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Abstract.

Rook pivoting is a relatively new pivoting strategy used in Gaussian elimination (GE).
It can be as computationally cheap as partial pivoting and as stable as complete pivoting.
This paper shows some new attractive features of rook pivoting. We first derive error
bounds for the LU factors computed by GE and show rook pivoting usually gives a highly
accurate U factor. Then we show accuracy of the computed solution of a linear system by
rook pivoting is essentially independent of row scaling of the coefficient matrix. Thus if
the matrix is ill-conditioned due to bad row scaling a highly accurate solution can usually
be obtained. Finally for a typical inversion method involving the LU factorization we
show rook pivoting usually makes both left and right residuals for the computed inverse
of a matrix small.
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1 Introduction.

Gaussian elimination (GE) is one of the most fundamental and effective algo-
rithms in matrix computations. Given a real n × n matrix A whose n leading
principal submatrices are all nonsingular, GE computes the LU factorization

A = LU,(1.1)

where L is a unit lower triangular matrix and U is an upper triangular matrix.
L and U are referred to as the LU factors. Simple examples show that GE is
not numerically stable. In order to repair this shortcoming of the algorithm, two
well-known pivoting strategies, partial pivoting and complete pivoting, are usually
incorporated into the computation.

Recently Neal and Poole [13] presented the so-called rook pivoting strategy,
which will be introduced in Section 2. This pivoting strategy appears to be in-
termediate between partial pivoting and complete pivoting in terms of efficiency
and stability. The main purpose of this paper is to shed light on the effect of rook
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pivoting on the accuracy of the LU factors, the accuracy of the computed solutions
of linear systems and the numerical stability of a typical inversion method.

The LU factorization is widely used in matrix computations. Sometimes the
accuracy of the LU factors may affect the accuracy of the final solution. For
example, in [6], the accuracy of the LU factorization is crucial in computing the
singular value decomposition with high relative accuracy. In Section 4 we will first
estimate the accuracy of the LU factors and then discuss how the three pivoting
strategies affect the accuracy. We will show that the U factor usually has high
accuracy if GE with rook pivoting (GERP) or GE with complete pivoting (GECP)
is used.

GE is one of the most popular algorithms for solving a linear system. It has been
observed that on average rook pivoting is more accurate than partial pivoting, see
Neal and Poole [13, 15]. But the numerical examples given in [15] do not show
any significant difference between the accuracy of the two pivoting strategies. In
Section 5, we will give some examples to show there can be a significant difference,
and give some explanations. We will discuss the componentwise stability of the
GERP, and show the accuracy of the computed solution is essentially independent
of the row scaling of the coefficient matrix.

One of the important applications of the LU factorization is computing the
inverse of a matrix. For four typical inversion methods which all involve GE with
partial pivoting (GEPP), Du Croz and Higham [7] showed that only one of the
left and right residuals is guaranteed to be usually small. For one of the inversion
methods which is used by LINPACK, LAPACK and Matlab, we will show in
Section 6 that both left and right residuals will usually be small if rook pivoting or
complete pivoting is used instead of partial pivoting.

Before proceeding, let us introduce the notation to be used through out the
paper. If A = (aij), then |A| ≡ (|aij |). A matrix norm ‖ · ‖ on Rm×n is monotone,
if |A| ≤ |B| implies ‖A‖ ≤ ‖B‖. For example, ‖ ·‖1, ‖ ·‖∞ and ‖ ·‖F are monotone
norms. Obviously for a monotone matrix norm, ‖ |A| ‖ = ‖A‖. For a nonsingular
matrix A, following [12], we denote κ(A) ≡ ‖A−1‖·‖A‖, cond(A) ≡ ‖ |A−1|·|A| ‖.
Although many authors define cond(A) to be what we have called κ(A), we will
find it useful to use both κ(A) and cond(A).

2 Rook pivoting.

A traditional quantity used to describe the backward stability of GE is the
growth factor ρ. For partial pivoting or complete pivoting, since the elements of L
are bounded by 1, the growth factor can be defined by (see for example [5, p.49])

ρ = max
ij

|uij |/max
ij

|aij |.(2.1)

For the classic definition of the growth factor, see for example [10, p.116] and
[12, p.177]. For partial pivoting it is not difficult to show that ρ ≤ 2n−1 and the
bound is reachable, see [5, p.49]. Even though ρ usually behaves like n or less,
Foster [8] has found an example which plausibly could arise in practice and for
which ρ can grow exponentially. For complete pivoting, in [21] it is shown that
ρ ≤ 2

√
nnln(n)/4. No one has been able to find an example where the growth
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factor for complete pivoting is bigger than, for example, 2n. So complete pivoting
has better numerical stability than partial pivoting. The main disadvantage with
complete pivoting is that it requires approximately n3/3 comparisons. So it is not
as efficient as partial pivoting, which needs about n2/2 comparisons.

