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ABSTRACT 
The development of controls for the execution of concurrent code 
is non-trivial. We show how existing discrete-event system (DES) 
theory can be successfully applied to this problem. From code 
without concurrency controls and a specification of desired 
behaviours, concurrency control code is generated. By applying 
rigorously proven DES theory, we guarantee that the control 
scheme is nonblocking (and thus free of both deadlock and 
livelock) and minimally restrictive. Some conflicts between 
specifications and source can be automatically resolved without 
introducing new specifications. Moreover, the approach is 
independent of specific programming or specification languages. 
Two examples using Java are presented to illustrate the approach. 
Additional applicable DES results are discussed as future work. 

Categories and Subject Descriptors 
D.1.3 [Concurrent Programming]: Parallel Programming. 
D.2.2 [Design Tools and Techniques]: General. 
F.3.1 [Specifying and Verifying and Reasoning about 
Programs]: Specification Techniques.  

General Terms 
Design, Reliability, Verification. 

Keywords 
Discrete-Event Systems, Model-Driven Development, Automatic 
Code Generation, Concurrency, Control Theory 

1. INTRODUCTION 
Concurrency is going mainstream. Leaders in the hard- and 
software industries and in academia agree that in just a few years 
even average programmers will have to be able to write 
concurrent code effectively and efficiently [25,31]. Although 
concurrent programming has been studied for over four decades, 
current software development and programming language 
technology has not yet succeeded in making the design and 
implementation of correct concurrent code in everyday practice 
an easy undertaking. At present, our ability to develop concurrent 

code is still insufficient: 

"I conjecture that most multithreaded-general purpose 
applications are so full of concurrency bugs that—as multicore 
architectures become commonplace—these bugs will begin to 
show up as system failures" [22] 

Two research directions have been pursued to address this 
problem:  

1) New programming models and programming language 
abstractions: The goal is to conceive high-level concepts that 
allow the benefits of concurrency to be reaped while keeping its 
complexities in check. Seminal work by Dijkstra on semaphores 
[11], by Hoare on monitors [17], and by Brinch Hansen on 
languages [7] falls into this category; as does more recent work to 
incorporate ideas from Hoare's CSP into Java [35] or to extend 
Java's concurrency library [14]. 

2) Automatic generation of concurrency control code from 
specifications: Rather than develop the concurrency control code 
manually, the programmer instead specifies the desired 
concurrent behaviour. Concurrent control code is then generated 
automatically. An example for early work on this idea is based on 
Habermann's path expressions [2], [8]. Similar work exists with 
approaches differing in the kind of specification notations 
supported and the guarantees that the generated code provides. A 
brief survey will be given in Section 5. 

While both research directions intend to facilitate development by 
lifting the levels of abstraction, the second is more radical in that 
the concurrency control code is automatically generated. The 
realization of this vision could clearly benefit from the 
development of new programming models and concepts. 

This paper targets the automatic generation of control code and 
thus falls under the second approach. The central distinguishing 
feature of our work is the way in which the concurrency control 
code is computed. To this end, we leverage well-established work 
in the domain of control theory. More precisely, we employ 
"supervisory control synthesis" which was first proposed by 
Ramadge and Wonham [29] in order to facilitate the design of 
discrete-event systems (DES). In short, this process works as 
follows: From a system P generating events and a specification 
describing allowed event sequences, a supervisor S is generated 
such that the composition of P and S exhibits a "minimally 
restrictive" subset of the allowed event sequences and is 
nonblocking. We leverage this process by showing how the event-
generating system P can be constructed from code that is devoid 
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of concurrency controls, but contains user markup indicating 
events relevant to the specifications. The supervisor generated is 
then transformed into concurrency control code that enforces the 
specification. The central features of the resulting approach are as 
follows:  

• Precision: Strong, precise, theoretically proven guarantees can 
be given about the generated code (adherence to specification, 
deadlock-freedom, and maximal permissiveness). 
• Generality: Any notation allowing the specification of event 
orderings can be used; moreover, the approach is programming 
language independent in the sense that control code for any 
language offering basic synchronization primitives can be 
generated. 
• Potential for extension: Many extensions to the DES 
supervisory control problem have been developed. It is very likely 
that many of these will be applicable in future work.  

While results from DES control theory have already been used for 
verification and analysis [38], to the best of our knowledge, this 
paper is the first to suggest the use of supervisor synthesis for the 
generation of concurrency control code.  

