
Generation of Concurrency Control Code using
Discrete-Event Systems Theory

Christopher Dragert
School of Computing
Queen’s University

Kingston, Ontario, Canada

dragert@cs.queensu.ca

Juergen Dingel
School of Computing
Queen’s University

Kingston, Ontario, Canada

dingel@cs.queensu.ca

Karen Rudie
Dept. of Elec. & Comp. Engineering

Queen’s University
Kingston, Ontario, Canada

karen.rudie@queensu.ca

ABSTRACT
The development of controls for the execution of concurrent code
is non-trivial. We show how existing discrete-event system (DES)
theory can be successfully applied to this problem. From code
without concurrency controls and a specification of desired
behaviours, concurrency control code is generated. By applying
rigorously proven DES theory, we guarantee that the control
scheme is nonblocking (and thus free of both deadlock and
livelock) and minimally restrictive. Some conflicts between
specifications and source can be automatically resolved without
introducing new specifications. Moreover, the approach is
independent of specific programming or specification languages.
Two examples using Java are presented to illustrate the approach.
Additional applicable DES results are discussed as future work.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming.
D.2.2 [Design Tools and Techniques]: General.
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Specification Techniques.

General Terms
Design, Reliability, Verification.

Keywords
Discrete-Event Systems, Model-Driven Development, Automatic
Code Generation, Concurrency, Control Theory

1. INTRODUCTION
Concurrency is going mainstream. Leaders in the hard- and
software industries and in academia agree that in just a few years
even average programmers will have to be able to write
concurrent code effectively and efficiently [25,31]. Although
concurrent programming has been studied for over four decades,
current software development and programming language
technology has not yet succeeded in making the design and
implementation of correct concurrent code in everyday practice
an easy undertaking. At present, our ability to develop concurrent

code is still insufficient:

"I conjecture that most multithreaded-general purpose
applications are so full of concurrency bugs that—as multicore
architectures become commonplace—these bugs will begin to
show up as system failures" [22]

Two research directions have been pursued to address this
problem:

1) New programming models and programming language
abstractions: The goal is to conceive high-level concepts that
allow the benefits of concurrency to be reaped while keeping its
complexities in check. Seminal work by Dijkstra on semaphores
[11], by Hoare on monitors [17], and by Brinch Hansen on
languages [7] falls into this category; as does more recent work to
incorporate ideas from Hoare's CSP into Java [35] or to extend
Java's concurrency library [14].

2) Automatic generation of concurrency control code from
specifications: Rather than develop the concurrency control code
manually, the programmer instead specifies the desired
concurrent behaviour. Concurrent control code is then generated
automatically. An example for early work on this idea is based on
Habermann's path expressions [2], [8]. Similar work exists with
approaches differing in the kind of specification notations
supported and the guarantees that the generated code provides. A
brief survey will be given in Section 5.

While both research directions intend to facilitate development by
lifting the levels of abstraction, the second is more radical in that
the concurrency control code is automatically generated. The
realization of this vision could clearly benefit from the
development of new programming models and concepts.

This paper targets the automatic generation of control code and
thus falls under the second approach. The central distinguishing
feature of our work is the way in which the concurrency control
code is computed. To this end, we leverage well-established work
in the domain of control theory. More precisely, we employ
"supervisory control synthesis" which was first proposed by
Ramadge and Wonham [29] in order to facilitate the design of
discrete-event systems (DES). In short, this process works as
follows: From a system P generating events and a specification
describing allowed event sequences, a supervisor S is generated
such that the composition of P and S exhibits a "minimally
restrictive" subset of the allowed event sequences and is
nonblocking. We leverage this process by showing how the event-
generating system P can be constructed from code that is devoid

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGSOFT 2008/FSE-16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1…$5.00.

146

of concurrency controls, but contains user markup indicating
events relevant to the specifications. The supervisor generated is
then transformed into concurrency control code that enforces the
specification. The central features of the resulting approach are as
follows:

• Precision: Strong, precise, theoretically proven guarantees can
be given about the generated code (adherence to specification,
deadlock-freedom, and maximal permissiveness).
• Generality: Any notation allowing the specification of event
orderings can be used; moreover, the approach is programming
language independent in the sense that control code for any
language offering basic synchronization primitives can be
generated.
• Potential for extension: Many extensions to the DES
supervisory control problem have been developed. It is very likely
that many of these will be applicable in future work.

While results from DES control theory have already been used for
verification and analysis [38], to the best of our knowledge, this
paper is the first to suggest the use of supervisor synthesis for the
generation of concurrency control code.

The remainder of the paper is structured as follows: A brief
review of the most relevant parts of DES control theory and of
supervisor synthesis will be provided in Section 2. Our approach
will be described using a running example in Section 3. In Section
4 a more substantial case study is described which also discusses
the analysis of the generated Java code using the Java Pathfinder
model checker [20]. Section 5 reviews related work. Limitations,
future work, and conclusions are given in Section 6. Figures are
drawn using IDES [18], and DES operations are performed in
IDES and TCT [33].

2. DES Introduction
Discrete-event systems theory, as developed by Ramadge and
Wonham [29], is a time-independent language theory based upon
discrete event occurrences. Cassandras and LaFortune give an
excellent introduction to the field in [9]. Finite-state automata
(FSA) are used to model the system, called the plant G.
Transitions in G are events, and the generated language is referred
to as the behaviour of G.

A model is nonblocking if all states are reachable and can reach a
terminal state. Nonblocking is an important concept, since it
implies both deadlock-freeness and livelock-freeness.
Essentially, a nonblocking system is always capable of reaching a
final (or marked) state.

Each event is either controllable, meaning it can be disabled, or
uncontrollable, meaning it cannot or should not be prevented from
occurring. For example, “send message” is typically a
controllable event, while “message transmit fail” is an
uncontrollable event, since it cannot be prevented. A
specification, given as an FSA, gives the desired behaviour of the
plant, and is called the legal language E. A plant G is called
controllable with respect to a specification E if, for any string s
from the prefix closure of E, there are no uncontrollable events σ
that could be generated by G at the state reached by s such that sσ
would not be in the prefix closure of E. In other words, if
something cannot be prevented, it must be legal, or else the plant
is uncontrollable.

In supervisory control, a supervisor S (also an FSA) is introduced
to control the plant by enabling and disabling events based upon
the events that occur in the plant. Figure 1 shows the basic
relation between supervisor and plant. The decision to disable and
enable events at a given supervisory state is called a control
action, while the set of all control actions is called the control
policy.