Recently the rook pivoting strategy was introduced in [13]. This pivoting strat-
egy appears to be intermediate between complete pivoting and partial pivoting in
terms of efficiency and stability. Its idea is as follows: in each step of the forward
elimination of GE, from the remaining matrix choose a pivot element which is the
largest both in the row and column it lies in. Matlab code for the selection of
the pivot element at step k in rook pivoting is then:

row = k;
col = k;
[colmax, rowindex] = max(abs(A(k:n,k)));
rowmax = 0.0;
while rowmax < colmax

row = rowindex + k - 1;
[rowmax, colindex] = max(abs(A(row,k:n)));
if colmax < rowmax

col = colindex + k - 1;
[colmax, rowindex] = max(abs(A(k:n,col)));

else
break

end
end

For rook pivoting, Foster [9] showed that the growth factor satisfies ρ ≤ 1.5n3 ln(n)/4.
His experiments also showed that the average growth factor of rook pivoting is com-
parable with that of complete pivoting. Under the assumption that in step k of the
GE reduction, the elements of A(k :n, k :n) are independent identically distributed
random variables from any continuous probability distribution, Foster [9] showed
that the expected number of comparisons in step k of rook pivoting is less than
or equal to e(n− k), where e is the natural logarithm base. So if the assumption
is true, the expected number of comparisons in a complete factorization by rook
pivoting would be less than or equal to en(n−1)/2. This result is a generalization
of a result in Poole and Neal [15] which requires the more restrictive assumption
that the elements of A(k :n, k :n) come from a uniform distribution. This theory
is empirically supported by [9] and [15]. Foster’s numerical experiments in a serial
computer environment showed that rook pivoting is close to partial pivoting in
efficiency.

3 Some properties of the LU factors.

Let L̃ and Ũ be the computed LU factors of A by GE with some pivoting
strategy. If rook pivoting, partial pivoting, or complete pivoting is used in GE,
then we have

l̃ii = 1, |l̃ij | ≤ 1 for i > j.(3.1)
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If rook pivoting or complete pivoting is used, then we have

|ũii| ≥ |ũij | for i < j.(3.2)

When (3.1) and (3.2) hold, it is easy to show (see [12, p.155])

(|L̃−1|·|L̃|)ij ≤ 2i−j , (|L̃|·|L̃−1|)ij ≤ 2i−j for i ≥ j,

(|Ũ−1|·|Ũ |)ij ≤ 2j−i for i ≤ j.

Then it follows that

cond∞(L̃) ≤ 2n − 1, cond∞(L̃−1) ≤ 2n − 1,(3.3)
cond∞(Ũ) ≤ 2n − 1.(3.4)

We can find an example such that these bounds can be reached. But we believe
usually these bounds are very pessimistic. In our numerical experiments, we found
that for an n × n matrix A generated by Matlab built-in function randn, these
condition numbers were always smaller than n2; see Figure 3.1. All our computa-
tions were performed in Matlab 5.2 on a Pentium-II running LINUX. Our simple
justification is as follows. In [20, pp.167–170], Trefethen and Bau explain why
the elements of L̃−1 are usually not large for the partial pivoting case. It can be
seen that similar arguments apply to the L factor when rook pivoting or complete
pivoting is used. So with (3.1) we conclude cond∞(L̃) and cond∞(L̃−1) are usu-
ally not large for any of these pivoting methods. For the U factor, a little more
elaboration is needed. Let Ũ = DŪ where D = diag(ũii) and |ūij | ≤ 1. Then for
rook pivoting or complete pivoting, ŪT can be regarded as the computed L factor
of AT . Thus the element of Ū−T are usually not large by applying the Trefethen
and Bau argument. But cond∞(Ũ) = cond∞(Ū). This justifies our belief that
cond∞(Ũ) is also usually not large.

Our later analysis will be based on (3.3) and (3.4).

4 Accuracy of the computed LU factors.

If GE applied to a nonsingular matrix A runs to completion then the computed
LU factors L̃ and Ũ satisfy

A +∆A = L̃Ũ , |∆A| ≤ ε|L̃|·|Ũ |,(4.1)

where ε ≡ nu/(1− nu) with u being the unit roundoff, see for example [12, Thm
9.3]. The assumption that GE runs to completion guarantees ũii �= 0 for i =
1, . . . , n−1. We assume u is small enough such that ũnn �= 0. The study of accuracy
of the computed LU factors can be approached via a perturbation analysis of the
LU factorization with a special perturbation. For the perturbation analysis of the
LU factorization with a general perturbation, see [2, 3, 17, 18, 19].

For any n× n matrix X = (xij), we define the strictly lower triangular matrix
and upper triangular matrix

slt(X) ≡ (sij), sij ≡
{

xij if i > j,
0 otherwise, ut(X) ≡ X − slt(X).(4.2)
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Figure 3.1: Condition numbers of the LU factors of random matrices.

4.1 First-order error bounds on the computed LU factors.

Let strictly lower triangular ∆L ≡ L̃ − L, and upper triangular ∆U ≡ Ũ − U .
Then by (1.1) and (4.1)

A = (L̃−∆L)(Ũ −∆U) = A +∆A− L̃∆U −∆LŨ +∆L∆U,

which, on dropping the second order term, gives a linear matrix equation for the
first-order approximations ∆̂L (strictly lower triangular) to ∆L and ∆̂U to ∆U :

L̃∆̂U + ∆̂LŨ = ∆A.

From this we have
L̃−1∆̂L+ ∆̂UŨ−1 = L̃−1∆AŨ−1,

which with (4.2) gives

L̃−1∆̂L = slt(L̃−1∆AŨ−1), ∆̂UŨ−1 = ut(L̃−1∆AŨ−1).

Thus we obtain

∆̂L = L̃ slt(L̃−1∆AŨ−1),(4.3)

∆̂U = ut(L̃−1∆AŨ−1)Ũ .(4.4)

Let Ũn−1 denote the leading (n − 1) × (n − 1) block of Ũ . If we write Ũ =[
Ũn−1 ũ
0 ũnn

]
, then from (4.3)

∆̂L = L̃ slt
(
L̃−1∆A

[
Ũ−1

n−1 −Ũ−1
n−1ũ/ũnn

0 1/ũnn

])
= L̃ slt

(
L̃−1∆A

[
Ũ−1

n−1 0
0 0

])
.
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Since |∆A| ≤ ε|L̃|·|Ũ | in (4.1), we have the following componentwise bound:

|∆̂L| ≤ |L̃| slt
(
|L̃−1|·|L̃|

[
|Ũn−1|·|Ũ−1

n−1| 0
0 0

])
ε.

