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This paper intends to shed light on the decorrelation or reduction process in solving integer least

squares (ILS) problems for ambiguity determination. We show what this process should try to

achieve to make the widely used discrete search process fast and explain why neither decreasing

correlation coefficients of real least squares (RLS) estimates of the ambiguities nor decreasing the

condition number of the covariance matrix of the RLS estimate of the ambiguity vector should be

an objective of the reduction process. The new understanding leads to a new reduction algorithm,

which avoids some unnecessary size reductions in the Lenstra-Lenstra-Lovász (LLL) reduction

and still has good numerical stability. Numerical experiments show that the new reduction

algorithm is faster than LAMBDA’s reduction algorithm and MLAMBDA’s reduction algorithm (to

less extent) and is usually more numerically stable than MLAMBDA’s reduction algorithm and

LAMBDA’s reduction algorithm (to less extent).
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Introduction
In high precision relative GNSS positioning, a key
component is to resolve the unknown double differenced
ambiguities of the carrier phase data as integers. The most
successful approach, which was proposed by Teunissen,
see, e.g., [17], [18], [19], [21] and [22], is to solve an integer
least squares (ILS) problem. The corresponding numeri-
cal method proposed by Teunissen is referred to as
the LAMBDA (Least-squares AMBiguity Decorrelation
Adjustment) method. A detailed description of the algo-
rithm and implementation is given by [6]. Its educational
software (Fortran version and Matlab version) is available
from Delft University of Technology. Frequently asked
questions and misunderstanding about the LAMBDA
method are addressed by [9]. The LAMBDA method can
be used to solve some high-dimensional problems arising
in dense network processing as indicated in [11]. Recently a
modified and faster method called MLAMBDA was
proposed in [4], which was then further modified and
extended to handle mixed ILS problem by using orthogo-
nal transformations, resulting in the Matlab package
MILES [5].

An often used approach to solving an ILS problem in
the literature, including the papers mentioned above, is
the discrete search approach. Most methods based on
the discrete search approach have two stages: reduction
and search. In the first stage, the original ILS problem is
transformed to a new one by a reparametrisation of the

original ambiguities. In this stage, LAMBDA and other
methods decorrelate the ambiguities in the GNSS
context. For this reason, it is called the ‘decorrelation’
stage in the GNSS literature. The word ‘decorrelation’
seems to have caused some confusion in some literature,
where it was believed that this stage is to make the
correlation coefficients small, see, e.g., [13, sec. 5]. In [4],
the first stage is referred to as ‘reduction’, because the
process is essentially a lattice reduction process. Like [4],
we prefer ‘reduction’ to ‘decorrelation’ in this paper, as
the former is less confusing. In the second stage, the
optimal ILS estimate or a few optimal or suboptimal
ILS estimates of the parameter vector over a region in
the ambiguity parameter space are found by enumera-
tion. The purpose of the reduction process is to make the
search process more efficient.

The typical search process which is now widely used is
the Schnorr and Euchner based depth-first tree search,
which enumerates (part of) integer points in a hyper-
ellipsoid to find the solution, see, [1], [4], [6], [15] and
[21]. A comparison of some different reduction and
search strategies was attempted in [8]. What should the
reduction process achieve to make the search process
faster? One (partial) answer in the literature is that the
reduction process should try to decorrelate the covar-
iance matrix of the real least squares (RLS) estimate as
much as possible, i.e., make the off-diagonal entries of
the covariance matrix as small as possible; see, e.g., [4],
[6], [16, p. 495 ], [19] and [21] (note that these
publications also mentioned other objectives to achieve).
Another answer in the literature is that the reduction
process should reduce the condition number of the co-
variance matrix as much as possible; see, e.g., [13], [14], [25]
and [26]. In this paper, we will argue that although
decorrelation or reducing the condition number may be
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helpful for the discrete search process, they are not the
right answers to the question. We shed light on what the
reduction process should try to achieve. The new under-
standing leads to a more efficient reduction algorithm
that will be presented in this paper. More theoretical
discussion about how reduction can improve search
efficience can be found in [3].

The paper is organised as follows. First, we briefly
review the typical reduction and search strategies used in
solving the ILS problem. Then, we show that using lower
triangular integer Gauss transformations alone in the
reduction process do not affect the search speed of the
search strategy. In particular, we explain why decreasing
the correlation coefficients of the RLS estimates of the
ambiguities should not be an objective of the reduction
process. After that, we argue why decreasing the con-
dition number of the covariance matrix of the RLS
estimate of the ambiguity vector should not be as an
objective of the reduction process. Then, a new more
efficient reduction algorithm is presented. And numerical
results are given to compare different reduction algo-
rithms. Finally, we give a brief summary.

We now describe the notation to be used in this paper.
The sets of all real and integer m6n matrices are
denoted by Rm|n and Zm|n, respectively, and the set of
real and integer n-vectors are denoted by Rn and Zn,
respectively. The identity matrix is denoted by I and
its ith column is denoted by ei. We use Matlab-like
notation to denote a submatrix. Specifically, if
A~(aij)[Rm|n, then Ai,: denotes the ith row, A:,j the
jth column, and Ai1:i2,j1:j2 the submatrix formed by rows
i1 to i2 and columns j1 to j2. For z[Rn, we use z½ � to
denote its nearest integer vector, i.e., each entry of z is
rounded to its nearest integer (if there is a tie, the one
with smaller magnitude is chosen).

