
An ADMM Based Method for Underdetermined Box-constrained

Integer Least Squares Problems

Xiao-Wen Chang and Tianchi Ma

School of Computer Science, McGill University, Montreal, QC H3A 0E9, Canada

ARTICLE HISTORY

Compiled November 11, 2023

ABSTRACT
To solve underdetermined box-constrained integer least squares (UBILS) prob-
lems, we propose an integer-constrained alternating direction method of multipliers
(IADMM), which can be much more accurate than the ADMM method. To guaran-
tee to find the optimal solution, then we incorporate IADMM to DTS, a tree search
method, to make the latter more efficient. Numerical tests show that the combined
method IADMM-DTS can be much faster than the original DTS method. Finally
we apply the combined method to a practical communication problem. Numerical
results indicate that IADMM-DTS typically performs better than the commercial
solvers CPLEX and MOSEK in terms of both efficiency and accuracy, and it can be
used as an alternative to the commercial solver Gurobi for UBILS problems.

KEYWORDS
Integer parameter estimation; underdetermined integer least squares; box
constraints; alternating direction method of multipliers; enumeration

AMS CLASSIFICATION
90C10, 90C59, 90C90, 62F10, 62H12, 62P30, 94A13

1. Introduction

Given a real matrix A ∈ Rm×n, a real vector y ∈ Rm, a box B = {x ∈ Zn : ℓ≤ x ≤
u, ℓ,u ∈ Zn}, a box-constrained integer least squares (BILS) problem has the following
form:

min
x∈B

∥y −Ax∥22. (1)

When A has full column rank, we refer to (1) as the overdetermined box-constrained
integer least squares (OBILS) problem, and when A has full row rank with m < n,
we refer to it as the underdetermined box-constrained integer least squares (UBILS)
problem. When A is rank deficient, we can use the QR factorization with column
pivoting (see, e.g., [20, Sec. 5.5.5]) to transform it to a UBILS problem. This paper is
concerned with solving the UBILS problem.

The BILS (either OBILS or UBILS) problems arise in some applications, such as
multiple-input and multiple-output (MIMO) communications (see, e.g., [12, 15, 17,

CONTACT Xiao-Wen Chang. Email: chang@cs.mcgill.ca

29, 36, 44]) and control (see, e.g., [26, 28]). Typically the motivation of solving the
BILS problems in applications is to estimate an integer parameter vector x∗ in a linear
model:

y = Ax∗ + v, x∗ ∈ B, v ∼ N (0, σ2vI), (2)

where x∗ is a random integer-valued parameter vector uniformly distributed over the
box B, and v is a noise vector following the normal distribution N (0, σ2vI). Given A
and y, one would like to recover x∗. This is an estimation or detection problem. The
solution to the BILS problem (1) is both the maximum likelihood estimator and the
maximum a posterior estimator of x∗, see, e.g., [27, Sec. 1.3.1].

If we do not consider the box constraint, then (1) becomes

min
x∈Zn

∥y −Ax∥22. (3)

In this case, we assume that A has full column rank and refer to (3) as an overde-
termined ordinary integer least squares (OOILS) problem. The OOILS problem arises
in communications (see, e.g., [1, 29, 36]), GPS positioning (see, e.g., [13, 23, 41]), and
lattice cryptography (see, e.g., [22, 33]).

The OOILS problem (3) is NP-hard [42]. Although there are various approaches to
solving it (see, e.g., [2, 22]), the enumeration approach is the one most widely used in
applications [1, 7, 34, 41]. Typically it searches for the optimal integer points within
an ellipsoid to find the optimal one. The enumeration approach can easily be extended
to the OBILS problem, see, e.g., [5, 9, 17].

The enumeration approach has also been extended to the UBILS problem, see, e.g.,
[11, 16]. For the communications applications, the box constraint in the UBILS prob-
lem is special and there is another approach, which transforms the UBILS problem to
an equivalent enlarged OBILS problem and then solve it by the enumeration approach,
see [12, 15]. But both approaches may be too time consuming when n −m is a little
large and the box is a little large. Essentially this is because the number of equations
is smaller than the number of unknowns in the model (2), leading to large degrees of
freedom for the unknowns, i.e., large search space.

Recently Takapoui et al. [40] have applied the alternating direction method of mul-
tipliers (ADMM) to mixed integer quadratic programming (MIQP) problem. This is
a new approach to solving the BILS problem, a special type of MIQP. ADMM is
a simple but powerful algorithm that is well suited to distributed convex optimiza-
tion, see Boyd et al. [6]. In [40] it showed that for the MIQP problems it considered
ADMM has favourable computational costs and in many cases the global solution can
be found although it is not guaranteed. However, for the UBILS problem we found in
our numerical experiments that the ADMM algorithm is not a good heuristic in that
it hardly converges to the optimal solution.

The main issue with the ADMM algorithm applied to the UBILS problem is its
overrelaxation - in each iteration it solves an overdetermined ordinary real least squares
(OORLS) problem and both the integer constraint and box constraint are relaxed. We
will propose to modify it by imposing the integer constraint, i.e., we solve an OOILS
problem instead in each iteration. For convenience, the resulting algorithm is referred
to as IADMM, where “I” is for integer. One important component of ADMM is the
penalty parameter. We discuss how to choose an initial value of the penalty parameter
and update it during iterations in IADMM. A suggestion for choosing initial points

2

for IADMM iterations is also proposed. Numerical test results will be given to show
superiority of IADMM over ADMM.

IADMM, as a heuristic algorithm, may not give the optimal solution. We propose
to incorporate it into the enumeration approach, which finds the optimal solution, to
make the enumeration process faster. The specific enumeration method for the UBILS
problem to be considered is the the direct tree search (DTS) algorithm proposed by
Chang and Yang [11]. We use IADMM to aid DTS in two aspects. One is to use the
IADMM algorithm to find a solution and then use it to define the initial search radius
for the DTS algorithm, which may reduce the search region significantly, compared
with the default initial search radius. The other is to use the IADMM algorithm to
find lower bounds for some sub-UBILS problems encountered in DTS’s search process
to prune the search tree. Specifically we derive a lower bound on the optimal value
of a general UBILS problem based on the IADMM algorithm. We manage to do this
because in each step of the IADMM algorithm we solve a relaxed ILS problem exactly.
We then apply the technique to find lower bounds for some sub-UBILS problems
encountered in DTS’s search process, which are used to prune the search tree. The
combined algorithm is to be referred to as IADMM-DTS.

There are various solvers which can be used to solve the UBILS problem. We com-
pare IADMM-DTS with the well known commercial software packages CPLEX, Gurobi
and MOSEK for solving UBILS problems arising in MIMO communications. Numeri-
cal results will show the advantages of IADMM-DTS.

The rest of the paper is organized as follows. In Section 2 we briefly describe the
enumeration approach for various ILS problems and introduce ADMM for MIQP. In
Section 3 we propose the IADMM algorithm. In Section 4 we present the main ideas
of IADMM-DTS. In Section 5 we give numerical results. Finally Section 6 concludes
the paper with a summary and future work.

Notation. For a vector x ∈ Rn, xi:j denotes the subvector composed of elements
of x with indices from i to j. For a matrix A = (aij) ∈ Rm×n, Ai:j,k:ℓ denotes the
submatrix of A formed by rows from i to j and columns from k to ℓ, and Ai:j,k

denotes column k of A with row indices from i to j. For a scalar x ∈ R, ⌊x⌉ denotes
the nearest integer to x (if there is a tie, the one with smaller magnitude is chosen).
A vector whose entries are ones is denoted by 1. Given a vector x ∈ Rn and a set of
n-vectors X , ΠX (x) denotes the projection of x onto X , i.e., the vector in X nearest
to x in the 2-norm. For a random vector x, we denote E{x} as its mean and cov{x} as
its covariance matrix. If a real-valued vector x is normally distributed with zero mean
and covariance matrix σ2I, we write x ∼ N (0, σ2I).

2. Background

In this section, we first briefly review the enumeration approach to solving the OOILS,
OBILS and UBILS problems and then introduce the general ADMM method and its
application to the MIQP problem.

2.1. The enumeration approach for various ILS problems

The enumeration approach for the OOILS problem (3) has two stages. The first stage is
the reduction, which makes the second stage easier and more efficient, and the second
stage is the search, see, e.g., Agrell et al. [1].