The remainder of the paper is structured as follows: A brief 
review of the most relevant parts of DES control theory and of 
supervisor synthesis will be provided in Section 2. Our approach 
will be described using a running example in Section 3. In Section 
4 a more substantial case study is described which also discusses 
the analysis of the generated Java code using the Java Pathfinder 
model checker [20]. Section 5 reviews related work. Limitations, 
future work, and conclusions are given in Section 6. Figures are 
drawn using IDES [18], and DES operations are performed in 
IDES and TCT [33]. 

2. DES Introduction 
Discrete-event systems theory, as developed by Ramadge and 
Wonham [29], is a time-independent language theory based upon 
discrete event occurrences. Cassandras and LaFortune give an 
excellent introduction to the field in [9]. Finite-state automata 
(FSA) are used to model the system, called the plant G. 
Transitions in G are events, and the generated language is referred 
to as the behaviour of G. 

A model is nonblocking if all states are reachable and can reach a 
terminal state.  Nonblocking is an important concept, since it 
implies both deadlock-freeness and livelock-freeness.  
Essentially, a nonblocking system is always capable of reaching a 
final (or marked) state. 

Each event is either controllable, meaning it can be disabled, or 
uncontrollable, meaning it cannot or should not be prevented from 
occurring. For example, “send message” is typically a 
controllable event, while “message transmit fail” is an 
uncontrollable event, since it cannot be prevented.  A 
specification, given as an FSA, gives the desired behaviour of the 
plant, and is called the legal language E. A plant G is called 
controllable with respect to a specification E if, for any string s 
from the prefix closure of E, there are no uncontrollable events σ 
that could be generated by G at the state reached by s such that sσ 
would not be in the prefix closure of E.  In other words, if 
something cannot be prevented, it must be legal, or else the plant 
is uncontrollable. 

In supervisory control, a supervisor S (also an FSA) is introduced 
to control the plant by enabling and disabling events based upon 
the events that occur in the plant. Figure 1 shows the basic 
relation between supervisor and plant. The decision to disable and 
enable events at a given supervisory state is called a control 
action, while the set of all control actions is called the control 
policy. 

  
The closed-loop system S/G given by the synchronous product of 
S and G, recognizes the largest controllable subset of the legal 
language. If E is controllable, the closed-loop system generates 
exactly E; otherwise the largest controllable subset of E is 
generated. Standard DES supervisor synthesis construction is 
guaranteed to produce an S such that S/G is nonblocking and 
minimally restrictive [29]. Events not appearing in the supervisor 
because they are impossible once the supervisor is synchronized 
with the plant will not appear in the control action. 

Modular supervisory control, introduced in [34], allows for 
multiple specifications and multiple supervisors to act 
independently on a single plant. However, for the closed-loop 
system to be nonblocking, the supervisors must be non-
conflicting, a property which is easily testing using DES tools. 
Conflicting languages will posses at least one prefix that leads to 
a marked state in each language, but while that prefix is in the 
intersection, it does not lead to a marked state in the intersection 
language and thus leads to blocking. The solution is to find the 
intersection of the specifications. While the blocking is still 
present, supervisor synthesis solves the problem this as it finds a 
nonblocking supervisor to enforce the largest controllable subset 
of the specifications. 

3. PROCESS DESCRIPTION 
Given source code without any concurrency control, and a set of 
informal specifications, we want to generate concurrency control 
code and weave it back into the original code with as much 
automation as possible. The connection between abstract DES 
theory and actual code is made through the identification of 
relevant events in the code. Our process creates concurrency 
control code such that the ordering of relevant events falls within 
the specifications upon execution. 

First, we instrument the code, providing events used to create 
models of the code and construct formal specifications. Standard 
DES operations are then used to generate a supervisor that 
satisfies the specifications. The control scheme in the supervisor 
acts as input for an algorithm that automatically generates 
concurrency control code. Figure 2 diagrams the process. This 
approach is designed with the intent to maximize automation. 
Marking relevant events and formalizing specifications must be 
done manually, but all other steps can be automated using a 
variety of methods. 

