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Abstract When GPS signal measurements have outliers, us-
ing least squares (LS) estimation is likely to give poor posi-
tion estimates. One of the typical approaches to handle this
problem is to use robust estimation techniques. We study
the computational issues of Huber’s M-estimation applied to
relative GPS positioning. First for code-based relative posi-
tioning, we use simulation results to show that Newton’s
method usually converges faster than the iteratively reweight-
ed least squares (IRLS) method, which is often used in geod-
esy for computing robust estimates of parameters. Then for
code- and carrier-phase-based relative positioning, we pres-
ent a recursive modified Newton method to compute Huber’s
M-estimates of the positions. The structures of the model
are exploited to make the method efficient, and orthogonal
transformations are used to ensure numerical reliability of
the method. Economical use of computer memory is also
taken into account in designing the method. Simulation re-
sults show that the method is effective.

Keywords Relative GPS positioning · Huber’s M-estima-
tion · Netwon’s method for minimization · Computer
implementation

1 Introduction

The typical approach to GPS positioning is least squares (LS)
estimation. However, LS estimation is sensitive to outliers
(unspecified large errors) in the measurements; thus it will
likely give poor position estimates if the measurements have
outliers. There are several gross error sources which can lead
to outliers in the measurement data (e.g., multipath, iono-
spheric delay and diffraction, interference, channel biases,
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satellite failure). In order to get good position estimates, out-
liers have to be appropriately handled.

One approach is to apply the fault detection and identifi-
cation procedure (e.g., Brown 1996; Kelly 1998; Teunissen
1990). This approach uses some detection and identification
techniques to detect possible unspecified errors in the input
data and isolate the faulty data. Then either the faulty data are
discarded or the model for position estimation is adjusted to
take the unspecified errors into account. However, sometimes
detection and identification by regular methods are difficult,
in particular when outliers appear in multiple observations.
Furthermore, in the case of limited observational data avai-
lablility, the faulty data cannot be simply discarded, other-
wise, the problem of rank deficiency will arise.

Another approach is to use robust estimation techniques.
The aim of robust estimation is to reduce (but not completely
eliminate) the influence of outliers on the parameter estima-
tion. It automatically identifies outliers in the observations
and gives the corresponding observations less weight in the
estimation. Because of the good statistical properties and the
relatively low computing effort, the M-estimation techniques,
especially Huber’s (1964) M-estimation technique, have been
widely used in robust estimation (Rieder 1996).

Robust estimation methods have been used in geodesy for
many years (e.g., Fuchs 1982; Koth andYang 1998; Xu 1989;
Yang 1991, 1994; Zhu 1996; Zhong 1997; Gui and Zhang
1998; Awange and Aduol 1999 others). Recently, these tech-
niques have been applied to GPS positioning. For example,
Yang et al. (2001) proposed an adaptive robust Kalman filter
for position estimation, which is some kind of combination of
an adaptive Kalman filter and Huber’s M-estimation. To deal
with the correlated measurements, the so-called dependent
equivalent weight matrix based on Huber’s weight function
was used in their method (see Yang 1994 for more details).
Their test results show that the robust estimation can effec-
tively resist the influence of the outliers. Wieser and Brun-
ner (2002) present a modified Danish method for short static
positioning using double-differenced carrier-phase measure-
ments. Since the standard Danish method (Krarup et al. 1980)
is not applicable to correlated observations, it was modified
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to handle correlated double-differenced carrier-phase obser-
vations. Wieser and Brunner’s (2002) test results indicated
that their method performs significantly better than the LS
method if unfavorable signal distortion occurs. Like many
papers in robust M-estimation in geodesy, computer imple-
mentation of these methods was not considered inYang et al.
(2001) and Wieser and Brunner (2002), since it was not their
goal.

However, computational issues are important for soft-
ware design. Since computational efficiency is crucial when
the amount of data is large or the application is a real-time
one, fast algorithms are often needed. Numerical reliability
of the algorithms has to be considered in order to avoid unn-
ecessarily losing accuracy. One also needs to consider how to
economically use computer memory in designing algorithms.

In this paper, we consider applying Huber’s M-estima-
tion technique to relative GPS positioning using the single-
differenced code- and carrier-phase measurements. In the
GPS literature, double-differenced measurements are often
used for positioning. However, Huber’s M-estimation tech-
nique cannot be applied directly to double-differenced mea-
surements, since the noises in the measurements are corre-
lated. Even if the correlations were not a problem, it still
cannot be applied directly when the signals from the ref-
erence satellites have outliers, since all double-differenced
measurements will have outliers. In fact, even if we use LS
estimation, we can work with single-differenced measure-
ments without using the double-differencing technique, see,
e.g., Chang and Paige (2003) and Chang et al. (2004).

In this paper, we do not use any dynamic (or state) equa-
tions, since it is often difficult to get accurate dynamic equa-
tions in practice. However, we could extend our approach to
the case where accurate dynamic equations are available. Our
main goal is to address the computational issues. We will use
code-based relative positioning as an example to show New-
ton’s method is usually faster than the iteratively reweighted
least squares (IRLS) method, which is widely used in geod-
esy for robust M-estimation (e.g., Koch 1999, Sec 3.8.2; Koth
andYang (1998); Wieser and Brunner (2002)). For code- and
carrier-phase-based relative positioning, we will present a
recursive modified Newton method for computing Huber’s
M-estimates. Due to the effect of possible outliers, we will not
attempt to fix integer ambiguities.We will make full use of the
structure of the positioning model to make our method effi-
cient, and use orthogonal transformations to ensure numerical
reliability. We will also consider saving computer memory in
designing the method. Although our goal is not to show how
significant Huber’s M-estimation is to GPS positioning, we
give some simulation results to demonstrate that Huber’s M-
estimation can give (much) better results than LS estimation
when there are outliers.

