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Abstract. This paper is concerned with how the QR factors change when a
real matrix A suffers from a left or right multiplicative perturbation, where A is
assumed to have full column rank. It is proved that for a left multiplicative per-
turbation the relative changes in the QR factors in norm are no bigger than a
small constant multiple of the norm of the difference between the perturbation
and the identity matrix. One of common cases for a left multiplicative pertur-
bation case naturally arises from computing the QR factorization of A. The
newly established bounds can be used to explain the accuracy in the computed

QR factors. For a right multiplicative perturbation, the bounds on the relative
changes in the QR factors are still dependent upon the condition number of
the scaled R-factor, however. Some “optimized” bounds are also obtained by
taking into account certain invariant properties in the factors.

1. Introduction. Given a matrix A ∈ R
m×n with full column rank, there exists a

unique QR factorization

A = QR,

where Q ∈ R
m×n has orthonormal columns and R ∈ R

n×n is upper triangular with
positive diagonal elements. The QR factorization is a very important computational
tool in numerical linear algebra, e.g., it is used to solve least squares problems [4],
compute singular value and eigenvalue decompositions [10]. If A is perturbed, we
would like to know how its QR factors Q and R are perturbed. There are extensive
studies in this regard, e.g., [1, 3, 5, 6, 7, 8, 9, 17, 18, 20, 21, 22, 23], for the

so-called additive perturbations, namely A is perturbed to Ã ≡ A + ∆A with an
assumption on the smallness of ∆A usually in norm. In this paper we consider

the case when A is multiplicatively perturbed, namely A is perturbed to Ã ≡ DLA
or ADR with both DL and DR near the identities, multiples of the identities, or
sometimes orthogonal matrices. DL and DR are, respectively, called the left and
right multiplicative perturbations.
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Multiplicative perturbations can easily be turned into additive perturbations:

Ã = DLADR = A + ∆A with

∆A = DLADR −A = (DL − I)ADR + A(DR − I). (1.1)

Any bounds on DL − I and DR − I lead to a bound on ∆A, usually in norm.
Then the existing additive perturbation analysis can be applied directly to give
perturbation bounds. But in general this approach may produce, not surprisingly,
unnecessarily conservative perturbation bounds because it ignores the nature of the
perturbations. For more realistic bounds, we may have to perform new analysis
that takes advantage of any structures in the perturbations. This point of view is
not new. In the past, various multiplicative perturbation analyses have been done
to certain problems in numerical linear algebra, including the polar decomposition
[12, 15], and the eigendecomposition of a Hermitian matrix, and the singular value
decomposition [13, 14, 16].

Multiplicative perturbations naturally arise from matrix scaling, a commonly
used technique to improve the conditioning of a matrix. For example the matrix
A itself may be very ill-conditioned, but there exists a scaling matrix S such that
B = AS−1 is much better conditioned. This is the so-called right scaling. Often S

is diagonal but that is not necessary. Subsequently if A = BS is perturbed to Ã

scaled also by S into Ã = (B + ∆B)S, where ∆B is tiny relative to B, and if1 the
row space of ∆B is contained in that of B, then

(B + ∆B)S = [I + (∆B)B†]BS ≡ DLA (1.2)

which is in the form of having a left multiplicative perturbation2 DL = I +(∆B)B†

that is close to the identity matrix, where B† is B’s Moore-Penrose pseudo-inverse.
Similar arguments can be made for A scaled from the left, too, to give an example
of a right multiplicative perturbation.

In this paper, we will establish perturbation bounds for the QR factors when A
suffers from a left or right multiplicative perturbation. The bounds indicate that
both the Q- and R-factors are well-conditioned with respect to a left multiplicative
perturbation. This is utterly different from the case where A is subject to a gen-
eral additive perturbation: the Q- and R-factors can be very ill-conditioned with
respect to the additive perturbation, see e.g., [7]. Also the two factors behave very
differently with respect to a right multiplicative perturbation: the first-order per-
turbation bound for the Q-factor can be arbitrarily small while the bound for the
R-factor is about the same as what we may obtain if we apply existing perturbation
bounds for the R-factor with respect to an additive perturbation upon using the
conversion (1.1).

The rest of this paper is organized as follows. Section 2 presents some prelim-
inaries and existing additive perturbation bounds for the QR factors. Our main
results are detailed in Section 3. We then give a couple of numerical examples to

1For the interest of this article, B is assumed to have full column rank. Then this assumption

is automatically true. In fact B† = (BTB)−1BT and thus B†B = In. In general, this assumption
implies that ∆B = MB for some M ∈ R

m×m. Then (∆B)B†B = MBB†B = MB = ∆B which
gives the first equality in (1.2).

2Alternatively one may use eA = A + ∆A =
ˆ
I + (∆A)A†

˜
A. But since (∆A)A† is usu-

ally measured by its upper bound, e.g., ‖∆A‖2‖A†‖2 = κ2(A) ‖∆A‖2

‖A‖2
that is much larger than

‖∆B‖2‖B†‖2 = κ2(B)
‖∆B‖2

‖B‖2
when A is ill-conditioned, it is usually a good idea to introduce the

scaling matrix S mentioned here.
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illustrate our new multiplicative perturbation bounds in comparison to the additive
perturbation bounds in Section 4. Finally Section 5 gives a few concluding remarks.

