let AT denote the Moore-Penrose inversefif

(4.2) e[l |AT]-C-|A][l2 < 1,

thenA + tG has the unique QR factorization

(4.3) A(t)=A+tG=QMR(E), QTMQW) =1, |t|<¢,

where
(4.4) RTR(0) + RT(0)R = RTQTG + GTQR,
(4.5) R(0) =up[Q"GR™" + (Q"GR "R,

(4.6) Q(0) =GR - Qup[Q"GR™ + (QTGR™HT].
In particular, A + AA has the unigue QR factorization

4.7 A+ AA=(Q+ AQ)(R+ AR),
whereAR and A(Q) satisfy

(4.8) AR = eR(0) + O(é?),

(4.9) AQ = €Q(0) + O(é?).

Proof. Since|| X ||2 < ||| X2, if (4.2) holds, then for allt| < e,
ItATGl2 < ]| |AT]-C-| Al ||z < 1.
Also from
QT(A+1tG)=R+tQTG =R(I +tR'QYG) = R(I +tA'G)

we see thaQ® (A + tG) is nonsingular. Hence for dt| < ¢, A + tG has
full column rank and the unique QR factorization (4.3). Taking ¢ shows
that (4.7) is unique, and theR(0) = R, R(e) = R+ AR, Q(0) = @ and
Qe) = Q + AQ.

It is easy to verify that)(¢) and R(t) are twice continuously differen-
tiable for|t| < e from a standard algorithm for the QR factorization. If we
differentiateR(t)T R(t) = A(t)T A(t) with respect t¢ and set = 0, and
useA = @R, we obtain (4.4). This we will see is a linear equatioriquely
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defining the elements of upper trianguE(O) in terms of the elements of
Q' G. From upper triangulaR(0)R~! in
RO)R + (RORHT =QTGR™ + (QTGR™T,
we see with (3.3) that (4.5) holds. Differentiating (4.3} at 0 gives
G = QR(0) + Q(O)R,

which with (4.5) gives (4.6). Finally the Taylor expansions foft) and
Q(t) aboutt = 0 give (4.8) and (4.9) at=¢. O

The perturbatiomA A in (4.1) satisfies (1.1), and we will always assume
(4.2) holds, so the results of this theorem will apply for the rest of this paper.

5 Zha’s first-order bounds

We can use the notation of (3.1) and (3.2) to derive the combined 2-norm
and F-norm results which are analogous to Zha’s [18] first-order consistent
monotone norm results, but are a little simpler in form and derivation. We
then give examples to show how these can be too pessimistic. From (4.5),
we have by using (3.5) and (4.1) that
IRO)r < [up[@TGR™ + (QTGR )] I#|| Rl

< V2|QTGR Y IR]> < V2] 1Q7|-C Al |R7Y ||

< V2[[|Q"|-C-QI-|RI:|[R™|||r[|Rll2 < V21 conda(R)| R||2.

Similarly, from (4.6), (3.6), (4.1), ifQ, Q] is square and orthogonal,

1Q0)[12 = 1QTQ0)[12 + |QTQ(0)|12
= |Q"GR —uw[Q'GR+(Q'GR™) "7 +Q"GR|I%.
<2|QTGR% + |QTGRT% < 2(|GR Y7,

1Q0)]|= < V2| CIQ|-|R||R™| || < V2n3conda(R).

Thus with (4.8) and (4.9) we get the following bounds:

5.1) I28e < p(a)e + 0,
I R]l2

(5.2) IAQ|» < m3p(A)e + O(e?),

(5.3) ©(A) = V2 condy(R).

Apart from the multipliers); andns (see also (6.6), (6.5)k(A) can be
thought of as (an upper bound on) the condition number for Go#mnd R
(for small enoughd A) when we use the combination®&ndF norms. The
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constant/2 involved in the definition of>( A) may be removed, but we keep
ithere since itis useful for comparison with the modified resultsto be givenin
Sect. 8. Notice thap(A) is invariant under any column scaling 4f This is

a significant improvement on the normwise perturbation results published
before [4] when the perturbatiod A satisfies (1.1), but sometimes these
perturbation bounds do not reflect the true sensitivity of the QR factorization
very well, as we see from the following example.

Example 5.1Consider the following two matrices (the first one is quoted
from [18], the new one gives even worse results).

1 1
1 1—1010
_ —10 _
(54) A1 = (1) 101 y AQ = [1 1+10_10:| .

Computing the QR factorization of; and A, in MATLAB with unit round-

off u ~ 1.11 x 10716 (all our computations were performed in MATLAB
5.2 on a Pentium-I1l running LINUX), we obtained the following computed
factors, shown here to 5 figures (to make the diagonal elemeritgs.cind
Ry, positive, some signs have been altered).

Qo= |0 1.0000e+00 | , Ryo=
7.0711e-01  1.2539e—06

Qge= 7.0711e-01 —7.0711e-01 Ry — 1.4142 1.4142e+00
27 17.0711e—01  7.0711e—01|> "~ [0 1.4142e—-10

7.0711e-01 —1.2539e—06
[o 1.0000e—10

1.4142 1.4142e+00]

These have errors

— ~ -6 _ 1Rac—R ~ -16
e, = Qe = Qullr & 17x107, e, = Hertille ~ 9.9 510716,

cay = [Qae = Qallr  1.9x10716, ¢, = Hiaemile 3.3 510707,
(5.5)

whereAd; = Q1 R; and A, = Q2 Ry are the exact QR factorizations. The
condition numbers (5.3) are

(5.6) (A1) = 4.0 x 101°, ©(As) =~ 2.8 x 10'°.

