
Model-Driven Development of Game AI: Research Plan

Christopher W.A. Dragert
McGill University

Montreal, QC, H3A 2A7, Canada
christopher.dragert@mail.mcgill.ca

Abstract
The field of game AI is largely industry driven, lacking
an agreed upon formalism for AI representation. Ad-
hoc scripting languages, simple finite state machines,
behaviour trees, and planners are employed, but not in
a fashion adhering to any standard. As a result, reuse is
sparse between games and formal analysis techniques
are undeveloped. As research for a Ph.D. thesis, we
propose to show that a layered Statechart-based AI is
a suitable formalism for Game AI, enabling the use of
model-driven development techniques such as reuse and
high-level analysis including model-checking.
The fundamentally modular nature of this approach
leads naturally to reuse as a fundamental component
of the design process. Supported by a clearly defined
formalism, useful behavioural analyses become possi-
ble, such as testing reactions to various inputs at design
time. We also explore transformations at the modelling
level to enable procedural generation, allowing rapid
deployment of varying AIs. Additionally, such a model
allows for the generation of efficient code that can be di-
rectly inserted into games. Tool support for reuse, gen-
eration, and analysis will be developed, then employed
in creating an industrial scale AI, proving that this for-
malism is appropriate for industrial use.

Game AI typically focuses on the control of non-player char-
acters (NPCs) such that they exhibit the behaviours required
to fill their role within the game context. Most frequently
each NPC is controlled by a simple reactive agent that trans-
lates input from the game state into NPC actions. The AI
is typically developed for a single game, and portability of
implemented AI is largely non-existent. This type of nar-
row game-by-game focus is a source of consternation for
game developers. At GDC 2011, well known AI developer
Kevin Dill argued this point, saying that the lack of be-
havioural modularity was stymying the development of high
quality AI (Schwab, Brian and Mark, Dave and Dill, Kevin,
and Lewis, Mike and Evans, Richard 2011). With no stan-
dard, there is no agreed-upon format for behaviour, and so
there is no clear path towards the creation of open-source be-
haviour resources like there are for 3d models, animations,
and so on. Development time is spent again and again craft-
ing the same basic behaviours. A model-driven development

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approach would directly address this, allowing for modu-
larity through component reuse, and brings along additional
benefits by permitting high level analysis including model-
checking, and code generation.

We believe the fundamental cause for the absence of mod-
ularity and reuse in game AI is the lack of a formalism
suitable for the application of software engineering tech-
niques. Scripting approaches are very context specific and
lack a high-level model that would form the framework for
higher-level reasoning. Games that do employ a formalism
tend to use finite state machines (FSMs), which tend to be-
come overly complex, or behaviour trees, which intertwine
behaviours inhibiting any push towards modularization.

An appealing alternative is offered by Kienzle et al.
(Kienzle, Denault, and Vangheluwe 2007), who introduce
an AI based on an abstract layering of Statecharts. Here,
each Statechart acts as a modular component implement-
ing a single behavioural concern, such as sensing the game-
state, memorizing data, deciding upon high-level goals, and
so on. Unfortunately this formalism lacks exposure and is
not currently employed by industry, but we believe that this
formalism is appropriate for exploring model-driven devel-
opment of game AI, and intend to demonstrate its suitability
for game AI through the development of a large scale AI.

The fundamental goal of this research is to bring model-
driven development to game AI through the use of layered
Statechart-based AI. We will show how such an approach
leads easily to reuse by allowing for modular design. Stat-
echart models will allow us to perform useful behavioural
analyses, allowing game developers to test and verify their
creations at design time. To show appropriateness to the
domain, we will explore interesting transformations at the
modelling level that will permit procedural generation of
varying AIs. Implementation will take the form of SkyAI, a
tool to manage model-driven development of game AI. The
remainder of this report will address each of these aspects in
turn.

Modular Reuse
Development of computer games would benefit tremen-
dously from a standardized format for game AI. Behavioural
modules could then be reused across games, reducing de-
velopment time and effort, and freeing AI developers from
reimplementing basic functionalities. Open source modules

AIIDE 2012 Doctoral Consortium 
AAAI Technical Report WS-12-18 

14



Figure 1: A sample AI-module interface.

could be shared, enabling independent and nascent devel-
opers to download AI behaviours, streamlining develop-
ment. By modularizing the logic that underlies a specific
behaviour, such as fleeing from an enemy or picking up an
item, future AIs can be constructed by integrating existing
behavioural modules.