The closed-loop system S/G given by the synchronous product of
S and G, recognizes the largest controllable subset of the legal
language. If E is controllable, the closed-loop system generates
exactly E; otherwise the largest controllable subset of E is
generated. Standard DES supervisor synthesis construction is
guaranteed to produce an S such that S/G is nonblocking and
minimally restrictive [29]. Events not appearing in the supervisor
because they are impossible once the supervisor is synchronized
with the plant will not appear in the control action.

Modular supervisory control, introduced in [34], allows for
multiple specifications and multiple supervisors to act
independently on a single plant. However, for the closed-loop
system to be nonblocking, the supervisors must be non-
conflicting, a property which is easily testing using DES tools.
Conflicting languages will posses at least one prefix that leads to
a marked state in each language, but while that prefix is in the
intersection, it does not lead to a marked state in the intersection
language and thus leads to blocking. The solution is to find the
intersection of the specifications. While the blocking is still
present, supervisor synthesis solves the problem this as it finds a
nonblocking supervisor to enforce the largest controllable subset
of the specifications.

3. PROCESS DESCRIPTION
Given source code without any concurrency control, and a set of
informal specifications, we want to generate concurrency control
code and weave it back into the original code with as much
automation as possible. The connection between abstract DES
theory and actual code is made through the identification of
relevant events in the code. Our process creates concurrency
control code such that the ordering of relevant events falls within
the specifications upon execution.

First, we instrument the code, providing events used to create
models of the code and construct formal specifications. Standard
DES operations are then used to generate a supervisor that
satisfies the specifications. The control scheme in the supervisor
acts as input for an algorithm that automatically generates
concurrency control code. Figure 2 diagrams the process. This
approach is designed with the intent to maximize automation.
Marking relevant events and formalizing specifications must be
done manually, but all other steps can be automated using a
variety of methods.

Supervisor

Plant

Event Control

Action

Figure 1. Supervisor-Plant Relation.

147

3.1 Process Steps
Our process to create and inject concurrency controls follows:

Input: Source code without concurrency control, and
specifications (at any level of formality) describing the desired
concurrent behavior of the program.
1. Build the set of relevant events. These are the set of software
events that affect the concurrent behavior of the software. (§3.3)
2. For each thread in the software, build an FSA that contains
transitions for each relevant event in the software, and introduces
necessary structure-preserving irrelevant events. (§3.4)
3. Build the specifications. Specifications must be expressed
formally in a format that can be used to automatically build a
DES Supervisor. (§3.5)
4. Use the supervisors from step 3 and the FSAs from step 4 to
build the closed-loop system. (§3.6)
5. Build concurrency control code that implements the control
scheme from the closed-loop system. Insert these into the given
source code. (§3.7)
Output: Source code with concurrency controls that enforce the
given specifications.

The following sections of the paper describe each step in detail.
Once again, we note that the description of our process is
programming language independent. An implementation would
solve concurrency problems in some specific language (e.g., Java,
C++, etc.). We have implemented some stages of the process, and
will comment on this in §3.8.

Figure 2. Process to create and inject concurrency controls
into source code (Automated steps are marked with an ‘a’).

3.2 Running Example Introduction
Our running example is a straightforward precedence problem. It
comprises five threads governed by four specifications as shown
in the precedence graph in Fig. 3. While all threads start together,
threads 2, 3, and 4 (T2, T3, and T4, resp.) must wait for thread 1
(T1) to finish before executing their code. Additionally, T4 must
wait for thread 5 (T5) to finish. Throughout this section, each step
in the process is illustrated using this example. Readers interested
in a more substantial example are referred to §4.

3.3 Creating the Event Set
To model code using DES, we must isolate events in the code that
are both discrete and instantaneous. We define a software event as
the instant between the completion of execution of one program
statement and the start of execution of the next. This is
instantaneous (by definition), and is also discrete, since the
completion of the execution acts as a clear demarcation.

Figure 3. Precedence graph for the running example.

Some events are relevant to concurrent control while most others
are not. For instance, the transition leading into the first statement
of a critical section of code is relevant, while accessing an
unshared variable is irrelevant. Let ES be the set of all software
events for a given piece of code. We define a set of relevant
events, ER, as the set of events necessary to specify the desired
concurrent behaviour. The set of irrelevant events, EI, is given by
EI = ES − ER, and is disjoint with ER.

Relevant events are noted in the code as event markings. These
event markings form the basis of the operations to transform the
problem into a suitable DES model. In addition, these markings
serve as targets for the insertion of concurrency controls.
Determining relevant events is part of the inherent complexity of
the problem. A developer writing concurrency controls must
decide where to place them. Our process is no different in that the
user must specify a set of relevant events.

There is a clear mapping from software events as defined to
transitions in a control-flow graph (CFG). An event in code has a
preceding and successive statement, which directly corresponds to
the transition between the same two nodes in the CFG. Figure 4
shows an example with a relevant event marking.

However, the mapping is not always easily inverted in the
presence of conditionals. Figure 5 shows code with an if-branch,
with event A occurring when the if-branch is not followed. With
no else-branch defined, there does not exist a location in the code
that corresponds solely to this path. We call this an implicit path.
An implicit path is a path in the CFG with no location in the code
that is unique to that path. A source code transformation can be

x = 5;
//event E
foo();

Figure 4. Relation between an event in the code and CFG.

148

employed to render the implicit paths explicit. In this example,
an else-branch can be added to make explicit the implicit path.

Each specification implies a set of relevant events, some of which
may appear in multiple specifications. A specification speaks
about the desired behaviour of the code, which is the effect of
interaction from one or more sections of code. Determining a
relevant event is done by pinpointing the place in the code where
control should be placed. As something that developers already
do, it is realistic to expect that developers can perform this task.

Example: The precedence problem presents a set of
specifications, from which the relevant events can be extracted.
T2, T3, and T4 all have conditions placed upon starting. Thus,
control needs to be placed at the very beginning of each of their
run methods. A relevant event is marked at the first line of code
for each of those threads. This is shown for T3 in Fig. 6. Threads
T2 and T4 are identical in structure and result. The same
specifications tell us that the end of T1 is relevant and should
have an event marking after the last line of code in the run
method. Similarly, the end of T5 is also marked as a relevant
event. In total, there are 5 relevant events: T1-finish, T2-start, T3-
start, T4-start, and T5-finish.