MATLAB computes the QR factorization using Householder transforma-
tions. Comparing (2.5) with (4.7) we se®) = @Q — Q andAR = R. — R,

S0 (2.6) and (5.2) witlh = ~,,, ,u in (2.5) show that

(5.7) 1Qc = Qllr < v np(A)u + O(u?),
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wherey,,, ,, is a moderate constant dependingeandn. Finally (5.1) with
€ = Ym,nu iN (2.5) shows that

HRC — RHF "
—_— <

where againy,, , is a moderate constant dependingrerandn. For more
details of such arguments, see [7, pp.367-368, 382] and [18]. From the
computed results, we see @ the bound (5.7) matches the actual error
eq, In (5.5) very well, but forQ2, k1 andR; the bounds (5.7) and (5.8) are
bad overestimates of the corresponding errofs.

(5.8) (A)u+ O(u?),

Although the matrices (5.4) are contrived, they do represent a fairly common
case whem has a very large condition number: each matrix has only one
very small singular value. By choosing such examples with small dimensions
we are able to illustrate the drawbacks of the bounds in [18] simply and
directly, showing that it is necessary to obtain stronger perturbation bounds.

6 Rigorous bounds

Later we will derive tighter first-order bounds, but in order to explain some
subtleties of these we first obtain some simple but weak rigorous bounds.
From the QR factorization (4.7), with = QR,

RYAR+ ARTR+ ARTAR = RTQTAA + AATQR + AATAA.
Multiplying on the left byR~7 and the right byR~! we see that
ARR '+ RTART = QTAAR '+ R°TAAYQ
+ R T(AATAA - ARTAR)R™.
SinceARR~! is upper triangular, this gives with (3.3)
ARR'=up|Q"AAR'+ R TAA"Q+ R " (AATAA— AR"AR)R™'].
Using (3.5) we obtain
IARR™Y|» < V2||QTAAR o+ (|AARTY[; + [|ARR™3)/V2,
V2[|ARR™» < [AARTY|p(2+ [AARTY|x) + | ARRTH .
(6.1)
Also from (Q + AQ)(R + AR) = QR + AA we see that
AQR+ (Q + AQ)AR = AA,
AQ = AAR™! — (Q + AQ)ARR™,
(6.2) 1AQlr < |AART!|p + [|ARR™! .
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If we replaceA A here bytG, |t| < e satisfying (4.2) as in Theorem 4.1,
then (6.1) and (6.2) still hold witlA@Q and AR continuous functions of.
Let p(t) = [|[ARR Y|, 6(t) = ||AAR™||», B(t) = 6(t)(2 + 6(t)), then
p(0) = 4(0) = B(0) = 0, and from (6.1)

p(t)(V2 = p(t)) < B(1).

Here the left hand side has its maximum o2 with p(t) = 1/v/2. If
B(t) < 1/2 for |t| < e then the left hand side cannot attain its maximum,
and so forlt| < e, p(t) < 1/4/2. This means thay/2 — p(t) > 1/4/2, and

(6:3) p(t) < B(t)/(V2—p(t)) < V2B(t) = V26(t)(2+6(t)), [t <e.

But with (1) > 0, 8(t) = 8(t)(2 + 6(£)) = (5(t) + 1)> — 1 < 1/2if and
only if §(¢) < v/3/v/2 — 1, and the following rigorous bounds hold.

Theorem 6.1 Assume that the conditions and assumptions of Theorem 4.1
hold together with

6.4)  ¢|GR7Yr = [|AARTYr < V3/V2 -1~ .3178.

ThenA + AA = A + ¢G has the unique QR factorization
A+ AA=(Q+ AQ)(R+ AR),

where with the notation of (3.1) and (3.2),

(6.5) 1AQll» < (1+ V2 + V3)nzconda (R)e,

(6.6) H@f"; < (V2 + V/3)nzconda(R)e.

Proof. Since|G| < C-|Q|-|R| from (4.1), (6.3) and (6.4) show

IARR™|l» < V2| AAR|p(24/3/2—1) = (V2+V3)| AAR | -
< (V24 V3)e|CIQI R [RH]l» < (V2 + V3)nsconda(R)e,

This result with (6.2) gives (6.5). Finally (6.6) follows since
IAR|l» < |ARR™|[#[|Rl2. O

Remark 6.2The bounds (6.5) and (6.6) are clearly the rigorous versions of
the first order bounds (5.2) and (5.1), which were analogous to Zha'’s [18,
Theorem 2.1] results. Thus (6.5) and (6.6) are just as weak as (5.2) and (5.1)
were shown to be by Example 5.10
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7 Refined analysis forQ

The expression (5.2) gives an importawerall bound on the changd@
in Q. But by looking at howAQ is distributed betweefR(Q), the range
of @, and its orthogonal complemeRt-(Q), we will obtain better results.
These show more clearly where any ill-conditioning lies.

Take amatrix@Q € R™*(m=") such thafQ, Q] is square and orthogonal.
Then from (4.9) we see that

AQ = eQQTQ(0) + QR Q(0) + O(e?),

and the key is to bound the first term on the right separately from the second.
Since( is an orthonormal matri>QTQ(0) = 0 whenn = 1, and results
involving QT Q(0) will only be nontrivial whenn > 1.

For the part of)(0) orthogonal toR(Q), we see from (4.6) that

(7.1) QTQ(0) = Q'GR™,
and combining this with (4.1) gives
1QQT Q) |r = |QQTGR ™ |x < Q" -C-1Q| ||« | IR IR™"| ||2-
Thus with (3.2) and (3.1) we have
QQTAQ = QR Q(0) + O(),
(7.2) 1QQTAQ||r < nacondz(R)e + O(c?),

andconds(R) can be regarded as the condition number for the patt@f

in R(Q). Note the similarity with (5.2).

Now we deal with that part of\Q lying in R(Q), first we show there is
an importantowerbound on|QQT AQ||2. SinceQ + AQ has orthonormal
columns,

(Q+AQ)T(Q+AQ) =TI+ QTAQ + AQTQ + AQTAQ =1,
(7.3)  1AQTAQ]2 = |AQ|5 = QT AQ + AQT Q|2 < 2[1QTAQ| 2,

and we have the useful lower bound

10Q" 2@l = Q741 > 31 AQI3

To obtain a good upper bound, we will manipulate the equations to avoid
using the triangle equality|(X + Y| < || X|| + ||Y||) etc.where possible.
We see from (4.6) and (3.3) that

Q'Q(0) = Q"GR™ —uwp[Q"GR™ + (QTGR™)"]
(7.4) =low(QTGR™Y) — [low(QTGR™ )T,
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which is skew symmetric with clearly zero diagonal. Now partitnG
andR as follows

n—1 1

n—11 n—11 R
Q:[Qn—17Q]7 G:[Gn—lag]a R:|: 7671 TZTL:| .