This type of reuse approach places specific demands on
the architecture. Monolithic structures become impractical,
as they lack clear behavioural separation. For instance, de-
ciding if an NPC should flee should be thought of a differ-
ent behaviour than deciding how to flee, which in turn is a
different behaviour than deciding where to flee, and so on.
As well, nothing in these behaviours should refer to external
behaviours, meaning that none of the flee behaviours should
reference combat, for instance. Behaviour trees tend to be
monolithic, and often have cross-cutting concerns, making
them ill-suited to such an approach.

The layered Statechart-based AI approach clearly sug-
gests the Statechart as the reuse component. This approach
was first explored in (Dragert, Kienzle, and Verbrugge
2011). In that position paper, we investigated how State-
charts communicate and interact with each other. Primar-
ily, this is by generating events and broadcasting them, trig-
gering transitions in receiving Statecharts. However, the as-
sociated classes of the Statecharts can make synchronous
method calls between one another, creating a second type
of interaction. Defining an AI-module as a Statechart and its
associated class, the unit encapsulates both types of commu-
nication and led to the creation of an interface for AI mod-
ules, detailing how a given AI-module interacts with other
AI-modules. Furthermore, it proved possible to compose AI-
modules as a functional group with an interface identical in
form to the interface for a single module. A sample interface
is given in Fig. 1, showing how an enemy tracking module
communicates using input and output events, synchronous
calls, and also noting game imports and run-time parame-
ters.

We further investigated modular reuse by showing how
this work is applied in practice. In recently published work
(Dragert, Kienzle, and Verbrugge 2012a), we applied this
approach to reuse significant portions of the AI controlling
a tank to create a new AI controlling a squirrel. The two un-

related roles were selected deliberately, showing that even
unrelated NPCs have behavioural similarities. Several be-
haviours (such as pathfinding, sensing enemies, and fleeing)
were shared between the two NPCs, and thus we were able
to reuse 10 modules from the tank. The resulting squirrel
had a total of 19 modules, meaning less than half of the be-
haviours for the squirrel had to be newly coded. The inte-
gration process involved renaming events, redirecting syn-
chronous calls, and modifying run-time parameters.

As well, the modular approach simplifies porting between
games by listing game dependencies clearly in the mod-
ule interface. Some AI-modules, through their associated
classes, include classes from the game at-large, enabling
tasks such as examining specific properties of an in-game
object, or analyzing terrain. These modules can be ported by
working through and updating all game dependencies listed
in the interface. However, other AI-modules work purely
based on communication from other AI-modules and in-
clude nothing from the game. These we call game-agnostic
modules, and note that they can be freely reused between
games sharing an implementation language and AI structure.

Analysis
One significant advantage of model-driven development is
the ability to perform high-level analysis. For a computer
game AI, the appropriate level of abstraction is at the be-
haviour level as this is the same level as the design goals.
Most usefully, an analysis should be able to answer ques-
tions such as ‘can the NPC move?’, or ‘will the NPC en-
gage enemies?’. In model-driven development, these ques-
tions are treated as formal specifications, and could be en-
coded in Linear Temporal Logic (LTL) or Computational
Tree Logic (CTL). Then, a systematic analysis of the model
can verify that the model meets these specifications. We in-
tend, as a key part of this research, to create a comprehensive
approach to the analysis of a layered Statechart-based AI.

In the case of AI module reuse, specifying NPC behaviour
is problematic because the NPC behaviour is emergent. Each
NPC will behave based upon the combined behaviours of the
modules present, and there is no general ‘correct’ behaviour.
While it would be possible to verify individual modules (for
example, verifying that when a flee module receives a flee
event, a move event is eventually generated), in our expe-
rience AI modules are only a few states in size and such
verification would be of questionable value.

One approach might be to have specifications for each
module, and compose these as modules are composed. How-
ever, this runs the risk of unwieldy specifications, and it is
unclear how exactly these specifications would relate to de-
sign goals. A more appropriate approach might be to specify
a few basic behaviours for a constructed NPC that could be
verified, such as the ability to move or react to other players.

A potential technique for verification is what we call ca-
pability testing, which is a determination of the behaviours
the AI could possibly exhibit. At the modelling level, this
is a reachability analysis where we ask if certain transitions
are reachable given the events generated by the Statecharts
present. A typical property to verify would be to ensure that

15



an actuator in the system can act. Here, CTL seems appro-
priate as this could be encoded as EF (actuate), meaning
there exists a path where actuate eventually happens.