3

In the first stage we compute the QRZ factorization of A:

AZ = QR, (4)

where Z ∈ Zn×n is unimodular (i.e., det(Z) = ±1), Q ∈ Rm×n is column-orthonormal
(i.e.,QTQ = In),R ∈ Rn×n is upper triangular. Different choices for Z lead to different
reductions. Typically one employs LLL lattice reduction proposed by Lenstra, Lenstra
and Lováse [30]. For theoretical justifications of using LLL for solving OOILS, see
Chang, Wen and Xie [10]. With ȳ := QTy and x̄ := Z−1x, the original OOILS
problem (3) is transformed to

min
x̄∈Zn

∥ȳ −Rx̄∥22. (5)

In the second stage, we search the solution to the reduced problem (5). Suppose
that the solution to (5) satisfies the following bound:

∥ȳ −Rx̄∥22 < β2, (6)

where β is called the search radius, and later we will say how to choose it. Note that
(6) is a hyper-ellipsoid and our goal is to search this ellipsoid to find the optimal
integer point. Here we briefly introduce the most widely used search method given by
Schnorr and Euchner [37], which is an improvement of the original method proposed
by Fincke and Pohst [19]. Write

ȳ =

[
ȳ1:n−1

ȳn

]
, R =

[
R1:n−1,1:n−1 R1:n−1,n

rnn

]
, x̄ =

[
x̄1:n−1

x̄n

]
.

Then we can easily observe that (6) is equivalent to

∥(ȳ1:n−1 −R1:n−1,nx̄n)−R1:n−1,1:n−1x̄1:n−1∥22 < β2 − r2nn(cn − x̄n)
2, (7)

r2nn(cn − x̄n)
2 < β2, (8)

where cn := ȳn/rnn. We say that (8) gives the search region for x̄n at level n. The
search method first takes x̄n = ⌊cn⌉, the nearest integer to cn. If (8) does not hold, then
the hyper-ellipsoid (6) does not include any integer point and the search process stops.
If (8) holds, we denote this value of x̄n by x̄′n and attempt to find an (n− 1)-integer
point within the (n− 1)-hyper-ellipsoid (7) that is the solution to the sub-problem

min
x̄1:n−1∈Zn−1

∥(ȳ1:n−1 −R1:n−1,nx̄
′
n)−R1:n−1,1:n−1x̄1:n−1∥22, (9)

which is an OOILS problem with dimension n− 1. There are two cases. In case 1, the

solution x̄′
1:n−1 to (9) is within the (n−1)-hyper-ellipsoid (7). In this case, x̄′ :=

[
x̄′

1:n−1

x̄′
n

]
is an integer point in the n-hyper-ellipsoid (6), and we first update β2 by defining
β2 := ∥ȳ − Rx̄′∥22, and then go back to level n. In case 2, the solution x̄′

1:n−1 to (9)
is outside the (n− 1)-hyper-ellipsoid (7). In this case, x̄′ does not satisfy (6), and we
also go back to level n. In both cases, when we go back to level n (see (8)), we choose
x̄n to be the next nearest integer to cn and then continue the search process as before.
Finally, when the search process stops at level n, i.e., no new integer can be chosen

4

to satisfy (8), the latest found n-dimensional integer point is the solution to (5). Here
we want to point out when we solve (9), we use exactly the same search method. The
whole process is a depth-first tree search. When an integer point in the hyper-ellipsoid
(6) is found, the search radius β is updated so that the search region becomes smaller.
The typical choice for the initial β is ∞.

The enumeration approach for solving the OBILS problem (1) is very similar to
that for solving the OOILS problem (3), see Chang and Han [9] and the references
therein. There are two main differences. One is that in the QRZ factorization (4), Z
is chosen to be a permutation matrix rather than a more general unimodular matrix
to keep the constraint in the optimization problem as a box after the reduction. The
other difference is that in the search process, the box constraint has to be taking into
account.

Now we briefly introduce the main idea of the enumeration approach for the UBILS
problem (1), where A ∈ Rm×n has full row rank and m < n. In general UBILS is much
more challenging than OOILS and OBILS. We first compute the QRZ factorization
(4), where Z ∈ Zn×n is a permutation matrix, Q ∈ Rm×m is orthogonal, R ∈ Rm×n is
upper trapezoidal with nonzero diagonal entries (i.e., rij = 0 for all i > j and rii ̸= 0
for all i), Then, with

ȳ := QTy, x̄ := ZTx, ℓ̄ := ZT
ℓ, ū := ZTu, B̄ := {x̄ ∈ Zn, ℓ̄≤ x̄ ≤ ū}, (10)

the original UBILS problem (1) can be transformed to

min
x̄∈B̄

∥ȳ −Rx̄∥22. (11)

Suppose that the optimal solution of (11) satisfies

∥ȳ −Rx̄∥22 < β2. (12)

We can choose β as follows. We first solve the corresponding underdetermined box-
constrained real least squares problem and then round the solution to the nearest
integer vector, say x̄UBRLS, and then take β = ∥ȳ − Rx̄UBRLS∥2. With appropriate
partitioning of ȳ, R and x̄ in (12), we see (12) is equivalent to

∥(ȳ1:m−1 −R1:m−1,m:nx̄m:n)−R1:m−1,1:m−1x̄1:m−1∥22

≤ β2 −
(
ȳm −

n∑
j=m

rmj x̄j

)2
, (13)

(
ȳm −

n∑
j=m

rmj x̄j

)2
< β2. (14)

The search process uses (14) and the corresponding interval constraints to enumerate
x̄n, x̄n−1, . . . , x̄m. There may be many candidates for the sub-vector x̄m:n satisfying
(14) and the corresponding box constraint. Once a value of x̄m:n is chosen, by (13) we
solve the OBILS problem:

min
x̄1:m−1∈B̄1:m−1

∥(ȳ1:m−1 −R1:m−1,m:nx̄m:n)−R1:m−1,1:m−1x̄1:m−1∥22 ,

5

where B̄1:m−1 := {x̄1:m−1 ∈ Zm−1 : ℓ̄1:m−1 ≤ x̄1:m−1 ≤ ū1:m−1}. Note that here we
use (14) to search for the sub-vector x̄m:n, while in solving (5) we use (8) to search
for the element x̄n. The former can be much more expensive due to a lot of choices
for x̄m:n when n − m is a little large, say n − m = 6 when m = 20. The specific
enumeration method to be used in this paper for solving the UBILS problem is the
DST algorithm proposed by Chang and Yang [11], which has been implemented in the
MATLAB MILES package [8].

2.2. ADMM as a heuristic for mixed-integer quadratic programming
problems

In [40], Takapoui et al. proposed to apply the ADMM approach to solve the MIQP
problem:

min
x∈Rn

(1/2)xTMx+ cTx+ r

s.t. Bx = d, x ∈ X ,
(15)

where M ∈ Rn×n is a symmetric positive semidefinite matrix, c ∈ Rn, B ∈ Rm×n,
d ∈ Rm, X = X1 × · · · × Xn, with each Xi being an integer set or a convex subset of
R. Note that the MIQP problem (15) can be rewritten as

min
x,z

f(x) + g(z)

s.t.

[
B
I

]
x−

[
0
I

]
z =

[
d
0

]
,

where

f(x) = (1/2)xTMx+ cTx+ r, g(z) =

{
0, if z ∈ X
∞, otherwise

.

Applying the ADMM approach leads to the following iteration scheme (in the scaled
form) given in [40]:

x(k+1) = argmin
x∈Rn

(
(1/2)xTMx+ cTx

+ (ρ/2)

∥∥∥∥[BI
]
x−

[
0
I

]
z(k) −

[
d
0

]
+w(k)

∥∥∥∥2
2

)
, (16a)

z(k+1) = ΠX

(
x(k+1) + [0

m
, I
n
]w(k)

)
, (16b)

w(k+1) = w(k) +

[
B
I

]
x(k+1) −

[
0
I

]
z(k+1) −

[
d
0

]
, (16c)

where ρ is a constant penalty parameter, ΠX is the projector onto X . The x-update is
to solve a strongly convex quadratic programming problem in real space, the z-update
involves projection onto the set X , and the w-update is for updating the dual variable.

6

Through numerical experiments [40] showed that the ADMM method is an effec-
tive tool for MIQP problems arising from many embedded optimization applications,
since ADMM usually finds a feasible point with reasonable objective value and is sub-
stantially faster than global optimization methods. The authors of [40] also applied
this approach to a particular OBILS problem (see (1)) arising in communications
and shown that satisfactory bit error rates can be obtained with substantially less
computing time than the relax-and-round method. However, our experimental results
indicated that for the UBILS problem the method hardly converges to the optimal
solution and is not a good heuristic. Thus, some modifications need to be made in
applying the ADMM approach.