Notation. Throughout this paper, R
m×n is the set of all m × n matrices with

entries in R (the set of real numbers), R
n = R

n×1, and R = R
1. Dn ∈ R

n×n is the
set of real n×n diagonal matrices with positive diagonal entries. In (or simply I if
its dimension is clear from the context) is the n×n identity matrix. The superscript
“·T” takes transpose. ‖X‖2 and ‖X‖F are the spectral norm and Frobenius norm
of X , respectively, and κ2(X) is X ’s spectral condition number defined as

κ2(X) = ‖X‖2 ‖X†‖2,

where X† is X ’s Moore-Penrose pseudo-inverse. MATLAB-like notation X(:,j) refers

to the jth column of X . Symbols A, Ã, and these for their QR factors are reserved:
A ∈ R

m×n has full column rank and it is additively/multiplicatively perturbed to

Ã ∈ R
m×n. Sufficient conditions will be stated to make sure Ã has full column

rank, too. Their unique QR factorizations are

A = QR, Ã = Q̃R̃, (1.3)

where Q, Q̃ ∈ R
m×n have orthonormal columns, i.e., QTQ = Q̃TQ̃ = In, and

R, R̃ ∈ R
n×n are upper triangular with positive diagonal entries.

2. Preliminaries. We write

∆A = Ã−A, ∆Q = Q̃−Q, ∆R = R̃−R (2.1)

for the corresponding additive perturbations. Let PA be the orthogonal projector
onto the column space of A, i.e., PA = QQT. For any X ∈ R

n×n, it can be verified
that

‖PAX‖p = ‖QTX‖p, ‖XPA‖p = ‖XQ‖p for p = 2, F.

The following quantities will be used in perturbation bounds:

ηp = κ2(A)
‖∆A‖p
‖A‖2

for p = 2, F. (2.2)

For any X = (xij) ∈ R
n×n, as in [6] we define

up(X) =




1
2x11 x12 · · · x1n

1
2x22 · · · x2n

. . .
...

1
2xnn


 , (2.3)

low(X) =




1
2x11

x21
1
2x22

...
...

. . .

xn1 xn2 · · · 1
2xnn


 =

[
up(XT)

]T
. (2.4)
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Lemma 2.1. For any D = diag(δ1, . . . , δn) ∈ Dn, Xn−1 ∈ R
n×(n−1), and X =

[Xn−1, xn] ∈ R
n×n,

‖up(X)‖F ≤ ‖X‖F, (2.5)

‖up(XT + X)‖F ≤
√

2 ‖X‖F, (2.6)

‖up(X)‖F ≤
1√
2
‖X‖F if XT = X, (2.7)

‖up(X) + D−1up(XT)D‖F ≤ ρD‖X‖F, (2.8)

‖D low(X)D−1 −D−1[low(X)]TD‖F ≤
√

2ζD‖Xn−1‖F ≤
√

2ζD‖X‖F, (2.9)

where

ζD = max
1≤i<j≤n

δj/δi, ρD =
(
1 + ζ2

D

)1/2
. (2.10)

Proof. Inequalities (2.5), (2.6) and (2.7) can be easily verified. Inequality (2.8) was
proved in [7, Lemma 5.1] and (2.6) is a special case of (2.8). Finally

‖D low(X)D−1 −D−1[low(X)]TD‖2F = 2
∑

1≤i<j≤n

x2
jiδ

2
j /δ2

i ≤ 2ζ2
D
‖Xn−1‖2F,

leading to (2.9).

Lemma 2.2. If η2 < 1, then Ã has full column rank and its QR factorization

satisfies

‖∆Q‖F ≤
√

2 ηF

1− η2
,
‖∆R‖F
‖R‖2

≤
√

2 ηF

1− η2
. (2.11)

If further ηF <
√

3/2− 1, then

‖∆R‖F
‖R‖2

≤
√

2
(
infD∈Dn

ρDκ2(D
−1R)

) (
‖QT ∆A‖F

‖A‖2
+ κ2(A)

‖∆A‖2

F
‖A‖2

2

)

√
2− 1 +

√
1− 4κ2(A)‖∆A‖F

‖A‖2
− 2κ2

2(A)
‖∆A‖2

F
‖A‖2

2

(2.12)

≤
(√

6 +
√

3
)

inf
D∈Dn

ρDκ2(D
−1R)

‖∆A‖F
‖A‖2

, (2.13)

where ρD is defined in (2.10).

The two inequalities in (2.11) were presented in [22, Theorem 5.1] (there was a
typo in the bound given there) and [20], respectively, and the inequalities in (2.12)
and (2.13) were given in [8].