Supervisor 

Plant 

 
Event Control 

Action 

Figure 1.  Supervisor-Plant Relation. 
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3.1 Process Steps 
Our process to create and inject concurrency controls follows: 

Input: Source code without concurrency control, and 
specifications (at any level of formality) describing the desired 
concurrent behavior of the program. 
1. Build the set of relevant events. These are the set of software 
events that affect the concurrent behavior of the software. (§3.3) 
2. For each thread in the software, build an FSA that contains 
transitions for each relevant event in the software, and introduces 
necessary structure-preserving irrelevant events. (§3.4) 
3. Build the specifications. Specifications must be expressed 
formally in a format that can be used to automatically build a 
DES Supervisor. (§3.5) 
4. Use the supervisors from step 3 and the FSAs from step 4 to 
build the closed-loop system. (§3.6) 
5. Build concurrency control code that implements the control 
scheme from the closed-loop system. Insert these into the given 
source code. (§3.7) 
Output: Source code with concurrency controls that enforce the 
given specifications. 

The following sections of the paper describe each step in detail. 
Once again, we note that the description of our process is 
programming language independent. An implementation would 
solve concurrency problems in some specific language (e.g., Java, 
C++, etc.). We have implemented some stages of the process, and 
will comment on this in §3.8. 

 
Figure 2. Process to create and inject concurrency controls 
into source code (Automated steps are marked with an ‘a’). 

3.2 Running Example Introduction 
Our running example is a straightforward precedence problem. It 
comprises five threads governed by four specifications as shown 
in the precedence graph in Fig. 3. While all threads start together, 
threads 2, 3, and 4 (T2, T3, and T4, resp.) must wait for thread 1 
(T1) to finish before executing their code. Additionally, T4 must 
wait for thread 5 (T5) to finish. Throughout this section, each step 
in the process is illustrated using this example. Readers interested 
in a more substantial example are referred to §4. 

3.3 Creating the Event Set 
To model code using DES, we must isolate events in the code that 
are both discrete and instantaneous. We define a software event as 
the instant between the completion of execution of one program 
statement and the start of execution of the next. This is 
instantaneous (by definition), and is also discrete, since the 
completion of the execution acts as a clear demarcation.  

 
Figure 3. Precedence graph for the running example. 

Some events are relevant to concurrent control while most others 
are not. For instance, the transition leading into the first statement 
of a critical section of code is relevant, while accessing an 
unshared variable is irrelevant. Let ES be the set of all software 
events for a given piece of code. We define a set of relevant 
events, ER, as the set of events necessary to specify the desired 
concurrent behaviour. The set of irrelevant events, EI, is given by 
EI = ES − ER, and is disjoint with ER. 

Relevant events are noted in the code as event markings. These 
event markings form the basis of the operations to transform the 
problem into a suitable DES model. In addition, these markings 
serve as targets for the insertion of concurrency controls. 
Determining relevant events is part of the inherent complexity of 
the problem. A developer writing concurrency controls must 
decide where to place them. Our process is no different in that the 
user must specify a set of relevant events. 

There is a clear mapping from software events as defined to 
transitions in a control-flow graph (CFG). An event in code has a 
preceding and successive statement, which directly corresponds to 
the transition between the same two nodes in the CFG. Figure 4 
shows an example with a relevant event marking. 

 
However, the mapping is not always easily inverted in the 
presence of conditionals. Figure 5 shows code with an if-branch, 
with event A occurring when the if-branch is not followed. With 
no else-branch defined, there does not exist a location in the code 
that corresponds solely to this path. We call this an implicit path. 
An implicit path is a path in the CFG with no location in the code 
that is unique to that path. A source code transformation can be 

 

x = 5; 
//event E 
foo(); 

Figure 4. Relation between an event in the code and CFG. 
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employed to render the implicit paths explicit.  In this example, 
an else-branch can be added to make explicit the implicit path. 

 

 
Each specification implies a set of relevant events, some of which 
may appear in multiple specifications. A specification speaks 
about the desired behaviour of the code, which is the effect of 
interaction from one or more sections of code. Determining a 
relevant event is done by pinpointing the place in the code where 
control should be placed. As something that developers already 
do, it is realistic to expect that developers can perform this task. 

Example: The precedence problem presents a set of 
specifications, from which the relevant events can be extracted. 
T2, T3, and T4 all have conditions placed upon starting. Thus, 
control needs to be placed at the very beginning of each of their 
run methods. A relevant event is marked at the first line of code 
for each of those threads. This is shown for T3 in Fig. 6. Threads 
T2 and T4 are identical in structure and result. The same 
specifications tell us that the end of T1 is relevant and should 
have an event marking after the last line of code in the run 
method. Similarly, the end of T5 is also marked as a relevant 
event. In total, there are 5 relevant events: T1-finish, T2-start, T3-
start, T4-start, and T5-finish. 