Here we would like to mention a related work [39] by Soute and Lopes, which applied
the ADMM approach to recover integer valued sparse signals. In the ADMM iterations,
it provided a strategy to deals with the sparsity requirement.

3. IADMM: A modified ADMM method for the UBILS problem

In this section, first we propose an integer-constrained ADMM iteration scheme for
solving the UBILS problem (1), then we discuss the choice of the penalty parameter
and initial points, and finally we give a detailed description of the algorithm.

3.1. Integer-constrained ADMM iteration scheme

The UBILS problem (1) is a special case of the MIQP problem (15). When we apply
the ADMM iteration scheme (16) to (1), it becomes

x(k+1) = argmin
x∈Rn

(
∥y −Ax∥22 + (ρ/2)∥x− z(k) +w(k)∥22

)
, (17a)

z(k+1) = ΠB(x
(k+1) +w(k)), (17b)

w(k+1) = w(k) + x(k+1) − z(k+1). (17c)

Here x(k+1) is the real solution to a regularized real least squares problem, z(k+1) is
an integer vector obtained by projecting x(k+1) +w(k) onto the box B, and then the
scaled dual variable w(k) is updated, leading to w(k+1).

Unfortunately the above ADMM iteration scheme does not work well. Often it does
not converge, and even if it does, it does not converge to the optimal solution to the
UBILS problem. Later we will give numerical examples to illustrate this. Here we
propose a small change to the iteration scheme. Specifically, we impose the integrity
constraint on x in (17a). For convenience, we replace the penalty parameter ρ by 2λ2

(λ > 0). Then (17) becomes

x(k+1) = argmin
x∈Zn

(
∥y −Ax∥22 + λ2∥x− z(k) +w(k)∥22

)
, (18a)

z(k+1) = ΠB(x
(k+1) +w(k)), (18b)

w(k+1) = w(k) + x(k+1) − z(k+1). (18c)

We refer to the above as the integer-constrained ADMM (IADMM) iteration scheme.
Although the change is small, it brings a huge improvement.

7

Now we show how to solve the regularized ILS problem in (18a). The objective
function in (17a) or (18a) can be rewritten as

∥y −Ax∥22 + λ2∥x− z(k) +w(k)∥22 =
∥∥∥∥[y

λ(z(k) −w(k))

]
−
[
A
λI

]
x

∥∥∥∥2
2

. (19)

Note that the augmented matrix
[
A
λI

]
has full column rank, thus (17a) is an OORLS

problem, while (18a) is an OOILS problem. We can use the enumeration approach
introduced in Section 2.1 to solve the OOILS problem. Although solving this OOILS
problem may cost much more than solving the corresponding OORLS problem, this
overcomes the overrelaxed issue with the latter, where both integer and box constraints
are relaxed, and can make the iteration converge much faster. An OOILS problem is
usually much easier to solve than a UBILS problem with the same dimension n.

The optimality conditions of the standard ADMM on convex problems are that the
primal residual and dual residual both reach zero. For the IADMM iteration scheme
(18), when the primal residual r(k+1) = x(k+1) − z(k+1) and the dual residual s(k+1) =
2λ2(z(k+1) − z(k)) both reach zero, the algorithm stops (x and z updates will not
change their values over further iterations). We found in our numerical experiments
that if a constant λ is used over all iterations, sometimes the IADMM method may
not converge, i.e., the above conditions cannot be reached. We will propose a varying
strategy for choosing the penalty parameter in the following subsection.

3.2. Initial points and penalty parameter

In this subsection, we discuss how to set the initial points z(0), w(0) and how to choose
the penalty parameter λ during iteration in IADMM.

It has been shown that in the convex case the choice of parameters in ADMM only
affects the speed of the convergence, while in the non-convex case the choice can have
a critical role in the quality of approximate solution, as well as the speed at which this
solution is found (see, e.g., Diamond, Takapoui and Boyd [18] and Xu, Figueiredo,
and Goldstein [43]). Note that the integer constraint is a special type of non-convex
constraints.

For w(0), it is reasonable to set it as 0 because the scaled dual variable w represents
the running sum of residuals.

To choose z(0) and the initial λ, we consider two situations in the following.
Suppose the UBILS problem comes from the linear model based estimation, i.e.,

the model (2) is known. For simplicity, we assume that ui − li = d for i = 1, 2, ..., n
(in communication applications typically B is assumed to be a cube). Then, from the
distribution of the true parameter vector x∗ in (2), we have

E{x∗} =
1

2
(ℓ+ u), cov{x∗} = σ2x∗I, σ2x∗ =

(d+ 1)2 − 1

12
. (20)

The real minimum mean square error (MMSE) estimator of x∗ is the solution of a
regularized real least squares problem (see, e.g., [32, Lesson 13]):

xMMSE = argmin
x∈Rn

(
∥y −Ax∥22 + λ∗2 ∥x− E(x∗)∥22

)
,

8

where

λ∗ := σv/σx∗ . (21)

The MMSE guides us to set z(0) as E(x∗) and λ as λ∗. Then x(1) given by IADMM
in the first iteration has the same form as the MMSE estimator of x∗ if we do not
impose the integer restriction on x in (18a). In our numerical tests, we find that if λ
is chosen to be larger than λ∗ and it is fixed during the iteration, the accuracy of the
final solution may drop dramatically, while setting λ to a smaller value usually does
not change the accuracy of the final solution. Thus, we set the initial λ(0) = αλ∗ for a
positive parameter α ≤ 1.

Suppose we have no knowledge about the linear model (2). In this case, it is still
reasonable to set z(0) = 1

2(ℓ+ u). For the initial λ(0), we suggest to choose a small
value, say 10−2.

Now we discuss how to update λ during the iterations. It has been shown that using
appropriate varying penalty parameter over iterations can make ADMM more efficient
and effective for both convex and non-convex optimisation problems (see, e.g., Boyd
et al. [6], Diamond, Takapoui and Boyd [18], and Xu, Figueiredo and Goldstein [43]).
For the IADMM method for the UBILS problem, we propose to increase the value of
penalty parameter λ for every certain number of iterations until the method stops.
The scheme is as follows:

λ(k+1) =

{
τλ(k) if (k mod q) = 0,

λ(k) otherwise,
(22)

where τ ≥ 1 is a factor of inflating λ and (k mod q) is the remainder of the division of
the current iteration k by an integer parameter q. When q is set as 1, λ is inflated at
each iteration. In the following, we give some explanations about this strategy.

First, it is inspired by the quadratic penalty function method (see e.g., Bertsekas
[4]), whose idea is to eliminate some or all of the constraints by adding to the objective
function a penalty term which prescribes a high cost to infeasible points. Associated
with this method is a penalty parameter λ, which determines the severity of the penalty
and as a consequence the extent to which the resulting unconstrained problem approx-
imates the original constrained problem. Thus the quadratic penalty method consists
of solving a sequence of problems with {λ(k)} as a sequence of penalty parameters
satisfying:

∀k, 0 < λ(k) < λ(k+1), λ(k+1) → ∞.

Similarly, for the IADMM method, if such a sequence of penalty parameters {λ(k)} is
adopted, it is not hard to see that the algorithm is guaranteed to stop. In fact, from
(18a), we see that when λ(k) is large enough we must have x(k+1) − z(k) +w(k) = 0,
because all of these vectors here are integer vectors. Then from (18b) we obtain
z(k+1) = z(k) and from (18b) we obtain w(k+1) = 0. In the next step we have
x(k+2) = z(k+1) from (18a) and z(k+2) = z(k+1) from (18b). Therefore the primal
residual r(k+2) = 0 and the dual residual s(k+2) = 0, leading to termination of the
algorithm. In (22) we increase λ every certain number of iterations instead of every
iteration because we would like the algorithm to stop with a relatively small λ. An-
other reason for keeping λ unchanged over some iterations is that we need to perform

9

the partial LLL lattice reduction only once in those iterations when we solve the as-
sociated OOILS problems for x−update in (18a) since the augmented matrix

[
A
λI

]
in

its objective function (see (19)) is unchanged during those iterations.
Second, with the goal of making the performance less dependent on the initial choice

of the penalty parameter and accelerating convergence as well, we would like to inflate
the penalty parameter when the primal residual r(k+1) = x(k+1)−z(k+1) appears large
compared to the dual residual s(k+1) = 2λ2(z(k+1) − z(k)), and deflate it when the
primal residual seems too small relative to the dual residual. In our numerical tests we
found that the primal residual is much larger than the dual residual over iterations.
Thus we do not need to deflate the penalty parameter. Adopting (22) will ensure that
IADMM terminates.