Reduction and search
Suppose x̂[Rn is the RLS estimate of the integer parameter
vector (i.e., the double differenced integer ambiguity
vector in GNSS) and W

x̂
[Rn|m is its covariance matrix,

which is symmetric positive definite. The ILS estimate of
the integer parameter vector is the solution of the mini-
misation problem

min
x[Zn

(x{x̂)TW{1

x̂
(x{x̂) (1)

Although equation (1) is in the form of an integer
quadratic optimisation problem, it is easy to rewrite it in
the standard ILS form

min
x[Zn

Ax{yk k2
2 (2)

In fact, suppose W{1

x̂
has the Cholesky factorisation

W{1

x̂
~RTR, where R is upper triangular, then, with

y~Rx̂ and A5R, problem (1) can be written as pro-
blem (2). Conversely, an ILS problem in the stan-
dard form problem (2) with A being of full column rank

can be transformed to problem (1). Let A[Rn|m have

the QR factorisation A~½Q1,Q2�
R
0

� �
~Q1R, where

½Q1,Q2�[Rm|m is orthogonal and R[Rn|n is upper
triangular. Then

Ax{yk k2
2~ ½Q1,Q2�T(Ax{y)
��� ���2

2

~ Rx{QT
1 y

�� ��2

2
z QT

2 y
�� ��2

2

~ R(x{x̂)
�� ��2

2
z QT

2 y
�� ��2

2

Thus, with W
x̂
~RTR{1, problem (2) can be transformed

to problem (1). But we want to point out that it may not be
numerically reliable to transform problems (1) to (2), or vice
versa. As the quadratic form of the ILS problem (1) is often
used in the GNSS literature, for the sake of comparison
convenience, we also use it in this paper. An approach to
solving problem (1) can be modified to solve problem (2)
without using the transformation mentioned above.

In the following two subsections, we discuss the
reduction or decorrelation process used in the GNSS
literature and briefly review the search process.

Reduction
The reduction process uses a unimodular matrix Z to
transform equation (1) into

min
z[Zn

(z{ẑ)TW{1
z (z{ẑ); (3)

where z5ZTx, ẑ~ZTx̂ and W
ẑ
~ZTW

x̂
Z. If x̂ is the

minimiser of problem (3), then x
^
~Z{Tz

^
is the mini-

miser of problem (1). The benefit the reduction process
brings is that the discrete search process for solving
the new optimisation problem (3) can be much more
efficient by choosing an appropriate Z.

Let the LTDL factorisation of W
ẑ

be

W
ẑ
~LTDL (4)

where L5(lij) is unit lower triangular and D5

diag (d1,…,dn) with di.0. These factors have a statistical
interpretation. Let

-

zj denote the RLS estimate of zj when

zjz1,…, zn are fixed. It is easy to show (cf. [21, p. 337]) that

di~s2
-

zi
, where s2

-

zi
is the variance of

-

zi, and lij~s
-
ziẑj

s{2
-

zi
for

i.j, where s
-
ziẑj

denotes the covariance between
-

zi and ẑj.

In the literature, see, e.g., [4], [6], [16, p. 498], and [21],
it is often mentioned that the following two objectives
should be pursued in the reduction process, because it is
believed that they are crucial for the efficiency of the
search process:

(i) W
ẑ

is as diagonal as possible. The motivation is
that if W

ẑ
is a diagonal matrix, i.e., the entries of ẑ

are uncorrelated to each other, then simply setting
zi~tẑir, for i51, 2,…, n, would solve equation (3).
Thus, it is assumed that the search process would
be fast if W

ẑ
is nearly diagonal. That a covariance

matrix is close to diagonal means that there is little
correlation between its random variables. In other
words, an objective of the reduction is to
decorrelate the RLS estimates of the ambiguities
as much as possible. For example in [6, sec. 3?7], it
stated that ‘For the actual integer minimisation we
strive for largely decorrelated ambiguities’.

(ii) The diagonal entries of D are distributed in
decreasing order if possible, i.e., one strives for

d1&d2& � � �&dn (5)

Note that d1d2 � � � dn~det(W
ẑ
)~det(W

x̂
), which

is invariant with respect to the unimodular matrix
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Z. The ordering of dj is also known as the
signature of the spectrum of conditional var-
iances. This objective will flatten the spectrum.
The importance of this objective was explained in
detail in [17], [19], [21].

LAMBDA’s reduction process and MLAMBDA’s re-
duction process as well start with the LTDL factorisation
of W

x̂
and updates the factors to give the LTDL

factorisation of W
ẑ

by using integer Gauss transforma-
tions (IGTs) and permutations, both of which are
unimodular matrices. The IGTs are used to make the
off-diagonal entries of L as small as possible, while
permutations are used to strive for order (5). Specifically,
after reduction, the L-factor of the LTDL factorisation of
W

ẑ
satisfies the conditions of the well-known Lenstra-

Lenstra-Lovász (LLL) reduction [10]

jlijjƒ1=2, i~jz1, . . . ,n, j~1, . . . ,n{1; (6)

djzl2
jz1,jdjz1§adjz1, j~1, . . . ,n{1; (7)

with a51. In the general LLL reduction, the parameter a
satisfies 1/4,a#1. The inequality (6) is referred to the size
reduced condition and the inequality (7) is often called
Lovász’s condition.

We will show that, contrary to the common belief,
decorrelations done to pursue the first objective may not
make the search process more efficient unless they help
to achieve the second objective. The second objective is
very crucial for the search speed, but it is not mentioned
in some GNSS literature.

In some papers such as [13], [14] and [25], instead of (i)
and (ii), decreasing the condition number of the
covariance matrix is regarded as an objective of the
reduction process. Although this may be helpful for
achieving the second objective, we will argue later that it
should not be an objective of the reduction.

In the following, we introduce the integer Gauss
transformations and permutations, which will be used
later in describing algorithms.

Integer Gauss transformations

An integer Gauss transformation Zij has the following
form

Zij~I{meie
T
j , m is an integer (8)

Applying Zij (i.j) to L from the right gives

-L:LZij~L{mLeie
T
j

Thus -L is the same as L, except that

-lkj~lkj{mlki, k~i, . . . ,n

To make -lij as small as possible, we choose m~tlijr,
which ensures that

j -lijjƒ1=2, iwj (9)

We use the following algorithm (see [4]) to apply the
IGT Zij to transform the ILS problem.

Algorithm 1. (Integer Gauss Transformations). Given a
unit lower triangular L[Rn|n, index pair (i, j), x̂[Rn and
Z[Zn|n. This algorithm first applies the integer Gauss
transformation Zij to L such that|(LZ)i,j|(1/2, then
computes ZT

ijx̂ and ZZij, which overwrite x̂ and Z,
respectively.

function: L,̂x,Z
� �

~Gauss(L,i,j ,̂x,Z)
m~ lij
� �

if m?0
Li:n,j5Li:n,j2mLi:n,i

Z1:n,j5Z1:n,j2mZ1:n,i

x̂j~x̂j{mx̂i

end

Permutations

In order to strive for order (5), symmetric permutations
of the covariance matrix W

x̂
are needed in the reduction

process. After a permutation, the factors L and D of the
LTDL factorisation have to be updated.

