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Abstract Kinematic mapping is used for preliminary development of an algorithm
for the approximate synthesis of planar four-bar mechanisms for rigid
body guidance. Both dyad type and dimensions are determined. Planar
mechanism coupler motions are represented as the curves of intersection
of a pair of quadric constraint surfaces, one for each of two dyads. The
problem reduces to identifying the two best constraint surfaces in the
pencil of quadrics containing the curve. The overdetermined synthesis
equations are linear in the unknown surface shape coefficients, and their
products. Non-trivial solutions exist only in the nullspace of the coeffi-
cient matrix. While the algorithm remains incomplete, results presented
herein are encouraging.
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1. Introduction
The kinematic synthesis of robot mechanical systems has been the

focus of a significant volume of research; in particular, robots whose
mechanical systems are parallel kinematic chains. For example Shirkho-
daie and Soni, 1987 use a reasonably straightforward Cartesian approach
for kinematic synthesis of planar parallel robots with three degrees-of-
freedom (DOF). Murray and Pierrot, 1998 present an algebraic algo-
rithm, based on quaternions, for synthesis of planar three-legged plat-
forms given n-positions. We intend to develop an n-pose synthesis algo-
rithm for both dyad type and dimensions based on the geometry of the
kinematic image of the desired coupler positions and orientations. But,



as with many things kinematic, while the proposed concept is elegantly
simple, the devil is in the details.

2. Kinematic Mapping
Kinematic mapping was introduced

independently by Blaschke, 1911, and
Grünwald, 1911. One can consider
the relative displacement of two rigid-
bodies in the plane as the displace-
ment of a Cartesian reference coordi-
nate frame E attached to one of the
bodies with respect to a Cartesian ref-
erence coordinate frame Σ attached to
the other. Without loss of generality,
Σ may be considered fixed with E free
to move, as is the case with the four-
bar mechanism illustrated by Figure 1. Figure 1. Planar RRRP linkage.

The homogeneous coordinates of points represented in E are given by
the ratios (x : y : z). Those of the same points represented in Σ are
given by the ratios (X : Y : Z). The position of a point (X : Y : Z) in
E in terms of the basis of Σ can be expressed compactly as

[
X
Y
Z

]
=

[
cos ϕ − sin ϕ a
sin ϕ cos ϕ b

0 0 1

][
x
y
z

]
, (1)

where the pair (a, b) are the (X/Z, Y/Z) Cartesian coordinates of the
origin of E expressed in Σ, and ϕ is the orientation of E relative to Σ,
respectively.

The essential idea of kinematic mapping is to map the three homo-
geneous coordinates of the pole of a planar displacement, in terms of
(a, b, ϕ), to the points of a three dimensional projective image space.
The image space coordinates are defined as:

X1 = a sin (ϕ/2) − b cos (ϕ/2); X3 = 2 sin (ϕ/2)

X2 = a cos (ϕ/2) + b sin (ϕ/2); X4 = 2 cos (ϕ/2). (2)

The mapping is injective, not bijective: there is at most one pre-image
for each image point. Any image point on the real line l, defined by the
intersection of the coordinate planes X3 = X4 = 0, has no pre-image and
therefore does not correspond to a real displacement of E. See Bottema
and Roth, 1979, for a detailed analysis of the geometry of the image
space.



To be practical, we can remove the one parameter family of image
points for coupler orientations of ϕ = π, and normalize the image space
coordinates by setting X4 = 1. Conceptually, this implies dividing the
Xi by X4 = 2 cos (ϕ/2) giving

X1 =
1

2
(a tan (ϕ/2) − b) ; X3 = tan (ϕ/2)

X2 =
1

2
(a + b tan (ϕ/2)) ; X4 = 1. (3)

Since each distinct displacement described by (a, b, ϕ) has a corre-
sponding unique image point, the inverse mapping can be obtained from
Eqs. (3): for a given point of the image space, the displacement param-
eters are

tan (ϕ/2) = X3,

a = 2(X1X3 + X2)/(X2
3 + 1),

b = 2(X2X3 − X1)/(X2
3 + 1). (4)