3.4 Building the DES Model
The plant, modelled as an FSA, must faithfully represent the
events that can be produced by the system being modelled, and it
must match the event ordering in the real system. The behaviour
of the code need not be duplicated in an abstract model. Instead,
the model must merely generate the same relevant events as the
code, and in the same ordering.

We accomplish this through the use of CFGs using the link with
software events as noted above. A CFG can always be represented
as an FSA, since there are a finite number of program locations,
and thus a finite number of possible transitions (from each node to
each other node, worst case). Polymorphism in object-oriented
languages raises no special issue, since all possible transitions can
appear in the CFG. We do not perform a static analysis to
determine the feasibility of paths at run-time. There is thus the

possibility that the system we produce is over-constrained due to
non-feasible paths in the CFG. Construction of CFGs can be
automated using tools, such as ‘Σοφία’ [30].

Each resulting FSA can be reduced through a structure-preserving
transformation that maintains all relevant event orderings and
introduces no new orderings of relevant events. First, method or
function calls can be left as unexpanded nodes in situations where
no path through the call contains a relevant event. Starting threads
can also be left unexpanded, as a different FSA will track the
behaviour for the new thread.

The main reduction proceeds by collapsing a branchless chain of
(irrelevant event)-(node)-(irrelevant event) into a single irrelevant
event, using the same label as the first irrelevant event. A
branchless chain of (relevant event)-(node)-(irrelevant event) or a
branchless chain of (irrelevant event)-(node)-(relevant event) both
become a single relevant event. If no path through a branch
contains a relevant event, the branch and all paths may be reduced
to a single node. Node labels are not important and do not need to
be maintained.

Figure 7 presents Algorithm 1, which builds a reduced FSA
version of the event-marked source code.

Ideally, an FSA would be reduced such that no irrelevant events
remain. However, branching behaviour of the code may leave
some irrelevant events that cannot be removed. In Fig. 8, we see a
code snippet on the left, the generated FSA model of the CFG in
the middle, and the reduced FSA on the right. Only upon
following the if-branch does the relevant event occur. When
reducing this CFG, we must maintain that branching structure.
Thus, i1 must remain a part of the CFG.

The plant is given by the synchronous product of all the resulting
reduced FSAs. This process forces shared events to happen in
unison, and allows unshared events to interleave freely. The
operation combines the initial states of the threads into one initial
state, where all threads begin from their initial states. This is
based on an assumption. If a thread is dynamically created by
another thread only after a relevant event occurrence, this
assumption would be violated, since that shared initial state
cannot occur. Dynamic DES theory [15] proposes a DES model
wherein event-generating modules can appear and disappear over

Figure 5. One-way relation between events in the code
and CFG.

if(x)
 foo();
 //event E
y = 5;

Algorithm 1 transforms relevant event labeled
source code into an FSA that can be used for
DES operations
For each thread, including the main thread:

1. Build the control-flow graph for the code
executed by that thread.
2. Set the entry node as the initial state,
and all exit nodes as marked states.
3. Label any edges that are also relevant
events with the relevant event name.
4. Discard any CFGs that contain no relevant
events.
5. Label all remaining unlabeled edges using
{i1, i2, i3, ...}. Use the labels in
increasing order, and do not repeat labels
across threads.
6. Apply reductions.

Figure 7: An algorithm that transforms source code with
event markings into an FSA.

public void run() {
 //relevant event: T3-start
 System.out.println(id);
 doWork();
}

Figure 6. Code for thread 3 with event marking

149

time. This is uninvestigated, but seems to offer an alternative to
this assumption.

Example: Our running example allows for a very efficient
reduction. Since there is no branching behaviour in any of the
threads, all irrelevant events may be removed. Each thread is
reduced to two nodes and a single relevant event. Fig. 9 shows the
results on T3. Dynamic thread creation does not occur, so the
thread timing assumption holds. The plant in the introductory
example contains 32 states and 80 transitions, representing all
possible interleavings of the 5 relevant events across the five
threads.

Figure 9. FSA-converted CFG and reduced FSA for T3

3.5 Formalizing Specifications
The DES plant made in the previous section generates all possible
event sequences of the system. A specification describes the
subset of event sequences that are to be allowed. As noted in the
DES section, modular DES theory allows for the usage of
multiple specifications. Only behaviours permitted by all
specifications will be allowed in the controlled plant.
Specifications must be each given as an FSA since we are using
FSA-based DES theory. This does limit the types of specifications
to those that can be expressed in a regular language, thus allowing
safety properties, but precluding liveness properties. We choose
to build FSAs directly from the informal specifications, instead of
using an intermediary formalization.

Since allowed behaviours must be present in all specifications, it
is vital that a specification only restricts the behaviours intended,
while permitting all others. In other words, all events possible in
the plant should be permitted in the specification except where an
event must be explicitly restricted by the specification. In an FSA,
this is accomplished through the addition of a self-loop at all
states for every event in the plant that is not a relevant event
arising from that specification. This includes any irreducible
irrelevant events.

Example: Our running example provides two simple safety
properties to enforce. Threads that must wait on T1 to finish are
restricted by the specification in Fig. 10, and the thread waiting
on T5 is restricted by the specification in Fig. 11.

Figure 10. T2, T3, and T4 must wait for T1 to finish.

Figure 11. T4 must wait for T5 to finish.

3.6 Constructing the Supervisor
With the plant and a set of modular specifications we can proceed
to synthesize a supervisor. The supervisor construction algorithm
in [29] performs this task in polynomial time for a single
specification. Thus, a choice must be made. If supervisors are
created for each specification, the possibility exists for the
resulting closed-loop system to have a conflict and therefore a
possible deadlock. This can be avoided by combining the
specifications using the synchronous product operation. This
single specification is called the monolithic specification.
However, the resulting monolithic supervisor may exhibit an
exponential increase in the number of states, which would inhibit
scalability.

In general, only the specifications that contribute to the conflict
should be combined, thus achieving a nonblocking solution while
mitigating state-space explosion. Multiple supervisors could be
implemented through repeated use of the code generation method
in section 3.7.

In our implementation, we simply build the monolithic
specification and proceed with one supervisor. The result is a
nonblocking supervisor guaranteed to enforce the behaviours
allowed by the monolithic specifications. If the specification is
uncontrollable with respect to the plant, then a supervisor is
generated that enforces the largest controllable subset of
behaviours. Several software packages exist that can perform
these operations, including TCT [33] and IDES [18].

Example: The monolithic specification was produced in IDES
from the specifications in Figs. 10 and 11. The resulting
specification contains 4 states and 13 transitions. This, along with

if(x) {
 //event A
 write();
x = 4;

Figure 8. (From l. to r.) A code snippet, an FSA-converted
CFG for that snippet, the reduced FSA.