If we partition the LTDL factorisation of W
x̂

as
follows

W
x̂
~LTDL~

LT
11 LT

21 LT
31

LT
22 LT

32

LT
33

2
664

3
775

D1

D2

D3

2
664

3
775

L11

L21 L22

L31 L32 L33

2
664

3
775

k{1 2 n{k{1

k{1

2

n{k{1

Let

P~
0 1

1 0

� �
, Pk,kz1~

Ik{1

P

In{k{1

2
64

3
75 (10)

It can be shown that PT
k,kz1W

x̂
Pk,kz1 has the LTDL

factorisation (cf. [6])

PT
k,kz1~W

x̂
Pk,kz1~

LT
11
-LT

21 LT
31

-LT
22
-LT

32

LT
33

2
664

3
775

D1

-D2

D3

2
664

3
775

L11

-L21 -L22

L31 -L32 L33

2
664

3
775

(11)

where

-D2~
-dk

-dkz1

" #

-dkz1~dkzl2
kz1,kdkz1, -dk~

dk

-dkz1

dkz1

(12)

-L22:
1

-lkz1,k 1

� �
, -lkz1,k~

dkz1lkz1,k

-dkz1

(13)

L21~

{lkz1,k 1

dk

-dkz1

-lkz1,k

2
4

3
5L21

~

{lkz1,k 1

dk

-dkz1

-lkz1,k

2
4

3
5Lk:kz1,1:k-1 (14)

-L32~L32P~ Lkz2:n,kz1,Lkz2:n,1:k½ � (15)

We refer to such an operation as a permutation of pair
(k,kz1). We describe the process as an algorithm (see [4]).
Algorithm 2. (Permutations). Given the L and D factors
of the LTDL factorisation of W

x̂
[Rn|n, index k, scalar d

which is equal to -dkz1 in equation (12), x̂[Rn, and
Z[Zm|n. This algorithm computes the updated L and D
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factors in equation (11) after rows and columns k and
kz1 of W

x̂
are interchanged. It also interchanges entries

k and kz1 of x̂ and columns k and kz1 of Z.

function: L,D,x̂,Z
� �

~Permute(L,D,k,d,x̂,Z)

g5dk/d //see (12)

l5dkz1,kz1lkz1,k/d //see (13)

dk5gdkz1,kz1 //see (12)

dkz1,kz15d
Lk:kz1,1:k{1~

{lkz1,k 1

g l

� �
Lk:kz1,1:k{1 //see (14)

lkz1,k5l
Swap columns Lkz2:n,k and Lkz2:n,kz1 //see (15)

Swap columns Z1:n,k and Z1:n,kz1

Swap entries x̂k and x̂kz1

Search
In this subsection, we briefly review the often used
discrete search process (see [6] and [15]) in solving an
ILS problem. Substituting the LTDL factorisation (4)
into (3), we obtain

min
z[Zn

(z{ẑ)TL{1D{1L{T(z{ẑ ) (16)

Define
-

z as

-

z~z{L{T(z{ẑ) (17)

Thus we have

LT(z{
-

z)~(z{ẑ)

which can be expanded to

-

zj~ẑjz
Xn

i~jz1

lij(zi{-

zi), j~n,n{1, . . . ,1 (18)

where when j5n, the summation term vanishes. Observe
that

-

zj depends on zjz1,…,zn. Actually
-

zj is the RLS

estimate of zj when zjz1,…,zn are fixed. With equa-
tion (17), we can rewrite the optimisation problem (16) as

min
z[Zn

(z{
-

z)TD{1(z{
-

z) (19)

or equivalently

min
z[Zn

Xn

j~1

(zj{-

zj)
2=dj (20)

Assume that the solution of equation (20) satisfies the
bound

Xn

j~1

(zj{-

zj)
2

dj

vx2 (21)

for some x. Note that equation (21) is a hyper-ellipsoid,
which is referred to as an ambiguity search space.
If z satisfies equation (21), then it must also satisfy
inequalities

level k :
(zk{-

zk)2

dk

vx2{

P n

j~kz1
(zj{-

zj)
2

dj

(22)

for k5n, n21,…,1. From inequality (22), the range
of zk is [lk, uk], where

lk~q-zk{d
1=2
k (x2{

Xn

j~kz1

(zj{-

zj)
2=dj)

1=2r (23)

uk~t-zkzd
1=2
k (x2{

Xn

j~kz1

(zj{-

zj)
2=dj)

1=2s (24)

The search process starts at level n and moves down to
level 1. Suppose that zn,…,zkz1 have been fixed. At level
k, if lk.uk, then there is no integer satisfying the
inequality (22) and the search process moves back to
level kz1; otherwise it chooses zk~ -

zk½ �, which is in [lk,
uk], and moves to level k21. If at level k21 it cannot
find any integer in [lk21, uk21] it moves back to level k
and tries to find the next nearest integer to

-

zk in [lk, uk].
In general the enumeration order at level k is as follows

zk~
t
-

zkr, t-zkr{1, t
-

zkrz1, . . . , if
-

zkƒt
-

zkr
t
-

zkr, t-zkrz1, t
-

zkr{1, . . . , otherwise

�
(25)

When an integer point, say z*, is found, update x2 by
setting

x2~(z�{ẑ)TW{1
ẑ

(z�{ẑ)

and the search process tries to update z* to find an
integer point within the new hyper-ellipsoid.

The initial x2 can be set to infinity. With initial x25‘,
the first integer point found in the search process is
referred to as the Babai integer point (see [2] and [4]) or
the bootstrapping estimate (see [23]). The search process
is actually a depth-first search in a tree, see Fig. 1, where
n53. Each node in the tree, except for the root node,
represents an actual step in the search process –
assigning a value to xk. In Fig. 1, each leaf at level 1
corresponds to an integer point found in the search
process and leaves at other levels correspond to invalid
integer points.

For the extension of the search process to find more
than one optimal solutions to problem (3), see [4] and
[6].