 

3.4 Building the DES Model 
The plant, modelled as an FSA, must faithfully represent the 
events that can be produced by the system being modelled, and it 
must match the event ordering in the real system. The behaviour 
of the code need not be duplicated in an abstract model. Instead, 
the model must merely generate the same relevant events as the 
code, and in the same ordering.  

We accomplish this through the use of CFGs using the link with 
software events as noted above. A CFG can always be represented 
as an FSA, since there are a finite number of program locations, 
and thus a finite number of possible transitions (from each node to 
each other node, worst case). Polymorphism in object-oriented 
languages raises no special issue, since all possible transitions can 
appear in the CFG. We do not perform a static analysis to 
determine the feasibility of paths at run-time. There is thus the 

possibility that the system we produce is over-constrained due to 
non-feasible paths in the CFG. Construction of CFGs can be 
automated using tools, such as ‘Σοφία’ [30]. 

Each resulting FSA can be reduced through a structure-preserving 
transformation that maintains all relevant event orderings and 
introduces no new orderings of relevant events. First, method or 
function calls can be left as unexpanded nodes in situations where 
no path through the call contains a relevant event. Starting threads 
can also be left unexpanded, as a different FSA will track the 
behaviour for the new thread.  

The main reduction proceeds by collapsing a branchless chain of 
(irrelevant event)-(node)-(irrelevant event) into a single irrelevant 
event, using the same label as the first irrelevant event. A 
branchless chain of (relevant event)-(node)-(irrelevant event) or a 
branchless chain of (irrelevant event)-(node)-(relevant event) both 
become a single relevant event. If no path through a branch 
contains a relevant event, the branch and all paths may be reduced 
to a single node. Node labels are not important and do not need to 
be maintained.  

Figure 7 presents Algorithm 1, which builds a reduced FSA 
version of the event-marked source code.  

 
Ideally, an FSA would be reduced such that no irrelevant events 
remain. However, branching behaviour of the code may leave 
some irrelevant events that cannot be removed. In Fig. 8, we see a 
code snippet on the left, the generated FSA model of the CFG in 
the middle, and the reduced FSA on the right. Only upon 
following the if-branch does the relevant event occur. When 
reducing this CFG, we must maintain that branching structure. 
Thus, i1 must remain a part of the CFG. 

The plant is given by the synchronous product of all the resulting 
reduced FSAs. This process forces shared events to happen in 
unison, and allows unshared events to interleave freely. The 
operation combines the initial states of the threads into one initial 
state, where all threads begin from their initial states. This is 
based on an assumption. If a thread is dynamically created by 
another thread only after a relevant event occurrence, this 
assumption would be violated, since that shared initial state 
cannot occur. Dynamic DES theory [15] proposes a DES model 
wherein event-generating modules can appear and disappear over 

Figure 5. One-way relation between events in the code 
and CFG. 

if(x)  
  foo(); 
  //event E 
y = 5; 

Algorithm 1 transforms relevant event labeled 
source code into an FSA that can be used for 
DES operations 
For each thread, including the main thread: 

1. Build the control-flow graph for the code  
executed by that thread. 
2. Set the entry node as the initial state, 
and all exit nodes as marked states. 
3. Label any edges that are also relevant 
events with the relevant event name. 
4. Discard any CFGs that contain no relevant 
events. 
5. Label all remaining unlabeled edges using 
{i1, i2, i3, ...}. Use the labels in 
increasing order, and do not repeat labels 
across threads. 
6. Apply reductions. 

Figure 7: An algorithm that transforms source code with 
event markings into an FSA. 

public void run() { 
 //relevant event: T3-start 
 System.out.println(id); 
 doWork(); 
} 
 

Figure 6. Code for thread 3 with event marking 
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time. This is uninvestigated, but seems to offer an alternative to 
this assumption. 

 
Example: Our running example allows for a very efficient 
reduction. Since there is no branching behaviour in any of the 
threads, all irrelevant events may be removed. Each thread is 
reduced to two nodes and a single relevant event. Fig. 9 shows the 
results on T3. Dynamic thread creation does not occur, so the 
thread timing assumption holds. The plant in the introductory 
example contains 32 states and 80 transitions, representing all 
possible interleavings of the 5 relevant events across the five 
threads. 