This allows us to rewrite (7.4) as

QTQ(0) =1ow([QTGn1 Ry, QT (=Grt Ry 7 + 9) /7))
—{1OW([QTG R, 1>QT( n—1R,, 1T+g)/rnn])}T

(75 =low([Q"Gn1 R, 0]) — {low([QTGri R O]}
From (4.1) it follows that
(76) |Gn—l| S C’Qn—1|'|Rn—1|a

and using (3.6), we have from (7.5) and (7.6) that
1QQTQO)]» < V2(QTGra R, |1
< V2([1QT|-C-Qu-rl Il | 1R |- |2, 12
<V2[1QT-C-1Q e[l [Rn—1]-| Ry 24| -
This with (4.9), (3.2) and (3.1) gives our bound

(7.7) 1QQTAQ||» < V2niconda(Ry—1)e + O(€?).
If we define
(7.8) ko(A) = v2condy(R,_1),

then we can regard this as the the condition number (for small endugh
for that part ofAQ in R(Q), and summarize the results fQr

Theorem 7.1 Suppose all the assumptions of Theorem 4.1 hold,Garel
R™*(m—n) is a matrix such thalQ, Q] is orthogonal. Then
A+ AA = A+ G has the unique QR factorization

A+ AA=(Q+ AQ)(R+ AR),

such that
(79 QQTAQ| < mconds(R)e + O(),
(710)  S1AQIR < QQT ARl < mro(A)e +O(e).

If || GR™Y|» = [|[AAR™Y||» < v/3/+/2 — 1 holds as well, then

14Q] - = [|QRTAQIFHIQQT AQIZ)? < (14+v2+V/3)nzconda (R)e.
(7.112)

Here n;, n2 andns are defined in(3.2), condy(-) is defined in(3.1), and
kqo(A) is defined by7.8). O
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Proof. The unique QR factorization follows from Theorem 4.1, (7.9) is just
(7.2), (7.10) follows from (7.3) and (7.7)—(7.8), while (7.11) is just (6.5) in
Theorem 6.1, since (6.4) holdsO

In some problems we are interested in the chang@ iying in R(Q),
that isQQ™T AQ. For example wher is square? is nonexistent, and the
change iy necessarily lies iR (Q). Theorem 7.1 shows the upper bound
on ||QQT AQ||» can be smaller than was previously thought in for example
[18], see (5.2). In particular ifA has only one small singular value and
its columns are not badly scaled (both matrices in Example 5.1 are of this
form), and we use the standard column pivoting strategy in computing the
QR factorization (see, for example, [6, p248]), then usually we will have
condaz(R,—1) < conda(R). Forthe two matrices in Example 5.1, the values
of conds (R,,—1) arel and1, while the values ofonds (R) are abous x 1010
and2 x 10'°, with or without column pivoting.

In some special cases standard column pivoting may not give
condz(R,—1) < condy(R), for example the Kahan matrices (see [10]).
For these a rank revealing pivoting strategy such as in [9] is required to
obtain a significant improvement o6énds(R,,—1) overcondz(R), see the
ko(A) or ko(AP) (v2conda (R, 1)) andy(A) or p(AP) (v/2 condy(R))
columns in Tables 9 and 10 of Sect. 9.

Now we return to the errar,, in (5.5) for the example withl; in (5.4).
Whenm = n, () does not exist, so (7.10) gives

1AQl» < mrqg(A)e+ O(),

and by a similar argument to that for (5.7), we have for the MATLAB QR
factorization

(7.12) 1Qc — Qllr < Vnnka(A)u+ O(u?).

For Ay, m = n = 2,S0kq(A2) = V2 in (7.8). We see for), the bound
of O(1071%) using (7.12) matches the observeg of 1.9 x 1071¢in (5.5)
well, whereas the bound ¢#(10~%) using (5.7) was very weak.

Remark 7.2Whenm > n itis possible to havgAQ || » > || QQTAQ| », and
(7.10) must be used carefully. Of course (7.1@9gmptoticallycorrect, but
whene is large enough, thé(¢?) term can dominate in the upper bound
in (7.10) when the overall AQ||» is large. That is, thenultiplier in the
O(€?) term can be very large. This is illustrated nicely in the computational
example withA; in (5.4), for therem = 3, butn = 2 s0kq(4;) = V2,
also from (2.5)—(2.6)

Ay + AA; = Q1 Ry, é?él =1,
1Q1 — Qicllr = O(10719), [[AA;|» = O(1071F).
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We see from the argument preceding (2.6), apdin (5.5), that

AQ=Q1— Q1= Qie—Q1, g = Qi — Qs ~ 1.7 x 1075,
¢(A1) = V2 conda(Ry) &~ 4.0 x 1019,

see (5.6). However we also found using MATLAB that

1Q1QT (Q1ec — Q1) ||r ~ 2.5 x 10712,

so that necessarily

1Q1QTAQ, ||r = |Q:1QT(Q1 — Q1)||r ~ 2.5 x 10712

which is much larger than the first-order term in the upper bound in (7.10),
whose value i€)(10716). But from our computations the lowest bound in
(7.10) is%||AQ ||3 ~ 2.4 x 10~'2, which is also much larger than the first-
order term, so th€(e?) term dominates the term in (7.10) even though

e ~ 10716, explaining this result. O

Theorem 7.1 can be used effectively as follows. Estineatels(R)e
andrq(A)e. Since (7.11) is rigorous, th@(e?) term in (7.9) can never ob-
scure thejpyconds(R)e term, so use this latter as the (approximate) bound.
(nsconda(R)e)? gives an indication of how large the lower bound in (7.10)
could be. The)(e) term in the upper bound of (7.10) is an excellent asymp-
totic bound, but if(nsconda(R)e)? > n1 Kk, (A)e, then theO(e?) term may
dominate in (7.10), and we are forced to ygeond,(R)e as the (approxi-
mate) upper bound fdfQQT AQ||» as well.