3.3. The IADMM algorithm

Now we can give a full description of the IADMM method for the UBILS problem in
Algorithm 1.

Algorithm 1 IADMM for a UBILS problem

Input: The matrix A ∈ Rm×n (m < n) with full row rank, the vector y ∈ Rm, the
lower bound ℓ∈ Zn and the upper bound u ∈ Zn of the box B = {x ∈ Zn : ℓ≤ x ≤ u},
the initial penalty parameter λ(0), the constants q and τ for initializing and updating
the penalty parameter and the maximal number of iterations K.
Output: The feasible solution (not necessarily optimal) xIA to the UBILS problem
(1) and the corresponding residual norm β = ∥y −AxIA∥2.
Function: (xIA, β) = IADMM(A,y, ℓ,u, λ(0), q, τ,K)

1: Set z(0) = (ℓ+ u)/2, w(0) = 0, λ = λ(0), β = ∞
2: for k = 1 : K do

3: x(k) = argmin
x∈Zn

∥∥∥∥[y

λ(z(k−1) −w(k−1))

]
−
[
A
λI

]
x

∥∥∥∥2
2

4: z(k) = ΠB(x
(k) +w(k−1))

5: w(k) = w(k−1) + x(k) − z(k)

6: if β > ∥y −Az(k)∥2 then
7: Set xIA = z(k) and β = ∥y −Az(k)∥2
8: end if
9: if x(k) = z(k) = z(k−1) then

10: Terminate
11: end if
12: if k (mod) q = 0 then
13: λ = λτ
14: w(k) = w(k)/τ2

15: end if
16: end for

Here we give some remarks on Algorithm 1:

(1) Line 3: When λ is not changed from the previous iteration, we use the partial
LLL reduction (see Sec. 2.1) of the augmented matrix obtained or used in the
previous iteration and start the search phase directly. If λ is changed from the
previous iteration, the change is expected small. We use the reduction result
of the previous iteration to make the reduction process for the new augmented

10

matrix faster.
(2) Lines 6–8: Since the objective function may not decrease monotonically during

iterations, after each iteration, we check if the latest iterate z(k) is better than
the current best solution xIA. If so, we update the latter. This means that the
final solution xIA may not be the last iterate.

(3) Line 14: Note that w is the scaled form of the dual variable. Therefore, after
updating λ, w must also be updated; see, e.g., [6, Chap. 3].

4. Incorporating IADMM into the enumeration approach

Although in general IADMM is much faster and more accurate than ADMM for solving
the UBILS problem, the solution obtained by the former may still not be the optimal
one. This is different from the enumeration approach, which finds the optimal solution.
To find the optimal solution, in this section we propose to incorporate IADMM into
an enumeration method named DTS proposed by Chang and Yang [11]. The goal is
to make the latter faster. The combined method is to be referred to as IADMM-DTS.

4.1. Initial search radius

One factor which affects the efficiency of the enumeration approach is the initial search
radius β in (12). If β is small, the initial search region is small. One would like to find
a β as small as possible. As the solution obtained by IADMM is usually good, we
propose to use it to define the initial β. Specifically, we apply IADMM to solve the
reduced UBILS problem (11). Let the solution be denoted by x̄IA. Then we define the
initial search radius β = ∥ȳ−Rx̄IA∥2. The DTS method uses the rounded value of the
solution of the corresponding real problem to define the initial β (see the lines after
(12)). Numerical results will be given to show that the new initial radius can reduce
the total running time significantly, although finding the new initial radius takes more
time.

4.2. Lower bounds

In this subsection, we first propose an IADMM based method to find a lower bound
for a general UBILS problem, and then apply the method to find lower bounds for
some sub-UBILS problems encountered in the search process of the DTS method to
prune the search tree.

Suppose we use IADMM to solve the UBILS problem (1). From (18a) we have

∀x ∈ Zn, ∥y −Ax∥22 ≥− λ2∥x− z(k) +w(k)∥22
+ ∥y −Ax(k+1)∥22 + λ2∥x(k+1) − z(k) +w(k)∥22.

(23)

Then we have a lower bound as follows:

∀x ∈ B, ∥y −Ax∥22 ≥− λ2
n∑

i=1

[
max(|ui − z

(k)
i + w

(k)
i |, |li − z

(k)
i + w

(k)
i |)

]2
+ ∥y −Ax(k+1)∥22 + λ2∥x(k+1) − z(k) +w(k)∥22.

(24)

11

Then we take the maximum lower bound over all iterations to get a lower bound on
minx∈B ∥y −Ax∥22.

We modify Algorithm 1 so that the algorithm produces either the maximum lower
bound or a flag which indicates the current lower bound is larger than a given value.
The latter is for reducing unnecessary computation and an explanation will be given
later. The modified algorithm is described in Algorithm 2.

Algorithm 2 IADMM-based Lower Bound (IADMM-LB)

Input: The matrix A ∈ Rm×n (m < n) with full row rank, the vector y ∈ Rm, the
lower bound ℓ∈ Zn and the upper bound u ∈ Zn of the box B = {x ∈ Zn : ℓ≤ x ≤ u},
the initial penalty parameter λ(0), the constants q and τ for initializing and updating
the penalty parameter, the maximal number of iterations K, and a constant γ.
Output: The lower bound T of minℓ≤x≤u,x∈Zn ∥y−Ax∥22 and Flag, which is 1 if the
lower bound is larger than γ and 0 otherwise.
Function: (T, F lag) = IADMM-LB(A,y, ℓ,u, λ(0), q, τ,K, γ)

1: Set z(0) = (ℓ+ u)/2, w(0) = 0 ∈ Rn, λ = λ(0), T = 0, Flag = 0
2: for k = 1 : K do

3: x(k) = argmin
x∈Zn

∥∥∥∥[y

λ(z(k−1) −w(k−1))

]
−
[
A
λI

]
x

∥∥∥∥2
2

4: T = max(T, ∥y −Ax(k)∥22 + λ2∥x(k) − z(k−1) +w(k−1)∥22
5: −λ2

∑
imax((li − z

(k−1)
i + w

(k−1)
i)2, (ui − z

(k−1)
i + w

(k−1)
i)2))

6: if T ≥ γ then
7: Flag = 1
8: Terminate
9: end if

10: z(k) = ΠB(x
(k) +w(k−1))

11: w(k) = w(k−1) + x(k) − z(k)

12: if x(k) = z(k) = z(k−1) then
13: Terminate
14: end if
15: if k (mod) q = 0 then
16: λ = λ× τ
17: w(k) = w(k)/τ2

18: end if
19: end for

Our numerical tests indicate that the lower bound obtained by Algorithm 2 is
usually tight for small or moderate residual of the optimal solution, see [31, Sec. 5.2.3]
for details.

In the following we show how to incorporate Algorithm 2 into the DTS method to
find lower bounds to prune the search tree.

In the search process to determine x̄m:n, DTS uses the inequality (14). To reduce
the upper bound in (14) so that the search space is reduced, we apply Algorithm 2 to
the UBILS problem whose objective function is ∥ȳ1:m−1 −R1:m−1,1:nx̄∥22:

(Tn+1, F lagn+1)=IADMM-LB(R1:m−1,1:n, ȳ1:m−1, ℓ̄, ū, λ
(0), q, τ,K, β2). (25)

12

Thus, from the inequality (13), the optimal solution to (11) satisfies

Tn+1 ≤ ∥ȳ1:m−1 −R1:m−1,1:nx̄∥22 ≤ β2 −
(
ȳm −

n∑
j=m

rmj x̄j

)2
.

Then (
ȳm −

n∑
j=m

rmj x̄j

)2
< β2 − Tn+1.

Based on this instead of (14), the DTS method enumerates x̄m:n.
Next we consider using Algorithm 2 to prune the search tree at level k = m +

1, . . . , n− 1, n. Suppose the search process is now at level k and a value for x̄k is just
chosen. Note that the current value of x̄k:n is known. If it is a part of the optimal
solution of the UBILS problem (11), then the following inequality should hold:

min
x̄1:k−1∈B̄1:k−1

∥(ȳ −R:,k:nx̄k:n)−R:,1:k−1x̄1:k−1∥22 < β2, (26)

where B̄1:k−1 = {x ∈ Zk−1 : ℓ̄1:k−1 ≤ x ≤ ū1:k−1}. We employ Algorithm 2 to compute
a lower bound Tk on the left hand side of (26), i.e.,

(Tk, F lagk)=IADMM-LB(R:,1:k−1, ȳ −R:,k:nx̄k:n, ℓ̄1:k−1, ū1:k−1, λ
(0), q, τ,K, β2). (27)

If Flagk = 0, then Tk < β2. In this case, the current value of x̄k is a valid candidate
and we move down level k−1 to choose x̄k−1. Otherwise, i.e., Flagk = 1, then Tk ≥ β2.
In this case, (26) does not hold, thus, the current value of x̄k is invalid and the branch
x̄k:n (corresponding to the current value of x̄k:n) in the search tree cannot be a part
of the optimal path (corresponding to the optimal solution). Then we should choose
another integer in B̄k = {xk ∈ Z : l̄k ≤ xk ≤ ūk} for x̄k based on the DTS method.