150

the plant from section 3.4, was exported to TCT, where the
supervisor construction operation was performed. The resulting
supervisor has 14 states and 23 transitions.

3.7 Code Generation
Using the supervisor as input, along with the original source code,
we generate concurrency control code such that, when woven into
the source code, the resulting program behaviour is a subset of the
specifications. In fact, the generated code is primarily a
realization of the abstract supervisor. We now analyze several
properties of supervisory control, eventually leading to an
algorithm to generate and insert code.

Supervisory control requires the ability to allow and prevent the
occurrence of an event. A dedicated semaphore can be used to
provide this capability. For a semaphore to prevent an event
occurrence, the call to wait on that semaphore must occur at the
event location in the code. Uncontrollable events do not require a
semaphore, as they are never disabled. We thus use semaphores to
indicate the current state of a controllable event. If the event is
enabled, the associated semaphore has one or more permits in it.
The semaphore for a disabled event has no permits. Most modern
concurrent programming languages provide semaphores in some
form, which allows this solution to stay general.

In any supervisor state, some events are enabled and some are
disabled. Only upon an event occurrence is there the potential for
change in the current control action. However, event occurrences
do not uniquely determine the supervisor state. Changes to the
control action are based on the current state of the supervisor. An
implemented supervisor must therefore be able to track its internal
state during execution. To maintain data integrity, accesses to
state tracking information must be mutually exclusive. Updating
the supervisory control action must also be done in mutual
exclusion. Additionally, if the state tracking and stage changing is
not done atomically, then a thread could interleave a second state
change with the first, causing the supervisor to become corrupted.

While the control policy tells us what events must be disabled in
each state, it does not include information on transitions. We must
explicitly build a construct, which we will call the change map, to
track changes in the control action based upon transitions. For
each transition in the supervisor, we compare the set of disabled
events and enabled events at the source s and target t of that
transition. The change map gives us the pair (ΔE, ΔD) for each
transition, where ΔE is the set of events that are disabled at s and
become enabled at t, and ΔD is the set of events that are enabled at
s and become disabled at t. When a transition occurs, we can
reference the change map to correctly update the current control
action.

Algorithm 2 in Fig. 12 generates and weaves concurrency control
code into the original source using the supervisor. First, we
generate the change map from the control map and the supervisor.
Next, we create semaphores in shared memory that are initialized
to the control action in the initial state of the supervisor. On a
controllable event occurrence, we check a stateChangeTest
method to determine if the event is enabled. If it is, the supervisor
state is updated along with the control action. An uncontrollable
event always proceeds to the supervisor state change method.

Algorithm 2 is easily proven correct in general. Consider the
initial program state s. The control action at this state is read

directly from the supervisor, and since the supervisor is correct-
by-design [29], the control action must be correct. A subsequent
transition to a child program state s' causes an update to the
control action from the change map, which is built directly from
the control policy from the correct-by-design supervisor. Thus, s'
also enforces the correct control action. This argument generalizes
to all states, showing that updating control actions from the
change map is a viable approach for supervisor implementation.

Errors in this algorithm could arise in the implementation,
however. Is the change map correctly constructed and consulted?
One must be careful to read the current state, determine if an
event is allowed, and then update the control action without
introducing the possibility for deadlock due to the consulting
process. Also, it is important to note that supervisors do not cause
events to occur—they only allow them. Thus, when a waiting
thread is signaled, it is possible for another thread to execute an
event and “re-disable” the waiting thread before it acts. Thus, the
first action of the awoken thread must be to check if the event it
was waiting on is still enabled.

3.7.1 Java Implementation/Example
We have implemented Algorithm 2 in Java. The change map is
constructed from the supervisor as given by IDES [18]. A static
Synchronizer class is introduced to act as a shared memory
location. It initializes all semaphores, and contains the public
stateChangeTest method along with the private
changeSupervisorState method.

At each controllable event, a block of code is inserted that differs
only by the relevant event name. Relating this to our running
example, Fig. 13 shows the code inserted at the T3-start event. At
uncontrollable events, there is a call to stateChangeTest to
notify the supervisor of that event occurrence. Figure 14 shows
the stateChangeTest method, which never changes, and Figure
15 shows an excerpt of the changeSupervisorState from our
running example.

Algorithm 2 generates concurrency control code,
then inserts it into the marked source code.
1. Build the change map from the control map
and the supervisor.
2. Create a semaphore for each controllable
event, initialized to 0 if the event is
disabled in the initial state of the
supervisor, and 1 if it is enabled.
3. Create a stateChangeTest method/function,
accessed in mutual exclusion that determines
if an event is enabled.

1. If yes, update the state and control
action from the change map. If an event
becomes enabled, signal the associated
semaphore. If it becomes disabled,
remove all permits.
2. If no, exit.

4. At each controllable event occurrence,
consult the stateChangeTest. If the event is
disabled, wait on the associated semaphore.
If enabled, the stateChangeTest will change
the supervisor state. The thread proceeds.
5. At each uncontrollable event, insert code
to access the stateChangeTest. This will
update the supervisory state, then return true
as an uncontrollable event never blocks.

 Figure 12. Concurrency code generation algorithm.

151

Once a controllable event calls the stateChangeTest method,
the test checks the current status of the semaphore associated with
that event. If available, the program proceeds into changing the
supervisor state through a call to changeSupervisorState. If
not available, the state change fails, and the thread is forced to
wait on the event semaphore until another state change releases
that semaphore. Upon releasing, the process is repeated until the
state change eventually takes place. This repeating ensures that
the plant and supervisor maintain synchronization as noted above.
The changeSupervisorState method encodes the change map,
and, on a state change, uses it to update control actions and the
current supervisor state. Two sequence diagrams in Figs. 16 and
17 show how the implemented process is carried out.

3.8 Verification of Generated Code
Given that DES theory is rigorously proven to generate correct,
nonblocking supervisors, it is implied that the produced control
policy satisfies the specifications and is nonblocking. However,
the DES work is only as reliable as the input, and the concurrency

control code is only reliable to the extent that it correctly
implements the generated control policy. Ideally, the algorithms
to create the DES model and synthesize code would both be
proven correct with a formal correctness proof, but this not yet
been done. In the short term, we provide assurance that the
generated code is in fact correct through the use of a model-
checker.

Figure 16. A successful state change for an enabled event.