8 Perturbation analyses forR

In Sect. 4 we saw (4.4) gives a basis for deriving first-order perturbation
bounds forR in the QR factorization of a full column rank matrix. In

[4] it was shown there were two effective approaches to carrying out such
derivations. These were named the matrix—vector equation approach, and the
(refined) matrix equation approach. The matrix—vector equation approach
will be used to provide a good measure of the conditioningzpand a

tight lower bound on the resulting condition number. We will then use ideas
from the refined matrix equation approach to obtain an upper bound on this
condition number, and a useful approach to estimating it in practice.

8.1 Matrix—vector equation analysis fét

The first approach views the matrix equation (4.4) as a large matrivaector
equation. For any matri€’ = (¢;;) = [c1, ..., cn] € R™", denote bycy)



Componentwise QR perturbation analyses 333

the vector of the first elements of columm;. With this, we define (“u”
denotes “upper”)

o

2
uvedC) = | 2

e
It is the vector formed by stacking the columns of the upper triangular part
of C'into one long vector.

The matrix equation (4.4) can be rewritten as the following form (for the

derivation, see [2,4], or just write down the “uvec” of (4.4) for the= 2
case).

(8.1) Wruved R(0)) = Zyved QT Q),
whereW;, € Rn(nﬂ) WH) andZ, e R~z <n+1> * are
11 ]
r12(T11
12 T22
WR = Tin ’
T'in T2n

11
12 T22 11
T12 T22
Ip =
Tin T2n * T'nn 11

Tin T2n * Tnn| |T12 T22

Tin T2n * Tnn |

SinceR is nonsingularj¥; is also, and from (8.1)
(8.2) uved R(0)) = W, Zpved QT Q).

In [4] we only assumed a bound ¢&|| », and the tight condition number
for R was immediately seen to B@V,; ' Z, | .. Here the analysis has to be
more subtle to take account of the important additional information in (4.1).

From (4.1)

QG| < QTG < 1QT-C-|Al < 1Q[-C Q| RI,
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and with this (8.2) gives
luved R(0))| < [Wy 'Zr|ved|Q'G]) < Wy 'Zp|ved|Q"]-C-|Q]-| R)).

The second inequality here appears to lead to upper bounds which are not in
general tight, but this seems unavoidable. Note for any matrix RP*™
andN € R"™*™,

(8.3) vedYN) = (NT ® I,)vedY),

where® denotes the Kronecker product (see for example [11, p. 410]). It
follows that

(8.4)  |uved R(0))] < [Wy' Ze| | RT @ I|ved|Q"]-C-|Q)).
Taking the 2-norm, we obtain

IRO)[r < [ IW5' Zal- R @ L] |2 ]| |QT[-C-|Q] |-
Finally using the Taylor expansion (4.8) and the notation in (3.2),

IARIr _  We'Zal IR ® Il |12,

(8.5) ="M
|2 |2

+ O(é%).

Thus for perturbations of the form (4.1) we can regard the quantity

flz. T In
. o) < LV Zul 1R @ L ]
[1R][2

as the condition number fag in the QR factorization ofi.

Now we obtain a lower bound far; (A). Itis not difficulty to verify (see
the Appendix of [2]) from the structures &F; and Z that the first row of
Wilz,is

(1,0,...,0,0,...,0),
S — N———
n (n—1)n

and thei(i — 1)/2 + 1-throw of W ' Z, is, fori = 2,.. ., n,

(0,7“21'/7‘11,...,7“”‘/7"11,0,...,0,0,...,0,1,0,...,0,0,...,0).
—— —— ——
n (i—2)n n (n—i)n

Thus by simple multiplications, we see that the firglements of the(i —
1)/2 + 1-th row of [W; ' Z,|-|RT @ I,,| are

(‘7“11'|, ’Tgi’, ceey ‘Tu",o, . ,0), 7= 1, ceeyn.
——

n—i
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That is to say there exists a permutation matriguch that

_ RT x
PIW, ' Zg| |RT @ I,| = <’ x | ><>'

Hence we have

Wi Zal B Dol
|7

where it can be seen from the matrid&s and.Z; following (8.1) that this
lower bound is attained witik = I.

The difficulty with the condition numbet(A) is that it is expensive
to compute or even estimate directly. In Sect. 8.2 we will obtain bounds
suggesting a practical condition estimator.

(8.7) HR(A) =

8.2 Obtaining upper bounds using matrix equation ideas

The matrix equation description (4.5) showilﬁqo) = up[QTGR™! +
(QT"GR™1)T|R, is just another way of saying the same thing as
uved R(0)) = W' Z,ved QTG) in (8.2). So for anyX € R™*™,

(8.8) W' Zved X) = uvedup[XR~! + (XR™YH)T|R}.

It is clear from the right hand side of this that each elementqft Z,, is a
sum of terms, where each term is a product of an elemeRrdfwith an
element ofR. It follows that for anyX > 0 € R"*",

(8.9) |Wg'ZnlvedX) < uvecfup[X|R™"| + (X|R™'|)"]|R|}.