Computing a lower bound involves an extra cost. The benefits of applying the lower-
bound technique for pruning branches decrease when k decreases. In practice we should
use the lower-bound technique only at a few levels near the root of the search tree,
i.e., k is close to n.

The detailed description of the whole IADMM-DTS algorithm can be found in Ma
[31, Sec. 4.2].

5. Numerical Experiments

In this section we demonstrate efficiency and accuracy of the IADMM algorithm pro-
posed in Section 3 and of the IADMM-DST algorithm proposed in Section 4 for solving
the UBILS problem. Our proposed algorithms are implemented in MATLAB 2019a
and all tests are run on a laptop with 2.3 GHz 8-Core Intel i9 CPU, 16 GB memory and
MacOS. We will use the MATLAB package MILES [8] to solve the OOILS problem
and the UBILS problem in our experiments.

13

5.1. Experiment Setup

We use some MATLAB built-in functions to generate data in our experiments:
randn(p,q), which generates a p × q matrix containing pseudorandom values drawn
from the standard normal distribution; and randi([imin,imax],p,q), which gener-
ates a p × q matrix containing pseudorandom integer values drawn from the discrete
uniform distribution on [imin, imax]. We consider two different examples:

Example 1 (Real model). Take A = randn(m,n), x∗ = randi([l,u],n,1), and
v = σv ∗ randn(m,1), and then compute y = Ax∗ + v.

Example 2 (Complex model in MIMO communications). Here we consider a real-
world application, see, e.g., [3]. In this application, the relation between received signal
vectors and transmit signal vectors of this system can be written as a complex linear
model:

yc = Acx
∗
c + vc, (28)

where Ac ∈ CNr×Nt represents the channel matrix with Nt transmitter antennas and
Nr receiver antennas, the elements of x∗

c are independently uniformly distributed over
the set Xc = {k1 + k2i : k1, k2 = ±1,±3, . . . ,±(2k − 3),±(2k − 1)} which is referred
to as 4k-QAM (QAM stands for quadrature amplitude modulation) and vc ∈ CNr is
a noise vector following the complex normal distribution CN (0, σ2vI) (i.e., its real and
imaginary parts are independent and each follows N (0, 12σ

2
vI)). In communications,

a measure of the quality of the data is signal-to-noise-ratio (SNR). We take SNR =
10 log10(4

k − 1)/(3kσ2v), as defined on [3, p49]. We consider two types of channel
matrices which are typically used for numerical tests in the literature.

(a) Ac is an uncorrelated Rayleigh-fading matrix. Specifically, the elements of Ac

are i.i.d normal random variables with distribution CN (0, 1); see [24].
(b) Ac is a correlated Rayleigh-fading matrix: Ac = Ψ1/2HcΦ

1/2, where Hc ∈
CNr×Nt is defined in the same way as Ac in (a), ψij = a|i−j| and ϕij = b|i−j| with

a, b ∈ [0, 1], Ψ1/2Ψ1/2 = Ψ and Φ1/2Φ1/2 = Φ; see [14] and [38]. In our numer-
ical tests, we choose a = b = 0.9 to make Ac significantly more ill-conditioned
than Ac in (a).

To deal with the complex case, we first transform (28) into a real linear model. We
split each quantity in (28) into a real part and an imaginary part:

Ac = AR + iAI, yc = yR + iyI, x∗
c = x∗

R
+ ix∗

I
, vc = vR + ivI.

Then (28) is equivalent to the real linear model:

ȳ = Āx̄∗ + v, (29)

where

ȳ =

[
yR

yI

]
, Ā =

[
AR −AI

AI AR

]
, x̄∗ =

[
x∗

R

x∗
I

]
, v =

[
vR

vI

]
,

x̄∗ ∈ X̄ × · · · × X̄ , X̄ := {±1,±3, ...,±(2k − 1)}.

To transform the linear model (29) with the constraint to the standard one, we do the

14

following transformations:

x∗ =
1

2
(2k − 1)1+

1

2
x̄∗, y = ȳ + (2k − 1)Ā1, A = 2Ā. (30)

Then (29) becomes the standard one:

y = Ax∗ + v,

x∗ ∈ B := X × · · · × X , X := {0, 1, 2, . . . , 2k − 1}.
(31)

Note that here A ∈ R2Nr×2Nt , the elements of x∗ are independently uniformly dis-
tributed over B with E{x∗} = 1

2(2
k − 1)1 and cov{x∗} = 1

12(4
k − 1)I, each element of

x∗ can be represented by k bits, and v ∼ N(0, 12σ
2
vI).

In our numerical tests, the values of parameters in constructing the data for both
Examples 1 and 2 will be chosen to be consistent with the literature. In real-time ap-
plications, typically the dimensions of the problems are quite small, but the estimation
of the true integer parameter vector needs to be done very quickly.

5.2. Performance of IADMM with Different Parameters

In IADMM (Algorithm 1), there are a few parameters. In this subsection, we give
numerical test results to show how different values of some parameters affect the
performance of IADMM and suggest some choices.

We focus on Example 1 in various scenarios. We take m = 15, n = 20, l = 0, u = 10,
and σv = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5. Note that σx∗ =

√
((u− l + 1)2 − 1)/12 =

√
10.

For each σv, we generate 100 random instances of Example 1 for each scenario.
We take the initial penalty parameter λ(0) = αλ∗ with α = 0.2, 0.5, 1, 2, where

λ∗ = σv/σx∗ (see (21)). We consider both the fixed and varying λ strategies by taking
τ = 1, 1.05. We take q = 2 and K = 200.

In our tests, we record the experimental probability that the first iterate z(1) is equal
to the optimal solution xILS (denoted by Pr(z(1) = xILS)), the experimental probability
that the output xIA is equal to xILS (denoted by Pr(xIA = xILS)), and the average
number of iterations over 100 tries for each scenario. The optimal solution xILS to the
UBILS problem (1) is found by MILES. To see how z(1) and xIA are close to the xILS,
we also compute the average errors over the 100 instances:

average error for z(1) =
1

100

100∑
i=1

∥z(1)i − xILS

i ∥2
∥xILS

i ∥2
,

average error for xIA

i =
1

100

100∑
i=1

∥xIA

i − xILS

i ∥2
∥xILS

i ∥2
.

The experimental results are shown in Table 1. Note that bold values in tables of this
paper represent the best results.

In the following we make some comments on Table 1.

(1) The performance of IADMM drops as the noise standard deviation σv increases,
and when σv = 0.01, 0.1, IADMM can usually give the optimal solution in only
one iteration. In this case, the algorithm terminates in the second iteration.