Figure 17. An unsuccessful state change for a disabled event.
The complete code, including generated concurrency controls,
was verified using Java Pathfinder [20] (JPF). First, the code was
instrumented using flags and assertions. Referring again to our
running example, a shared flag defaulting to false was created to
mark the completion of T1. The first statement after the inserted
control code in T2, T3, and T4 was an assertion that this flag was
set to true. JPF did not discover any interleaving in which this
assertion was false, thus proving that the specification was met.
This was done for all specifications. In addition, JPF found the
code to be free of deadlocks. Settings for JPF differed from
default only by setting search.match_depth to true and adding
gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty to the
search properties.

4. EXTENDED EXAMPLE
4.1 Introduction
The transfer-line problem was originally outlined as a DES
problem by Wonham and Ramadge in [34], and is a well-studied
problem in DES literature. We cast the problem as a Java program
that requires concurrency control. A depiction of how parts flow
through the system is given in Fig. 18. Machine 1 (M1) creates
parts and places them in Buffer 1 (B1). Machine 2 (M2) removes
parts from B1, works on them, and then places them in Buffer 2

private static void changeSupervisorState
 (String event){
 if (event.equals("T1finish")) {
 switch(Synchronizer.stateTracker) {
 case(0):
 Synchronizer.T3start.release();
 Synchronizer.T2start.release();
 Synchronizer.stateTracker = 1;
 break;
 case(2):
 [...]
 }
 }
 else if (event.equals("T3start")) {
 switch(Synchronizer.stateTracker) {
 case(1):
 Synchronizer.stateTracker = 4;
 break;
 case(3):
 [...]
}

Figure 15. changeSupervisorState in Synchronizer.

public static synchronized Boolean
 stateChangeTest(String event, Semaphore
 eventBlocker) {
 if (!(eventBlocker == null)) {
 if (!eventBlocker.tryAcquire()) {
 return false;
 }
 eventBlocker.release();
 }
 changeSupervisorState(event);
 return true;
}

Figure 14. stateChangeTest in Synchronizer.

Figure 13. Inserted code at T3-start.

//relevant event: T3start
while (true) {
 if(Synchronizer.stateChangeTest("T3start",
 Synchronizer.T3start))
 break;
 Synchronizer.T3start.acquireUninterruptibly();
 Synchronizer.T3start.release();
}

152

(B2). The test unit (TU) removes parts from B2 and then tests
them. If the part passes the test, it is removed from the system. If
the part fails, it is uncontrollably placed in B11. The active
components M1, M2, and TU only work on one part at a time.
Specifications are quite simple. Buffer 1 has a capacity of three,
B2 has a capacity of one, and neither buffer may overflow or
underflow.

If the specifications are enforced as given, the system could
deadlock. Consider path p = 11123121. Both buffers are full and
M2 is working on a part. Neither machine can proceed, as a buffer
overflow could result. The test unit is prevented from taking part
a part from B2, as it could uncontrollably reject the part and then
overflow B1. The system is thus deadlocked despite all
specifications being met. DES theory allows us to overcome this
issue by generating a nonblocking supervisor that enforces the
largest subset of controllable behaviours.

Figure 18. Flow of parts in the transfer line example.

Our Java implementation creates a thread for each of the three
active components M1, M2, and TU. A Part class was defined to
allow for the creation of objects to be passed through the system.
Buffers are passive entities, and are used as shared resources by
the active components. The main class instantiates the buffers,
instantiates and starts the active components, then terminates.

Both buffers are accessed by more than one thread. To ensure
data integrity of the shared resource, we include two new
specifications. B1 must be accessed in mutual exclusion, and B2
must also be accessed in mutual exclusion. Also, each buffer
access is coupled with console output describing the action taken.
To ensure output matches the program state, the output statement
is considered part of the buffer access and is synchronized
accordingly. Finally, we assume that when an active component
starts accessing a buffer (either to read or write), it finishes
uncontrollably.

4.2 Defining Relevant Events
Each specification implies a set of relevant events as follows. In
practice, each event is marked in the code as it is refined from the
specification. In naming our relevant events, we adopt the practice
of appending the label of an uncontrollable relevant event with a
‘-u’.

B1 may not overflow or underflow: This specification refers to
parts being placed in or removed from B1. Any section of code
that acts to place a part in B1 is thus preceded by a software
event. This happens in M1, and also in TU if a part is rejected
(this event is also uncontrollable, as indicated in the problem
description). Similarly, M2 also has a relevant event arising from

1 This diverges slightly from the standard description, as usually

events 1 and 3 are uncontrollable, and there is a controllable
event to start the creation of a part in M1.

the removal of parts from B1. The added relevant events are
M1addB1-start, TUaddB1-start-u, and M2getB1-start.

B2 may not overflow or underflow: Similar to the specification
above, any code that places a part in B2 is relevant, along with
any event that removes a part from B2. Placing a part in B2 occurs
in M2, and removing a part occurs in TU. The added relevant
events are M2addB2-start and TUgetB2-start.

B1 and B2 must each be accessed in mutual exclusion: Buffer
access start events are already introduced. Events are needed to
note the end of a buffer access. As noted in our description, all
finish events are uncontrollable. The added relevant events are
M1addB1-finish-u, TUaddB1-finish-u, M2getB1-finish-u,
M2addB2-finish-u, and TUgetB2-finish-u.

The code for M1 appears in Fig. 19, and the code for TU appears
in Fig. 20, both with event annotations. The doWork() method in
the active threads causes a brief wait to simulate work being done
on a part.

//M1 run method
public void run() {
 while (true) {
 //wait for some random period
 doWork();
 //create a new Part
 Part newPart = new Part();
 //put it in the target buffer
 //relevant event: M1addB1-start
 System.out.println("Machine1 tries to put
 a part in " + target);
 target.addPart(newPart);
 //relevant event: M1addB1-finish-u
 } // loop forever
}

Figure 19. M1 Code with relevant events italicized.

//TU run method
public void run() {
 while (true) {
 //get a part from the source
 //relevant event: M2getB1-start
 System.out.println("TestUnit tries to get a
 part from " + source);
 Part currentPart = source.removePart();
 //relevant event: M2getB1-finish-u
 //test that part for some period of time
 doWork();
 if (!testPart()) {
 //no good! send back to rejectBin
 //relevant event: TUaddB1-start
 System.out.println("TestUnit tries to put
 a part in " + rejectBuffer);
 rejectBuffer.addPart(currentPart);
 //relevant event: TUaddB1-finish-u
 }
 else {
 //else part is good, remove from system
 //take no action
 }
 } //loop forever
}

Figure 20. TU Code with relevant events italicized.