Taking a consistent monotone matrix norm ‖ · ‖ on both sides, we obtain

‖∆̂L‖ ≤ ‖ |L̃|·|L̃−1|·|L̃| ‖·‖ |Ũn−1|·|Ũ−1
n−1| ‖ ε,

or
‖∆̂L‖
‖L̃‖

≤ ‖ |L̃|·|L̃−1|·|L̃| ‖
‖L̃‖

cond(Ũ−1
n−1)ε.(4.5)

The right hand side can be thought of as a measure of the error in the computed
L factor, and

χL(A) ≡ ‖ |L̃|·|L̃−1|·|L̃| ‖
‖L̃‖

cond(Ũ−1
n−1)(4.6)

is the multiplicative factor (like a sensitivity) contributing to the error and will be
referred to as the “error indicator” for the computed L factor.

Similarly we can derive the first-order bound for the error in the computed U
factor. With |∆A| ≤ ε|L̃|·|Ũ |, we obtain from (4.4) the following componentwise
bound

|∆̂U | ≤ ut(|L̃−1|·|L̃|·|Ũ |·|Ũ−1|)|Ũ |ε,
which gives

‖∆̂U‖ ≤ cond(L̃)‖ |Ũ |·|Ũ−1|·|Ũ | ‖ε,

or
‖∆̂U‖
‖Ũ‖

≤ cond(L̃)
‖ |Ũ |·|Ũ−1|·|Ũ | ‖

‖Ũ‖
ε.(4.7)

Here the multiplicative factor on the right hand side,

χU(A) ≡ cond(L̃)
‖ |Ũ |·|Ũ−1|·|Ũ | ‖

‖Ũ‖
,(4.8)

will be referred to as the error indicator for the computed U factor.
The error indicators χL(A) in (4.6) and χU(A) in (4.8) are understandable, but

how to estimate ‖ |L̃|·|L̃−1|·|L̃| ‖ and ‖ |Ũ |·|Ũ−1|·|Ũ | ‖ is still a problem we have
to solve.

Since

‖ |L̃|·|L̃−1| ·|L̃| ‖ ≤ ‖L̃‖cond(L̃), cond(L̃−1)‖L̃‖,(4.9)
‖ |Ũ |·|Ũ−1|·|Ũ | ‖ ≤ ‖Ũ‖cond(Ũ), cond(Ũ−1)‖Ũ‖,(4.10)

we obtain the following simpler bounds:

χL(A) ≤ min{cond(L̃), cond(L̃−1)}cond(Ũ−1
n−1),(4.11)

χU(A) ≤ cond(L̃) min{cond(Ũ), cond(Ũ−1)}.(4.12)
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These last two bounds are easy to estimate for typical consistent monotone norms,
like the 1, ∞ and F -norms. They indicate that χL(A) is insensitive to row or
column scaling on L and column scaling on U , and that χU(A) is insensitive to the
row scaling on L and row or column scaling on U . But both of the bounds can be
arbitrarily larger than the corresponding error indicators χL(A) and χU(A) due to
the inequalities (4.9) and (4.10). For example, assume

L̃ =
(

1 0
ω 1

)
,

where ω is a very large number. Then for the 1, ∞ and F -norms, ‖ |L̃| · |L̃−1| ·
|L̃| ‖/‖L̃‖ = O(1), but cond(L̃) = O(ω) and cond(L̃−1) = O(ω). Therefore we need
to give other upper bounds which are easy to estimate, and which approximate
‖ |L̃|·|L̃−1|·|L̃| ‖ and ‖ |Ũ |·|Ũ−1|·|Ũ | ‖ very well.

In the following we consider the ∞-norm. Let

DLc ≡ diag(‖L̃(:, j)‖1, j = 1, . . . , n) and DLr ≡ diag(‖L̃(i, :)‖1, j = 1, . . . , n).

Then with e = (1, 1, . . . , 1)T ∈ Rn,

eT |L̃D−1
Lc | = eT , |D−1

Lr L̃|e = e.

We have

‖ |L̃|·|L̃−1|·|L̃| ‖∞ = ‖ |L̃D−1
Lc |·|DLcL̃

−1DLr|·|D−1
Lr L̃|e‖∞

≤ ‖L̃D−1
Lc ‖∞‖DLcL̃

−1DLr‖∞
≤ n2 ‖L̃D−1

Lc ‖1‖DLcL̃
−1DLr‖1

= n2 ‖eT |L̃D−1
Lc |·|DLcL̃

−1DLr| ‖1
≤ n3 ‖ |L̃D−1

Lc |·|DLcL̃
−1DLr| ‖∞

= n3 ‖ |L̃|·|L̃−1DLr|·|D−1
Lr L̃|e‖∞

= n3‖ |L̃|·|L̃−1|·|L̃| ‖∞.

Therefore ‖L̃D−1
Lc ‖∞‖DLcL̃

−1DLr‖∞ is a good approximation of ‖ |L̃|·|L̃−1|·|L̃| ‖∞.
By standard matrix ∞-norm estimators, the former can be estimated in O(n2)
flops.