Impact of IGTs on the search process
As seen in the previous section, according to the GNSS
literature, one of the two objectives of the reduction
process is to decorrelate the ambiguities as much as
possible. Decorrelating the ambiguities as much as
possible means making the covariance matrix as diagonal
as possible. To achieve this, a natural way, as given in the
literature, is to make the absolute values of the off-
diagonal entries of the L-factor of the covariance matrix
as small as possible by using IGTs. In the following, we
rigorously show that solely reducing the off-diagonal

1 Search tree
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entries of L will have no impact on the search process
given in the previous section.

Theorem 1 Given the ILS problem (1) and the reduced
ILS problem (3), if the unimodular transformation matrix
Z is a product of lower triangular IGTs, then the search
process for solving problem (1) is as efficient as the search
process for solving problem (3).

Proof. We will show that the structure of the search
tree is not changed after the transformation.

Let the LTDL factorisations of W
x̂

and W
ẑ

be

W
x̂
~LTDL, W

ẑ
~-LT

-D -L

As shown in previous section, the ILS problems (1) and
(3) can respectively be written as (cf. equation (20))

min
x[Zn

Xn

j~1

(xj{-

xj)
2=dj (26)

where

-

xj~x̂jz
Xn

i~jz1

lij(xi{-

xi) (27)

and

min
z[Zn

Xn

j~1

(zj{-

zj)
2=-d j (28)

where

-

zj~ẑjz
Xn

i~jz1

-lij(zi{-

zi) (29)

We first consider the case where Z is a single lower

triangular IGT Zst~I{mese
T
t with s.t, which is applied

to L from the right to reduce lst. Then we have

-D~D, -L~LZst~L{mLese
T
t

where

-lit~lit, i~t,tz1, . . . ,s{1 (30)

-lit~lit{mlis, i~s, sz1, . . . ,n (31)

-lij~lij, i~j,jz1, . . . ,n, j=t (32)

With ẑ~ZT
st x̂, we have

ẑi~
x̂i, if i=t

x̂i{mx̂s, if i~t

(
(33)

Suppose that in the search process xn, xn21,…, xkz1 and
zn, zn21,…, zkz1 have been fixed. We consider the search
process at level k. At level k, the inequalities need to be
checked are respectively

(xk{-

xk)2=dkvx2{
Xn

j~kz1

(xj{-

xj)
2=dj (34)

(zk{-

zk)2=dkvx2{
Xn

j~kz1

(zj{-

zj)
2=dj (35)

There are three cases:

Case 1: k.t. Note that Lk:n,k:n~ -Lk:n,k:n. From
equations (27), (29) and (33), it is easy to conclude that
we have

-

xi~-

zi and xi5zi for i5n, n21,…, kz1. Thus, at

level k,
-

xi~-

zi and the search process takes an identical
value for xk and zk. For the chosen value, the two
inequalities (34) and (35) are identical. So both hold or
fail at the same time.

Case 2: k5t. According to Case 1, we have xi5zi and

-

xi~-

zi for i5n, n21,…, tz1. Thus, by equations (29),
(30), (31), (33) and (27)

-

zt~ẑtz
Xn

i~tz1

-lit(zi{-

zi)

~x̂t{mx̂sz
Xs{1

i~tz1

lit(xi{-

xi)z
Xn

i~s

(lit{mlis)(xi{-

xi)

~x̂tz
Xn

i~tz1

lit(xi{-

xi){m½x̂sz
Xn

i~sz1

lis(xi{xi)�{m(xs{-

xs)

~
-

xt{m
-

xs{m(xs{-

xs)

~
-

xt{mxs,

where mxs is an integer. Since zt and xt respectively take
values according to the same order (cf. (25)), the values
of zt and xt chosen by the search process must satisfy
zt5xt2mxs Thus, zt{-

zt~xt{-

xt, and again the two
inequalities (34) and (35) hold or fail at the same time.

Case 3: k,t. According to Cases 1 and 2,
zi{-

zi~xi{-

xi for i5n, n21,…, t. Then for k5t21, by
equations (29), (32) and (27)

-

zk~ẑkz
Xn

i~kz1

-lik(zi{-

zi)~x̂kz
Xn

i~kz1

lik(xi{-

xi)~-

xk

Thus, the search process takes an identical value for zk

and xk when k5t21. By induction we can similarly show
this is true for a general k,t. Thus, again inequal-
ities (34) and (35) hold or fail at the same time.

The above has shown that the two search trees for
problems (1) and (3) have identical structures.

Now we consider the general case where Z is a
product of lower triangular IGTs, i.e., Z5Z1…Zm. As is
shown, applying Z1 to problem (1) will transform the
ILS problem, but not modify the structure of the search
tree. Applying Z2 to this transformed ILS problem will
also not modify the structure of the search tree, and so
on. Thus, if Z is a product of lower triangular IGTs, the
search trees for problems (1) and (3) have the same
structure.

It is easy to observe that the computational costs for
fixing xk and zk at each level k in search are the same.
Therefore we can conclude that the two search processes
have the same computational efficiency.

Here we make a remark. Obviously, all diagonal
entries of L remain invariant under integer Gauss
transformations. Thus the complete spectrum of ambi-
guity conditional variances, di’s in order (5), remains
untouched as stated in [19]. But whether the search
speed solely depends on the spectrum was not proved.

From the proof of Theorem 1, we can easily observe
that the search ordering given in equation (25) may not
be necessary, i.e., Theorem 1 may still hold if the
ordering is in a different way. For example, Theorem 1
still holds if the enumerated integers at level k are
ordered from left to right in the interval [lk, uk] – this
enumeration strategy is used in the LAMBDA package.
Theorem 1 also holds when the shrinking technique is
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employed. This can be seen from the fact that the
residues of the corresponding integer points found in the
two search trees are always equal, i.e.

X n

j~1
xj{-

xj

� 	2

=dj~
X n

j~1
(zj{-

zj)
2=dj

We would like to point out that [12] gave a geometric
argument that the Babai integer point (i.e. the boot-
strapping estimate) encountered in solving the standard
form of the ILS problem (2), referred to as the successive
interference cancellation decoder in communications, is
not affected by the size reduction of the off-diagonal
entries (except the super-diagonal entries) of R of the QR
factorisation of A. Our result given in Theorem 1 is more
general, because the Babai integer point is the first integer
point found in the search process.