The paper is organized as follows. In Sect. 2, we intro-
duce Huber’s M-estimation for a general linear model and
discuss the strategies for handling a singularity problem. In
Sect. 3, we introduce the mathematical models for relative
positioning. In Sect. 4, we use simulation results to show
Newton’s method is faster than the IRLS method for Huber’s

M-estimation. In Sect. 5, for code- and carrier-phase-based
positioning we present a recursive modified Newton method
for computing Huber’s M-estimates, and give some simula-
tion results. Finally, we give a summary in Sect. 6.

Notation: Throughout this paper, we use bold lower case
letters for vectors and bold upper case letters for matrices.
The vector space of all real m × n matrices is denoted by
Rm×n and the vector space of real n-vectors by Rn. The unit
matrix is denoted by I or sometimes by In if its dimension
is n by n and its ith column by ei , while e ≡ [1, 1, . . . , 1]T

(we use ≡ to mean ‘is defined to be’). We use the norm
‖x‖ =

√
xTx for vectors. E{·} denotes the expected value,

and cov{·} denotes the covariance matrix, that is cov{x} =
E{(x − E{x})(x − E{x})T}. v ∼ N (v̄, V ) indicates that v
is a normally distributed random vector with expected value
v̄ and covariance V .

2 Huber’s M-estimation for a general linear model

We first describe Huber’s M-estimation problem for a general
linear model, and then introduce a framework for Newton’s
method with a line search to solve the problem (for the gen-
eral Newton’s method and line search strategies, see, e.g.,
Nocedal and Wright 1999). We discuss the advantages and
disadvantages of different strategies for dealing with a sin-
gularity problem which may happen in the Newton’s method
and propose to use the strategy given in Chang (2005), which
is suitable for solving our estimation problem for code- and
carrier-phase-based relative positioning.

Suppose we have a general linear model

y = Ax + v, (1)

where y = [y1, . . . , ym]T ∈ Rm is a measurement vector,
A = [a1, . . . , am]T ∈ Rm×n is a design (or model) matrix
with full column rank, x ∈ Rn is an unknown parameter
vector to be estimated, and v ∈ Rm is a random noise vector
with cov{v} = σ 2I (σ is assumed to be be known). In the
ideal situation, the mean E{v} = 0, but this will not hold
when v includes outliers.

For a given vector x ∈ Rn, we define the residual vector
r(x) ≡ y−Ax, with ith element ri(x). Huber’s M-estimate
of the parameter vector is the solution of the optimization
problem

min
x

{
F(x) ≡

m∑
i=1

ρ(ri(x))

}
, (2)

where ρ is a nonnegative, convex, piecewise function defined
by

ρ(t) ≡
{

1
2 t2, |t | ≤ γ,

γ |t | − 1
2γ 2, |t | > γ,

(3)

for some tuning constant γ > 0. Often, γ is chosen to be
in the interval [1.5σ, 2σ ] (Koch 1999, Sec 3.8.3). The func-
tion ρ(t) in the form of Eq. (3) is called the Huber function.
Note that Huber’s M-estimation is a mixed l2 and l1 mini-
mization problem. For M-estimation, there are several other
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well-known functions such as the Fair, Talwar, Tukey, and
Welsh functions (Huber 1981), but the Huber function is the
most popular one.

We see from Eq. (3) that ρ(t) is a continuous function,
with continuous and nondecreasing first derivative, since

ρ ′(t) =
{

t, |t | ≤ γ,
γ sign(t), |t | > γ,

ρ ′′(t) =
{

1, |t | ≤ γ,
0, |t | > γ.

(4)

Strictly speaking,ρ(t)has only a right (left) second derivative
at t = −γ (t = γ ), but from a practical point of view, there
is no harm in defining ρ ′′(±γ ) = 1, since it is very unlikely
that this slight extension will have any effect on solving the
minimization problem in Eq. (2).

The active index set and the inactive index set at x ∈ Rn

are, respectively, defined by

ν(x) ≡ {i : |ri(x)| ≤ γ }, ν̄(x) ≡ {i : |ri(x)| > γ }. (5)

If i ∈ ν(x), we say that the ith equation of the model in Eq.
(1) is active at x, otherwise we say it is inactive at x. The
active matrix Aν(x) of A at x is defined to be the matrix
formed by the rows of A corresponding to the active equa-
tions at x. Sometimes for simplicity we just use Aν instead
of Aν(x) if there is no confusion. We define the sign vector

s(x) ≡ [s1(x), . . . , sm(x)]T,

si(x) ≡



−1, ri(x) < −γ,
0, |ri(x)| ≤ γ,
1, ri(x) > γ,

(6)

and the weight matrix

W (x) ≡ diag(w1(x), . . . , wm(x)),

wi(x) ≡ 1 − s2
i (x) = ρ ′′(ri(x)).

(7)

The objective function F(x) in Eq. (2) can then be rewritten
as

F(x) = 1

2
r(x)TW(x)r(x)

+γ s(x)T[r(x) − 1

2
γ s(x)]. (8)

Since ∂r(x)T

∂x
= −AT, differentiating Eq. (8) gives the gradi-

ent of F(x)

F ′(x) ≡ ∂F (x)

∂x

= −AT(W (x)r(x) + γ s(x))

= −
∑

i∈ν(x)

ai ri(x) − γ
∑

i∈ν̄(x)

ai si(x). (9)

The symmetric nonnegative definite Hessian matrix is given
by

F ′′(x) ≡ ∂2F(x)

∂x∂xT

= ATW (x)A

=
∑

i∈ν(x)

aia
T
i

= Aν(x)TAν(x). (10)

A general framework for Newton’s method with a line
search for solving Eq. (2) can be described as follows (e.g.,
O’Leary 1990; Madsen and Nielsen 1990; Antoch and Ek-
blom 1995):

Given an initial estimate x
Repeat until convergence:

Solve the following linear system for the search direc-
tion h:

F ′′(x)h = −F ′(x), or Aν(x)TAν(x)h

= AT[W (x)r(x) + γ s(x)], (11)

Perform a line search and update x := x+ α̂h (see Eq. 19).