By virtue of the relationships expressed in Eqs. (3), the transformation
matrix from Eq. (1) may be expressed in terms of the homogeneous
coordinates of the image space. After setting z = 1, which is done
because no practical coupler will have a point at infinity, one obtains a
linear transformation to express a displacement of E with respect to Σ
in terms of the coordinates of the image point:[

X
Y
Z

]
=

[
1 − X2

3 −2X3 2(X1X3 + X2)
2X3 1 − X2

3 2(X2X3 − X1)
0 0 X2

3 + 1

][
x
y
1

]
. (5)

2.1 Planar Constraint Equations
Corresponding to the kinematic constraints imposed by RR- and PR-

dyads are quadric constraint surfaces in the image space. A general
equation is obtained when (X : Y : Z) from Eqs. (5) are substituted into
the general equation of a circle, the form of the most general constraint,
Hayes, et al., 2004:

K0(X2 + Y 2) + 2K1XZ + 2K2Y Z + K3Z
2 = 0. (6)

The result is that the constraint surfaces corresponding to RR, and PR-
dyads can be represented by one equation (see Hayes, et al., 2004, for
how to include RP - and PP -dyads as well). After re-arranging in terms
of the constraint surface shape parameters K0, K1, K2, K3, x, and y,
treating the image space coordinates X1, X2, and X3 as constants yields:[

1
4
(X2

3 +1)x2+(X2 − X1X3)x+ 1
4
(X2

3 +1)y2 − (X1+X2X3)y+X2
2 +X2

1

]
K0+[

1
2
(1 − X2

3 )x − X3y+X1X3+X2

]
K1+

[
X3x+ 1

2
(1 − X2

3 )y − X1+X2X3

]
K2+

1
4
(X2

3 + 1)K3 = 0. (7)



For a particular dyad the associated [K0 : K1 : K2 : K3], along with
the design values of the coordinates of the coupler attachment point
(x, y), expressed in reference frame E, are substituted into Eq. (7) re-
vealing the image space constraint surface for the given dyad. The Ki

in Eqs. (6) and (7) depend on the constraints imposed by the dyad.
For RR-dyads K0 = 1 and the surface is a hyperboloid of one sheet

that intersects planes parallel to X3 = 0 in circles, Hayes and Husty,
2003. The Ki are termed circular coefficients and are defined as:

[K0 : K1 : K2 : K3] = [1 : −Xc : −Yc : (K2
1 + K2

2 − r2)], (8)

where the ungrounded R-pair in an RR-dyad is constrained to move on
a circle of constant radius, r, and fixed centre coordinates in Σ, (Xc, Yc).

Linear constraints result when PR-dyads are employed. In this case
K0 = 0 and the constraint surface is an hyperbolic paraboloid with one
regulus ruled by skew lines that are all parallel to the plane X3 = 0,
Hayes and Husty, 2003. The linear coefficients are defined as

[K0 : K1 : K2 : K3] = [0 : 1
2L1 : 1

2L2 : L3], (9)

where the Li are line coordinates obtained by Grassmann expansion of
the determinant of any two distinct points on the line, Klein, 1939. We
obtain

[K0 : K1 : K2 : K3] = [0 : −1

2
sin ϑΣ :

1

2
cos ϑΣ : FX/Σ sin ϑΣ − FY/Σ cos ϑΣ], (10)

where ϑΣ is the angle the direction of translation makes with respect
to the X-axis, expressed in Σ (see Figure 1), FX/Σ, FY/Σ, represent the
homogeneous coordinates (X : Y : 1), expressed in reference frame Σ, of
a point on the line that is fixed relative to Σ.

3. Singular Value Decomposition
Singular value decomposition (SVD) decomposes any given m × n

matrix C into the product of three matrix factors (see Goulb and Van
Loan, 1996, for example) such that Cm×n=Um×mSm×nVT

n×n, where U
and V are orthogonal (UTU = Im and VTV = In), S is an upper-
diagonal matrix whose diagonal elements are the singular values of C
arranged in descending order (singular values are lower bounded by 0).