3. Main results. We adopt all the notations and assumptions specified at the
beginning of Section 2.

3.1. Left multiplicative perturbation. We consider in this subsection the so-
called left multiplicative perturbation to A:

Ã = DL A, (3.1)

where DL ∈ R
m×m is near Im, or a scalar multiple of Im, or sometimes an orthogonal

matrix.
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Theorem 3.1. Assume (3.1) and write DL = Im + E. If ‖EPA‖2 < 1, then Ã has

full column rank and its unique QR factorization satisfies

‖∆Q‖F ≤
√

2‖EPA‖F
1− ‖EPA‖2

,
‖∆R‖F
‖R‖2

≤ ‖(∆R)R−1‖F ≤
√

2‖EPA‖F
1− ‖EPA‖2

. (3.2)

In particular, if ‖E‖2 < 1, they imply

‖∆Q‖F ≤
√

2‖E‖F
1− ‖E‖2

,
‖∆R‖F
‖R‖2

≤ ‖(∆R)R−1‖F ≤
√

2‖E‖F
1− ‖E‖2

. (3.3)

Proof. Since ‖EPA‖p ≤ ‖E‖p for p = 2, F, (3.3) is a result of (3.2) which we will
prove now.

Note that the QR factorization of Q is Q = Q · In and (I + E)Q = Q + EQ can
be regarded as an additively perturbed Q by EQ. Since

κ2(Q)‖EQ‖2/‖Q‖2 = ‖EPA‖2 < 1,

by Lemma 2.2 (I + E)Q has a unique QR factorization

(I + E)Q = Q̃R̂, (3.4)

satisfying

‖Q̃−Q‖F ≤
√

2κ2(Q)‖EQ‖F
‖Q‖2

1− κ2(Q)‖EQ‖2

‖Q‖2

=

√
2‖EPA‖F

1− ‖EPA‖2
, (3.5)

‖R̂− I‖F ≤
√

2κ2(Q)‖EQ‖F
‖Q‖2

1− κ2(Q)‖EQ‖2

‖Q‖2

=

√
2‖EPA‖F

1− ‖EPA‖2
. (3.6)

Therefore
DLA = (I + E)QR = Q̃R̂R = Q̃R̃, (3.7)

which is the unique QR factorization of Ã because, by construction, Q̃ has orthonor-

mal columns and R̃ is upper triangular with positive diagonal entries. At the same

time, this implies that Ã has full column rank. Inequalities (3.5) and (3.6), together

with ‖(∆R)R−1‖F = ‖(R̃−R)R−1‖F = ‖R̂− I‖F, give (3.2).

Remark 3.1. Theorem 3.1 indicates that both the Q-factor and R-factor are very
well conditioned with respect to the left multiplicative perturbation in A.

Remark 3.2. Inequalities in (3.3) are obviously less sharper than the ones in (3.2),
but they are usually more convenient to use because in practice it is more likely
that one knows bounds on the norms of E than bounds on the norms of EPA.

Remark 3.3. From (3.2), we obtain the following first-order bounds:

‖∆Q‖F ≤
√

2‖EPA‖F + O(‖EPA‖2F),
‖∆R‖F
‖R‖2

≤
√

2‖EPA‖F + O(‖EPA‖2F).

The first-order bound for the R-factor can be improved. In fact, in the proof of
Theorem 3.1, if we apply the inequality (2.12) with D = I, it can be shown that we
have

‖R̂− I‖F ≤
√

2‖QT EQ‖F + O(‖EQ‖2F).

Then it follows that

‖∆R‖F
‖R‖2

≤
√

2‖PAEPA‖F + O(‖EPA‖2F).
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Next we observe the following invariant properties of the QR factors:

1. multiplying A by any positive scalar does not change the Q-factor;
2. multiplying A from the left by any orthogonal matrix of apt size does not

change the R-factor.

Following an idea in [16], we now show how the inequalities in (3.2) can be refined
after taking these two observations into considerations.

For any scalar α > 0, we have the QR factorization of α DLA:

α DLA = [I + (αDL − I)]A = Q̃(αR̃).

If ‖(αDL − I)Q‖2 < 1, then applying the first inequality in (3.2) gives

‖∆Q‖F ≤
√

2‖(αDL − I)PA‖F
1− ‖(αDL − I)PA‖2

. (3.8)

The above bound holds for any α > 0 such that ‖(αDL − I)Q‖2 < 1. In order to
tighten this bound, we choose α such that ‖(αDL − I)Q‖F is minimal. Notice that

‖(αDL − I)Q‖2F = trace
(
[α DLQ−Q]T[α DLQ−Q]

)

= ‖DLQ‖2Fα2 − 2trace
(
QTDLQ

)
α + n.

It is minimized at α = α̂:

α̂ =
trace(QTDLQ)

‖DLQ‖2F
=

trace(DLPA)

‖DLPA‖2F
. (3.9)

It can be shown that α̂ > 0 if ‖EPA‖2 < 1. Similarly we can obtain

α̃ ≡ argmin
α
‖αDL − I‖2F =

trace(DL)

‖DL‖2F
. (3.10)

Now apply Theorem 3.1 to get

Theorem 3.2. Assume (3.1) and write DL = Im + E. Let α̂ and α̃ be defined by

(3.9) and (3.10), respectively. If ‖EPA‖2 < 1, then Ã has full column rank and its

unique QR factorization satisfies

‖∆Q‖F ≤
√

2‖(α̂DL − I)PA‖F
1− ‖(α̂DL − I)PA‖2

. (3.11)

If the stronger condition ‖E‖2 < 1 holds, then (3.11) implies

‖∆Q‖F ≤
√

2‖α̃DL − I‖F
1− ‖α̃DL − I‖2

. (3.12)

Remark 3.4. If E is a scalar multiple of the identity matrix, then

α̂DL − I = α̃DL − I = 0,

and therefore the upper bounds in (3.11) and (3.12) are 0. But the upper bounds
in the first inequalities in (3.2) and (3.3) are not 0 and can be large.