Usually the LS estimate xLS for the model in Eq. (1) is
taken to be the initial estimate, so that if the index set ν̄(xLS)
is empty (i.e., no outliers),

W (xLS) = Im,

s(xLS) = 0, (12)

AT[W (xLS)r(xLS) + γ s(xLS)] = ATr(xLS) = 0.

Notice that ATr(xLS) = 0 are the normal equations and
from Eq. (11) we see h = 0. Thus, xLS solves Eq. (2). Any h
satisfying Eq. (11) with a nonzero F ′(x) is a strict descent
direction for the functional F at x, since

hTF ′(x) = −hTAν(x)TAν(x)h < 0. (13)

It can be shown (e.g., Madsen and Nielsen 1990) that there
is a minimizer x of F(x) such that Aν(x)TAν(x) is non-
singular. When Aν(x)TAν(x) is nonsingular, it is positive
definite and the Cholesky factorization of Aν(x)TAν(x) can
be used to solve Eq. (11). Specifically, if Aν(x)TAν(x) has
the Cholesky factorization (e.g., Björck 1996, Sec 2.2.2)

Aν(x)TAν(x) = RTR, (14)

where R is upper-triangular, then h can easily be obtained
by solving two triangular systems

RTh̃ = AT[W (x)r(x) + γ s(x)], Rh = h̃. (15)

The Cholesky factor R of Aν(x)TAν(x) can also be obtained
from the QR factorization of Aν(x). In fact, if Aν(x) has the
QR factorization (e.g., Björck 1996, Sec 1.3)

Aν(x) = [Q, Q̄]

[
R
0

]
= QR,

[Q, Q̄] orthogonal, R upper triangular, (16)

then we have

Aν(x)TAν(x) = RTQTQR = RTR. (17)

Since forming Aν(x)TAν(x) may lose information (e.g.,
Björck 1996, p.44), for numerical reliability, we prefer to
find R by the QR factorization in Eq. (16).
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The main computational cost in each iteration is then that
of computing the QR factorization. Since the active matri-
ces for two consecutive iterates usually differ by just a few
rows, updating/downdating techniques for the QR factoriza-
tion (e.g., Björck 1996, Sec 3.2) can be used to compute the
QR factorization of Aν(x) during the iterations for efficiency.

If during the iterative process there are more than m − n
large residuals beyond the tuning constant γ , then the number
of rows of Aν(x) is smaller than the number of its columns,
so Aν(x)TAν(x) is singular. There are several strategies to
handle this problem. For example, in Antoch and Ekblom
(1995), if Aν(x)TAν(x) is found to be singular, then it is
replaced by Aν(x)TAν(x) + εI . The shortcoming with this
approach is that updating/downdating of the matrix factoriza-
tion is computationally expensive when the matrix becomes
a singular matrix from a nonsingular matrix, or vice versa,
since it is computationally expensive to go from the factoriza-
tion of Aν(x)TAν(x) to Aν(x)TAν(x) + εI , or vice versa.
In O’Leary (1990), the strategy is to use a very large tuning
constant at the beginning, then gradually decrease its value
to the desired value over the first four steps of the iteration.
However, no implementation details for this strategy were
given in O’Leary (1990), nor was a guarantee given that this
strategy would always work.

In this paper, we use the following strategy (Chang 2005)
to handle the singularity problem. If the active matrix Aν(x)
is not of full column rank, we choose a row vector from
those aT

i with i ∈ ν̄(x) according to some criterion and
add this row vector to Aν(x). We continue this process until
the updated Aν(x) has full column rank. For simplicity, the
updated Aν(x) is still called an active matrix. For a general
matrix A such as that in GPS code-based relative positioning
(see Sect. 4), a sensible criterion is that the chosen row vector
corresponds to the smallest residual in magnitude. In practice,
we may know when the updated Aν(x) has full column rank.
For GPS code-based relative positioning, when the updated
Aν(x) becomes square, we can reasonably assume that it is
nonsingular. For GPS code- and carrier-phase-based relative
positioning, the matrix A has some special structures (see
Sect. 5.1), and we will show how to choose row vectors to
make the updated Aν(x) have full column rank. After a full
column rank Aν(x) is found, we solve Eq. (11) for the search
direction h. Note that although now Aν(x) may not be the
true active matrix at x any more, we still have Eq. (13). Thus
h is still a descent direction and the optimization problem
Eq. (2) remains solved. Since the singularity problem does
not occur often (unless the tuning constant γ in Eq. (3) is too
small or there are many outliers), this strategy is unlikely to
slow down the convergence.

The optimal step length α̂ in the line search can be found
exactly. Write

φ(α) ≡ F(x + αh) =
m∑

i=1

ρ(yi − aT
i (x + αh)). (18)

Since φ(α) is the sum of nonnegative, convex, piecewise
defined functions of α, with each piece being either qua-
dratic or linear (see Eqs. 2–4), it too is a nonnegative, convex,

piecewise defined function with each piece being quadratic
(possibly linear). Therefore, φ′(α) must be piecewise, with
each piece linear (possibly constant), and we can find exactly
a minimizer α̂ of φ(α), i.e.,

α̂ = arg min
α

φ(α). (19)

This α̂ is a zero of φ′(α). An efficient method for computing
α̂ can be found in Madsen and Nielsen (1990). Its computa-
tional cost is usually negligible compared with that of solving
the linear system in Eq. (11).