Similarly with DUc ≡ diag(‖Ũ(:, j)‖1) and DUr ≡ diag(‖Ũ(i, :)‖1), we can show

‖ |Ũ |·|Ũ−1|·|Ũ | ‖∞ ≤ ‖ŨD−1
Uc ‖∞‖DUcŨ

−1DUr‖∞ ≤ n3‖ |Ũ |·|Ũ−1|·|Ũ | ‖∞,

where ‖ŨD−1
Uc ‖∞‖DUcŨ

−1DUr‖∞ is a good approximation of ‖ |Ũ | · |Ũ−1| · |Ũ | ‖∞
and can be estimated in O(n2) flops.

4.2 Effects of pivoting on the accuracy of the LU factors.

When one of the three pivoting strategies (partial pivoting, complete pivoting
and rook pivoting) is used in GE, the computed LU factors satisfy

P (A +∆A)Q = L̃Ũ , |P∆AQ| ≤ ε|L̃||Ũ |,(4.13)
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where ε = nu/(1 − nu), P and Q are permutation matrices (for partial pivoting
Q = I). Let the LU factorization of PAQ be PAQ = LU . Then the error bounds
(4.5) and (4.7) still hold, except that A should be replaced by PAQ.

What effects do these three pivoting strategies have on the accuracy of the LU
factors? That is the question we try to answer in this section.

For the L factor, if one of the three pivoting strategies is used in GE, then the
two inequalities in (3.3) will hold. Therefore if we use the ∞-norm in (4.11) we
have

χL(PAQ) ≤ (2n − 1)cond∞(Ũ−1
n−1).

Here cond∞(Ũ−1
n−1) can still be arbitrarily large, and we cannot say if the pivoting

strategies make χL(PAQ) larger or smaller than χL(A). However if A is well-
conditioned, i.e., κ∞(A) is small, then from Ũ = L̃−1P (A + ∆A)Q we expect
that cond∞(Ũ−1) is small since κ∞(L̃) will usually be small. So the error in
L̃ is usually small for this case. Even if A is ill-conditioned, but if it is due to
bad column scaling, then cond∞(A−1) will be small, and again we expect that
cond∞(Ũ−1

n−1) will be small and L̃ will usually have high accuracy.
If rook pivoting or complete pivoting is used in GE, then (3.4) will hold. There-

fore from (4.12) with the ∞-norm we obtain

χU(PAQ) ≤ (2n − 1)2.

Note the bound is only a function of n. Also we believe usually χU(PAQ) �
(2n − 1)2 (see the justification given in Section 3). This indicates that we can
usually obtain highly accurate Ũ by using rook pivoting or complete pivoting. If
we use partial pivoting, we cannot obtain the above result.

5 Solving Ax = b by GE with rook pivoting.

The usual method for computing the solution of the linear system Ax = b is to
compute the LU factorization of A by partial pivoting, then solve two triangular
systems. Here we consider using the rook pivoting strategy. We will give some
examples to show rook pivoting is usually more accurate than partial pivoting
and investigate componentwise stability of the former. Poole and Neal [15] also
give a lot of numerical examples to show on average rook pivoting produces more
accurate solutions than partial pivoting.

The steps of the method with one of the pivoting strategies are as follows:

Step 1: Compute PAQ = LU by GE with some pivoting strategy.
Step 2: Solve the lower triangular system Ly = Pb.
Step 3: Solve the upper triangular system Uz = y.
Step 4: Compute x = Qz.

It follows from [12, Theorems 9.3–9.5] with slight modifications that the com-
puted LU factors L̃ and Ũ and the computed solution x̃ satisfy

(A + ∆̂A)x̃ = b, |P ∆̂AQ| ≤ 2ε|L̃|·|Ũ |, ‖∆̂A‖∞ ≤ 2n2ρε ‖A‖∞,(5.1)
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where ε = nu/(1 − nu) and ρ is the growth factor defined by (2.1). Then by
the normwise perturbation theory for linear systems (see for example [12, Theo-
rem7.2]), we have

‖x− x̃‖∞
‖x‖∞

≤ 2n2ρ εκ∞(A) + O(ε2).

But for partial pivoting, in practice we usually have

‖x− x̃‖∞
‖x‖∞

≈ uκ∞(A).

When the LU factorization is computed by GERP, the computed factors L and U
satisfy (3.1) and (3.2). According to [12, Theorem8.7], both Ly = Pb and Uz = y
usually have highly accurate solutions. But for partial pivoting, the computed
solution of Uz = y may have poor accuracy. So even if GEPP and GERP have
similar growth factors, the latter is usually expected to give a solution to a linear
system at least as accurate as the former. See also [14] for the importance of
the stability in solving Uz = y. We found in our numerical experiments that
the relative normwise error in a solution was always bounded by O(u)cond∞(A).
Notice cond∞(A) ≤ κ∞(A) and the former can be much smaller than the latter if
A has bad row scaling.

In order to test the backward componentwise stability of GERP, we need the
following quantity, a measure of the componentwise backward error for solving
Ax = b:

ω(x̃) = min{δ : (A +∆A)x̃ = b +∆b, |∆A| ≤ δ|A|, |∆b| ≤ δ|b|},

which, by the Oettli and Prager Theorem (see [12, Theorem7.3]), is given by

ω(x̃) = max
i

|(b −Ax̃)i|/(|A|·|x̃|+ |b|)i.