For any orthogonal matrix U ∈ R
m×m,

UDLA = (UQ̃)R̃.

If ‖(UDL − I)PA‖2 = ‖(UDL − I)Q‖2 < 1, then (3.6) in the proof of Theorem 3.1
yields

‖(∆R)R−1‖F ≤
√

2‖UDLQ−Q‖F
1− ‖UDLQ−Q‖2

. (3.13)
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We would like to minimize the right-hand side of this inequality over all orthogonal
U ∈ R

m×m.

Lemma 3.1. We have

min
orthogonal U

‖UDLQ−Q‖ = ‖diag(µ1 − 1, . . . , µn − 1)‖ (3.14)

for all unitarily invariant norms ‖ · ‖, where µ1, . . . , µn are the singular values of

DLQ.

Proof. By Mirsky’s theorem [19, p.204], we have for any orthogonal matrix U

‖UDLQ−Q‖ ≥ ‖diag(µ1 − 1, . . . , µn − 1)‖. (3.15)

Let the singular value decomposition of DLQ be DLQ = V ΣWT , where V ∈ R
m×n

has orthonormal columns, W ∈ R
n×n is orthogonal, and Σ = diag(µ1, . . . , µn). Let

P = V WT ∈ R
m×n and H = WΣWT ∈ R

n×n. Then DLQ = PH , which is the
polar decomposition of DLQ. Suppose that [P, P⊥] ∈ R

m×m and [Q, Q⊥] ∈ R
m×m

are orthogonal. Define U = [Q, Q⊥][P, P⊥]T , which is orthogonal. Then UP = Q.
Therefore, for this U ,

‖UDLQ−Q‖ = ‖QH −Q‖ ≤ ‖Q‖2‖H − In‖ = ‖diag(µ1 − 1, . . . , µn − 1)‖. (3.16)

Equality (3.14) is the consequence of (3.15) and (3.16).

Theorem 3.3. Assume (3.1), and let µ1, . . . , µn be the singular values of DLQ and

ν1, . . . , νm be the singular values of DL. If maxi |µi−1| < 1, then Ã has full column

rank and its unique QR factorization satisfies

‖∆R‖F
‖R‖2

≤ ‖(∆R)R−1‖F ≤
√

2
√∑n

i=1 |µi − 1|2
1−max1≤i≤n |µi − 1| . (3.17)

If maxi |νi − 1| < 1, then

‖∆R‖F
‖R‖2

≤ ‖(∆R)R−1‖F ≤
√

2
√∑m

i=1 |νi − 1|2
1−max1≤i≤m |νi − 1| . (3.18)

Proof. Inequality (3.17) is the result of (3.13) and Lemma 3.1. Inequality (3.18)
can be proved similarly.

These two inequalities in Theorem 3.3 are sharper than their corresponding ones
in Theorem 3.1. But their applicability depends on the availability of information
on |µi−1| and |νi−1|. Often such information is hard to come by. Therefore, their
most important value is perhaps the revelation of what in the left multiplication
perturbation really moves the R-factor on the theoretical side rather than on the
practical side of usefulness.

3.2. Right multiplicative perturbation. We consider the so-called right multi-

plicative perturbation to A:

Ã = ADR, (3.19)

where DR ∈ R
n×n is near In, or a scalar multiple of In.

Theorem 3.4. Assume (3.19), write DR = In + F , where F = [Fn−1, fn] and

Fn−1 ∈ R
n×(n−1), and write R =

[
Rn−1 r

0 rnn

]
, where Rn−1 ∈ R

(n−1)×(n−1). If

κ2(A)‖F‖F <
√

3/2− 1, (3.20)
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then Ã has full column rank and its unique QR factorization satisfies

‖∆Q‖F ≤
√

2

1−
√

2 κ2(R)‖F‖F

[(
inf

D∈Dn

ζD‖D−1R‖2‖R−1
n−1Dn−1‖2

)
‖Fn−1‖F

+ (3
√

2 + 2
√

3 )κ2
2(R)‖F‖2F

]
(3.21)

≤ 1

2
(1 +

√
2 +
√

3)
(

inf
D∈Dn

ζD‖D−1R‖2‖R−1
n−1Dn−1‖2

)
‖Fn−1‖F

+
1

2

(
3 + 6

√
2 + 5

√
3 +
√

6
)

κ2
2(R)‖F‖2F, (3.22)

‖∆R‖F
‖R‖2

≤
√

2
(
infD∈Dn

ρDκ2(D
−1R)

) (
‖F‖F + κ2(A)‖F‖2F

)
√

2− 1 +
√

1− 4κ2(A)‖F‖F − 2κ2
2(A)‖F‖2F

(3.23)

≤ (
√

6 +
√

3)

(
inf

D∈Dn

ρDκ2(D
−1R)

)
‖F‖F, (3.24)

where Dn−1 is the leading (n− 1)× (n− 1) principle matrix of D, and ζD and ρD

are defined in (2.10).