15

Table 1. Performance of IADMM (K = 200, q = 2, λ(0) = αλ∗)

σv
τ = 1.05 τ = 1

α=0.2 α=0.5 α=1 α = 2 α=0.5 α=1 α=2

0.01

Pr(z(1) = xILS) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

average error for z(1) 0 0 0 0 0 0 0
Pr(xIA = xILS) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

average error for x(IA) 0 0 0 0 0 0 0
of iterations 2.00 2.00 2.00 2.00 2.00 2.00 2.00

0.1

Pr(z(1) = xILS) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

average error for z(1) 0 0 0 0 0 0 0
Pr(xIA = xILS) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

average error for x(IA) 0 0 0 0 0 0 0
of iterations 2.00 2.00 2.00 2.00 2.00 2.00 2.00

0.2

Pr(z(1) = xILS) 0.87 0.99 0.99 0.97 0.99 0.99 0.97

average error for z(1) 0.1021 0.0027 0.0044 0.0150 0.0027 0.0044 0.0150
Pr(xIA = xILS) 1.00 1.00 0.99 0.97 1.00 1.00 0.99

average error for x(IA) 0 0 0.0039 0.0148 0 0 0.0056
of iterations 4.21 2.20 2.70 2.67 2.24 2.34 2.52

0.3

Pr(z(1) = xILS) 0.40 0.75 0.87 0.66 0.75 0.87 0.66

average error for z(1) 0.4074 0.1292 0.0515 0.1240 0.1292 0.0515 0.1240
Pr(xIA = xILS) 0.90 0.90 0.93 0.76 0.83 0.93 0.84

average error for x(IA) 0.0434 0.0391 0.0309 0.0846 0.0756 0.0317 0.0618
of iterations 27.34 11.41 5.51 7.02 39.29 17.01 7.02

0.4

Pr(z(1) = xILS) 0.10 0.41 0.54 0.26 0.41 0.54 0.26

average error for z(1) 0.5390 0.2633 0.1737 0.2410 0.2633 0.1737 0.2410
Pr(xIA = xILS) 0.73 0.74 0.72 0.37 0.46 0.73 0.43

average error for x(IA) 0.0888 0.0888 0.0905 0.2011 0.2269 0.0975 0.1889
of iterations 58.67 29.92 14.49 9.90 111.74 46.61 23.56

0.5

Pr(z(1) = xILS) 0.02 0.17 0.29 0.14 0.17 0.29 0.14

average error for z(1) 0.5421 0.3368 0.2423 0.2650 0.3368 0.2423 0.2650
Pr(xIA = xILS) 0.51 0.48 0.45 0.23 0.25 0.42 0.28

average error for x(IA) 0.1555 0.1704 0.1722 0.2401 0.2756 0.1862 0.2249
of iterations 77.07 43.69 18.26 9.51 152.15 70.54 28.47

(2) When α = 1, Pr(z(1) = xILS) is the highest for each σv and the average error for
z(1) is the smallest for all values of σv except σv = 0.2. This verifies our argument
for the choice of λ(0) given in Section 3.2.

(3) Typically, when Pr(z(1) = xILS) is large/small, the average error for z(1) is
small/large. This is also true for xIA.

(4) In the varying λ strategy, larger α leads to faster convergence but worse results,
especially when σv is large. The results suggest that α = 1 is usually a good
choice. For a large σv, smaller α may give better results.

(5) For the fixed λ strategy, the results indicate that α = 1 is a good choice too.
When α moves away from 1, Pr(xIA = xILS) drops significantly for large σv. Thus,
if λ∗ is unknown, using the fixed strategy may be problematic.

(6) Comparing the two strategies for λ with the same α, we see the fixed one typically
needs more iterations (for all α) and gives worse results (for α = 0.5, 1). In our
tests, we noticed that for the fixed strategy, the algorithm sometimes failed to
converge (e.g., when σ = 0.5, 32% instances do not stop within 200 iterations.),
while for the varying strategy with different α, the algorithm always converged
for all instances. Thus, these test results favor the varying strategy.

In our numerical experiments, we also chose different values for the parameters τ
and q to see how they affect the performance of IADMM; see [31, Sec. 5.2.1] for details.
We observed that in general: (1) If λ increases more slowly over iterations (i.e., choose
smaller τ and larger q), often there is a higher probability of obtaining the optimal
solution xILS but more iterations are needed. (2) The performance of IADMM is less
sensitive on τ and q than on α and changing τ and q hardly influences the results

16

(a) σ = 0.1 (b) σ = 0.5

Figure 1. Performance of IADMM and the original ADMM

when σv is small or moderate. (3) There is no fixed choice for the parameters that
can work well for all instances. To achieve high probability of obtaining the optimal
solution, one can fine-tune these parameters for different types of instances.

5.3. Comparisons of IADMM and the Original ADMM

In this subsection we do numerical tests to compare IADMM with the original ADMM
algorithm in [40] for solving the UBILS problem.

The performances of the two algorithms are evaluated in terms of average objective
values over iterations. We take σv = 0.1, 0.5 and for each σv we generate 100 instances
of Example 1 withm = 15, n = 20, l = 0, and u = 10. In the original ADMM algorithm
(c.f. (16)) the penalty parameter ρ (which was replaced by 2λ2 in IADMM) is a fixed
constant and in our tests we set ρ = 2λ∗2. For IADMM, we set K = 200, λ(0) = λ∗,
τ = 1.05 and q = 2. The results of average objective value over the 100 instances
versus 200 iterations are displayed in Figure 1. For an instance if an algorithm stops
before iteration 200, we keep its current objective value for the remaining iterations.
For comparisons, we also plot the average optimal objective value, which is obtained
via computing the optimal solutions of the 100 UBILS instances by MILES. Note that
this is a constant.

Figure 1 shows that IADMM is much better than the original ADMM. In fact, for
σv = 0.1, 0.5, IADMM gives the optimal solutions for 100% and 45% instances, re-
spectively, while the original ADMM algorithm for mere 8% and 3% instances, respec-
tively. Since IADMM gives the optimal solution for all instances in only one iteration
for σv = 0.1, the blue line and the red line coincide in Figure 1(a) making the red
line invisible. From Figure 1(b) we see when the noise is large, IADMM takes more
iterations before convergence, but can eventually give solutions with much smaller
objective value than the original ADMM.

5.4. Comparisons of IADMM-DTS and DTS

In Section 4 we proposed to incorporate IADMM to DTS, leading to IADMM-DTS.
IADMM is used to find an initial search radius for DTS and to find lower bounds
to help DTS to prune the search tree. In this subsection, we do numerical tests to

17

compare IADMM-DTS and DTS. To see the different effects of the search radius and
the lower bounds, we also compare the two algorithms with IADMM-DTS0, which
is IADMM-DTS without computing lower bounds. The algorithms used in this and
next subsections were implemented in MATLAB, and MATLAB Coder toolbox was
employed to generate C functions, because the commercial solvers to be compared in
the next subsection were implemented in C/C++.

In IADMM-DTS, when IADMM is called to find an initial search radius for DTS,
the parameters are taken as follows (see Algorithm 1): λ(0) = 0.2λ∗, q = 2, τ = 1.1,K =
100; when it is called to compute the lower bound Tn+1 (see (25)), λ(0) = 0.02λ∗, q =
2, τ = 1.5,K = 20; and when it is called to compute the lower bounds Tn and Tn−1

(see (27)), λ(0) = 0.05λ∗, q = 1, τ = 2,K = 5. The above choices of the parameters in
IADMM and the levels at which lower bounds are computed will be kept unchanged
when we compare IADMM-DTS with three commercial solvers in the next subsection.

In the test we take u = 10, 20 and σv = 0.01, 0.1, 0.5, and for each scenario, we
generate 100 instances of Example 1 with m = 15, n = 20, and l = 0. Table 2
summarize the minimum, maximum, median and average running time in seconds of
the three solvers for the same 100 instances.

Table 2. Time comparison of DTS, IADMM-DTS0 and IADMM-DTS

u σv Solvers Min Max Median Average

10

0.01
DTS 0.0048 4.1596 0.1362 0.2433

IADMM-DTS0 0.0026 0.0508 0.0160 0.0175
IADMM-DTS 0.0143 0.0268 0.0206 0.0203

0.1
DTS 0.0233 3.9949 0.1647 0.2619

IADMM-DTS0 0.0062 0.1242 0.0410 0.0431
IADMM-DTS 0.0137 0.0298 0.0207 0.0204

0.5
DTS 0.0114 4.6039 0.3248 0.4652

IADMM-DTS0 0.0418 0.8619 0.2735 0.2955
IADMM-DTS 0.0506 0.7270 0.2919 0.3097

20

0.01
DTS 0.2187 161.9328 2.7011 5.3550

IADMM-DTS0 0.0290 1.0347 0.3104 0.3593
IADMM-DTS 0.0273 0.1066 0.0375 0.0381

0.1
DTS 0.2961 174.9038 3.0593 6.2585

IADMM-DTS0 0.0932 2.6411 0.8482 0.8937
IADMM-DTS 0.0264 0.0528 0.0377 0.0374

0.5
DTS 1.3706 24.1324 5.3079 6.3041

IADMM-DTS0 0.5064 10.2416 3.9285 4.2512
IADMM-DTS 0.5609 11.1708 4.2607 4.3266

In the following we make some comments on the table.

(1) DTS is slower than two other algorithms that incorporate IADMM in terms of
the four running time measures, except the minimal running time for the case
that u = 10 and σv = 0.5. When σv is small (i.e., σv = 0.01) or moderate
(i.e., σv = 0.1), the improvement brought by incorporating IADMM into DST is
significant. This is not surprising, as IADMM can often find the optimal solution
in one iteration when σv is small or even moderate, making IADMM-DTS faster
than DTS.