In [8, sec. 3?5], to prove that the lattice reduction
speeds up searching process, the authors tried to prove
that the more orthogonality the columns of R, the less
the number of candidates for searching. But the proof is
not correct because the number of candidates is not
closely dependent on the column orthogonality of R. In
fact, a series of IGTs can be found to reduce all the off-
diagonal entries of R. Applying them to R will make R
more orthogonal. But according to Theorem 1, this can
neither reduce the number of candidates nor speed up
the search process.

Theorem 1 showed that modifying the unit lower
triangular matrix L by a unimodular matrix will not
change the computational efficiency of the search
process. Here we first give a geometric interpretation
for the general two-dimensional case, then give a specific
two-dimensional integer search example to illustrate it.

Suppose the ambiguity search space is the ellipse given
in Fig. 2a, with the integer candidates marked. The
search process will try to fix x2 and then fix x1 for each
value of x2. After the size reduction, we get Fig. 2b. As
explained in [21], the result of this transformation is to
push the vertical tangents of the ambiguity search space.
The horizontal tangents are unchanged. Note that for
each integer value of x2, the number of choices for x1 is
not changed after the size reduction. This indicates the
size reduction does not change the search speed,
although the elongation of the ellipse becomes smaller.

Example 1 Let the covariance matrix be

W
x̂
~

11026 1050

1050 100

� �

The factors L and D of its LTDL factorisation are

L~
1 0

10:5 1

� �
, D~

1 0

0 100

� �

Let the RLS estimate be x̂~½5:38, 18:34�T. We can

reduce l21 by the IGT Z~
1 0

{10 1

� �
. Then the modi-

fied covariance matrix and its L factor become

W
ẑ
~ZTW

x̂
Z~

26 50

50 100

� �
, -L~LZ~

1 0

0:5 1

� �

In [21], the correlation coefficient r and the elongation
of the search space e are used to quantify the correlation
between the ambiguities. The correlation coefficient r
between random variables s1 and s2 is defined as
r~ss1 s2

=(ss1
ss2

); see, e.g., [16, p. 322]. The elongation
of the search space e is given by square root of the 2-
norm condition number of the covariance matrix. For
the original ambiguity vector, we have r50?9995 and
e51?11266103. For the transformed ambiguity vector,
we have r50?9806 and e512?520. These measurements
indicate that the transformed RLS estimates of ambi-
guities are more decorrelated. The points [x1, x2]T and
[z1, z2]T encountered during search are shown in Table 1,
which indicates that no valid integer is found. In both
cases, the first point encountered is valid, while the
others points are invalid. The ILS solution is x5[2,18]T.
As expected, we observe that the lower triangular IGT
did not reduce the number of points (including invalid
points) encountered in the search process.

We have already shown that solely decorrelating the
RLS estimates of the ambiguities by applying lower
triangular IGTs to the L-factor of the LTDL factorisa-
tion of the covariance matrix will not help the search
process. However, we will show that some IGTs are still
useful for improving the efficiency of the search process.
The search speed depends on the D factor. The more
flattened the spectrum of ambiguity conditional var-
iances, the more efficient the search (see, e.g. [19]). We
strive for order (5) in the reduction process. If an IGT is
helpful in striving for order (5), then this IGT is useful
for improving the search speed. When we permute pair
(k,kz1) in the reduction process, D is modified
according to equation (12). In order to make -dkz1 as
small as possible, from equation (12), we observe that
|lkz1,k| should be made as small as possible. An example
would be helpful to show this.

Table 1 Search results for Example 1

x1 x2 z1 z2

2 18 2178 18
… 19 … 19
… 17 … 17
… 20 … 20
… … … …

2 Size reduction
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Example 2 Let the L-factor and D-factor of the LTDL
factorisation of a 262 covariance matrix W

x̂
be

L~
1 0

0:8 1

� �
, D~

1 0

0 100

� �

We have d151 and d25100. Let the RLS estimate be

x̂~½13:5,1:2�T. The number of integer points [x1, x2]T

encountered in the search process without reduction is
shown in Table 2. If we permute the two ambiguities

without first applying an IGT, i.e. Z~
0 1

1 0

� �
, using

equation (12), we have -d2~65 and -d1~1:54. The search
process will be more efficient after this transformation

because -d2vd2 allows more pruning to occur (see
order (5)). The integer pairs [z1,z2]T encountered during
the search are given in Table 2. The ILS solution is

x
^
~Z{T½2,14�T~½14,2�T However, we can make -d2 even

smaller by applying a lower triangular IGT before the

permutation, which means that Z~
0 1

1 {1

� �
. In this

case, we have -d2~5 and -d1~20. The integer pairs ~z1,~z2½ �
encountered in search are given in the last two columns

of Table 2. The ILS solution is x
^
~Z{T½2,12�T~½14,2�T.

This example illustrates how a lower triangular IGT,
followed by a permutation, can prune more nodes from
the search tree.

We have seen that it is useful to reduce lkz1,k by an
IGT if the resulted -dkz1 satisfies -dkz1vdkz1, i.e., a
permutation of the pair (k,kz1) will be performed,
because it can help to strive for order (5). However,
reducing lik for i.kz1 will have no effect on D since
equation (12) only involves lkz1,k. Hence, even if |lik| is
very large, reducing it will not improve the search
process at all. This means that reducing all the off-
diagonal entries of L is unnecessary. We only need to do
a partial reduction.

Large off-diagonal entries in L indicate that the
ambiguities are not decorrelated as much as possible,
which contradicts the claim that it should be one of the
objectives of the reduction process in the literature. In
the following, we provide a three-dimensional example
to illustrate the issue.