 
Figure 9. FSA-converted CFG and reduced FSA for T3 

3.5 Formalizing Specifications 
The DES plant made in the previous section generates all possible 
event sequences of the system. A specification describes the 
subset of event sequences that are to be allowed. As noted in the 
DES section, modular DES theory allows for the usage of 
multiple specifications. Only behaviours permitted by all 
specifications will be allowed in the controlled plant. 
Specifications must be each given as an FSA since we are using 
FSA-based DES theory. This does limit the types of specifications 
to those that can be expressed in a regular language, thus allowing 
safety properties, but precluding liveness properties. We choose 
to build FSAs directly from the informal specifications, instead of 
using an intermediary formalization. 

Since allowed behaviours must be present in all specifications, it 
is vital that a specification only restricts the behaviours intended, 
while permitting all others. In other words, all events possible in 
the plant should be permitted in the specification except where an 
event must be explicitly restricted by the specification. In an FSA, 
this is accomplished through the addition of a self-loop at all 
states for every event in the plant that is not a relevant event 
arising from that specification. This includes any irreducible 
irrelevant events. 

Example: Our running example provides two simple safety 
properties to enforce. Threads that must wait on T1 to finish are 
restricted by the specification in Fig. 10, and the thread waiting 
on T5 is restricted by the specification in Fig. 11. 

 
Figure 10. T2, T3, and T4 must wait for T1 to finish. 

 
Figure 11. T4 must wait for T5 to finish. 

3.6 Constructing the Supervisor 
With the plant and a set of modular specifications we can proceed 
to synthesize a supervisor. The supervisor construction algorithm 
in [29] performs this task in polynomial time for a single 
specification. Thus, a choice must be made. If supervisors are 
created for each specification, the possibility exists for the 
resulting closed-loop system to have a conflict and therefore a 
possible deadlock. This can be avoided by combining the 
specifications using the synchronous product operation.  This 
single specification is called the monolithic specification. 
However, the resulting monolithic supervisor may exhibit an 
exponential increase in the number of states, which would inhibit 
scalability. 

In general, only the specifications that contribute to the conflict 
should be combined, thus achieving a nonblocking solution while 
mitigating state-space explosion. Multiple supervisors could be 
implemented through repeated use of the code generation method 
in section 3.7.  

In our implementation, we simply build the monolithic 
specification and proceed with one supervisor. The result is a 
nonblocking supervisor guaranteed to enforce the behaviours 
allowed by the monolithic specifications. If the specification is 
uncontrollable with respect to the plant, then a supervisor is 
generated that enforces the largest controllable subset of 
behaviours. Several software packages exist that can perform 
these operations, including TCT [33] and IDES [18]. 

Example: The monolithic specification was produced in IDES 
from the specifications in Figs. 10 and 11. The resulting 
specification contains 4 states and 13 transitions. This, along with 

 

if(x) { 
  //event A 
  write(); 
x = 4; 

Figure 8. (From l. to r.) A code snippet, an FSA-converted 
CFG for that snippet, the reduced FSA. 
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the plant from section 3.4, was exported to TCT, where the 
supervisor construction operation was performed. The resulting 
supervisor has 14 states and 23 transitions.  

3.7 Code Generation 
Using the supervisor as input, along with the original source code, 
we generate concurrency control code such that, when woven into 
the source code, the resulting program behaviour is a subset of the 
specifications. In fact, the generated code is primarily a 
realization of the abstract supervisor.  We now analyze several 
properties of supervisory control, eventually leading to an 
algorithm to generate and insert code. 

Supervisory control requires the ability to allow and prevent the 
occurrence of an event. A dedicated semaphore can be used to 
provide this capability. For a semaphore to prevent an event 
occurrence, the call to wait on that semaphore must occur at the 
event location in the code. Uncontrollable events do not require a 
semaphore, as they are never disabled. We thus use semaphores to 
indicate the current state of a controllable event. If the event is 
enabled, the associated semaphore has one or more permits in it. 
The semaphore for a disabled event has no permits. Most modern 
concurrent programming languages provide semaphores in some 
form, which allows this solution to stay general. 

In any supervisor state, some events are enabled and some are 
disabled. Only upon an event occurrence is there the potential for 
change in the current control action. However, event occurrences 
do not uniquely determine the supervisor state. Changes to the 
control action are based on the current state of the supervisor. An 
implemented supervisor must therefore be able to track its internal 
state during execution. To maintain data integrity, accesses to 
state tracking information must be mutually exclusive. Updating 
the supervisory control action must also be done in mutual 
exclusion. Additionally, if the state tracking and stage changing is 
not done atomically, then a thread could interleave a second state 
change with the first, causing the supervisor to become corrupted. 