This can also be proven by comparing itleelements of both sides of (8.9)
(i=1,2,...,n(n+1)/2). Let D; = diag(sign((W'Zx);.)) and define
X; € RM by vedX;) = D;-vedX). ThenforX >0
(IWz' ZnlvedX)); = (W' Zy)i:- Di-ved X))

= (W' Zn)i, veC(X)
(uved{up[X; R~ + (X;R"HYT|R});, see(8.8),
< (uvec{up| X;[-[R™!| + (| X;|-|[R')T]|R[}):-
Notice thatX > 0 and|X;| = X, so (8.9) indeed holds. Now we definé
to be our matrix of interest in (8.6), that is

(8.10) M= |W.'Zg| |R" @ L|,  kn(A) = [|M]2/||R]2-

For later use, notice from (8.3) that for aliye R"™*"

(W' Zg|vedY|R|) = MvedY).
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We want to find practical bounds f¢a/||2. Write D,, for the set of alh x n
real positive definite diagonal matrices. For ablye D, let R = DR.
Notice that for any matriX3 we haveup(B)D = up(BD). Now from (8.9)
with X = Y'|R| andY > 0, it follows that
[MvedY)z _ [||Wr ' Za|vedY|R])|2
[vedY)]| [vedY)]l2
luvedup[Y'|R[- ][R~ + (YIR]-[R™') ]|R[}2
[vedY)]l2
= Jupl¥ | B-| R + (Y[R |- )R] | /Y ]
= Jup[Y |R|-|[R™!| + DN (YRR ) DIR o/ 1Y ]|
< pollY[R[-|[R7H | |IR]l2/[[Y ]|+, see (3.4)
< ool [R|:|[R7H[D|l2|| D' R]|2.
But sinceM > 0, [[M |2 = maxy>qy+o [[MvedY)|2/|vedY )|z, SO
(811) M|z < pull|[RI-|[R D2l D~ Rz, ¥D € D,
WhenD = I, p, = v/2, and this last with (8.5) and (8.10) gives
|AR|
I1R]2
which is exactly our 2— and F—norm analogy (5.1) of Zha's [18, Theorem

2.1] bound. Clearly by choosinfp carefully we will usually get a better
result than this. Now we define (wifh}, as in (3.4))

(8.12) K (A) = (R, D),

<

< V2n1conds(R)e + O(€?),

inf k
DeD,
(8.13) k(R, D) = po| |R|-|R~"|D|j2| D~ R]|2/|| Rl|2.

This gives bounds on the true condition numkg(A) in (8.6) and (8.7)
(with ¢(A) in (5.3)) of

(8.14) 1 < kp(A) < KL(A) <k(R,I) = \/icondg(R) = @(A).
The above analysis, with (8.5), leads to the following theorem.

Theorem 8.1 Assume that the conditions and assumptions of Theorem 4.1
hold, thenA + AA = A + eG has the unique QR factorization

A+ AA=(Q+ AQ)(R + AR),

where

AR
‘HR”[F < nl’%R(A)E + O(€2>7

(8.16) 1 < kp(A) < KR(A) < p(A4),

(8.15)
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withny, kr(A), k', (A) andp(A) defined by3.2), (8.6), (8.12)with (8.13)
and(5.3). O

When we use the standard column pivoting strategylih= Q R, where
P is the permutation matrix, we get a very nice result. Here the elements of
the resultingR satisfy, fori = 1,...,n,

J
vy >y rp;,  foreachj=i,... n.

It follows thatri; > 199 > ... > Trns andrii > ‘T’ij’. TakeD = diag(rii),
thenp, < v/2,andR = D' Ris unit upper triangular with = 7;; > |74
forall j > 4, and it is easy to show that fgr> i, [(R™1);;| < 277"~! (see,
for example, [7, Lemma 8.6]). Thus from (8.13) we have

Ky(AP) < (R, D) < v2n ||| Rll» < v/n?(14n) (4" +6n—1) /3.

We see that when the standard pivoting strategy is used, the sensitifity of
is bounded for any.. We summarize this as a theorem.

Theorem 8.2 Let A € R™*" be of full column rank, with the QR factoriza-
tion AP = QR when the standard column pivoting strategy is used. Then
in (8.16)

(8.17)1 < kp(AP) < K (AP) < /n2(1+n)(4n +6n —1)/3. O

In contrastyp(A) in (5.3) can be arbitrarily large for fixed, even when
11/ 2] with
0 € |’
very smalle > 0. It is easy to see(A) = O(%). So the bounds (5.1) can
severely overestimate the sensitivity /®f

Clearly x/,(A) in (8.12) is a candidate for estimating the condition
numberx;(A) of R in the QR factorization. We now give some insight
as to whyR in the QR factorization is often less sensitive than the ear-
lier condition estimates)(4) = /2 conds(R) suggested. We know that
condy(R) = || |R|-|R™!] |2 only takes out the effect of bad column scaling
in R, whereas according to [17, Thm. 3.3], we have

standard column pivoting is used. For example= R = [

BB D 2| Dy Rl < Vi jnf || [R]-[RTHD][|D7Rll2,

where D, = diag(||(R);.||2). Thus|| |R|-|R~YD.|l2|| D, * R||» takes out
the effect of bad columandrow scaling inR. Thus for anR with poor row
scaling, ifp,, is not large, them’,(A) will be much smaller thamp(A).
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Now we return to the example in Sect. 5. By a similar argument to that
for (5.8), we have for the MATLAB QR factorization

HRC — RHF < A

(8.18) < Ymn
IRl :

kr(A)u + O(u?).

For the matricesi; andA,, we take row scaling; = diag(2,10~1%) and
D, = diag(2, v2 x 10719), respectively, then with (8.12)—(8.14)

kr(A1) < k(R1,D1) = 2.3, kr(A2) < K(Rg2, D2) =~ 2.3.

The analysis by Zha [18] leads to condition numbers of akdut;) ~
4.0 x 109, p(As) ~ 2.8 x 109, see (5.1), (5.2). Obviously the new error
bound (8.18) gives good estimates for beth andey, in (5.5), in contrast
to [18].

9 Condition estimation and numerical experiments

In Sect. 7 we gave first-order perturbation bounds for the chan@dying
inR(Q), and the change i lying in the orthogonal complement &(Q),
and definedi,(A) = V2| |R._1]| R}, | ||2 as the (asymptotic) condition
number for the former.