Example 3 Let the covariance matrix and the RLS
estimate of the ambiguity vector x be

W
x̂
~

2:8355 {0:0271 {0:8071

{0:0271 0:7586 2:0600

{0:8071 2:0600 5:7842

2
64

3
75, x̂~

26:6917

64:1662

42:5485

2
64

3
75

Then the correlation coefficients are

r12~{0:0185, r13~{0:1993, r23~0:9834 (36)

The integer points [x1,x2,x3]
T encountered during the search

are displayed in the first block column of Table 3 and the
solution is. With the LAMBDA reduction or MLAMBDA
reduction, the unimodular transformation matrix is

Z~

4 {2 1

{43 19 {11

16 {7 4

2
64

3
75

The covariance matrix becomes

W
ẑ
~ZTW

x̂
Z~

0:2282 0:0452 {0:0009

0:0452 0:1232 0:0006

{0:0009 {0:0006 0:0327

2
64

3
75

From this transformed covariance matrix, we obtain the
correlation coefficients

r12~{0:2696, r13~{0:0104, r23~0:0095

which indicates that on average the transformed RLS
estimates of ambiguities are less correlated than the
original ones (see equation (36)) in terms of correlation
coefficients. The integer points [z1,z2,z3]T encountered
during the search are displayed in the second block
column of Table 3 and the solution is

x
^
~Z{T {1972,868,{509½ �T~ 27,64,42½ �T

Now we do not apply IGTs to reduce l31 in the reduction
process. With this partial reduction strategy, the unim-
odular transformation matrix is

Z~

0 0 1

1 {3 {11

0 1 4

2
64

3
75

The covariance matrix and the RLS estimate become

W
ẑ
~ZTW

x̂
Z~

0:7587 {0:2158 {0:1317

{0:2158 0:2516 0:0648

{0:1317 0:0648 0:0327

2
64

3
75

From this transformed covariance matrix, we obtain the
correlation coefficients

r12~{0:4940, r13~{0:8362, r23~0:7144

which indicates that on average the transformed RLS
estimates of ambiguities are more correlated than the
original ones (see equation (36)) in terms of correlation

coefficients. The integer points ~z1,~z2,~z3�T
h

encountered

during the search are displayed in the third block column
of Table 3 and the solution is

x
^
~Z{T 64,{150,{509½ �T~ 27,64,42½ �T

From Table 3, we see that the partial reduction is as
effective as the full reduction given in LAMBDA and
MLAMBDA and both make the search process more
efficient, although they increase and decrease the corre-
lation coefficients in magnitude on average, respectively.
This indicates that reducing the correlation coefficients of

Table 2 Search results for Example 2

x1 x2 z1 z2 z,1 z,2

13 1 2 14 2 12
14 2 … 13 … …
… 0 … …
… …

Table 3 Search results for Example 3

x1 x2 x3 z1 z2 z3 z,1 z,2 z,3

23 64 43 21972 868 2509 64 2150 2509
27 64 42 … … … … … …
… … 44
… … 41
… … …
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RLS estimates of ambiguities should not be an objective
of the reduction process.

The significance of the result we obtained in this
section is threefold:

N It indicates that contrary to many people’s belief, the
computational cost of the search is independent of the
off-diagonal entries of L and of the correlation
between the ambiguities.

N It provides a different explanation on the role of
lower triangular IGTs in the reduction process.

N It leads to a more efficient reduction algorithm, see
later.

On the condition number of the
covariance matrix
In some GNSS literature (see, e.g. [13], [14], [25] and
[26]) it is believed that the objective of reduction process
is to reduce the condition number of the covariance
matrix W

x̂
. The 2-norm condition number of W

x̂
satisfies

k2(W
x̂
): W

x̂

�� ��
2

W{1

x̂

��� ���
2
~

lmax W
x̂


 �
lmin W

x̂


 �
where lmax(W

x̂
) and lmin(W

x̂
) are the largest and

smallest eigenvalues of W
x̂
, respectively. Suppose that

the search region is a hyper-ellipsoid

(x{x̂)TW{1

x̂
(x{x̂)vx2

Then, k2(W
x̂
) is equal to the square of the ratio of the

major and minor axes of the search ellipsoid (see, e.g.
[16, sec. 6?4]). In other words, the condition number
measures the elongation of the search ellipsoid. It is true
that often the current decorrelation strategies in the
literature can reduce the condition number or the
elongation of the search ellipsoid and make the search
process faster. But should reducing the condition number
or the elongation be an objective of a reduction process?
In this section, we will argue that it should not.

Reducing the off-diagonal entries of the L-factor can
usually reduce the condition number of L and thus the
condition number of the covariance matrix W

x̂
. But we

have shown that the off-diagonal entries of L (except
subdiagonal entries) do not affect the search speed and
do not need to be reduced in theory. Thus the condition
number of the covariance matrix is not a good measure
of effectiveness of the reduction process. The following
example shows that although the condition number of
the covariance matrix can significantly be reduced, the
search speed is not changed.

Example 4 Let

W
x̂
~LTDL~

1 1000:5

0 1

� �
4 0

0 0:05

� �
1 0

1000:5 1

� �

Then k2(W
x̂
)~1:2527|1010. After we apply a lower

triangular IGT to reduce the (2,1) entry of L, the new
covariance matrix becomes

W
ẑ
~LTDL~

1 0:5

0 1

� �
4 0

0 0:05

� �
1 0

0:5 1

� �

Then, k2(W
ẑ
)~80:5071, much smaller than the original

one. But the search speed will not be changed by the
reduction according to Theorem 1.

The condition number of the covariance matrix does
not change under permutations. But permutations can
change the search speed significantly. This shows again
that the condition number is not a good indication of the
search speed. We use an example to illustrate this.

Example 5 Let W
x̂
~LDLT~diag(1,4,16), where L5I

and D~Wx̂, and let x̂~½0:4,0:8,1:6�T. The search results
are given in the first block column of Table 4 and the ILS
solution is x̂~½0,1,2�T. Suppose we permute W

x̂
such

that W
ẑ
~PTW

x̂
P~diag(16,4,1). Then W

ẑ
~LDLT, where

L5I and D~W
ẑ
. The search results for the permuted one

are given in the second block column of Table 4
and the solution x̂~P½2,1,0�T~½0,1,2�. Although
k2(W

x̂
)k2(W

ẑ
), the search speed for the permuted pro-

blem is much more efficient than that for the original one.
Note that the order of diagonal entries of the D-factor of
W

ẑ
is exactly what a reduction process should pursue, see

objective (ii) in the section on ‘Reduction and search’. In
the section on ‘Numerical experiments’, we will use more
general examples to show that proper permutations of the
covariance matrix without doing any decorrelation can
improve the search efficiency.