By componentwise perturbation analysis (see [12, p. 134]), we have

‖x− x̃‖∞
‖x‖∞

≤ 2ω(x̃)cond∞(A, x)
1− ω(x̃)cond∞(A)

≤ 2ω(x̃)cond∞(A)
1− ω(x̃)cond∞(A)

,

where

cond∞(A, x) :=
‖ |A−1|·|A|·|x̃| ‖∞

‖x̃‖∞
≤ cond∞(A).

We found in our numerical experiments that for rook pivoting usually ω(x̃) = O(u),
i.e., GERP usually has componentwise backward stability. Therefore the error
‖x− x̃‖∞/‖x‖∞ is bounded by O(u)cond∞(A). But for an example of Kahan, we
found that ω(x̃) could be much larger than u. However, the error in the solution
was still bounded by O(u)cond∞(A). In the following we first give some examples
to illustrate our findings, then give an analysis to justify the findings.

1. The matrices are generated by a 10 × 10 random matrix produced by the
Matlab built-in function randn, with the (i, j) element changed to 1010 for each
pair i, j = 1, 5, 10. The exact solution x has all unit elements and b is defined by
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Table 5.1: Errors in computed solutions and backward error bounds.

Partial pivoting Rook pivoting
i, j κ∞(A) cond∞(A) ω(x̃) error ω(x̃) error
1, 1 5.4e+10 3.7e+01 7.2e−17 4.4e−16 8.0e−17 4.4e−16
1, 5 9.5e+10 6.8e+01 5.6e−07 5.1e−06 6.4e−17 1.1e−15
1, 10 1.9e+11 1.5e+02 6.4e−08 3.9e−07 9.3e−17 4.4e−16
5, 1 2.9e+10 2.4e+01 1.9e−16 1.3e−15 9.3e−17 4.4e−16
5, 5 6.6e+11 5.3e+02 1.6e−07 1.9e−05 6.0e−17 2.7e−15
5, 10 1.3e+11 1.2e+02 2.8e−07 3.8e−06 6.4e−17 2.2e−16
10, 1 4.3e+10 3.3e+01 9.3e−17 6.7e−16 1.3e−16 4.4e−16
10, 5 1.0e+11 7.4e+01 6.9e−08 1.2e−06 1.1e−16 1.2e−15
10, 10 6.5e+10 5.3e+01 3.0e−07 1.5e−06 9.3e−17 8.9e−16

b = Ax. The results are displayed in Table 5.1, where error = ‖x − x̃‖∞/‖x‖∞.
For each case and for both partial pivoting and rook pivoting, the growth factor
ρ ≈ 1. The results by complete pivoting are similar to those by rook pivoting.

2. Each matrix has the form of A = DB, where B is equal to an identity matrix
plus very small random entries, around 10−7, i.e.,

B=eye(n)+1.e-7*randn(n,n),

and D is a diagonal matrix with entries scaled geometrically from 1 up to 1014, i.e,
D = diag(1014(i−1)/(n−1)). The A matrices have κ∞(A) ≈ 1014 and cond∞(A) ≈
1.0. The exact solution x and the right hand side b are defined as in the first set
of examples. The results for n = 10, 20, . . . , 100 are reported in Table 5.2. The
growth factor ρ for each case is close to 1. This example is given in [5, Example
2.5] and it was used to show that sometimes GECP is more accurate than GEPP,
but there is no any explanation there.

Table 5.2: Errors in computed solutions and backward error bounds.
Partial pivoting Rook pivoting

n ω(x̃) error ω(x̃) error
10 1.5e−09 2.9e−09 1.1e−16 2.2e−16
20 6.3e−09 1.3e−08 1.9e−16 4.4e−16
30 1.1e−08 2.2e−08 2.4e−16 4.4e−16
40 6.3e−09 1.3e−08 3.4e−16 5.6e−16
50 2.9e−08 5.8e−08 2.8e−16 4.4e−16
60 1.6e−08 3.3e−08 3.2e−16 6.7e−16
70 6.9e−09 1.4e−08 5.3e−16 1.1e−15
80 9.2e−09 1.8e−08 4.5e−16 8.9e−16
90 1.3e−08 2.7e−08 5.7e−16 1.1e−15
100 1.1e−08 2.2e−08 7.1e−16 1.4e−15
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3. The example of Kahan (see [12, p.136]):

A =


 2 −1 1

−1 δ δ
1 δ δ


 , x =


 δ

−1
1


 , b =


 2(1 + δ)

−δ
δ


 ,

where we take δ = 10−8, then κ∞(A) ≈ 2.0 × 108, cond∞(A) ≈ 5.1 × 107,
cond∞(A, x) ≈ 2.5. For this example, the permutation matrix Q = I in GERP,
i.e., GERP and GEPP give the same results. For GERP or GEPP, our computa-
tion shows ω(x̃) ≈ 1.9×10−9 and ‖x− x̃‖∞/‖x‖∞ ≈ 1.3×10−9. Even though this
example shows that GERP is not componentwise backward stable, we observe the
normwise error in the computed solution is still bounded by O(u)cond∞(A).

Now we give a forward error analysis to explain this phenomenon. From (4.13)
we obtain

|L̃| = |P (A +∆A)QŨ−1| ≤ |PAQ|·|Ũ−1|+ ε|L̃|·|Ũ |·|Ũ−1|.

Then for the ∆̂A in (5.1) we have

|∆̂A| ≤ 2εPT ·|L̃|·|Ũ |·QT ≤ 2ε |A|·Q·|Ũ−1|·|Ũ |·QT + O(ε2).(5.2)

From (A + ∆̂A)x̃ = b and Ax = b it follows that A(x̃ − x) = −∆̂Ax̃. This with
(5.2) yields the componentwise bound

|x̃− x| ≤ |A−1|·|∆̂A|·|x̃| = |A−1|·|∆̂A|·(|x|+ O(u))
≤ 2ε |A−1|·|A|·Q·|Ũ−1|·|Ũ |·QT ·|x|+ O(ε2).