The commonly used method for solving the robust M-est-
imation problem in geodesy is the IRLS method (e.g., Koch
1999). Note that Eq. (11) can also be written

ATW (x)Ah = AT[W (x)r(x) + γ s(x)]. (20)

If we replace W (x) on the left-hand side of Eq. (20) by
D(x) = diag(d1, . . . , dm) with di = 1 if |ri(x)| ≤ γ or
di = γ /|ri(x)| if |ri(x)| > γ , then we can easily verify that
Eq. (20) can be written

ATD(x)Axnew = ATD(x)y, (21)

where xnew = x + h. The iterative method in which the
iteration sequence defined by Eq. (21) (i.e., xnew is a new
iterate) is just the IRLS method for Huber’s M-estimation.
Choosing different D(x) in Eq. (21) will lead to other robust
M-estimation methods, such as the Danish method.

Since it is easy to understand and implement the IRLS
method, this is probably why it is often used in geodesy.
Unlike Newton’s method, however, we cannot use the upd-
ating/downdating techniques for the QR factorization to com-
pute the factorization in Eq. (14) during the iterations, though
we can use the updating/downdating techniques for the Cho-
lesky factorization to do it (Wolke 1992), which may lose
accuracy. Furthermore, usually the IRLS method has a linear
convergence rate, while Newton’s method has quadratic con-
vergence rate (Osborne 1985, Sec 5.4 and Sec 5.6;
Antoch and Ekblom 1995). Since the cost of the line search
is usually negligible compared with that of solving the linear
systems during the iterations, Newton’s method is usually
more computationally efficient than the IRLS method.

3 Mathematical models

We consider relative positioning based on L1 single-
frequency code and carrier-phase measurements. Ideally
when the distance between the stationary receiver and rov-
ing receivers is short (say, shorter than 10 km), the signals
received by the two receivers from the same satellite have
almost the same ionospheric refraction and tropospheric
refraction. The single difference code and carrier-phase mea-
surement equations for satellite i at epoch k can be written
as (cf. Chang and Paige 2003)

ρi
k = (ei

k)
Txk + cδtk + µi

k, (22)

φi
k = (ei

k)
Txk + cδtk + λNi + νi

k, (23)
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where all terms are in units of meters,ρi
k is the single-differen-

ced code measurement, φi
k is the single-differenced carrier-

phase measurement, xk is the baseline vector pointing from
the stationary receiver to the roving receiver, ei

k is the unit
vector pointing from the midpoint of the baseline to satel-
lite i, c is the speed of light, δtk is the single-differenced
receiver clock error, λ is the wavelength of L1 carrier (λ ≈
19 cm), Ni is the single-differenced ambiguity including the
single-differenced initial phase of the receiver-generated sig-
nals and so is not an integer, µi

k is single-differenced noise
including multipath for the code measurement, and νi

k is
single-differenced noise including multipath for the carrier-
phase measurement.

Suppose there are m visible satellites. Define

y
ρ

k =




ρ1
k
...

ρm
k


 , y

φ

k =




φ1
k
...

φm
k


 , Ek=




(e1
k)

T

...

(em
k )T


 . βk=cδtk,

a = λ




N1

...
Nm


 , v

ρ

k =




µ1
k
...

µm
k


 , v

φ

k =




ν1
k
...

νm
k


 . (24)

Then from Eqs. (22) and (23) we have

y
ρ

k = Ekxk + βke + v
ρ

k , (25)

y
φ

k = Ekxk + βke + a + v
φ

k , (26)

where, as in some GPS literature (e.g., Tiberius 1998, Sec
3.4), we assume that in the ideal situation,

v
ρ

k ∼ N (0, σ 2
ρ Im), v

φ

k ∼ N (0, σ 2
φIm), (27)

and v
ρ

k , v
ρ

l , v
φ

k , and v
φ

l are uncorrelated to each other for
any epochs k and l (k 	= l). Here we give a remark about
these assumptions. In practice, the noise variances depend
on the elevation angles of the satellites (e.g., Tiberius and
Kenselaar 2003), but for either the code measurement equa-
tions in Eq. (25) or the carrier-phase measurement equations
in Eq. (26), we could simply scale them so that they have the
same variance. In practice, the measurements may be cor-
related between channels, between measurement types and
between epochs. However, an accurate characterization of the
correlation is very difficult, although there have been some
attempts in the literature (e.g., Tiberius and Kenselaar 2003).

Notice that in Ek , ei
k depends on the baseline vector xk .

Once xk is known, Ek will be known. In other words, Eqs.
(25) and (26) are nonlinear. However, Ek is not sensitive to
changes in xk , since the distance from a satellite to any of
the two receivers is far larger than the baseline. Therefore,
we can use an approximation to xk , say, our estimate of xk−1
at epoch k − 1, to compute the approximation to Ek . Usu-
ally this approximation is good enough, but after obtaining
an estimate of xk at epoch k, we can recompute Ek , and do
more iterations if necessary. For the first epoch, we set the
initial estimate of x1 to be a zero vector and then compute
the corresponding E1 (i.e., we take ei

1 to be the unit vector

pointing from the stationary receiver to satellite i). Since E1
computed by this initial x1 is not very accurate, it is recom-
puted one more time when the new estimate of x1 is obtained
from our computational method. Therefore, from now on, we
just assume all Ek are known.

4 Computation for code based relative positioning

In this section, we apply Newton’s method directly to code-
based relative positioning. The purpose is to use simulation
results to show that for computing Huber’s M-estimates New-
ton’s method converges faster than the IRLS method, which
is often used in geodesy, and demonstrate that Huber’s esti-
mation gives better position estimates than the LS estimation
when there are outliers in the measurements.