A new reduction algorithm
In this section we would like to propose a new reduction
algorithm which is more efficient and numerically stable
than the reduction algorithms used in LAMBDA and
MLAMBDA. We showed before that except the sub-
diagonal entries of L, the other lower triangular entries
do not need to be reduced in theory. Thus we could
design an algorithm which does not reduce the entries of
L below the subdiagonal entries. However, it is possible
that some of those entries may become too big after a
sequence of size reduction for the subdiagonal entries.
This may cause a numerical stability problem. For the
sake of numerical stability, therefore, after we reduce
lkz1,k, we also reduce the entries lkz2,k,…,ln,k by IGTs.
If we do not reduce the former, we do not reduce the
latter either. Thus the first property of the LLL reduc-
tion given in inequality (6) may not hold for all i.j,
while the second property holds for all j. Owing to this,
our new reduction algorithm will be referred to as
PReduction (where P stands for ‘partial’).

Now we describe the key steps of PReduction. Like
the reduction algorithm used in MLAMBDA (called
MReduction), for computational efficiency, we first
compute the LTDL factorisation with minimum sym-
metric pivoting (see Algorithm 3?1 in [4]). This permu-
tation sorts the conditional variances to pursue the
objective (5). Then the algorithm works with columns
of L and D from the right to the left. At column k, it
computes the new value of lkz,k as if an IGT were applied
to reduce lkz1,k. Using this new value we compute
-dkz1 (see equation (12)). If -dkz1§dkz1 holds, then
permuting pair (k,kz1) will not help strive for order (5),

Table 4 Search results for Example 5

x1 x2 x3 z1 z2 z3

0 1 2 2 1 0
… 0 2 … … …
… 1 1
… 1 3
… 1 0
… … …

Borno et al. On ‘decorrelation’ in solving ILS problems

Survey Review 2014 VOL 46 NO 33444



therefore the algorithm moves to column k21 without
actually applying any IGT; otherwise it first applies IGTs
to make |lik|#1/2 for i5kz1,…,n, then it permutes pair
(k,kz1) and moves back to column kz1. In the
reduction algorithm used in LAMBDA (to be referred
to as LAMBDA Reduction) when a permutation occurs
at column k, the algorithm goes back to the initial
position k5n21.

We now present the complete new reduction algo-
rithm:

Algorithm 3. (PReduction). Given the covariance matrix
W

x̂
and real-valued LS estimate x̂, this algorithm com-

putes a unimodular matrix Z and the LTDL factorisa-
tion W

ẑ
~ZTW

ẑ
Z~LTDL, which is obtained from the

LTDL factorisation of W
ẑ

by updating. This algorithm
also computes ẑ~ZT x̂, which overwrites x̂.

function: ½Z,L,D, x̂�~PReduction(W
x̂
, x̂)

Compute the LTDL factorisation of W
x̂

with
symmetric pivoting

PTW
x̂
P~LTDL

x̂~PT̂x

Z5P

k5n21

while k.0

l~lkz1,k{tlkz1,krlkz1,k,kz1

-dkz1~dkzl2dkz1

if -dkz1~dkz1

if |lkz1,k|.1/2

for i5kz1:n

//See Alg. 1

½L,̂x,Z�~Gauss(L,i,k, x̂,Z)

end

end

//See Alg. 2

½L,D, x̂,Z�~Permute(L,D,k, -dkz1, x̂,Z)

if k,n21

k5kz1

end

else

k5k21

end

end

The structure of PReduction is similar to that of
LAMBDA Reduction. But the former can be much
more efficient as it uses the symmetric pivoting strategy
in computing the LTDL factorisation and does less size
reductions.

PReduction is more numerically stable than
MReduction, because, unlike the latter, the former does
size reduction for the remaining entries of the column in
L immediately after it does size reduction for a
subdiagonal entry of L, avoiding quick growth of the
off-diagonal entries of L in the reduction process.

The main difference between PReduction and
LAMBDA Reduction is that the latter does more size
reduction for the entries below the subdiagonal entries
of L. Therefore, it is very likely that there is no big
difference between the diagonal of D obtained by the
two reduction algorithms. The structure of MReduction
is not quite similar to that of LAMBDA Reduction. But
both do the LLL reduction, so the difference between
the diagonal of D obtained by the two algorithms is not
expected to be large. Thus these three reduction
algorithms should usually have more of less the same

effect on the efficiency of the search process. This is
confirmed in our numerical tests.

Numerical experiments
To compare Algorithm PReduction given in the previous
section with the LAMBDA reduction algorithm and the
MLAMBDA reduction algorithm (MReduction) in
terms of computational efficiency and numerical stability,
in this section, we give some numerical test results. We
will also give test results to show the three reduction
algorithms have almost the same effect on the efficiency
of the search process. The routine for the LAMBDA
reduction algorithm is from the LAMBDA package
available from TU Delft web site. MLAMBDA’s search
routine was used for the search process.

We use the CPU running time as a measure of
computational efficiency and the relative backward error
as a measure of numerical stability. For the concepts of
backward error and numerical stability, see [7]. Given
W

x̂
, a reduction algorithm computes the factorisation

ZTW
x̂
Z~LTDL:

The relative backward error is

RBE~
W

x̂
{Z{T

c LT
c DcLcZ{1

c

�� ��
2

W
x̂

�� ��
2

where Zc, Lc and Dc are the computed versions of Z, L
and D, respectively. In our computations when we

computed Z{1
c we used the fact that Z{1

ij ~Izmeie
T
j (cf.

(8)) and P{1
k,kz1~Pk,kz1 (cf. equation (10)).

All our computations were performed in Matlab 7?11
on a Linux 2?6, 1?86 GHz machine.

Setup and simulation results
We performed simulations for four different cases
(Cases 1, 2 and 3 were used in [4]).