153

4.3 Code to DES
Using Algorithm 1 (Fig. 7), we build the DES plant for the
system. In Figs. 21 and 22, we see the FSA-transformed CFG
coupled with the reduced CFG for M1 and TU.

Figure 21. M1 FSA-converted CFG and reduced FSA.

Figure 22. TU FSA-converted CFG and reduced FSA.

Figure 21 exhibits an irrelevant event i11 that cannot be removed.
Although it does appear in any specification, an occurrence of i11
provides information that is important to the system. It means that
events TUaddB1-start-u and TUaddB1-finish-u will not occur,
and implies that a part has been removed from the system,
duplicating the behaviour of event 5 from Fig. 18. In other words,
an occurrence of this irrelevant event allows us to observe the
non-occurrence of relevant events, which is vital information
when controlling event orderings.

The plant is given by the synchronous product of each of the
reduced FSAs. The resulting plant has 32 states and 104
transitions, representing all possible interleavings of the three
threads being considered. A visual representation is not helpful
due to the large state-space.

The next step is formalizing the specifications. Any event from
the plant (including irrelevant events) that does not appear in a
specification is placed in self-loop. The first specification to
formalize is that B1 may not overflow or underflow. Recall that
B1 has a capacity of three, that two events add parts (M1addB1-
start, TuaddB1-start-u), and one event removes parts (M2getB1-
start). Prevention of overflow is ensured by disallowing adding
when three buffer-add actions have occurred without a
corresponding remove event. To prevent underflow, a remove
event is only permitted when an unmatched add event has

occurred. The formal specification is given in Fig. 23, with
unlabelled self-loops.

Next, the mutual exclusion specification for B1 is formalized.
There are six events that access B1: TUaddB1-start, TUaddB1-
finish, M1addB1-start, M1addB1-finish, M2getB1-start, and
M2getB1-finish. Whenever a start event begins an access to the
buffer, the associated finish event must occur before any start
event can occur. The FSA is given in Fig. 24. Specifications for
B2 are handled in the same manner as B1 and are not shown here.

Figure 23. B1 overflow/underflow specification.

Figure 24. B1 mutual exclusion specification.

As noted in the problem introduction, the specifications are
conflicting. Thus, creating four separate modular supervisors will
lead to a blocking supervisor. To avoid this, we combine the
specifications into a monolithic specification using IDES. In this
case, the monolithic supervisor is comprised of 52 states with 176
transitions. The event i11 accounts for 52 of those transitions. As
an irrelevant event, no specification restricts this event (except in
self-loop) and therefore it appears as a self-loop at every state.

4.4 Creating the Supervisor and Code
With the plant and the monolithic supervisor in hand, a supervisor
may now be synthesized. Using TCT, a nonblocking supervisor
was generated. The supervisor itself contains 69 states and 114
transitions. Recall that deadlock could be reached when all
buffers are simultaneously filled. In addition to enforcing the
specifications as given, the control behaviour also resolves the
conflict noted in the problem description. Essentially, this is done
by reserving room in B1 for TU to uncontrollably return a part
back without overflow. The resulting behavior is a proper subset
of the specified behavior. Without introducing a new
specification, the conflict has been resolved and deadlock
freedom has been achieved. Furthermore, the user never had to be
aware of the deadlock potential, nor act to prevent it.

Using the Java implementation of Algorithm 2 (Fig. 12), code was
generated to effect supervisory control. The generated code is of
similar form to the code presented in §3.7, differing in event
names, change map details, and the size of the change map.

154

Once again, the resulting code was instrumented with assertions
and model-checked with Java Pathfinder. It was found to be
deadlock free in all states and never in violation of the
specifications.

5. RELATED WORK
Early work is based on Campbell and Habermann's “path
expressions” [8], which allow the specification of the allowed
sequences of operations on an object of an abstract data type. In
[2], Andler extends this idea by proposing “predicate path
expressions” (PPEs) and also describes an implementation scheme
which is based on the translation of PPEs to finite automata.
Every invocation of an operation of the data type is bracketed by
a prologue and an epilogue which consults the automaton and
ensures only conforming invocations can proceed. The potential
for deadlock in the generated code is not discussed, but the use of
formal methods is suggested.
Emerson and Clarke in [13] generate program abstractions called
“synchronization skeletons”, which suppress detail irrelevant to
synchronization. Specifications are given in Computational Tree
Logic (CTL), but can only create a synchronization skeleton if the
CTL specifications are satisfiable. The program is modelled as a
‘finite model’, similar to an FSA. A scheme is developed that
details when each thread is allowed to enter a critical section
without violating the specifications. A similar method was
proposed by Manna and Wolper in [24] using Linear Temporal
Logic (LTL) rather than CTL. Our work mirrors this general
approach by developing concurrency code separately through the
use of specifications. However, the substitution of DES solves
several issues, such as unsatisfiable or conflicting specifications,
and provides guarantees on the quality of the solution.
The general approach from [13] has been adopted several times,
differing by the usage of alternate specification formalization or a
different modelling technique. In [6], specifications are given
using process algebra, whereas [36] employs Bultan's Action
Language. Tools allow the formal analysis of the specifications.
An approach based on global invariants is discussed in [10]. The
invariants specify allowed behaviour and use specific counter
variables that keep track of how many processes are currently
executing user-specified regions. Patterns of some common
specifications are given. Support for model checking the
generated code is provided to detect synthesis errors.
Alt, Sander and Wilhelm present an approach for the generation
of synchronization code for parallel compilers [3]. The compiler
is modularized into engines. A global dependence graph is
computed from specifications of the input-output behaviour of
these engines. From this graph, code controlling the invocation of
engines and access to shared data structures is generated.
Deadlock avoidance is guaranteed.
Matos et al. describe a technique for the automatic generation of
synchronization conditions based on finite-state machine
descriptions of both the components and the specifications [26]. A
synchronous communication model such as Esterel, Lustre, or
SMV is assumed. The resulting code needs to be checked for
deadlocks, because “circular dependence between synchronized
components” will cause deadlocks. The tool implementing the
approach supports this by outputting an SMV representation of
the system.