Proof. We could apply (2.13) in Lemma 2.2 to obtain (3.24) easily, but we will
provide a detailed proof anyway because much of it is needed to prove (3.22).

Since (3.20) holds, for any t ∈ [0, 1], I + tF is nonsingular. Thus A(I + tF ) has
full column rank and has the unique QR factorization

A(I + tF ) = [Q + ∆Q(t)][R + ∆R(t)]. (3.25)

At t = 0, 1, it recovers the unique QR factorizations in (1.3) for A and Ã. From
(3.25), we have

(I + tFT)ATA(I + tF ) = [R + ∆R(t)]T[R + ∆R(t)].

By simple algebraic manipulations and using ATA = RTR, we obtain

R−T∆R(t)T + ∆R(t)R−1

= tR−TFTRT + tRFR−1 + t2R−TFTRTRFR−1 −R−T∆R(t)T∆R(t)R−1.

Since ∆R(t)R−1 is upper triangular, it follows by using the “up” notation in (2.3)
that

∆R(t)R−1 = up
(
tR−TFTRT + tRFR−1

+ t2R−TFTRTRFR−1 −R−T∆R(t)T∆R(t)R−1
)
.

(3.26)

Then, by (2.7),

‖∆R(t)R−1‖F ≤
1√
2

(
2t κ2(R)‖F‖F + t2κ2

2(R)‖F‖2F + ‖∆R(t)R−1‖2F
)
. (3.27)

Define α(t) = ‖∆R(t)R−1‖F, β(t) = 2t κ2(R)‖F‖F + t2κ2
2(R)‖F‖2F, and rewrite

(3.27) as

α(t)2 −
√

2α(t) + β(t) ≥ 0.

Inequality (3.20) ensures 1 − 2β(t) > 0. Thus we have either α(t) ≤ α1(t) or
α(t) ≥ α2(t), where

α1(t) =
1√
2

[
1−

√
1− 2β(t)

]
< α2(t) =

1√
2

[
1 +

√
1− 2β(t)

]
.
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But α(t) is continuous and α(0) = α1(0) = 0 < α2(0). Therefore we must have
α(t) ≤ α1(t) for any t ∈ [0, 1], and in particular, α(1) ≤ α1(1), i.e.,

‖∆RR−1‖F ≤
1√
2

(
1−

√
1− 4κ2(R)‖F‖F − 2κ2

2(R)‖F‖2F
)

<
1√
2
. (3.28)

Also the first inequality in (3.28) gives

‖∆RR−1‖F ≤
1√
2

4κ2(R)‖F‖F + 2κ2
2(R)‖F‖2F

1 +
√

1− 4κ2(R)‖F‖F − 2κ2
2(R)‖F‖2F

≤ 1√
2

[
4κ2(R)‖F‖F + 2κ2

2(R)‖F‖2F
]

≤ (
√

2 +
√

3)κ2(R)‖F‖F, (3.29)

where we have used the assumption κ2(R)‖F‖F <
√

3/2− 1. For any D ∈ Dn, we
have from (3.26) with t = 1 that

∆RR−1D = up
(
D−1(DR−TFTRT)D + RFR−1D

)

+ up
(
R−TFTRTRFR−1D

)
− up

(
R−T∆RT∆RR−1D

)
.

Then, from (2.8) and (2.5), it follows that

‖∆RR−1D‖F ≤ ρD‖R‖2‖R−1D‖2‖F‖F + κ2(R)‖R‖2‖R−1D‖2‖F‖2F
+ ‖∆RR−1‖F‖∆RR−1D‖F.

Therefore, using (3.28) and the fact that ρD ≥ 1 by definition and (3.20), we obtain

‖∆RR−1D‖F ≤
√

2ρD‖R−1D‖2‖R‖2‖F‖F [1 + κ2(R)‖F‖F]√
2− 1 +

√
1− 4κ2(A)‖F‖F − 2κ2

2(A)‖F‖2F
≤

(√
6 +
√

3
)

ρD‖R−1D‖2‖R‖2‖F‖F.

Combining the inequality ‖∆R‖F ≤ ‖∆RR−1D‖F‖D−1R‖2 and the above inequal-
ities and noticing that D ∈ Dn is arbitrary, we obtain (3.23) and (3.24).

Now we prove (3.22). From (3.25) with t = 1 it follows that

∆Q = QRFR−1 − (Q + ∆Q)∆RR−1.

Then, using (3.26) with t = 1, we obtain

∆Q = QRFR−1 −Q up
(
R−TFTRT + RFR−1

)
−∆Qup

(
R−TFTRT + RFR−1

)

− (Q + ∆Q)up
(
R−TFTRTRFR−1

)
+ (Q + ∆Q)up

(
R−T∆RT∆RR−1

)

= Q
{
low(RFR−1)− [low(RFR−1)]T

}
−∆Q up

(
R−TFTRT + RFR−1

)

− (Q + ∆Q)up
(
R−TFTRTRFR−1

)
+ (Q + ∆Q)up

(
R−T∆RT∆RR−1

)
.