SVD explicitly constructs orthonormal bases spanning the nullspace
and the range of a matrix. This has very appealing applications to any
set of linear equations (or equations that may be treated as linear in the
unknowns) of the form Ck = 0. In fact, if Cm×n is not of full column
rank, then the last n − rank(C) columns of V span the nullspace of
C and any of these columns is a non-trivial solution of Ck = 0. For
example, if Cm×n has rank n−1, then the nth column of V is a solution.



4. Combining Type and Dimension Synthesis
In Hayes and Zsombor-Murray, 2002, it was shown that kinematic

mapping can be used for exact dimension synthesis for rigid body guid-
ance by solving the resulting five equations generated by Eq. (7) assum-
ing a dyad type, i.e., assigning a value to K0. By solving the system of
equations for the shape parameters K1, K2, K3, x, and y all in terms
of K0, one can simultaneously perform type and dimension synthesis,
see Hayes and Zsombor-Murray, 2004. If K0 is unspecified, Eq. (7) can
be used to generate the homogeneous equations Ck = 0. The product
Ck is linear in the products of Ki, x, and y. Examining Eq. (7), the
corresponding vector k is:

[
K0 K1 K2 K3 K0x K0y K0x

2 K0y
2 K1x K1y K2x K2y

]T
.

It is well known that, in general, nine non-coplanar points in space
define a quadric. However, if we allow K0 to be variable (not set
a priori to either 1 or 0), then it would appear that 6 points will
determine one, possibly more, image space constraint quadrics. But,
the coefficient matrix has 12 columns, suggesting that the model does
not fit the physics. Hence, an exploratory experiment was devised.

Figure 2. Image space constraint curve.

Table 1. Generating mechanism shape parameters.

Parameter PR-dyad RR-dyad

K0 0 1
K1 -1 -2
K2 1 0
K3 0 3
x 0 1
y 0 0

The PRRR mechanism illustrated in Figure 1 was used to generate
20 poses. The PR- and RR-dyad parameters for this linkage are listed
in Table 1, while the resulting 20 poses are listed, but only up to four
decimal places, in Table 2. The curve of intersection of the constraint
hyperbolic paraboloid and hyperboloid is easily parameterized and used
to generate the poses, see Hayes and Husty, 2003. Figure 2 shows the
intersection of the two generating surfaces. The properties of quartic
image space curves of this kind are well known, and discussed in Bottema
and Roth, 1979. They are the images of fourth order coupler curves.



The coefficient matrix C, whose
elements are all functions of the
image space coordinates corre-
sponding to this set of poses is
20 × 12. Careful examination of
Eq. (7) reveals several of the Xi

terms are identical. For example
the products K0x

2, K0y
2, and K3

all share 1/4(X2
3 + 1) as a coeffi-

cient. An important outcome is
that rank(C) ≤ 8, here rank(C) =
6. The resulting nullspace ba-
sis vectors include linear combina-
tions that correspond to the gen-
erating dyads. But, there is no ob-
vious way to determine the opti-
mal linear combinations in a way
that presents a computational ad-
vantage over Cartesian-based nu-
merical methods.

Table 2. The 20 generated poses.

a b ϕ (deg.)

1.0956 1.0956 -5.7248
1.1005 1.1005 -6.0256
1.1058 1.1058 -6.3597
1.1117 1.1117 -6.7329
1.1184 1.1184 -7.1527
1.1259 1.1259 -7.6281
1.1344 1.1344 -8.1712
1.1441 1.1441 -8.7974
1.1554 1.1554 -9.5273
1.1687 1.1687 -10.3889
1.1844 1.1844 -11.4212
1.2034 1.2034 -12.6804
1.2268 1.2268 -14.2500
1.2563 1.2563 -16.2602
1.2949 1.2949 -18.9246
1.3474 1.3474 -22.6199
1.4229 1.4229 -28.0725
1.5403 1.5403 -36.8699
1.7403 1.7403 -53.1301
2.0000 2.0000 -90.0000

We are looking for the two dyads that best generate the desired poses.
As long as we can identify all surface shape parameters, we can add
certain columns in C to reduce its nullity, but retain its rank. Thus we
reduce the nullity of C to 1, but in two different ways. Two different
column combinations lead to SVD exactly identifying the generating
PR- and RR-dyads. We start with a new 20 × 8 coefficient matrix, C,
obtained by collecting all like coefficients in Eq. (7):