In [5], Autili et al. describe a tool called SYNTHESIS that
produces correct and deadlock-free distributed component
systems. Several examples are cited. They introduce a concept of
'last chance' states, which are the last chance to prevent a
deadlock by preventing some transition. This echoes early DES
work by Ramadge and Wonham, wherein last chance states
correspond to the last states where control could be applied. The
mirroring here highlights the relevance of introducing DES theory
to concurrency control problems, as it is made clear by this paper
that success can be found using DES-like techniques.
Aspect-oriented programming, introduced by Kiczales et al. in
[21], is based on identification of cross-cutting concerns, coding
each concern individually, and then weaving it back into the main
code base. Recent work [12] deals explicitly with concurrent
aspects. Advice is represented as a finite-state graph, and aspects
are modelled to act in parallel. The authors note, “because of the
inherent difficulty of developing correct concurrent programs, [...]
a model for concurrent aspects should support the use of
automatic verification techniques, such as model checking…”
Once again, the value of DES is apparent, as it can not only
produce control policies, but can provide formally proven
guarantees on correctness and nonblocking.
Detailed information about the guarantees provided by the code
generated by each of the approaches listed above was difficult to
obtain. For instance, it is not always clear to what extent the
generated code is nonblocking or minimally restrictive. In
contrast, our approach is very clear on this point since it is
directly based on a large body of research in DES control theory.
A more thorough account of how the approaches differ with
respect to usability, expressiveness, and guarantees is necessary
and left as a topic for future work.

Also unique to this approach is the ability for DES theory to
enforce conflicting or impossible specifications by instead
enforcing the largest controllable sublanguage. For instance, the
Dining Philosophers problem can be automatically solved without
introducing special specifications to resolve the deadlock. Our
extended example in section 4 demonstrated this through the use
of conflicting modular specifications.

5.1 Applying DES to Concurrency
A theory of controlling discrete-event systems was detailed by
Ramadge and Wonham in [29]. The authors indicate that DES
theory is applicable to computing, but the idea is left unexplored.
To the best of our knowledge, the application of DES to software
development is left unaddressed in the DES community.
There has been work in the opposite direction, where results from
model-checking have been applied to DES results. The supervisor
control problem was revisited by Ziller and Schneider in [37,38],
where the authors generalize the supervisor synthesis algorithm to
allow for specifications given in the μ-calculus. This allows the
consideration of both safety and liveness properties, including
fairness properties.
Some early attempts have been made by control theorists to
address the concurrency control problem. Thistle, in [32], adapted
the verification framework from Manna and Pnueli [23] to solve
the control problem for a small set of abstract concurrent
processes. It used LTL and modelled both the system and
specifications as a set of logic statements. This approach allowed

155

safety properties and some liveness properties, but was largely a
manual process

6. CONCLUSIONS
This paper demonstrated a process to apply existing DES theory
to the automatic generation of concurrency control code. The
generated control scheme is guaranteed to be nonblocking and
minimally restrictive while enforcing the largest controllable
subset of the desired behaviour. An algorithm was provided to
transform source code into FSA models through event marking. A
second algorithm takes a DES supervisor and transforms it into
concurrency control code.

The primary result is the formation of a link between concurrent
software development and DES theory. This introduces very
exciting avenues of future research: For instance, the DES theory
we used has already been extended in a large variety of ways
(e.g., support for liveness properties through CTL [4], CTL* [19],
LTL [32], the μ-calculus [37], and real-time systems [28]).
Parameterized DES [27] suggests a methodology to abstract
multiple instances of the same thread. Hierarchical DES as in [39]
could be applied for large programs with multiple libraries.
Chances are good that at some of these results can be leveraged to
extend our work.

The decision to use the FSA-based version of DES limits our
process to safety properties only. Other more expressive DES
theories exist, such as those based on Petri-nets [16], CTL*
specifications [19], or μ-calculus [37]. The last two can express
liveness properties. While recasting the presented process using a
different model of DES is a non-trivial task, it is our belief that
this work shows that DES is effective when applied to
concurrency control problems. Thus, it is worth undertaking the
technical work required to recast our process using a more
expressive theory. Primarily, such a recasting would involve
transforming code into the applicable model, rather than an FSA.

The primary limitations of this work involve the generality of
code in an implementation. Dynamic DES needs to be introduced
to properly treat dynamic thread generation. Static verification
could eliminate unfeasible paths arising in FSA construction due
to run-time decisions such as polymorphism. Moreover, this work
does not consider efficiency; future work must also address this.

7. REFERENCES
[1] L. De Alfaro, T. Henzinger, and R. Majumdar, “From

Verification to Control: Dynamic Programs for Omega-
Regular Objectives” in Proc. of the 16th Annual Symp. on
Logic in Computer Science (LICS 2001), IEEE Computer
Society Press, pp. 279-290, Washington, D.C., 2001.

[2] S. Andler, “Predicate Path Expressions” in Proc. of 6th ACM
Symp. on Principles of Programming Languages (POPL
1979), pp. 216-236, Jan. 1979.

[3] M. Alt, G. Sander and R. Wilhelm. “Generation of
Synchronization Code for Parallel Compilers”, in Proc. of
the 5th Intl. Symp. on Programming Language
Implementation and Logic Programming, LNCS, Vol. 714,
pp. 420-421, 1993.

[4] A. Arnold, A. Vincent, and I. Walukiewicz, “Games for
Synthesis of Controllers with Partial Observation”, in Theor.
Comp. Sci, Vol. 303, No. 1, pp. 7-34, Jun. 2003.

[5] M. Autili, P. Inverardi, A. Navarra, and Massimo Tivoli,
“SYNTHESIS: A Tool for Automatically Assembling
Correct and Distributed Component-Based Systems”, in
ICSE '07: Proc. of the 29th Intl. Conf. on Software
Engineering, pp. 784-787, 2007

[6] E. Bontà, M. Bernardo, J. Magee, and J. Kramer,
“Synthesizing Concurrency Control Components from
Process Algebraic Specifications”, in Proc. of 8th Intl. Conf.
on Coordination Models and Languages, LNCS 4038,
Bologna, Italy, Jun. 14-16, 2006.

[7] P. Brinch Hansen, “The Programming Language Concurrent
Pascal”, in IEEE Trans. on Software Engineering, 1(2). pp.
199-207, Jun. 1975.

[8] R.H. Campbell and A.N. Habermann, “The Specification of
Process Synchronization by Path Expressions”, in LNCS,
Vol. 16. pp. 89-102, 1974.

[9] C. Cassandras and S Lafortune, “Introduction to Discrete-
Event Systems”. Kluwer, Boston, MA, 1999.