All our computations were performed in MATLAB 6.5 on
a Celeron PC running Windows XP. The GPS satellite alma-
nac data in YUMA format for the week of June 30th to July
6th 1998 were used in the simulations. The roving receiver
was assumed to be on board an aircraft circling horizontally
with center directly above the reference station at a constant
speed of 100 m/s. The baseline was 1 km. For each epoch,
a set of code measurement data from eight visible satellites
were used. The data sampling rate was 1 Hz. At each epoch,
the single-differenced code measurements were simply con-
structed by

y
ρ

k = ȳk + cδtke + v
ρ

k + bρ, (28)

where the ith component of ȳk is the difference of the true
range between satellite i and the stationary receiver and the
true range between satellite i and the roving receiver, δtk
is the difference between the clock offsets of the stationary
receiver and the roving receiver, both of which were modeled
by white noise input to a second-order Markov process based
onAxelrad and Brown (1996, pp 417–418), vρ

k ∼ N (0, σ 2
ρ I)

with σρ = 1 m (for typical values of the standard deviations
of code and carrier-phase noises, see Misra and Enge 2001,
p153), and bρ is the outlier vector.

We used the IRLS method and Newton’s method to com-
pute Huber’s M-estimates of the positions. For consistency,
both methods used the same stopping criterion: the iteration
process stops when the difference between the position est-
imates at two consecutive iteration steps is less than 0.1 m.
Thus the position estimates computed by the two methods
have the same numerical accuracy. The tuning constant γ
was set to be 1.5 (Koch 1999, Sec 3.8.3). We took the out-
lier vector bρ = [0, 12, 0, 0, 8, 0, 0, 0]T (in meters) for each
epoch. In order to reduce the random effect on the results, we
performed 100 simulation runs for the same satellite geome-
tries (i.e., the geometries for different runs at the same epoch
are the same), and each run had 200 epochs.

Figure 1 displays the average number of iterations for
Newton’s method and the IRLS method at each epoch. From
Fig. 1, we see that Newton’s method converges faster than
the IRLS method, as the literature showed. On average, the
former takes only about three or four iterations, while the
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Fig. 2 Average errors in the position estimates using simulated code data

latter takes about ten iterations. Since in each iteration the
computational costs of the two methods are more or less the
same if both use updating/downdating techniques, these sim-
ulation results indicate that Newton’s method is more com-
putationally efficient than the IRLS method.

Figure 2 shows the average position error in Huber’s
M-estimate at each epoch, which were computed by New-
ton’s method, and the average position errors in the LS esti-
mates which were computed using the QR factorization
method. For comparison, Fig. 2 also gives the average
position errors in the LS estimates when the measurements do
not have outliers. We observe that Huber’s M-estimation can

reduce the effect of outliers – giving better position estimates
than the LS estimation, although the estimates are not as good
as the LS estimates without outliers, indicating that Huber’s
M-estimatation cannot completely eliminate the effect of
outliers.

5 Computation for code- and carrier-phase-based
positioning

In this section, we first present a recursive modified New-
ton method for computing Huber’s M-estimates based on
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single-differenced code and carrier-phase measurements, then
give some simulation results to show that our method is effec-
tive.

5.1 Numerical method

In order to apply Huber’s M-estimation, we have to scale the
code or carrier-phase measurement equations so that they
have the same variances. Multiplying Eq. (25) by the ratio
σr ≡ σφ/σρ , and then combining it with Eq. (26), we obtain[

y
φ

k

σry
ρ

k

]
=

[
e Ek

σre σrEk

] [
βk

xk

]
+

[
I
0

]
a +

[
v

φ

k

σrv
ρ

k

]
,[

v
φ

k

σrv
ρ

k

]
∼ N (0, σ 2

φI2m). (29)

Define

yk ≡
[

y
φ

k

σry
ρ

k

]
∈ R2m, Bk ≡

[
e Ek

σre σrEk

]
∈ R2m×4, (30)

zk ≡
[
βk

xk

]
∈ Rm+4, C ≡

[
I
0

]
∈ R2m×m,

vk ≡
[

v
φ

k

σrv
ρ

k

]
∈ R2m. (31)

Then Eq. (29) can be rewritten as

yk = Bkzk + Ca + vk, vk ∼ N (0, σ 2
φI2m). (32)

Combining the above equations for k = 1, 2, . . . gives




y1
...

yk−1
yk


 =




B1 C
. . .

...
Bk−1 C

Bk C







z1
...

zk−1
zk

a


 +




v1
...

vk−1
vk


 ,

k = 1, 2, . . . , (33)

or equivalently (with obvious notation)

y[k] = [B[k], C[k]]

[
z[k]
a

]
+ v[k] ≡ A[k]x[k] + v[k],

k = 1, 2, . . . . (34)

Note that each matrix A[k] has a block angular structure. Sup-
pose there are at least four visible satellites at any epoch. It is
reasonable to assume that a matrix formed by any four rows
of [e, Ej ] for any j is nonsingular (this assumption will be
used later). Of course [e, Ej ] will have full column rank.
Then it is straightforward to show that A[k] has full column
rank.

We will apply Huber’s M-estimation to Eq. (33) or (34)
at epoch k. In other words, all measurement equations from
epoch 1 to epoch k will be used for the estimation at epoch
k. We will obtain not only the estimate for the position at
epoch k, which is called the filtered estimate, but also the esti-
mates for positions at all previous epochs, which are called
smoothed estimates. For the same position, its smoothed

estimates obtained at later epochs are usually more accurate
than its filtered estimate, since the former use more informa-
tion than the latter.

At an estimate of x[k], we can find the corresponding
active matrix of A[k]. For convenience, we also call [Bν

j , C
ν]

which is formed by the rows of [Bj , C] corresponding to the
active equations the active matrix of [Bj , C] at the estimate,
and call Bν

j the active matrix of Bj at the estimate. For each
epoch k, we could directly apply Newton’s method to Eq.
(33) or (34) to compute Huber’s M-estimate of x[k], but this
is not computationally efficient. At epoch k, when we com-
pute Huber’s M-estimate of x[k], we should use the results
available at epoch k−1. Also the structures of A[k] should be
exploited to make the algorithm efficient. In Chang (2005), a
recursive modified Newton method is proposed to compute
Huber’s M-estimates for a model more general than Eq. (33),
which may arise from other applications such as photogram-
metry, geodetic survey and meteorology. We would like to
apply the techniques presented in Chang (2005) to the model
in Eq. (33), where Bj and C have some special structures
– the bottom m × 4 submatrix of Bj is a multiple of its top
m × 4 submatrix; and the top and bottom block of C are an
identity matrix and a zero matrix, respectively.