Verification of such specifications requires model-
checking, a complete exploration of the state-space of the
model. Model-checking of Statecharts was explored by
Schäfer et al. (Schäfer, Knapp, and Merz 2001), where they
created the tool HUGO that accepts a Statechart as in-
put and generates PROMELA code suitable for use with
the SPIN model-checker. UML collaborations are used as
specifications, which are transformed into Büchi automata
(never claims) accepted by SPIN. As a complicating factor,
our formalism allows synchronous message passing permit-
ting communication without events. The transformation in
HUGO explicitly assumes this is not the case, so extra work
will be required to generate PROMELA code. Other anal-
ysis methods, such as (Pap et al. 2001), seek to map out
the expected behaviour for all sets of input, addressing com-
pleteness and consistency of the model. This does not re-
quire a full exploration of the state-space and may provide
more timely analysis. It is unclear at this point how such
tests would be valuable in verifying behaviour.

This work will be evaluated through testing. First off, if
given a flawed AI (e.g., one that will never flee), and a re-
quirement that the AI should flee under certain conditions,
can our analysis identify the known error? In formulating
these questions, both liveness and safety conditions will be
tested for. If the AI is thought to be good and verifies as such,
does it in fact work correctly in the game, or are there im-
plementation concerns? Since the analysis is intended to be
a development aide, it must complete in a reasonable time,
and specification creation should not be overly complex.

Model-based Variation
Rapid prototyping and development of AI is an important
problem in the game AI domain. To facilitate this using the
layered Statechart formalism, we investigated how a single
AI could be used to generate new AIs. Our research (Dragert
et al. 2011) has explored the generation of new variations
of an AI by performing modifications at the model level.
This is well-suited for creating interesting populations of re-
curring characters, such as townspeople, basic enemies, and
wildlife, enriching the gameplay experience by giving vari-
ation and personality to existing AIs.

Starting with a Statechart-based layered AI, variations at
three level of abstraction are possible: parameter modifica-
tion; addition, removal, or swapping of Statecharts; and rule-
based transformation of Statecharts. The goal is the creation
of many different versions of a AI, each able to fill the origi-
nal role, but with variations adding flavour and life. Genera-
tion occurs by applying a subset of alterations to an existing
AI, while variation arises by using different subsets of al-
terations to generate each AI. Semantic correctness can be
ensured by using only safe transformations, or by allowing
any transformation but then culling unacceptable variations.

These three levels allow for a wide range of variation.
Parameter-based variations change simple properties of the
AI, for example, changing the threshold at which the AI en-
ters a low-health state, or switching the item that an NPC

collects. Adding and removing Statecharts allows for the in-
troduction or removal of behaviours, such as removing a flee
behaviour to get a brave AI, or adding in a low-morale mod-
ule that causes fleeing at additional times to get a cowardly
AI. As well, Statecharts can be swapped, meaning that be-
haviours can be replaced to get a different expression of the
same behaviour. As an example, a targeting module could be
replaced, changing the priority in which an NPC attacks en-
emies. Finally, modification of the Statechart itself through
a rules-based graph transformation fundamentally alters the
behaviour of a module. For instance, a reset behaviour can
be added to initialize a behaviour, new transitions can be
added to make the Statechart respond to different events, and
so on.

Implementation
Implementation will take a two-pronged approach. In order
to effectively explore the design and usage of a layered-
Statechart based AI, we need to have a large-scale reference
AI. With that in hand, the next step is to develop a tool to
manage the model-driven development process. Our tool is
called SkyAI, and is designed to manage layered Statechart-
based AIs and handle module reuse, along with model-level
analysis.

Case Study
Too often, academic research produces toy examples as
proof of concept, but these are ultimately unconvincing of
adaptability to a full scale implementation. By producing an
AI similar to state of the art industrial AIs, we would provide
convincing proof that a Statechart-based modular AI can be
the basis of a high-quality AI. As guidelines, we look to the
highly publicized and influential AI featured in Halo (Isla
2005). The Halo AI uses the behaviour tree formalism. Since
the AI starts with a small set of high level goals that eventu-
ally lead to low level actions, the structure can be imitated in
a modular fashion using our layered approach, yielding sim-
ilar functionality. Work on this is largely complete (Dragert,
Kienzle, and Verbrugge 2012b).

We were able to create an AI using a total of 49 AI-
modules that together replicates many of the behaviours in
the Halo AI. During this process, we discovered and de-
scribed several recurring Statechart patterns. Using the reuse
approach described above, we were able to easily reuse these
modules thereby reducing design efforts. These patterns rep-
resent a highly useful tool in the creation of future AIs, and
are a valuable contribution to the community.