In Sect. 8.2 we presented a perturbation bound forRhfactor, and
definedxz(A) as a corresponding condition number. In practice we would
like to chooseD such that

k(R, D) = pp|||RI:|R7'Dll2|| D™ Rl|2/ || B2

is a good approximation to the infimu,(A) of x(R, D), where we know
kr(A) < KL(A).

It seems there is no obvious way to cheaply find the Pe€ur numerical
experiments indicate if we choogto equilibrate the rows oD~ 'R, i.e.,
D = D, = diag||(R).||2), we usually obtain a good estimaterof(A).
But sometimesiit can lead to largg and result in an overestimate. However
in such situations we found the previous estimatel) = «(R, 1) gave a
good approximation. Sowe may usén{x (R, D,), x(R, I)} as anestimate
of the condition numbet ;(A). The remaining problem is in practice how
to cheaply estimatd |R| - |[R7!|D||s with D = D, or D = I. Since
| |R|-|R~|D||2 and|| |R|-|R~!|D||, differ by at most a factor of/n, we
can estimate the latter instead of the former. Following van der Sluis [17,
Thm. 2.6],

(9.1) [ [RHR™'Dll = |RDZ [1[D:R™' Dlly, D = diag([[(R).;11)-
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Notice |[D.R~!DJ|; can be estimated i (n?) flops (see for example
Higham [7, Chap. 14]). Thus both(R, D,) andx(R, I) can be estimated
in a total ofO(n?) flops.

Our numerical experiments also suggest that another optiob foay
give a good approximation. Witk as given in (9.1), choose = diag(J;)
to approximately equilibrate the columnsBfR~! in (9.1) while keeping
pp < /2. To do this, takeS; = 1/||(D.R1). 1|2, then forj = 2,...,n
taked; = 1/[[(DeR). 2 if [I(DeR™).jll2 > [(DeR™). j-1l2; other-
wised; = §;_1. For thisD we write

(9.2) D.=D

to indicate this choice in the tables (“e” denotes “equilibration”). The prob-
lem is that to our knowledge there is no known way to estimate the 2-norm
of each column of the inverse of an upper triangular matri®n?) flops

yet. This is an interesting problem in itself.

We showed with (5.4) that it is easy to construct artificial examples where
the previous bounds (5.1)—(5.3) are exceptionally poor, while the new ones
here are very good. The examples we now give are intended to develop a
feeling for more usual behaviour.

We give three sets of examples, each with and without pivoting, to show
how good the new condition numbers are compared with the previous ones,
how well the new error bounds match the actual errors in the computed fac-
tors, and how well the condition estimates approximate these new condition
numbers. In all these experiments we computed the condition numbers and
condition estimates. For the firstand second sets of examples, see Tables 1-8,
we also computed (c.f. (7.12) and (8.18), with= I for no pivoting):

eq = |Qc — Qllr, bo = kg(AP)u,

(9.3) ep = M, br = kr(AP)u.

IR]2
Here@. and R, are the computed QR factors dfin single precision by
means of a MATLAB progranchop.m provided by Higham [8]Q) andR
are the computed QR factors dfby MATLAB (in double precision), and
u =~ 5.96 x 1078 is the single precision unit roundoff. Sg, andey are
very good approximations to the norms of the actual errors in the computed
Q. andR., andb, andb, are approximations to the error bounds (note the
matrices in our examples are square and here we ignore the coyjsfaint
(7.12) andhy,;, ,, in (8.18)).

Each matrix in the first set has the forth = D;BD,, whereD; =
diag(1,dy, . ..,d" "), Dy = diag1,ds, . ..,dy ') and B is ann x n ran-
dom matrix produced by the MATLAB functiorandn, so theseA are
graded. The results for = 20, d1,ds € {0.8,1,2}, and the same matrix
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B, are shown in Tables 1-4. The results are givenipthen for R, first
without, then with standard pivoting.

Each matrix in the second set has the fotre= Q(D,U D-), whereU is
the upper triangular part of a random matrix produced alsabgn, andD,
andD- are the same as in the first set of examplgs a random orthogonal
matrix produced bgmult.m in[8]. This givestheless likely case of graded
R when no pivoting is used. The results for= 20, d;,d> € {0.8,1,2},
the same matrix/, but different() for each case, are shown in Tables 5-8.

The third set involves x n Kahan matrices (see [10]):

1—c-—c
A=R=diagls- Y| 17,

1

wherec = cos(6), s = sin(#). The results fom = 5,10, 15, 20, 25 with
6 = = /8 are shown in Table 9 without pivoting, and in Table 10 foP
whereP is a permutation such that the first column moves to the last column
position and the remaining columns are moved left one position — this
permutation is adopted in the rank-revealing QR factorization for Kahan
matrices, see for example Hong and Pan [9].

We now comment on the tables. Ideally we haMé = Q R, with P = [
for no pivoting. Remember that(AP) = (R, I), see (8.14).

1. We used square matrices in the example§ @3 AQ = AQ. The new
measure of sensitivity, (AP) of Q, see (7.8), (7.10), is never larger
than the oldp(AP) = k(R, I), see (5.2), (5.3). In Tables 7, 10 the new
measure gives a significant improvement over the old, and even in the
other tables the difference makes it worthwhile using the new measure.

2. For the sensitivity o, the old measure(R, I') compares poorly with
the new measure(A) and estimates (R, D,) andx(R, D, ) in all
except Table 6, where it is clearly superiort@R, D,.) in the last three
cases (it is also marginally better in the fifth and sixth cases). In all
but these three anomalous casér, D,) gave an excellent estimate of
kr(AP), while in these anomalous casgs, ) gave a good estimate,
supporting the suggestion of takingin{x(R, D,),~(R,I)}. In all the
cases where(R, I) is very large, the new measukg (AP) is signifi-
cantly smaller. This suggesigin the QR factorization is not nearly as
sensitive to perturbations of the form (1.1) as was previously thought,
see [18].