C1 =X2
1 +X2

2 C3 =X2X3−X1 C5 =−(X1+X2X3) C7 = 1
2
(1−X2

3 )
C2 =X2+(X1X3) C4 =X2−(X1X3) C6 = 1

4
(1+X2

3 ) C8 = X3
(11)

while the corresponding vector k becomes a new 8 × 1 vector κ:[
K0 K1 K2 K0x K0y (K0(x

2+y2)+K3) (K1x+K2y) (K2x−K1y)
]T

. (12)

The 20 × 8 coefficient matrix C can be altered by strategically com-
bining columns yielding a 20×7 coefficient matrix which still has rank 6.
When different columns are added, the resulting nullspace vector either
represents the generating PR-, or RR-dyad. In turn, the vector elements
in κ corresponding to the added terms in Eq. (7) are transformed into
a 7 × 1 vector, κ′. But, the combined κ′

i loses its utility for parameter
identification.

To extract the PR-dyad columns 4 and 5 of C are added. This can be
done without affecting the system because K0 = 0. The V matrix factor



from the SVD of the resulting coefficient matrix yields the solution. The
corresponding elements of κ′ together with the 7th column in V are listed
in the first two columns of Table 3.

The RR-dyad is extracted by adding columns 2 and 3 of C. This can
be done when (X1 −X2X3)/(X1X3 + X2) has the same scalar value for
every X1, X2, and X3 in the data set. This happens only when the
PR-dyad design parameters contain K3 = x = y = 0. This condition
makes the constraint surface curve of intersection symmetric in X1 and
X2. An image space curve with rank(C)=6, but with PR-dyad design
parameters K3 �= x �= y �= 0, can be transformed to one with symmetry
in X1 and X2. The corresponding elements of κ′ together with the 7th,
and the normalized 7th column in V are listed in the last three columns
of Table 3. The new elements of κ′ resulting from adding columns are
indicated by K45 and K23, respectively.

Table 3. Nullspace vectors obtained by adding different columns of C.

Column 4+5 Value Column 2+3 Value Value/K0

K0 0 K0 -0.2085 1
K1 0.7071 K23 0.2085 -1
K2 -0.7071 K0x -0.2085 1
K45 0 K0y 0 0

K0(x
2 + y2) + K3 0 K0(x

2 + y2) + K3 -0.8340 4
K1x + K2y 0 K1x + K2y 0.4170 -2
K2x − K1y 0 K2x − K1y 0 0

Recall that scalar multiples of a triple of line coordinates represent
one and the same line. In particular, the line coordinates for the PR-
dyad line constraint that passes through the origin are λ[−1 : 1 : 0].
Note that SVD has determined that K0 = 0, the remaining Ki therefore
determine a PR-dyad. In this case, λ = −.7071.

For the RR-dyad note that K0 �= 0, indicating other than a PR-dyad.
The elements of κ′ are normalized leading to the last column in Table 3.
From these values we see that the Cartesian coordinates, expressed in
the moving frame E, of the point constrained to move on a fixed circle
are (x, y) = (1, 0). Knowing these two coordinates, and substituting
them into the last two elements of κ′, it is seen that K1 = −2 and
K2 = 0, which concurs with the generating RR-dyad.

5. Conclusions
In this paper we have presented preliminary results that will be used

in the development of an algorithm combining type and dimensional syn-
thesis of planar mechanisms for n-pose rigid body guidance. While the



results are preliminary, they nonetheless suggest the proposed approach
of using the nullspace of the synthesis equations can form the backbone
for an algorithm that combines both type and dimensional synthesis for
the n-pose rigid body guidance problem. We can now identify gener-
ating mechanisms when rank(C)=5 (PRRP ’s) and certain rank(C)=6
(PRRR’s). For general PRRR’s we must transform the given image
space curve into one symmetric in X1 and X2. We have yet to estab-
lish the conditions on the columns of C that will enable synthesis when
rank(C)=7 (RRRR’s) and rank(C)=8. The last case is the most inter-
esting as it requires some form of error minimization because no planar
four-bar linkage can yield rank(C)=8.
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