The resulting AI represents, at the behaviour level, our
best attempt to replicate the Halo AI based upon various
presentations of the Halo. While this sacrifices accuracy, it
ensures our work can be used outside of any proprietary con-
text. One major drawback is that many of the attendant al-
gorithms, such as finding cover and pathfinding, were not
implemented in any meaningful way and thus the AI falls
short of being an actual implementation. This presents is-
sues with regards to verifying memory usage, for example.
Regardless, with the work complete at the modelling level,
it provides an excellent basis for research and testing into
various aspects of model-driven AI development.

16



The SkyAI Tool
As a tool to enable model-driven development of game AI,
SkyAI will be a major contribution of this research. The end
goal is to allow a user to grow a library of AI modules, and
build layered AIs by adding and connecting modules. Much
of the basic functionality of SkyAI has already been devel-
oped (Dragert, Kienzle, and Verbrugge 2012a). While the
tool itself is in a pre-alpha state, it already shows promise.

SkyAI uses an abstract representation of the AI module,
building each module from their source files with guidance
from the designer. Right now, only Statecharts represented
in SCXML and associated classes written in Java can be
processed, but the architecture supports later expansion to
different representations and languages. The module itself
is stored in an XML format, and managed along with the
source files by SkyAI.

As a support feature, SkyAI has a complete error and
warning system. A number of potential issues arise when
building a new AI through module reuse, primarily related
to connections between modules. These are classified as er-
rors if they will prevent the AI from compiling. An issue is
merely a warning if it is a potential source of behavioural er-
ror, but will not prevent the AI from functioning. These are
listed in the main display, similar to IDE warning systems
found in Visual Studio or Eclipse.

The end state of SkyAI with respect to this research is
to be a comprehensive implementation of the ideas in this
thesis. As an AI is being constructed, SkyAI will provide
model-level analysis to guide the designer. Once an AI is
completed, SkyAI will provide the ability to export an ef-
ficient optimized version for insertion into the target game.
This will accommodate event renaming and other modifi-
cations arising from module connection. Procedural gener-
ation of AI variations will be also be enabled through Sky
AI.

Conclusions
The proposed research seeks to apply model-driven develop-
ment practices to computer game AI. By using the Statechart
and associated class as the fundamental module of reuse, and
constructing AIs using the layered Statechart formalism, we
have already developed a reuse strategy for game AI, and
investigated procedural generation of varying AIs. We in-
tend to complete this work and show the value of the model-
driven approach by developing useful analysis that can guar-
antee correctness at the behavioural level. The overall via-
bility of the approach will be demonstrated by developing a
large scale AI suitable for industrial use, all within the tool
SkyAI that will enable AI-module reuse and analysis. On the
whole, this research provides a balanced, comprehensive ap-
proach to the exploration of model-driven development tech-
niques to game AI.

References
Dragert, C.; Kienzle, J.; Vangheluwe, H.; and Verbrugge,
C. 2011. Generating extras: Procedural AI with statecharts.
Technical Report SOCS-TR-2011.1.

Dragert, C.; Kienzle, J.; and Verbrugge, C. 2011. Toward
high-level reuse of Statechart-based AI in computer games.
In Proceeding of the 1st international workshop on Games
and software engineering, GAS ’11, 25–28.
Dragert, C.; Kienzle, J.; and Verbrugge, C. 2012a. Reusable
components for artifical intelligence in computer games. In
Proceeding of the 2nd international workshop on Games
and software engineering, 35–41.
Dragert, C.; Kienzle, J.; and Verbrugge, C. 2012b.
Statechart-based AI in practice. In The Eighth Annual AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment (to appear).
Isla, D. 2005. Managing complexity in the Halo 2 AI sys-
tem. In Proceedings of the Game Developers Conference.
Kienzle, J.; Denault, A.; and Vangheluwe, H. 2007. Model-
based design of computer-controlled game character behav-
ior. In MODELS, volume 4735 of LNCS. Springer. 650–665.
Pap, Z.; Majzik, I.; Pataricza, A.; and Szegi, A. 2001. Com-
pleteness and consistency analysis of UML statechart spec-
ifications. In Proc. IEEE Design and Diagnostics of Elec-
tronic Circuits and Systems Workshop (DDECS’2001, 83–
90.
Schäfer, T.; Knapp, A.; and Merz, S. 2001. Model checking
uml state machines and collaborations. Electronic Notes in
Theoretical Computer Science 55(3):357 – 369. Workshop
on Software Model Checking (in connection with CAV ’01).
Schwab, Brian and Mark, Dave and Dill, Kevin, and Lewis,
Mike and Evans, Richard. 2011. GDC: Turing tantrums: AI
developers rant. http://www.gdcvault.com/play/1014586/
Turing-Tantrums-AI-Developers-Rant.

17