(3.30)

To bound the first term on the right hand side of (3.30), we write

D = diag(Dn−1, δn) ∈ Dn, Dn−1 ∈ Dn−1,

R = DR̂, R̂ =

[
R̂n−1 r̂

0 r̂nn

]
, R̂n−1 ∈ R

(n−1)×(n−1).
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It is easy to verify that the matrix formed by the first n− 1 columns of R̂F R̂−1 is
R̂Fn−1R̂

−1
n−1. Then, by (2.9) we have

‖low(RFR−1)− (low(RFR−1))T‖F
= ‖Dlow(R̂F R̂−1)D−1 −D−1(low(R̂F R̂−1))TD‖F
≤
√

2 ζD‖R̂Fn−1R̂
−1
n−1‖F

≤
√

2 ζD‖D−1R‖2‖R−1
n−1Dn−1‖2‖Fn−1‖F.

The remaining terms in (3.30) can be bounded using (2.6), (2.7) and (3.29). Thus
we obtain

‖∆Q‖F ≤
√

2 ζD‖D−1R‖2‖R−1
n−1Dn−1‖2‖Fn−1‖F +

√
2‖RFR−1‖F‖∆Q‖F

+
1√
2
‖RFR−1‖2F +

1√
2
‖∆RR−1‖2F

≤
√

2 ζD‖D−1R‖2‖R−1
n−1Dn−1‖2‖Fn−1‖F +

√
2κ2(R)‖F‖F‖∆Q‖F

+
1√
2
κ2

2(R)‖F‖2F +
1√
2
(
√

2 +
√

3)2κ2
2(R)‖F‖2F.

Then, with (3.20) it follows that

‖∆Q‖F ≤
√

2 ζD‖D−1R‖2‖R−1
n−1Dn−1‖2‖Fn−1‖F + (3

√
2 + 2

√
3 )κ2

2(R)‖F‖2F
1−
√

2κ2(R)‖F‖F
≤ 1

2
(1 +

√
2 +
√

3)ζD‖D−1R‖2‖R−1
n−1Dn−1‖2‖Fn−1‖F

+
1

2
(3 + 6

√
2 + 5

√
3 +
√

6)κ2
2(R)‖F‖2F,

leading to (3.21) and (3.22).

Remark 3.5. For the R-factor, the perturbation bound (3.24) does not have im-
provement over the perturbation bound by (2.13), noticing

‖∆A‖F = ‖AF‖2 ≤ ‖A‖2‖F‖F.

For the Q-factor, the bound (3.22) is interesting. Note that the coefficient of ‖F‖F
in (3.22) can sometimes be very small because of the tininess of ζD. For example,
for R = diag(1, ǫ) with small ǫ > 0, take D = diag(1, ǫ) to get

ζD‖D−1R‖2‖R−1
n−1Dn−1‖2 = ǫ.

Thus it is possible for the second order term in (3.22) to dominate the bound.

Remark 3.6. From (3.21) and (3.23) we obtain the following first-order bounds:

‖∆Q‖F ≤
√

2

(
inf

D∈Dn

ζD‖D−1R‖2‖R−1
n−1Dn−1‖2

)
‖Fn−1‖F + O(‖F‖2F),

‖∆R‖F
‖R‖2

≤
(

inf
D∈Dn

ρDκ2(D
−1R)

)
‖F‖F + O(‖F‖2F).

Remark 3.7. We would like to choose D such that ζD‖D−1R‖2‖R−1
n−1Dn−1‖2

is a good approximation to infD∈Dn
ζD‖D−1R‖2‖R−1

n−1Dn−1‖2 in (3.22) and also

choose D such that ρDκ2(D
−1R) is a good approximation to infD∈Dn

ρDκ2(D
−1R)

in (3.24). For the latter, numerical experiments in [7] indicated that a good choice
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for D = diag(δ1, . . . , δn) is to equilibrate the rows of R = (rij) while keeping ζD ≤ 1.
Specifically, we take

δ0 = 0, and δi = min




δi−1,

√√√√
n∑

j=i

r2
ij




 for 1 ≤ i ≤ n. (3.31)

Obviously this choice should also be good for the former.

Remark 3.8. Suppose we use the standard column pivoting (see, e.g., [10, section
5.4.1]) in the QR factorization of A and the same permutation matrix is applied
to the QR factorization of A(I + F ), then it is easy to see that the bounds (3.22)
and (3.24) still hold. If we choose D = diag(r11, r22, . . . , rnn), then according to [7,
section 5.1],

ρDκ2(D
−1R) ≤ 2n−1

√
n(n + 1).

By the same proof given in [7, section 5.1], we see that

ζD‖D−1R‖2‖R−1
n−1Dn−1‖2 ≤

(
max

2≤i≤n

rii

ri−1,i−1

)
· 2n−2 ·

√
n(n + 1)/2

≤ 2n−2
√

n(n + 1)/2.

These inequalities suggest that the standard column pivoting is likely to decrease
the size of the perturbations in the R-factor and the size of the perturbations in
the Q-factor as well if the second-order bound in (3.22) does not dominate the
perturbation bound.

We can also refine the perturbation bound in (3.22) by using the same approach
as we did for a left multiplicative perturbation. The inequality (3.22) still holds if
‖F‖F is replaced by

min
α
‖αDR − 1‖F = ‖α̂DR − I‖F.