From the general framework for Newton’s method, we
see that at epoch k the main cost of computing Huber’s
M-estimate is the cost of finding the R-factor of the QR fac-
torization of the active matrix Aν

[k] (see Eq. 16) in each iter-
ation step. As we mentioned in Sect. 2, for computational
efficiency, updating/downdating techniques of the QR fac-
torization of the active matrix Aν

[k] have to be used. During
the iterations at epoch k, a measurement equation at any pre-
vious epoch may become an active equation from an inactive
equation or vice versa. This makes updating/downdating of
the QR factorization of the active matrices very complicated.
Furthermore the Q-factors of all [Bj , C] have to be stored
for updating/downdating use at later epochs. When k is large,
this may cause a computer memory problem. Thus we would
like to modify Newton’s method in the following way.

When we compute Huber’s M-estimate of x[k] at epoch
k, we do not update the active matrix of [Bj , C] at Huber’s
M-estimate of x[j ] obtained at epoch j for j = 1, . . . , k−1,
and only update the active matrix of [Bk, C] at each iterate.
In other words, in each iteration step at epoch k we will use a
modified active matrix (whose first k − 1 row blocks will not
be changed during the iterations) to replace the true active
matrix Aν

[k] at the iterate. Then updating/downdating of the
QR factorization of the modified active matrix will be much
simpler than that of the actual active matrix and may involve
much fewer floating point operations. The details of the com-
putation will be given in this section. With the above modifi-
cation, we can easily show that we will still obtain a descent
direction at each iterate (unless the convergence has been
reached), since we actually use a new symmetric positive
definite matrix to replace the left-hand side of Eq. (11) with-
out changing the definition of the right-hand side of Eq. (11).
Since the descent direction is sub-optimal at each iterate, it
may take more iterations than the standard Newton’s method.
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However, the numerical tests given in Sect. 5.2 indicate that
this is not a concern.

For later use, here we describe the computation of the
QR factorization of [Bk, C]. Notice that [Bk, C] has a spe-
cial structure, which should be used in the computation for
efficiency. Define the orthogonal matrix

G ≡
[
cI −sI
sI cI

]
,

α ≡
√

1 + σ 2
r , c ≡ 1/α, s ≡ σr/α. (35)

Then multiplying [Bk, C] by GT from the left gives

GT [
Bk C

] =
[

cI sI
−sI cI

] [
e Ek I

σre σrEk 0

]

=
[
αe αEk cI
0 0 −sI

]
. (36)

Use the Householder transformations (e.g., Björck 1996, Sec
2.3) to compute the QR factorization:

HT
k

[
αe αEk cI
0 0 −sI

]
=

[
Rk R̂k

0 R̄k

]
, (37)

where Hk ∈ R2m×2m is the product of m + 4 Householder
transformations, Rk is a 4 × 4 nonsingular upper triangular
matrix, and R̄k is a (2m − 4) × m upper triangular matrix.
Here the Householder transformations can be implemented to
take advantage of the the structure of the matrix. Combining
Eqs. (36) and (37) gives the QR factorization of [Bk, C]:[
QT

k

Q̄
T
k

] [
Bk C

] =
[
Rk R̂k

0 R̄k

]
, [Qk, Q̄k] ≡ GHk, (38)

where [Qk, Q̄k] is orthogonal, and QT
k and [Rk, R̂k] have

the same number of rows. Here the Q-factor [Qk, Q̄k] needs
to be formed and stored. It is used during the iteration process
at epoch k. After epoch k, it will not be used any more and
can be discarded.

In the following, we will discuss the computation at epoch
k. First, we consider the initial case k = 1. Note that the
model is[

y
φ

1
σry

ρ
1

]
=

[
e E1 I

σre σrE1 0

] 
β1

x1
a


 +

[
v

φ

1
σrv

ρ
1

]
, (39)

or

y1 = [B1, C]

[
z1
a

]
+ v[1] = A[1]x[1] + v[1]. (40)

We can directly apply Newton’s method given in Sect. 2 to
the model in Eq. (40) to compute Huber’s M-estimate, with
the initial estimate taken to be the LS estimate, which can be
computed by the QR factorization of [B1, C] (cf. Eq. 38).
From the structure of the matrix C, we observe that Huber’s
M-estimation cannot reduce the influence of outliers in car-
rier-phase measurements, since outliers will be absorbed into
the unknown ambiguities, i.e., we cannot distinguish outliers

and ambiguities (this is also true for k > 1 if all carrier-
phase measurement equations at different epochs have the
same outlier vector). Therefore, the residuals for the carrier-
phase measurement equations at an iteration are likely to be
small, and all the carrier-phase measurement equations are
likely to be active.

Also, in theory, there is Huber’s estimate at which the act-
ive matrix ofA[1] has full column rank (see the statement after
Eq. 13), so all carrier-phase measurement equations must be
active at the estimate, otherwise from the structure of C we
observe that the active matrix will have at least one zero col-
umn. In our implementation, we force the active matrix at
any iteration to include all the m row vectors corresponding
to the m carrier-phase measurement equations. If the number
of rows of an active matrix is less than m + 4 (the number of
its columns), then the active matrix does not have full column
rank and we use the strategy proposed in Sect. 2 to handle this
singularity problem. Specifically, we add to the active mat-
rix the row vectors corresponding to the code measurement
equations which are not active and have the smallest residuals
such that the modified active matrix becomes square, then it
is easy to show it is nonsingular under our earlier assumption
that any four rows of [e, Ej ] is nonsingular.