Thus taking the ∞-norm gives

‖x− x̃‖∞
‖x‖∞

≤ 2ε cond∞(A) cond∞(Ũ) + O(ε2).(5.3)

As we know, if we use rook pivoting (or complete pivoting) we have cond∞(Ũ) ≤
2n − 1 (see (3.4)), and usually cond∞(Ũ) � 2n − 1. Notice ε = nu/(1 − nu), so
the relative normwise error ‖x− x̃‖∞/‖x‖∞ is usually bounded by O(u)cond∞(A).
This is exactly what we have observed. Certainly the error bound can occasion-
ally be much larger than ucond∞(A) if cond∞(Ũ) is much larger than 1. Since
cond∞(A) is independent of row scaling on A, if A is ill-conditioned due to bad row
scaling, we can still get a highly accurate solution if we use GERP (or GECP) and
we do not need to scale the rows of A before we apply GE. For partial pivoting,
cond(Ũ) can be arbitrarily large. Thus if A has bad row scaling we should not
expect to get a highly accurate solution.

Partial pivoting chooses a pivot element in a column, so it is also called col-
umn pivoting. Sometimes one uses row pivoting — columns are interchanged so
that each pivot element is the largest in its row. Obviously rook pivoting is a
combination of column pivoting and row pivoting. In [16] Skeel studied the effect
of scaling on stability and accuracy of GE with row pivoting. We found from
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[16, Theorem5.6] that a similar conclusion to our findings above could be drawn.
But our analysis is much simpler and the forward error bound (5.3) holds for any
pivoting strategy.

From Tables 5.1 and 5.2, we see for those examples rook pivoting has better com-
ponentwise backward stability than partial pivoting. For the test matrices with
dimension n = 10 from the collections of Higham [11] and the exact solutions and
right hand sides defined as in the first two sets of examples given before, we found
that for both partial pivoting and rook pivoting ω(x̃) ≈ 10−16 or ω(x̃) = 0, i.e.,
both partial pivoting and rook pivoting are componentwise stable for those matri-
ces. Certainly more numerical experiments and a complete analysis are needed to
study the componentwise backward stability of the two pivoting strategies.

Recently Ashcraft et al. [1] extended the rook pivoting strategy to the symmetric
case. For the stability analysis and error analysis of this extended pivoting strategy
see Cheng [4].

6 Computing the inverse by GE with rook pivoting.

In some applications like statistics, a matrix inverse needs to be computed. There
are many different ways to compute matrix inverses, and most of the methods
involve the LU factorization. Du Croz and Higham [7] give stability analyses of
four typical methods which use the LU factorization with partial pivoting. They
showed that only one of the left and right residuals is guaranteed to be usually
small; which one depends on whether the method is derived by solving AX = I
or XA = I, and there is little to choose between the four methods in terms of the
error bounds. In this paper we consider one of the four methods which is used
by LINPACK’s xGEDI, LAPACK’s xGETRI, and Matlab’s INV function, but with
rook pivoting, and we show that both left and right residuals are usually small.
The method is derived by solving XA = I and is as follows:

Method M.
step 1: Compute the LU factorization of A by some pivoting strategy:

PAQ = LU .
step 2: Compute U−1 and then solve for Y the equation Y L = U−1.
step 3: Compute X = QY P .

There are two methods for computing U−1, which can be derived by solving
UX = I and solving XU = I, respectively.

Method 1.
for j = n : −1 : 1

xjj = u−1
jj

X(1 : j − 1, j) = −xjjU(1 : j − 1, j)
Solve U(1 : j − 1, 1 : j − 1)X(1 : j − 1, j) = X(1 : j − 1, j)
by back substitution

end
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Method 2.
for j = 1 : n

xjj = u−1
jj

X(1 : j − 1, j) = X(1 : j − 1, 1 : j − 1)U(1 : j − 1, j)
X(1 : j − 1, j) = −xjjX(1 : j − 1, j)

end

As in [7], we assume the matrix equation Y L = U−1 is solved by back substitu-
tion.

Let L̃ and Ũ be the computed LU factors. Then they satisfy (cf. (4.13))

P (A+∆A)Q = L̃Ũ , |P∆AQ| ≤ cnu|L̃|·|Ũ |+ O(u2),(6.1)

where cn is a constant of order n, and for simplicity later we will use it to denote
any constant of order n. Let XU be the computed inverse of Ũ . Then it can be
shown (cf. [7]) that for Method 1, XU satisfies the residual bound

|ŨXU − I| ≤ cnu|Ũ |·|XU |+ O(u2),(6.2)

and for Method 2 XU satisfies the residual bound

|XU Ũ − I| ≤ cnu|XU |·|Ũ |+ O(u2).(6.3)

We have assumed the matrix equation Y L = U−1 in step 2 of Method M is
solved by back substitution. So the computed solution Ỹ satisfies

Ỹ L̃ = XU +∆(Ỹ , L̃),(6.4)

where
|∆(Ỹ , L̃)| ≤ cnu|Ỹ |·|L̃|+ O(u2).(6.5)

Let X̃ denote the computed inverse of X . From step 3 in Method M, we have

X̃ = QỸ P.(6.6)

If in Method M, U−1 is computed by Method 1, then we can show that the
relative right residual for X̃ will usually be small when any one of the three pivoting
strategies is used. In fact, from (6.1), (6.6) and (6.4) we have

P (A +∆A)X̃PT = L̃ŨQT X̃PT = L̃Ũ Ỹ = L̃Ũ Ỹ L̃L̃−1 = L̃Ũ(XU +∆(Ỹ , L̃))L̃−1.