N Case 1: W
x̂
~UDUT, U is a random orthogonal

matrix obtained by the QR factorisation of a random
matrix generated by randn(n,n), D5diag(di), where
d1~2{k=2, dn~2k=2, other diagonal elements of D are
randomly distributed between d1 and dn. We took
n520 and k55, 6,…, n. The range of the condition
number k2 W

x̂


 �
is from 25 to 220.

N Case 2: W
x̂
~LTDL, where L is a unit lower

triangular matrix with each lij (for i.j) being a
pseudorandom number drawn from the standard
normal distribution and generated by the Matlab
command randn, D5diag(di) with each di being a
pseudorandom number drawn from the standard
uniform distribution on the open interval (0,1) and
generated by Matlab command rand, and x̂~
100�randn(n,1).

N Case 3: W
x̂
~LTDL, where L is generated in the same

way as in Case 1

D~diag 200,200,200,0:1,0:1,:::,0:1ð Þ

and x̂ is generated in the same way as in Case 1.

N Case 4: We constructed the linear model y5Axzv,
where A5randn(n, n), x~ 100�randn(n,1)½ � and
v~0:011=2 � randn(n,1). The problem we intend to
solve is the ILS problem in the standard form:
minx[Zn y{Axk k2

2. To solve it, we transformed it into
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the form of (1), see the second paragraph of the
section on ‘Reduction and search’.

N Case 5: A set of real GPS data. It has 50 instances and
the dimension of the integer ambiguity vector in each
instance is 18. The data was provided to us by Dr
Yang Gao of The University of Calgary.

Effect of permutations on the search speed
In Example 5, we showed that a proper permutation of
the covariance matrix can improve the search speed.
Following a suggestion from a reviewer, here we use Case
1 to show that the minimum symmetric pivoting strategy
incorporated in the LTDL factorisation can improve the
search efficiency. The purpose is to show that correla-
tion coefficients or condition numbers should not be
used as measures of effectiveness of reduction. In our
numerical tests, we first computed the LTDL factorisa-
tion without and with minimum symmetric pivoting,
respectively, and then applied the search routine to find
the ILS solution. So no decorrelation or size reduction
was involved. In our test, we took dimensions n55,
6,…, 40 and performed 40 runs for each n. The test
result was given in Fig. 3, which indicates that the
search efficiency can increase up to about five times by
using this permutation strategy.

Comparison of the reduction algorithms
We use Cases 1–5 to give comparisons of the three
different reduction algorithms. For Cases 1, 2 and 4, we
took dimensions n55, 6,…, 40 and performed 40 runs
for each n. For Case 3, we performed 40 runs for each k.
For Case 5, we performed the tests on 50 different
instances. For each case we give three plots, correspond-
ing to the average reduction time (s), the average search
time (s), and the average relative backward error; see
Figs. 4–8.

From the simulation results for Cases 1–4, we observe
that new reduction algorithm PReduction is faster than
both LAMBDA Reduction and MReduction for all
cases. Usually, the improvement becomes more signifi-
cant when the dimension n increases. For example, in
Case 3, PReduction has about the same running time as
MReduction and LAMBDA reduction when n55, but is
almost 10 times faster when n540. In Case 1, even when
n55, PReduction is slightly faster than MReduction and
more than 6 times faster than LAMBDA’s reduc-
tion algorithm. Except in Case 4 for n533,35, we also

observe that the three different reduction algorithms
have almost the same effect on the efficiency of the
search process (the three curves for the search time in the
plots often coincide). This confirms what we argued at
the end of the previous section. For the exceptional
situations we will give an explanation later.

In Case 5, we observe that PReduction is about 20%
faster then MLAMBDA and is about four times faster
than LAMBDA’s reduction. Consider that the reduction
time is comparable to the search time in this case, the
increase of the reduction efficiency is very helpful to
improve the overall efficiency.

From the simulation results, we also observe that
PReduction is usually more numerically stable than
MReduction and LAMBDA Reduction (to less extent

4 Case 1

3 The effect of permutations
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and occasions). From the third plot of Fig. 7, we see
that MReduction can be much worse than PReduction
and LAMBDA Reduction in terms of stability. The
reason is that IGTs for reducing the entries below the
subdiagonal of L in MReduction were deferred to
the last step to make the algorithm more efficient, but
this can result in large off-diagonal entries in L and
consequently large entries in Z, which may lead to big
rounding errors. As we said in the previous section,
such a problem is avoided in PReduction. The rea-
son that PReduction can be much more stable than
LAMBDA Reduction (see the third plot of Fig. 6) is
probably that the former involves less computations.

For the real data (see Fig. 8), the three algorithms’
stability is more or less the same.

Now we can explain the spikes in the second plot of
Fig. 7. Owing to the numerical stability problem, the
transformed ILS problem after MReduction is applied
has large rounding errors in each of the instances which
produce two large spikes and the resulted ILS solution is
not identical to the ILS solution obtained by using
PReduction or LAMBDA Reduction in one of the 40
runs. Here we would like to point out that the MILES
package [5], which solves a mixed ILS problem in the
standard form, uses a reduction algorithm which is
different from MReduction and has no such numerical
stability problem.

6 Case 35 Case 2
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Summary
We have shown that there are two misconceptions about
the reduction or decorrelation process in solving ILS
problems by discrete search in the GNSS literature. The
first is that the reduction process should decorrelate the
ambiguities as much as possible. The second miscon-
ception is that the reduction process should reduce the
condition number of the covariance matrix. We showed
by theoretical arguments and numerical examples that
both are not right objectives a reduction process should
try to achieve. The right objective is to pursue the
order of the diagonal entries of D given in order (5).
The new understanding on the role of decorrelation in

the reduction process led to PReduction, a reduc-
tion algorithm. The numerical test results indicate that
PReduction is more computationally efficient than
LAMBDA’s reduction algorithm and MLAMBDA’s
reduction algorithm (to less extent) and is usually
more numerically stable than MLAMBDA’s reduction
algorithm and LAMBDA’s reduction algorithm (to
less extent). For real GPS data, we found that the
three reduction algorithms have more or less the same
stability. The new version of the Matlab package
MLAMBDA has used the new reduction algorithm
presented in this paper. The package can be down-
loaded from http://www.cs.mcgill.ca/~chang/software.
php.

8 Case 5
7 Case 4
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