Now we consider the general case k > 1. Let Huber’s
M-estimate of x[j ] at any epoch j be denoted by x[j |j ] =
[zT

1|j , . . . , zT
j |j , a

T
j ]T and let the active matrix of [Bj , C] at

x[j |j ] by [Bj |j , Cj ]. At the end of epoch k − 1, we obtain

A[k−1|k−1] ≡ [B[k−1|k−1], C[k−1|k−1]]

≡




B1|1 C1
. . .

...
Bk−1|k−1 Ck−1


 , (41)

where we assume that Bj |j (for j = 1, . . . , k − 1) has
full column rank (we will discuss how to ensure this later),
so A[k−1|k−1] has full column rank. For computational effi-
ciency, we will use A[k−1|k−1] in lieu of true active matrices
of A[k−1] at later iterates for computing descent directions,
and will not update A[k−1|k−1] any more.

Suppose at the end of epoch k − 1, we have obtained the
QR factorization of A[k−1|k−1]:[
QT

[k−1|k−1]

Q̄
T
[k−1|k−1]

]
A[k−1|k−1]

=




R1|1 R̂1|1
. . .

...

Rk−1|k−1 R̂k−1|k−1

R̃[k−1]
0


 , (42)

where [Q[k−1|k−1], Q̄[k−1|k−1]] is orthogonal, and Rj |j for

j = 1, . . . , k − 1 and R̃[k−1] are nonsingular upper triangu-
lar. Here the Q-factor [Q[k−1|k−1], Q̄[k−1|k−1]] is not used in
computation and so is not formed and stored.

At epoch k, let the initial estimate for x[k] be denoted by

x(0)
[k|k] ≡ [(z(0)

1|k)
T, . . . , (z(0)

k−1|k)
T, (z(0)

k|k)
T, (a(0)

k )T]T. (43)
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Naturally we take

z(0)
j |k = zj |k−1, j = 1, . . . , k − 1, a(0)

k = ak−1. (44)

For the initial estimate of zk , noting that the measurement
equations at epoch k are yk = Bkzk + Ca + vk , we take

z(0)
k|k = arg min

zk

‖(yk − Cak−1) − Bkzk‖. (45)

Using the QR factorization in Eq. (38), we can easily find
z(0)

k|k in Eq. (45) by solving the upper triangular system

Rkz
(0)
k|k = QT

k (yk − Cak−1). (46)

After finding z(0)
k|k , we can obtain the modified active mat-

rix of A[k] at x(0)
[k|k]:

A(0)
[k|k] ≡




B1|1 C1
. . .

...
Bk−1|k−1 Ck−1

B(0)
k|k C(0)

k


 , (47)

where [B(0)
k|k, C

(0)
k ] is the active matrix of [Bk, Ck] at x(0)

[k|k].

If [B(0)
k|k, C

(0)
k ] corresponds to measurements from less than

four different satellites, then from the structure of Bk (see
Eq. 30) we can conclude that B(0)

k|k does not have full column

rank, so A(0)
[k|k] does not have full column rank. In order to

handle this problem, we use the strategy proposed in Sect. 2.
Specifically, we add to the active matrix [B(0)

k|k, C
(0)
k ] the

row vectors from the rest of [Bk, C] corresponding to other
satellites and smallest residuals so that the row vectors of the
updated [B(0)

k|k, C
(0)
k ] corresponds to four different satellites.

Then we can easily show that the updated B(0)
k|k has full col-

umn rank under the earlier assumption that any four rows
of [e, Ej ] for any j is nonsingular. In our later iterations at
epoch k, we always use this strategy to ensure that the active
matrices of Bk have full column rank. We then use A(0)

[k|k] in

lieu of the true active matrix of A[k] at x(0)
[k|k] for computing

the search direction h(0)
[k] at x(0)

[k|k], i.e., we would like to solve

the following linear system for h(0)
[k] (cf. Eq. 11):

(
A(0)

[k|k]

)T
A(0)

[k|k]h
(0)
[k] = (

A(0)
[k|k]

)T[
W (x(0)

[k|k]) · r
(
x

(0)
[k|k]

)
+αs

(
x

(0)
[k|k]

)]
. (48)

In order to solve Eq. (48), we seek the QR factorization of
A(0)

[k|k]. Applying the QR downdating technique to Eq. (38),

we can obtain the QR factorization of [B(0)
k|k, C

(0)
k ]:

[
(Q(0)

k|k)
T

Q̄
(0)

k|k)
T

] [
B(0)

k|k C(0)
k

]
=

[
R(0)

k|k R̂
(0)

k|k
0 R̄

(0)

k|k

]
. (49)

Then using the QR factorizations (42) and (49), we obtain
from Eq. (47) that


QT
[k−1|k−1]

(Q(0)
k|k)

T

Q̄
T
[k−1|k−1]

(Q̄
(0)

k|k)
T


 A(0)

[k|k]

=




R1|1 R̂1|1
. . .

...

Rk−1|k−1 R̂k−1|k−1

R(0)
k|k R̂

(0)

k|k
R̃[k−1]

0
R̄

(0)

k|k




. (50)

The next step is to compute the following QR factorization
by Householder transformations:

(Q̃
(0)

[k])
T

[
R̃[k−1]

R̄
(0)

k|k

]
=

[
R̃

(0)

[k]
0

]
. (51)

In this implementation, the special structures of R̃[k−1] and

R̄
(0)

k|k are used for computational efficiency. Here again the

Q-factor Q̃[k] does not need to be formed and stored. From
Eqs. (50) and (51), we see that there exists an orthogonal

matrix [Q(0)
[k|k], Q̄

(0)

[k|k]] such that[
(Q(0)

[k|k])
T

(Q̄
(0)

[k|k])
T

]
A(0)

[k|k]

=




R1|1 R̂1|1
. . .