Theorem 3.5. With the notation and assumption of Theorem 3.4,

‖∆Q‖F ≤
1

2
(1 +

√
2 +
√

3)

(
inf

D∈Dn

ζD‖D−1R‖2‖R−1
n−1Dn−1‖2

)
‖α̂DR − I‖F

+
1

2
(3 + 6

√
2 + 5

√
3 +
√

6)κ2
2(R)‖α̂DR − I‖2F, (3.32)

where α̂ = trace(DR)/‖DR‖2F.

Remark 3.9. When DR itself in (3.19) is upper triangular and nonsingular:

Q̃ = QΛ, R̃ = ΛRDR,

where Λ is the diagonal matrix whose ith diagonal entry is the sign of the ith
diagonal entry of DR. In particular if also DR has positive diagonal entries, then

Λ = I and Q̃ = Q and R̃ = RDR. This observation in principle can be used to
derive sharper bounds on the R-factor as we did in Theorem 3.3. But the gain is
not substantial, however. So we omit the detail.
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S Lemma 2.2 Theorems 3.1 Theorems 3.2 Theorems 3.3

(2.11) (2.13) (3.2) (3.3) (3.11) (3.12) (3.17) (3.18)

S0 1 · 10−1 3 · 10−7 3 · 10−7 4 · 10−7 3 · 10−7 4 · 10−7 2 · 10−7 3 · 10−7

‖∆Q‖F = 2 · 10−7 and ‖∆R‖F/‖R‖2 = 2 · 10−8

S1 7 · 10−2 1 · 10+0 3 · 10−7 4 · 10−7 3 · 10−7 4 · 10−7 2 · 10−7 3 · 10−7

‖∆Q‖F = 2 · 10−7 and ‖∆R‖F/‖R‖2 = 2 · 10−7

US0V T 1 · 10−1 1 · 10−5 3 · 10−7 4 · 10−7 3 · 10−7 4 · 10−7 2 · 10−7 3 · 10−7

‖∆Q‖F = 2 · 10−7 and ‖∆R‖F/‖R‖2 = 5 · 10−8

Table 4.1. Example 1: Column 2 to column 9 in the 3rd, 5th, and
7th row are the right-hand sides of the corresponding inequalities. The
“exact” errors are given in the 4th, 6th and 8th row.

4. Examples. By making DL and/or DR not close to the identity matrices but to
some scalar multiples of the identity matrices or even some orthogonal matrices, it
is almost trivial to create an example for these “optimized” bounds in Theorems 3.2,
3.3, 3.5 to be arbitrarily tighter than their counterparts in Theorems 3.1 and 3.4.
So in what follows, we will only consider examples in which DL and/or DR are close
to the identity matrices. Consequently, we expect the “optimized” bounds are only
marginally better.

Example 1. We construct this example for left multiplicative perturbations by
letting A = BS, where B is an m×n well-conditioned matrix and S is some scaling
matrix whose entries vary widely in magnitude. Then we perturb B to B + ∆B
and finally

Ã = (B + ∆B)S = [Im + (∆B)B†]BS ≡ DLA,

where B† = (BTB)−1BT, DL = Im + (∆B)B† ≡ Im + E. Take m = 9, n = 5, and

B =




8 2 −12 −5 −10
6 0 0 −3 13
−8 −10 −11 −12 3
−3 −9 −13 −13 15
−12 −4 −3 9 11
−22 −12 10 0 −7
10 −11 1 −6 −13
−5 15 7 8 −1
3 1 −12 2 −3




, (4.1)

S0 =




106

104

103

102

1




, S = S0, S1, or US0V
T, (4.2)

where S1 is obtained from rearranging the diagonal entries of S0 in the increasing
order, U, V ∈ R

n×n are two random orthogonal matrices. We take

∆B = 1.0e− 6 ∗ (2 ∗ rand(m, n)− 1)

in MATLAB-like notation. In Table 4.1, we list various error bounds in Lemma 2.2,
Theorems 3.1 – 3.3. In computing these bounds, we treat the computed QR fac-
torizations of A by MATLAB’s qr(A,0) as exact ones. This is justifiable because
κ2(A) is about 106. Therefore the computed Q and R will have at least about 10
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Figure 4.1. Example 2: Error bounds on the changes of the QR-
factors under left multiplicative perturbations.

correct decimal digits which is good enough to be treated as exact for the given
perturbation ∆A = (∆B)S. We used D = diag(δ1, . . . , δn) for (2.13) computed by
(3.31) to get

ζD = 9.80 · 10−2, ρD = 1.00, κ(D−1R) = 1.05, for S = S0;

ζD = 1.00 · 10−2, ρD = 1.41, κ(D−1R) = 5 · 106, for S = S1;

ζD = 5.88 · 10−1, ρD = 1.16, κ(D−1R) = 4.19 · 101, for S = US0V
T.

It can be seen from this table that the bounds by (2.11) in Lemma 2.2 are very
poor, but amazingly the one by (2.13) is comparable to those by Theorems 3.1 –
3.3 for S = S0 and only about 25 to 50 times bigger for S = US0V

T but extremely
poor for S = S1.