Thus

P (AX̃ − I)PT = L̃(ŨXU − I)L̃−1 + L̃Ũ∆(Ỹ , L̃)L̃−1 − P∆AX̃PT .(6.7)

Then using (6.2), (6.5), (6.1), (6.6) and (6.4), we obtain

|P (AX̃ − I)PT | ≤ cnu|L̃|·|Ũ |·|XU |·|L̃−1|+ cnu|L̃|·|Ũ |·|Ỹ |·|L̃|·|L−1|
+ cnu|L̃|·|Ũ |·|Ỹ |+ O(u2).

≤ cnu|L̃|·|Ũ |(|Ỹ |·|L̃|+ cnu|Ỹ |·|L̃|)|L̃−1|
+ cnu|L̃|·|Ũ |·|Ỹ |·|L̃|·|L̃−1|+ cnu|L̃|·|Ũ |·|Ỹ |+ O(u2).

≤ 3cnu|L̃|·|Ũ |·|Ỹ |·|L̃|·|L̃−1|+ O(u2),
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Therefore

‖AX̃ − I‖∞ ≤ 3cnu cond∞(L̃−1)‖ |L̃|·|Ũ | ‖∞‖X̃‖∞ + O(u2).

Notice if any one of the three pivoting strategies is used, cond∞(L̃−1) ≤ n2n (see
(3.3)) and usually cond∞(L̃−1) � n2n. Also we know usually ‖ |L̃||Ũ | ‖∞ ≈ ‖A‖∞
for any one of the three pivoting strategies. So the right relative residual ‖AX̃−I‖∞

‖A‖∞‖X̃‖∞

is usually small. The numerical experiments given in [7] confirmed this conclusion
for partial pivoting.

If in Method M, U−1 is computed by Method 2, then following the proof in [7],
the computed inverse X̃ of A satisfies the left residual bound

‖X̃A− I‖∞ ≤ c′nu‖X̃‖∞‖ |L̃|·|Ũ | ‖∞ + O(u2).

Since usually ‖ |L̃||Ũ | ‖∞ ≈ ‖A‖∞, the relative left residual ‖X̃A−I‖∞
‖X̃‖∞‖A‖∞

is small.

The numerical examples given in [7] suggest if U−1 is computed by Method 1,
the relative left residual may be large and if it is computed by Method 2, the
relative right residual may be large. Remember in [7], only partial pivoting is
considered. Our numerical experiments showed if rook pivoting is used, these two
relative residuals are still small. In the following we give an analysis to explain
this.

Suppose U−1 is computed by Method 1. We now show that the left residual is
usually small. Since the computed inverse XU of U satisfies (6.2), we have

|XU Ũ − I| = |Ũ−1(ŨXU − I)Ũ | ≤ cnu|Ũ−1|·|Ũ |·|XU |·|Ũ |+ O(u2).(6.8)

But for rook pivoting (or complete pivoting), cond∞(Ũ) ≤ 2n − 1 and usually
cond∞(Ũ) � 2n − 1. So we would expect that the left residual for XU is usually
small. That is the key to showing that the left residual for X̃ is usually small.
From (6.6), (6.1) and (6.4) we have

QT X̃(A +∆A)Q = Ỹ L̃Ũ = XU Ũ +∆(Ỹ , L̃)Ũ .

Thus
QT (X̃A− I)Q = XU Ũ − I +∆(Ỹ , L̃)Ũ −QT X̃∆AQ.

Therefore from (6.8), (6.4), (6.6) and (6.1) we have

|QT (X̃A− I)Q|
≤ cnu|Ũ−1|·|Ũ |·|XU |·|Ũ |+ cnu|Ỹ |·|L̃|·|Ũ |+ cnu|Ỹ |·|L̃|·|Ũ |+ O(u2)
≤ cnu|Ũ−1|·|Ũ |(|Ỹ |·|L̃|+ cnu|Ỹ |·|L̃|)|Ũ |+ 2cnu|Ỹ |·|L̃|·|Ũ |+ O(u2)
≤ 3cnu|Ũ−1|·|Ũ |·|Ỹ |·|L̃|·|Ũ |+ O(u2).

This gives

‖X̃A− I‖∞ ≤ 3cnu cond∞(Ũ)‖X̃‖∞‖ |L̃|·|Ũ | ‖∞ + O(u2).

Since cond∞(Ũ) ≤ 2n − 1 and usually cond∞(Ũ) � 2n − 1, we would expect that
the relative left residual for X̃ is usually small.
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Suppose U−1 is computed by Method 2, then (6.3) holds. We now show that the
right residual is usually small when rook pivoting (or complete pivoting) is used.
From (6.7) we have

P (AX̃ − I)PT = L̃Ũ(XU Ũ − I)Ũ−1L̃−1 + L̃Ũ∆(Ỹ , L̃)L−1 − P∆AX̃PT .

Then using (6.3), (6.1) and (6.4), we obtain

|P (AX̃ − I)PT |≤cnu|L̃Ũ |·|XU |·|Ũ |·|(L̃Ũ)−1|(6.9)
+ cnu|L̃Ũ |·|Ỹ |·|L̃|·|L̃−1|+ cnu|L̃|·|Ũ |·|Ỹ |+ O(u2).