3. When standard column pivoting is used A P) can be improved signif-
icantly, and in fact in Tables 4 and 8 (AP) isO(1). ko (AP) can also
be improved significantly, compare Table 5 with 7. But the old measure
for both,x(R, I'), does not change much.
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Table 1. A = D, BD- without pivoting, sensitivity of)
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dy d2  ko(A) (A =k(R,I) eq bo

0.8 0.8 3.5e+02 3.9e+03 1.3e-06 2.1e-05

08 1 3.5e+02 3.9e+03 1.5e-06 2.1e-05

08 2 3.5e+02 3.9e+03 1.5e-06 2.1e-05

1 0.8 3.5e+01 3.5e+02 1.1e-06 2.1e-06

1 1 3.5e+01 3.5e+02 1.1e-06 2.1e-06

1 2 3.5e+01 3.5e+02 1.1e-06 2.1e-06

2 0.8 1.1e+06 7.4e+06 1.7e-02 6.6e-02

2 1 1l.1e+06 7.4e+06 2.8e-02 6.6e-02

2 2 1l.1le+06 7.4e+06 2.8e-02 6.6e-02

Table 2. A = D, B D, without pivoting, sensitivity ofR

di  d2  kr(4) k(R,D;) k(R,D.) k(R,I) er br
0.8 0.8 1.9e+00 5.8e+00 7.7e+00  3.9e+03 2.0e-07 1.1e-07
08 1 1.2e+01 5.0e+01 4.2e+01  3.9e+03 2.6e-07 7.le-07
0.8 2 1.3e+01 1.9e+02 6.2e+01  3.9e+03 2.0e-07 7.7e-07
1 0.8 1.1e+00 2.8e+00 3.8e+00 3.5e+02 1.3e-07 6.6e-08
1 1 9.2e+00 2.8e+01 3.1e+01 3.5e+02 4.1e-07 5.5e-07
1 2 1.1e+01 2.2e+02 4.8e+01 3.5e+02 3.2e-07 6.3e-07
2 0.8 2.0e+00 1.2e+01 1.6e+01 7.4e+06 6.2e-08 1.2e-07
2 1 1.7e+01 2.1e+02 9.0e+01 7.4e+06 1.2e-07 1.0e-06
2 2 52e+01 1.1e+03 4.1e+02 7.4e+06 4.2e-07 3.1le-06

4. The error bounds, andb, match the corresponding actual errefs
andey very well, see (9.3). The numerical results show that standard
pivoting can significantly improve the accuracy of both the QR factors,
compare Table 5 with 7, and 6 with 8.

5. The Kahan matrix is theoretically already in standard column pivoting
form, andx z(A) grows significantly as increases, though not as fast as
the bound in (8.17). But rank-revealing pivoting brought A P) back
down toO(1).

10 Summary and future work

Componentwise perturbation analyses have been given for the QR factor-
ization of a matrix4 with the form of perturbations we could expect from
the equivalent backward error i resulting from numerically stable com-
putations. For the) factor we derived the condition numbers for that part
of AQ in R(A), and that part ifR+(A). Both can be estimated i0(n?)

flops. For theR factor, we first derived the new condition number, and then
suggested practical condition estimators. These provide estimatéa
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Table 3. A = D, BD, with standard pivoting, sensitivity @)

di  do  kq(AP) @(AP)=k(R,I) € bo

0.8 0.8 3.3e+02 3.7e+03 1.0e-06 2.0e-05
08 1 3.5e+02 3.8e+03 1.2e-06 2.1e-05
08 2 5.0e+02 3.7e+03 1.9e-06 3.0e-05
1 0.8 3.4e+01 3.5e+02 9.4e-07 2.0e-06
1 1 4.2e+01 3.5e+02 1.0e-06 2.5e-06
1 2 5.5e+01 3.4e+02 1.4e-06 3.3e-06
2 0.8 1.1e+06 7.4e+06 1.6e-02 6.6e-02
2 1 1.4e+06 7.5e+06 2.2e-02 8.2e-02
2 2 1.5e+06 7.4e+06 2.0e-02 9.1e-02

Table 4. A = D; B D5 with standard pivoting, sensitivity &

di  d2 kr(AP) k(R,D;) k(R,D.) «k(R,I) er br
0.8 0.8 1.6e+t00 4.2e+00 6.5e+00 3.7e+03 2.1e-07 9.6e-08
08 1 5.6e+00 1.5e+01 1.7e+01  3.8e+03 2.4e-07 3.4e-07
08 2 1.0e+00 1.9e+00 5.8e+01 3.7e+03 1.1e-07 6.0e-08
1 0.8 1.1e+00  2.4e+00 3.7e+t00 3.5e+02 9.2e-08 6.5e-08
1 6.1e+00 1.5e+01 1.7e+01  3.5e+02 3.7e-07 3.6e-07
2 1.0e+00 1.7e+00 4.3e+00 3.4e+02 7.2e-08 6.0e-08
0.8 1.3e+00  5.2e+00 1.0e+01 7.4e+06 6.1e-08 7.5e-08
1 3.8e+00 2.1e+01 2.4e+01 7.5e+06 7.0e-08 2.3e-07
2 1.0e+00 2.6e+00 7.6e+02  7.4e+06 8.5e-08 6.2e-08

NNNRFE P

Table 5. A = Q(D:1U D,) without pivoting, sensitivity of)

di  dy ke(A)  9(A) =k(R,I) 2°) be

0.8 0.8 2.3e+07 2.3e+07 4.6e-02 1.4e+00
0.8 1 2.3e+07 2.3e+07 1.4e-01 1.4e+00
08 2 25e+07 2.5e+07 2.8e+00 1.5e+00
1 0.8 4.8e+05 4.8e+05 8.2e-03  2.9e-02
1 1 4.8e+05 4.8e+05 5.0e-04  2.9e-02
1 2 4.8e+05 4.8e+05 4.7e-03  2.9e-02
2 0.8 7.3e+01 7.3e+01 1.9e-06 4.3e-06
2 1 7.3e+01 7.3e+01 4.1e-06  4.3e-06
2 2 7.3e+01 7.3e+01 3.2e-06 4.3e-06

flops. The analyses more accurately reflect the sensitivity of the problem
than previous such results. Both the analysis and numerical results show
that standard column pivoting can significantly decrease the sensitivity of
R, and@ as well, and so give more accurate QR factors. We also found a
rank-revealing pivoting strategy could improve the conditiolRand(@.