We point out that starting with A = BS is purely for the convenience of con-

structing an example of left multiplicative perturbations. Once Ã = DLA is done,
our bounds by Theorems 3.1 – 3.3 do not need to know this structure in A in order
to give the sharper bounds as in the table. 3

Example 2. We simply take A = UΣV T, where U ∈ R
m×n is random and has

orthonormal columns, V ∈ R
n×n is a random orthogonal matrix, and Σ is diagonal

to make κ2(A) about 105. Again m = 9 and n = 5. We set DL = Im + ǫ× randn(m)
for the case of left multiplicative perturbations and DR = In + ǫ× randn(n) for the
case of right multiplicative perturbations, where randn is MATLAB’s random ma-
trix generator, and ǫ = 10−6/4i for i = 0, 1, . . . , 9. Again we treat the computed QR
factorizations of A by MATLAB’s qr(A,0) as exact ones. This is justifiable because
κ2(A) is about 105, and so the computed Q and R will have at least about 11 correct
decimal digits. Figure 4.1 shows the error bounds on the changes in the QR-factors
under left multiplicative perturbations while Figure 4.2 presents the same informa-
tion but under right multiplicative perturbations. Also shown are the bounds in
Lemma 2.2 which were established under the general additive perturbation assump-
tion and the “exact” errors between the QR factors computed by MATLAB’s qr

function. From the figures, we may come to the following conclusions:
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Figure 4.2. Example 2: Error bounds on the changes of the QR-
factors under right multiplicative perturbations. In the left plot, the
curves for (3.22) and (3.32) overlap each other.

1. In all cases, the existing (2.11) gives the worst bounds, except that the bounds
by (3.22) and (3.32) for ∆Q (under right multiplicative perturbations) give
the worst bounds for larger perturbations but the best bounds for smaller
perturbations.

2. The existing (2.13), even though established under the general additive per-
turbation assumption, is quite competitive to those established here under
multiplicative perturbations, although there are examples for which (2.13) is
very poor as in Example 1 when S = S1.

3. The behaviors of the bounds by (3.22) and (3.32) for ∆Q are rather interesting.
In the left plot of Figure 4.2, the two curves begin above the one for (2.11)
for larger perturbations and then moves down to below it as perturbations
become smaller. This seems to reflect the comment we made in Remark 3.5.

4. The bound by (3.24) for right multiplicative perturbations are actually worse
than the one by (2.13), even though (2.13) was established under the general
additive perturbation assumption. This confirms the comment we made in
Remark 3.5.

5. As expected, the optimized versions – those in Theorems 3.2, 3.3, and Theo-
rem 3.5 – are only marginally sharper than their counterparts in these tests
because DL and DR are made close to the identity matrices.

5. Concluding remarks. We have performed a multiplicative perturbation anal-
ysis for the QR factorization, designed to take advantage of the structure that comes
with the perturbations. Several bounds for the relative changes in the QR factors
have been established. They imply that both the QR factors are well conditioned
with respect to a left multiplicative perturbation, but the same claim can not be
said for the bounds for a right multiplicative perturbation since these bounds are
dependent on the condition number of the scaled R-factor.

Multiplicative perturbations arise naturally from matrix scaling, a commonly
used technique to improve the conditioning of a matrix. More can be said for left
multiplicative perturbations which arise every time we compute QR factorizations
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by the Householder transformations. Let

A = BS, S = diag(‖A(:,1)‖2, . . . , ‖A(:,n)‖2).

Suppose that κ2(B) is modest (and thus B has full column rank). Let Q̂ and R̃
be the computed QR factors by the Householder transformations. According to

Theorem 19.4 in [11, p.360], there exists an orthonormal Q̃ ∈ R
m×n such that

A + ∆A = Q̃R̃, Q̂ = Q̃ + O(u), (5.1a)

‖(∆A)(:,j)‖2 = O(u) ‖A(:,j)‖2 for 1 ≤ j ≤ n, (5.1b)

where u is the unit machine roundoff. But the computed R̃ does not necessarily

have positive diagonal entries. If we let Λ = diag(±1) ∈ R
n×n such that ΛR̃ does

have positive diagonal entries, then after the following substitutions:

R̃← ΛR̃, Q̂← Q̂Λ, Q̃← Q̃Λ,

the equations in (5.1) still hold and A + ∆A = Q̃R̃ is now the QR factorization in
the sense of what we specified at the beginning of this paper and is unique. Assume

that such post-substitutions are performed, e.g., in (5.1) R̃ is made to have positive
diagonal entries. It follows from (5.1) that

Ã ≡ A + ∆A = [B + (∆A)S−1]S = (I + E)BS = (I + E)A,

where E = (∆A)S−1B† and ‖E‖p ≤ O(u) ‖B†‖p for p = 2, F. Let A = QR be the
unique QR factorization of A, and apply Theorem 3.1 to conclude

Q = Q̃ + O(u)κ2(B) = Q̂ + O(u)κ2(B), (R̃−R)R−1 = O(u)κ2(B), (5.2)

where all O(u) are no bigger than u times some low degrees of polynomials in m
and n. The equations in (5.2) are also implied by the results in [23].
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