[10] X. Deng, M.B. Dwyer, J. Hatcliff and M. Mizuno.
“Invariant-Based Specification, Synthesis, and Verification
of Synchronization in Concurrent Programs” in Proc. of the
24th Intl. Conf. on Software Engineering (ICSE '02), pp.
442-452, Orlando, FL. 2002.

[11] E.W. Dijkstra. “Cooperating Sequential Processes” in
Programming Languages, Academic Press. New York. pp.
43-112. 1965.

[12] R. Douence, D. Le Botlan, and J. Noyé, and M. Südholt,
“Concurrent Aspects”, in Proc. of the 5th Intl. Conf. on
Generative Programming and Component Engineering, pp.
79-88, 2006.

[13] E.A. Emerson and E. M. Clarke, “Using Branching Time
Temporal Logic to Synthesize Synchronization Skeletons” in
Science of Computer Programming, Vol. 3, No. 1, pp. 241-
266, 1982.

[14] B. Goetz (with T. Peierls, J. Bloch, J. Bowbeer, D. Holmes,
and D. Lea). Java Concurrency in Practice. Addison-
Wesley, 2006.

[15] L. Grigorov and K. Rudie, “Near-Optimal Online Control of
Dynamic Discrete Event Systems”, in Journal of Discrete
Event Dynamic Systems: Theory and Applications, Vol. 16,
pp. 419-449, 2006.

[16] L.E. Holloway, B.H. Krogh and A. Giua, “A Survey of Petri
Net Methods for Controlled Discrete Event Systems”, in
Discrete Event Dynamic Systems, Vol, 2, No. 7, pp. 151-190,
April 1997.

[17] C. Hoare. “Monitors: An Operating System Structuring
Concept”, in Communications of the ACM. Vol. 17, No. 10,
pp. 549-557. 1974.

[18] IDES: The Integrated Discrete-Events Systems Tool,
Discrete-Event Control Systems Lab, Queen’s University,
http://www.ece.queensu.ca/hpages/labs/discrete/software.ht
ml, Mar. 2008.

156

[19] S. Jiang and R. Kumar, “Supervisory Control of Discrete
Event Systems with CTL* Temporal Logic Specifications”,
in Proc. of the 40th IEEE Conf. on Decision and Control,
Orlando, FL. 2001.

[20] Java Pathfinder, Robust Software Engineering Group, NASA
Ames Research Center, Sourceforge project page.
http://javapathfinder.sourceforge.net/, Mar. 2008.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier, and J. Irwin “Aspect-Oriented
Programming”, in Proc. of the European Conf. on Object-
Oriented Programming, Vol. 1241, pp. 220-242, 1997.

[22] E.A. Lee. “The Problem With Threads”, in IEEE Computer,
Vol.39, No. 5, pp. 33-42. May 2006.

[23] Z. Manna and A. Pnueli, “Verification of Concurrent
Programs: A Temporal Proof System”, Stanford University,
Dept. of Computer Science, CS-TR-83-967, 1983.

[24] Z. Manna and P. Wolper, “Synthesis of Communicating
Processes from Temporal Logic Specifications”, in ACM
Trans. on Programming Languages and Systems, Vol. 6, No.
1, pp. 68-93, Jan. 1984.

[25] R. Merritt. “Wintel Will Fund Parallel Software Lab at
Berkeley”. EE Times.
http://www.eetimes.com/showArticle.jhtml?articleID=20650
3988, Feb 13, 2008.

[26] G. Matos, J. Purtilo, and E. White. “Automated Computation
of Decomposable Synchronization Conditions”, in Proc. 2nd
IEEE High-Assurance Systems Engineering Symp. (HASE
97), pp. 72-77, Washington, DC, Aug. 11-12, 1997.

[27] C. Oliveira, J.E.R. Cury, C.A.A. Kaestner, “Synthesis of
Supervisors for Parameterized and Non-Regular Discrete
Event Systems”, in 1st IFAC Workshop on Dependable
Control of Discrete Systems (DCDS 07), 2007.

[28] J.S. Ostroff and W.M. Wonham, “A Framework for Real-
Time Discrete-Event Control”, in IEEE Trans. on Automatic
Control, Vol. 35, Issue 4, pp. 386-397, Apr. 1990.

[29] P.J. Ramadge and W.M. Wonham. “Supervisory Control of a
Class of Discrete Event Processes”, in SIAM Journal of

Control and Optimization, Vol. 25, No. 1, pp. 206-230,
1987.

[30] Σοφία: A Java Bytecode Analysis Tool, http://sofya.unl.edu/,
Mar. 2008.

[31] H. Sutter. “The Free Lunch is Over: A Fundamental Turn
toward Concurrency in Software”, in Dr. Dobb’s Journal,
Vol. 30, No. 3, Mar. 2005.

[32] J.G. Thistle and W.M. Wonham, “Control Problems in a
Temporal Logic Framework”, in Intl. Journal of Control,
Vol. 44, No. 4, pp. 943-976, 1986.

[33] TCT, Systems and Control Group, Dept. of Electrical and
Computer Engineering, University of Toronto,
http://www.control.toronto.edu/DES, Mar. 2008.

[34] W. M. Wonham and P.J. Ramadge, “Modular Supervisory
Control of Discrete Event Systems,” in Mathematics of
Control, Signal and Systems, pp. 13-30, 1988.

[35] P.H. Welch, G.S. Stiles, G.H. Hilderink, and A.P. Bakkers.
“CSP for Java: Multithreading for All”, in Architectures,
Languages and Techniques for Concurrent Systems, Vol. 57,
pp 227-299, Amsterdam, the Netherlands, April 1999.

[36] T. Yavuz-Kahveci and T. Bultan. “Specification,
Verification, and Synthesis of Concurrency Control
Components”, in Proc. of the 2002 ACM SIGSOFT Intl.
Symp. on Software Testing and Analysis (ISSTA 2002), pp.
169-179, Roma, Italy. 2002.

[37] R. Ziller and K. Schneider, “A μ-Calculus Approach to
Supervisor Synthesis”, in Workshop Methoden und
Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen, pp. 132–143, 2003.

[38] R. Ziller and K. Schneider, “Combining Supervisor
Synthesis and Model Checking”, in ACM Trans. on
Embedded Computing Systems (TECS), Vol. 4, Issue 2, pp.
221-362, May 2005.

[39] H. Zhong, W.M. Wonham, “On the Consistency of
Hierarchical Supervision in Discrete-Event Systems”, in
IEEE Trans. on Automatic Control, Vol. 35, No. 10, pp.
1125-1134, Oct. 1990

157