(2) IADMM-DTS0 takes (much) less running time than DTS, indicating that the
initial search radius given by IADMM can significantly improve the search effi-
ciency. For small and moderate σv, IADMM-DTS can reduce the running time

18

further and for the larger box (i.e., u = 20) the overall improvement is more
significant. Thus applying the IADMM-based lower bound technique can (sig-
nificantly) improve the search efficiency too. This is understandable because a
larger constraint box implies a larger search tree and using lower bounds to prune
the search tree can become more effective. When σv is large (i.e., σv = 0.5),
IADMM-DTS often takes a little more running time than IADMM-DTS0. This
is because the lower bounds are not tight in this case, implying that they are
not effective in pruning the search tree.

(3) When the constraint box becomes bigger, i.e., u increases from 10 to 20, the run-
ning times of all the three algorithms increase. This is because the search region
becomes larger. The maximal running time of DTS increases more dramatically
than that of the two other algorithms.

5.5. Comparisons of Solvers for UBILS problems

In the subsection, we compare IADMM-DTS with three well-known commercial opti-
mization solvers CPLEX [25], Gurobi [21], and MOSEK [35] for Example 2.

The solver IAMDD-DTS finds an optimal solution to the UBILS problem (1), but
the three commercial solvers may not. Thus, the solutions obtained by the four solvers
may be different. In communications, the typical measure of the badness of an estimate
is the bit error rate (BER). Suppose that x̂ is an estimate of x∗ ∈ Z2Nt obtained by
a solver. By comparing the binary representation of each element of x̂ with that of
x∗, whose each element can be represented by k bits, one can find the total number
of wrong bits in the binary representation of x̂, which, divided by 2Ntk, leads to the
BER.

In both Examples 2(a) and 2(b), we set SNR = 20; (Nr, Nt) = (8, 12), (12, 16); con-
stellation = 4QAM (i.e., k = 1 in (31)), 16QAM (i.e., k = 2 in (31)). For each scenario,
we randomly generated 100 instances. Tables 3–6 display the minimum, maximum, me-
dian and average running times in seconds, the average BER and the average residual
(i.e., ∥y−Ax̂∥2 with x̂ being a computed solution) of each solver for the 100 instances
of each scenario, respectively.

From the results, we give some observations and comments as follows:

(1) For the 4QAM constellation, Tables 3-6 indicates that IADMM-DTS performs
best, followed by Gurobi, MOSEK and CPLEX. Sometimes CPLEX can perform
much worse than other solvers (see Table 6). For the 4QAM constellation, often
the first iterate given by IADMM is the optimal solution. Thus IADMM-DTS
is much more efficient than other solvers. Here we would like to point out that
in communications many integer estimation problems need to be solved contin-
uously in real-time and the computation resources are limited, thus efficiency of
an algorithm is very crucial.

(2) For the 16QAM constellation, Tables 3-6 indicate that Gurobi performs best,
followed by IADMM-DTS, CPLEX and MOSEK in terms of running times.

(3) When the constellation changes from 4QAM to 16QAM, CPLEX’s running time
can decrease significantly (see Table 6), while all other solvers takes more running
time. For an enumeration method, such as DTS, when the constraint region be-
comes larger, typically the running time increases, as the search region becomes
larger.

(4) When the dimensions (Nr, Nt) change from (8, 12) to (12, 16), Tables 3-4 for
Example 2(a) and Tables 5-6 for Example 2(b) indicate that for 4QAM all solvers

19

take more running time, and this is especially true for CPLEX; for 16QAM
CPLEX takes a little less running time, Gurobi’s running time changes a little
bit, while IADMM-DTS and MOSEK still take more running time.

(5) Solving Example 2(b) takes more running time than solving Example 2(a) for all
solvers. The former’s channel matrices are more ill-conditioned than the latter’s
channel matrices. Typically an enumeration method such as DTS takes more
running time to solve the former than to solve the latter.

(6) For Example 2(a), Tables 3-4 show that all solutions are equal to the correspond-
ing true parameter vector x∗. Here we would like to point out that an optimal
solution may not be equal to x∗ even if it is unique and this is especially true
when the noise in the model is large. For Example 2(b), Tables 5-6 show that the
BER of each solution obtained by IADMM-DTS is still 0, but the BER of a so-
lution obtained by any of three commercial solvers may not be 0. This is because
a solution obtained by those solvers may not be optimal, which is confirmed by
the results of the average residual in Tables 5-6.

Table 3. Time, average BER and average residual for Example 2(a), Nr = 8, Nt = 12, SNR = 20

QAM Solver Min Max Median Average BER Residual

4

IADMM-DTS 0.0008 0.0037 0.0012 0.0013 0 0.0806
CPLEX 0.1702 0.4601 0.1905 0.1987 0 0.0806
Gurobi 0.0030 0.0107 0.0064 0.0064 0 0.0806
MOSEK 0.0264 0.0755 0.0311 0.0335 0 0.0806

16

IADMM-DTS 0.0130 0.0352 0.0238 0.0232 0 0.2016
CPLEX 0.0721 0.2229 0.1181 0.1147 0 0.2016
Gurobi 0.0023 0.0309 0.0115 0.0128 0 0.2016
MOSEK 0.0373 0.3560 0.1676 0.1640 0 0.2016

Table 4. Time, average BER and average residual for Example 2(a), Nr = 12, Nt = 16, SNR = 20

QAM Solver Min Max Median Average BER Residual

4

IADMM-DTS 0.0017 0.0112 0.0025 0.0025 0 0.1231
CPLEX 0.3196 10.1165 1.1245 1.3677 0 0.1231
Gurobi 0.0048 0.0237 0.0091 0.0092 0 0.1231
MOSEK 0.0477 0.1697 0.0646 0.0654 0 0.1231

16

IADMM-DTS 0.0385 0.1293 0.0646 0.0669 0 0.3077
CPLEX 0.0699 0.1789 0.0887 0.0973 0 0.3077
Gurobi 0.0030 0.0454 0.0107 0.0124 0 0.3077
MOSEK 0.0589 0.4346 0.1844 0.1797 0 0.3077

6. Summary and future work

A UBILS problem is a challenging problem to solve. We have proposed a heuristic
integer-constrained ADMM algorithm, named IADMM. Numerical tests showed that
IADMM can produce much more accurate results than the original ADMM method.
To obtain the optimal solution we have proposed to incorporate IADMM into the
DTS enumeration method, leading to the combined algorithm named IADMM-DTS.

20

Table 5. Time, average BER and average residual for Example 2(b), Nr = 8, Nt = 12, SNR = 20

QAM Solver Min Max Median Average BER Residual

4

IADMM-DTS 0.0008 0.0030 0.0012 0.0012 0 0.0799
CPLEX 0.1315 32.2897 7.6065 9.1637 0 0.0799
Gurobi 0.0041 0.0259 0.0058 0.0085 0 0.0799
MOSEK 0.0307 0.2116 0.0448 0.0619 2.500e-3 0.0888

16

IADMM-DTS 0.0204 0.3496 0.0728 0.0918 0 0.1998
CPLEX 0.0779 0.4252 0.1199 0.1250 1.392e-1 0.8846
Gurobi 0.0040 0.2414 0.0219 0.0290 1.296e-1 0.8303
MOSEK 0.0605 18.3002 0.3654 0.9483 1.042e-2 0.2159

Table 6. Time, average BER and average residual for Example 2(b), Nr = 12, Nt = 16, SNR = 20

QAM Solver Min Max Median Average BER Residual

4

IADMM-DTS 0.0022 0.0165 0.0025 0.0028 0 0.1225
CPLEX 2.2224 412.0457 88.9543 114.0970 0 0.1225
Gurobi 0.0048 0.0264 0.0065 0.0086 0 0.1225
MOSEK 0.0491 0.2419 0.0663 0.0745 0 0.1225

16

IADMM-DTS 0.0570 0.9064 0.2491 0.2647 0 0.3063
CPLEX 0.0749 0.2786 0.1027 0.1135 7.047e-2 1.0868
Gurobi 0.0034 0.2767 0.0206 0.0310 6.000e-2 1.2426
MOSEK 0.0806 7.3718 0.5521 1.0386 0 0.3063

Specifically, IADMM-DTS uses IADMM to find an initial search radius to make the
search region smaller and some lower bounds to make the size of the search tree smaller.
The advantages of IADMM-DTS over the commercial solvers CPLEX, Gurobi and
MOSEK were demonstrated through a practical application.