The@ andR factors have practical meanings in several applications, see
for example [3]. Certainly in these cases it can be important to know how
accurate, or sensitive, these factors are. One contribution of this paper has
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Table 6. A = Q(D:1U D-) without pivoting, sensitivity ofR
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di  d2  kr(A) k(R,D;) k(R,D.) k(R,I) er br
0.8 0.8 3.2e+03 1.5e+04 1.6e+04 2.3e+07 1.2e-05 1.9e-04
08 1 8.0e+04 5.3e+05 4.0e+05 2.3e+07 4.7e-04 4.8e-03
0.8 2 21e+05 1.4e+06 1.0e+06 2.5e+07 2.3e-02 1.2e-02
1 0.8 4.2e+03 2.6e+04 2.0e+04 4.8e+05 7.1e-05 2.5e-04
1 1 9.9e+04 6.5e+05 4.7e+05 4.8e+05 8.9e-05 5.9e-03
1 2 1.6e+05 1.8e+06 7.3e+05 4.8e+05 1.5e-03 9.2e-03
2 0.8 5.2e+01 1.9e+04 1.0e+02 7.3e+01 5.6e-07 3.1e-06
2 1 52e+01 4.6e+05 1.0e+02 7.3e+01 3.4e-07 3.1e-06
2 2 52e+01 2.8e+06 1.0e+02 7.3e+01 9.4e-07 3.1e-06
Table 7. A = Q(D1U D-) with standard pivoting, sensitivity @)
di  dy  kg(AP) @(AP)=k(R,I) €q bo
0.8 0.8 9.2e+04 2.5e+07 2.1e-04 5.5e-03
08 1 9.5e+04 2.5e+07 3.0e-04 5.6e-03
08 2 9.5e+04 2.6e+07 2.8e-04 5.7e-03
1 0.8 2.9e+03 5.0e+05 2.0e-05 1.7e-04
1 1 2.9e+03 5.1e+05 1.8e-05 1.7e-04
1 2 3.0e+03 5.2e+05 3.8e-05 1.8e-04
2 0.8 3.2e+01 7.5e+01 2.3e-06 1.9e-06
2 1 3.2e+01 7.6e+01 1.6e-06 1.9e-06
2 2 3.1e+01 8.0e+01 1.4e-06 1.9e-06
Table 8. A = Q(D1U D) with standard pivoting, sensitivity a
d1 d2  kr(AP) k(R,D,) k(R,D.) &(R,I) er br
0.8 0.8 2.3e+00 9.2e+00 1.3e+01 2.5e+07 1.0e-07 1.4e-07
08 1 5.4e+00 1.9e+01 1.9e+01 2.5e+07 1.1e-07 3.2e-07
08 2 1.0e+00 2.0e+00 6.1e+00 2.6e+07 3.2e-08 6.0e-08
1 0.8 3.5e+00 1.4e+01 1.6e+01 5.0e+05 1.2e-07 2.1e-07
1 1 4.6e+00 1.3e+01 1.4e+01 5.1e+05 2.0e-07 2.8e-07
1 2 1.0e+00 1.8e+00 3.8e+00 5.2e+05 3.8e-08 6.0e-08
2 0.8 1.0e+00 2.0e+00 3.1e+00 7.5e+01 9.2e-08 6.0e-08
2 1 1.0e+00 2.0e+00 3.1e+00 7.6e+01 3.1e-08 6.0e-08
2 2 1.0e+00 1.7e+00 3.6e+00 8.0e+01 1.6e-07 6.0e-08
Table 9. n x n Kahan matrices without pivoting
n_ ke(A) kr(4) KWR,Dy) KR De) ¢(A)=r(R1)
5 1.8e+02 6.5e+00 1.4e+01 1.5e+01 9.0e+02
10 5.8e+05 1.2e+02 3.5e+02 4.0e+02 2.9e+06
15 1.9e+09 2.5e+03 9.5e+03 1.1e+04 9.3e+09
20 6.0e+12 5.8e+04 2.6e+05 2.9e+05 3.0e+13
25 1.9e+16 1.4e+06 7.0e+06 7.6e+06 9.6e+16




344 X.-W. Chang, C. Paige

Table 10. n x n Kahan matrices with rank-revealing pivoting

n ko(AP) kr(AP) k(R,D;) k(R,D.) ¢(AP)==kr(R,I)

5 2.8e+01 1.8e+00 4.9e+00 5.0e+00 8.9e+02
10 3.5e+03 2.3e+00 1.1e+01 1.1e+01 2.8e+06
15 4.2e+05 2.5e+00 1.8e+01 1.8e+01 9.1e+09
20 5.1e+07 2.6e+00 2.6e+01 2.4e+01 2.9e+13
25 6.3e+09 2.7e+00 3.3e+01 3.1e+01 9.4e+16

been to provide the theory whereby the sensitivitg@hputedQR factors

may be obtained. We propose that standard numerical linear algebra software
packages include the option of estimating the condition estimates given in
this paper for the QR factors. This can be done by using standard norm
estimators that are already available in the packages. These estimates can
then be used to supply measures of the accuracy of the computed factors. As
pointed out in Sect. 9, this estimation can be dor@(in?) flops. Compared

with the O (mn?) flops required for the computation of the QR factorization
itself by the Householder or givens transformations, this extra computation
does not cost much. Such information will be very helpful to users interested
in either the accuracy of the computed QR factors, or their sensitivity to other
perturbations of the form (1.1).

In the future we would like to investigate how well the suggested practi-
cal condition estimates approximate the corresponding condition numbers.
Also we would like to apply the approaches here to the Householder QR
factorization with complete pivoting (see Cox and Higham [5]).

AcknowledgementsThe referees’ suggestions improved the presentation greatly.
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