Now we have to give bounds on |XU | and |(L̃Ũ)−1|. Since XU = (XU Ũ − I)Ũ−1+
Ũ−1, we have with (6.3)

|XU | ≤ |Ũ−1|+ O(u).(6.10)

From (6.4) we have

Ỹ L̃Ũ = I + (XU Ũ − I) +∆(Ỹ , L̃)Ũ ,

which with (6.3) and (6.5) gives

|(L̃Ũ)−1| ≤ |Ỹ |+ O(u).(6.11)

Therefore from (6.9), (6.10) and (6.11) it follows that

|P (AX̃ − I)PT |≤cnu|L̃Ũ |(|Ũ−1|·|Ũ |·|Ỹ |+ |Ỹ |·|L̃|·|L̃−1|)+ cnu|L̃|·|Ũ |·|Ỹ |+O(u2).

This gives

‖AX̃ − I‖∞ ≤ cnu (cond∞(Ũ) + cond∞(L̃−1))‖ |L̃||Ũ | ‖∞‖X‖∞ + O(u2).

But cond∞(Ũ) ≤ 2n−1 and cond∞(L̃−1) ≤ 2n−1, and usually we have cond∞(Ũ) �
2n−1 and cond∞(L̃−1) � 2n−1, so we would expect that the relative right residual
for X̃ is usually small.

We now give some numerical examples illustrating the relative left residual resL
and the relative right residual resR, where

resL =
‖X̃A− I‖∞
‖X̃‖∞‖A‖∞

, resR =
‖AX̃ − I‖∞
‖A‖∞‖X̃‖∞

.

We use Method M1 to denote Method M when Method 1 is used to compute U−1,
and Method M2 to denote Method M when Method 2 is used to compute U−1.

1. An is the upper triangular QR factor of the n×n Vandermonde matrix based
on equispaced points on [0, 1], n = 1 ::80. An can be generated by Matlab

command triu(qr(vand(n)), where vand is a routine from the Test Matrix
Toolbox by Higham [11]. The residuals for inverses computed by Matlab’s
INV function are reported in Figure 6.1, where the horizontal axis represents
the matrix dimension n, and the vertical axis represents the residuals for
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Figure 6.1: Residuals for inverses computed by Matlab’s INV function.
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Figure 6.2: Residuals for inverses computed by Methods M1 and M2 with GERP.

inverses. INV adopted Method M2, where partial pivoting is used in the
computation of the LU factorization. The residuals for inverses computed by
Method M1 and Method M2 are reported in Figure 6.2, where rook pivoting
is used in the computation of the LU factorization. The example was given
by Higham in [12], and Figure 6.1 appears on both the front cover and p. 264
of [12].

2. A = LU , where L is the lower triangular factor from GEPP on a random
10× 10 matrix generated by Matlab’s function randn, and U is generated
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Table 6.1: Residuals for inverses computed by Methods M1 and M2.

Partial pivoting Rook pivoting
Method M1 Method M2 Method M1 Method M2

resL resR resL resR resL resR resL resR
2.8e-05 6.7e-18 8.7e-18 6.4e-06 3.9e-18 6.7e-18 3.9e-18 9.5e-18
1.2e-05 5.6e-23 2.3e-17 3.2e-16 1.2e-17 4.4e-23 1.2e-17 8.5e-19
9.5e-07 1.8e-20 3.1e-17 9.5e-09 7.3e-18 4.8e-21 6.9e-18 4.4e-20
6.0e-16 6.9e-18 1.5e-17 2.1e-10 4.6e-18 1.9e-18 4.6e-18 3.8e-18
2.2e-17 8.9e-20 2.3e-17 1.7e-12 5.4e-18 1.0e-19 5.4e-18 5.9e-18
2.1e-14 9.5e-18 6.9e-18 3.5e-12 6.0e-18 5.3e-18 6.0e-18 7.0e-18
2.2e-10 2.5e-28 5.7e-18 1.6e-20 5.2e-18 4.8e-28 5.2e-18 2.4e-28
4.3e-17 9.2e-18 5.4e-18 1.9e-08 6.0e-18 7.5e-18 6.0e-18 5.8e-18
6.4e-05 7.9e-36 3.1e-17 1.9e-32 1.3e-17 8.8e-36 1.3e-17 5.6e-36
2.0e-04 6.1e-22 2.0e-17 1.7e-07 6.4e-18 1.0e-21 6.4e-18 2.4e-20

as the twentieth power of an upper triangular part of a random 10 × 10
matrix produced by randn. A similar example is given in [7]. The results
for 10 different runs are reported in Table 6.1.

These two examples confirm our theoretical finding that rook pivoting can usu-
ally make both the left and right residuals small no matter Method 1 or Method
2 is used to compute U−1 in Method M.

7 Conclusion.

We have shown that GE with rook pivoting or complete pivoting is superior to
GE with partial pivoting in three aspects. If we use rook pivoting (or complete
pivoting), usually the U factor of the LU factorization will have high accuracy,
the computed solution of a linear system will have high accuracy if the matrix is
ill-conditioned due to bad row scaling, and both the left and right residuals for
the computed inverse will be small.

Foster’s experiments [9] suggested that for a dense problem on a serial computer
rook pivoting is usually almost as efficient as partial pivoting, even though in
some extreme cases it is more close to complete pivoting in terms of efficiency. His
experiments also suggested the stability of rook pivoting is comparable with that
of complete pivoting. Our results give other justifications that rook pivoting is a
good alternative to partial pivoting and complete pivoting.
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