There have been several convergence results for the ADMM methods for convex
problems. Extending the convergence theory to integer problems will be interesting,
although it looks very challenging. The proposed IADMM algorithm involves some
parameters to choose. In applying the algorithm to solve some practical problems, one
may need to tune the parameters λ(0), τ and q to get better performance. Probably
deep neural network techniques can be used to determine these parameters for specific
applications. The numerical comparisons of IADMM-DTS with commercial solvers in
this paper are limited to MIMO communications. When new applications of UBILS
problems are discovered, new comparisons will be needed. The IADMM algorithm
deals with the box constraint, and we would like to extend it to deal with some other
constraints. It is now common for a computer to have a multiple core processor. The
three commercial solvers in our comparisons use multiple cores. We intend to modify
the IADMM-DTS algorithm to fully take advantage of multiple cores to speed it up.

Funding

The research of this work was supported by NSERC of Canada grant RGPIN-2017-
05138.

21

Disclosure statement

The authors report there are no competing interests to declare

Data Availability Statements

All data generated or analysed during this study are included in this article and [31]

Acknowledgement

We are very grateful to the referees for their detailed valuable comments and sugges-
tions which helped us to improve the paper significantly.

References

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices. IEEE
Trans. Inf. Theory, 48(8):2201–2214, 2002.

[2] M.F. Anjos, X.-W. Chang, and W.-Y. Ku. Lattice preconditioning for the real relax-
ation branch-and-bound approach for integer least squares problems. Journal of Global
Optimization, 59:227–242, 2014.

[3] L. Bai, J. Choi, and Q. Yu. Low Complexity MIMO Receivers. Springer, Cham, Germany,
2014.

[4] D.P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic
Press, Belmont, Mass., 2014.

[5] J. Boutros, N. Gresset, L. Brunel, and M. Fossorier. Soft-input soft-output lattice sphere
decoder for linear channels. In IEEE Global Telecommunications Conference, volume 3,
pages 1583–1587, 2003.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and E. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3:1–122, 2011.

[7] Christoph Buchheim, Alberto Caprara, and Andrea Lodi. An effective branch-and-
bound algorithm for convex quadratic integer programming. Mathematical programming,
135(1):369–395, 2012.

[8] X.-W. Chang. MILES: MATLAB package for solving Mixed Integer LEast Squares prob-
lems, 2023, https://www.cs.mcgill.ca/∼chang/miles.php.

[9] X.-W. Chang and Q. Han. Solving box-constrained integer least squares problems. IEEE
Trans. Wirel. Commun., 7(1):277–287, 2008.

[10] X.-W. Chang, J. Wen, and X. Xie. Effects of the LLL reduction on the success probability
of the babai point and on the complexity of sphere decoding. IEEE Trans. Inf. Theory,
59(8):4915–4926, 2013.

[11] X.-W. Chang and X. Yang. An efficient tree search decoder with column reordering for
underdetermined MIMO systems. In IEEE Global Telecommunications Conference, pages
4375–4379, 2007.

[12] X.-W. Chang, X. Yang, T. Le-Ngoc, and P. Wang. Partial regularisation approach for
detection problems in underdetermined linear systems. IET Communications, 3(1):17–24,
2009.

[13] X.-W. Chang, X. Yang, and T. Zhou. MLAMBDA: A modified LAMBDA method for
integer least-squares estimation. J. Geod., 79(9):552–565, 2005.

[14] Chen-Nee Chuah, D.N.C. Tse, J.M. Kahn, and R.A. Valenzuela. Capacity scaling in

22

MIMO wireless systems under correlated fading. IEEE Trans. Inf. Theory, 48(3):637–
650, 2002.

[15] T. Cui and C. Tellambura. An efficient generalized sphere decoder for rank-deficient
MIMO systems. In IEEE 60th Vehicular Technology Conference, volume 5, pages 3689–
3693, 2004.

[16] M.O. Damen, K. Abed-Meraim, and J. Belfiore. Generalized sphere decoder for asym-
metrical space-time communication architecture. Electronics letters, 36(2):166–167, 2000.

[17] M.O. Damen, H. El Gamal, and G. Caire. On maximum-likelihood detection and the
search for the closest lattice point. IEEE Trans. Inf. Theory, 49(10):2389–2402, 2003.

[18] S. Diamond, R. Takapoui, and S. Boyd. A general system for heuristic minimization of
convex functions over non-convex sets. Optimization Methods and Software, 33(1):165–
193, 2018.

[19] U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a
lattice, including a complexity analysis. Mathematics of Computation, 44(170):463–471,
1985.

[20] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins, Baltimore, 4
edition, 2013.

[21] Gurobi. Gurobi Optimizer, 9.1, https://www.gurobi.com.
[22] G. Hanrot, X. Pujol, and D. Stehlé. Algorithms for the shortest and closest lattice vec-

tor problems. In International Conference on Coding and Cryptology, pages 159–190.
Springer, 2011.

[23] A. Hassibi and S. Boyd. Integer parameter estimation in linear models with applications
to GPS. IEEE Trans. Signal Process., 46(11):2938–2952, 1998.

[24] B. Hassibi and H. Vikalo. On the sphere-decoding algorithm I. Expected complexity.
IEEE Trans. Signal Process., 53(8):2806–2818, 2005.

[25] IBM. ILOG CPLEX Optimization Studio, v12.10.0, https://www.ibm.com/ca-
en/products/ilog-cplex-optimization-studio.

[26] P. Karamanakos, T. Geyer, and R. Kennel. A computationally efficient model predic-
tive control strategy for linear systems with integer inputs. IEEE Trans. Control Syst.
Technol., 24(4):1463–1471, July 2016.

[27] V. Kühn. Wireless Communications over MIMO Channels: Applications to CDMA and
Multiple Antenna Systems. John Wiley & Sons, England, 2006.

[28] J.K. Kuusinen, J. Sorsa, and M.L. Siikonen. The elevator trip origin-destination matrix
estimation problem. Transp. Sci., 49(3):559–576, 2014.

[29] E.G. Larsson. MIMO detection methods: How they work. IEEE Signal Process. Mag.,
26(3):91–95, 2009.

[30] A.K. Lenstra, H.W. Lenstra, and L. Lovász. Factoring polynomials with rational coeffi-
cients. Math. Ann., 261(4):515–534, 1982.

[31] T. Ma. An admm method for underdetermined box-constrained integer least squares
problems. Master’s thesis, School of Computer Science, McGill University, Montreal,
Quebec, Canada, May 2021.

[32] J.M. Mendel. Lessons in Estimation Theory for Signal Processing, Communications and
Control. Prentice Hall, Englewood Cliffs, NJ, 1995.

[33] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic Per-
spective. Springer Science & Business Media, New York, 2012.

[34] D. Micciancio and M. Walter. Fast lattice point enumeration with minimal overhead. In
Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 276–294, 2015.

[35] MOSEK. MOSEK Optimization Suite Release 9.2.32, https://www.mosek.com.
[36] W.H. Mow. Maximum likelihood sequence estimation from the lattice viewpoint. IEEE

Trans. Inf. Theory, 40(5):1594–1600, 1994.
[37] C. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and

solving subset sum problems. Math. Program., 66:181–191, 1994.
[38] Hyundong Shin, Moe Z. Win, and Marco Chiani. Asymptotic statistics of mutual informa-

23

tion for doubly correlated MIMO channels. IEEE Trans. Wirel. Commun., 7(2):562–573,
2008.

[39] N.M.B. Souto and H.A. Lopes. Efficient recovery algorithm for discrete valued sparse
signals using an ADMM approach. IEEE Access, 5:19562–19569, 2017.

[40] R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad. A simple effective heuristic for
embedded mixed-integer quadratic programming. Int. J. Control, 93(1):2–12, 2020.

[41] P.J.G. Teunissen. The least-squares ambiguity decorrelation adjustment: a method for
fast GPS ambiguity estitmation. J. of Geodesy, 70(1-2):65–82, 1995.

[42] P. van Emde Boas. Another NP-complete partition problem and the complexity of com-
puting short vectors in a lattice. Technical Report Rep. 81-04, Mathematics Institute,
Amsterdam, The Netherlands, 1981.

[43] Z. Xu, M. Figueiredo, and T. Goldstein. Adaptive admm with spectral penalty parameter
selection. In Artificial Intelligence and Statistics, pages 718–727. PMLR, 2017.

[44] S. Yang and L. Hanzo. Fifty years of mimo detection: The road to large-scale mimos.
IEEE Commun. Surv. Tutor., 17(4):1941–1988, 2015.

24