...

Rk−1|k−1 R̂k−1|k−1

R(0)
k|k R̂

(0)

k|k
R̃

(0)

[k]
0




. (52)

This is the QR factorization of A(0)
[k|k]. Here we do not form or

store the Q-factor. Solving Eq. (48) by using the QR factor-
ization in Eq. (52), we obtain the search direction h(0)

[k] . Then
applying the line search technique, we get the next iterate
x(1)

[k|k].
Now we can continue the iteration process. After obtain-

ing x(1)
[k|k], we can determine the active matrix [B(1)

k|k, C
(1)
k ] of

[Bk, C] at x(1)
[k|k]. The modified active matrix A(1)

[k|k] of A[k|k]

at x(1)
[k|k] is then obtained by replacing [B(0)

k|k, C
(0)
k ] at the bot-

tom of A(0)
[k|k] in Eq. (47) with [B(1)

k|k, C
(1)
k ]. Then we just

repeat the process in the previous paragraph to get a new iter-
ate x(2)

[k|k]. When the iteration converges, we finally obtain the
Huber’s M-estimate at epoch k:x[k|k] = [zT

1|k, . . . , zT
k|k, a

T
k ]T.

Then we start the computation for epoch k + 1.
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Fig. 3 Average number of iterations for the modified Newton method using simulated code and carrier-phase data
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Fig. 4 Average errors in the position estimates using simulated code and carrier-phase data

Remark In Eq. (33), all measurement equations from epoch
1 to epoch k are used for the estimation at epoch k. The
computation cost at each epoch increases when k increases,
so does the computer storage requirement. This may cause
problems, especially for real-time GPS applications, when k
becomes too large. In practice, after certain epochs, we may
use only a fixed number of latest measurements for position-
ing. Our method with slight modification can still be applied.
At each new epoch, we add the new measurement equations
to the model and discard the oldest ones. When we compute
the search direction in the first iteration at the new epoch, we

just simply discard the part related to the oldest measurement
equations in each matrix and vector in Eq. (48). This does not
cause any difficulty in computations.

5.2 Simulation results

To demonstrate the performance of our method, we give some
simulation results here. The simulation scenario is the same
as that described in Sect. 4. The code measurements were
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constructed as Eq. (28) and carrier-phase measurements were
constructed as follows:

y
φ

k = ȳk + eβk + a + v
φ

k + bφ, (53)

where ȳk and βk are the same as given in Eq. (28), the ith ele-
ment of a is λNi with Ni being the difference of the number
of integer cycles between satellite i and the roving receiver
and that between satellite i and the stationary receiver at
epoch 1, v

φ

k ∼ N (0, σ 2
φI) with σφ = 0.01 m, and bφ is the

outlier vector.
We used the modified Newton method to compute

Huber’s M-estimates of the positions. In each epoch, the ite-
ration process stops when the difference between the posi-
tion estimates at two consecutive iteration steps is less than
0.001 m. The tuning constant γ was set to be 1.5σφ . For
comparison, we also computed the LS estimates of the posi-
tions by a recursive LS method proposed in Chang and Paige
(2003).

We used eight visible satellites and took the outlier vectors
bρ = [0, 10, 0, 0, 0, 0, 0, 0]T and bφ = [0, 0.1, 0, 0, 0, 0,
0, 0]T (in meters) for each epoch. One exception was that bφ

was not added to the single-differenced carrier-phase mea-
surements in the first epoch, since otherwise the Huber’s M-
estimation could not reduce the influence of the outliers in
the carrier-phase measurements for the reason we mentioned
in Sect. 5.1. In order to reduce random effect on the results,
we performed 100 simulation runs for the same satellite geo-
metries, and each run had 500 epochs.

Figure 3 displays the average number of iterations for the
modified Newton method. For the initial epochs, the num-
ber of iterations is relatively large, but it drops dramatically
later. For most epochs, it takes only two to three iterations,
indicating that modifying the Newton search directions for
efficiency and for handling possible singularity problems had
no negative effect on the convergence for those epochs.

Figure 4 displays the average filtered position errors in
Huber’s M-estimate xk|k and in the LS estimate for k =
1, . . . , 500. As for the code-based relative positioning, we
observe that Huber’s M-estimation can reduce the effect of
outliers and give better position estimates than the LS esti-
mation. Both errors tend to decrease with increasing epoch.
Figure 4 also gives the average errors in the smoothed pos-
ition estimates xk|500 for k = 1, . . . , 499. As expected, the
smoothed position estimates are better than the correspond-
ing filtered position estimates, since more information was
used by the former. We see that the smoothed position est-
imates at different epochs have almost the same accuracy.
This is because the same estimate of the ambiguity vector
was involved in the estimation of these positions.

6 Summary

The IRLS method is often used in geodesy for robust M-
estimation. For Huber’s M-estimation, we proposed to use
Newton’s method instead, since it is usually more computa-
tionally efficient than the IRLS method. We showed by simu-
lations that for code-based differential positioning, Newton’s

method converges faster than the IRLS method. For code- and
carrier-phase-based relative positioning, we showed how to
use the structures of the model to design an efficient modified
Newton method for recursively computing Huber’s M-esti-
mates.When we designed the numerical method, we also took
numerical reliability and storage requirement into account.
Simulation results indicate that the proposed numerical meth-
ods are effective.

We only considered the computation of position estimates
in this paper. In order to know how accurate the position
estimates are, we need to compute the variance–covariance
matrices of the estimates. This will be studied in the future.
In real applications, the observations are correlated to some
extent. We have to study how to deal with this problem in our
method. Comparisons of Huber’s M-estimation method with
other robust estimation methods and the fault detection and
identification methods also need to be systematically inves-
tigated.
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