While the control policy tells us what events must be disabled in 
each state, it does not include information on transitions. We must 
explicitly build a construct, which we will call the change map, to 
track changes in the control action based upon transitions. For 
each transition in the supervisor, we compare the set of disabled 
events and enabled events at the source s and target t of that 
transition. The change map gives us the pair (ΔE, ΔD) for each 
transition, where ΔE is the set of events that are disabled at s and 
become enabled at t, and ΔD is the set of events that are enabled at 
s and become disabled at t. When a transition occurs, we can 
reference the change map to correctly update the current control 
action. 

Algorithm 2 in Fig. 12 generates and weaves concurrency control 
code into the original source using the supervisor. First, we 
generate the change map from the control map and the supervisor. 
Next, we create semaphores in shared memory that are initialized 
to the control action in the initial state of the supervisor. On a 
controllable event occurrence, we check a stateChangeTest 
method to determine if the event is enabled. If it is, the supervisor 
state is updated along with the control action. An uncontrollable 
event always proceeds to the supervisor state change method. 

Algorithm 2 is easily proven correct in general. Consider the 
initial program state s. The control action at this state is read 

directly from the supervisor, and since the supervisor is correct-
by-design [29], the control action must be correct. A subsequent 
transition to a child program state s' causes an update to the 
control action from the change map, which is built directly from 
the control policy from the correct-by-design supervisor. Thus, s' 
also enforces the correct control action. This argument generalizes 
to all states, showing that updating control actions from the 
change map is a viable approach for supervisor implementation.  

 
Errors in this algorithm could arise in the implementation, 
however. Is the change map correctly constructed and consulted? 
One must be careful to read the current state, determine if an 
event is allowed, and then update the control action without 
introducing the possibility for deadlock due to the consulting 
process. Also, it is important to note that supervisors do not cause 
events to occur—they only allow them. Thus, when a waiting 
thread is signaled, it is possible for another thread to execute an 
event and “re-disable” the waiting thread before it acts. Thus, the 
first action of the awoken thread must be to check if the event it 
was waiting on is still enabled.   

3.7.1 Java Implementation/Example 
We have implemented Algorithm 2 in Java. The change map is 
constructed from the supervisor as given by IDES [18]. A static 
Synchronizer class is introduced to act as a shared memory 
location. It initializes all semaphores, and contains the public 
stateChangeTest method along with the private 
changeSupervisorState method.  

At each controllable event, a block of code is inserted that differs 
only by the relevant event name. Relating this to our running 
example, Fig. 13 shows the code inserted at the T3-start event. At 
uncontrollable events, there is a call to stateChangeTest to 
notify the supervisor of that event occurrence. Figure 14 shows 
the stateChangeTest method, which never changes, and Figure 
15 shows an excerpt of the changeSupervisorState from our 
running example.  

Algorithm 2 generates concurrency control code, 
then inserts it into the marked source code. 
1. Build the change map from the control map 
and the supervisor. 
2. Create a semaphore for each controllable 
event, initialized to 0 if the event is 
disabled in the initial state of the 
supervisor, and 1 if it is enabled. 
3. Create a stateChangeTest method/function, 
accessed in mutual exclusion that determines 
if an event is enabled. 

1. If yes, update the state and control 
action from the change map. If an event 
becomes enabled, signal the associated 
semaphore. If it becomes disabled, 
remove all permits. 
2. If no, exit. 

4. At each controllable event occurrence, 
consult the stateChangeTest. If the event is 
disabled, wait on the associated semaphore.  
If enabled, the stateChangeTest will change 
the supervisor state.  The thread proceeds. 
5. At each uncontrollable event, insert code 
to access the stateChangeTest. This will 
update the supervisory state, then return true 
as an uncontrollable event never blocks. 

 Figure 12. Concurrency code generation algorithm. 
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Once a controllable event calls the stateChangeTest method, 
the test checks the current status of the semaphore associated with 
that event. If available, the program proceeds into changing the 
supervisor state through a call to changeSupervisorState. If 
not available, the state change fails, and the thread is forced to 
wait on the event semaphore until another state change releases 
that semaphore. Upon releasing, the process is repeated until the 
state change eventually takes place. This repeating ensures that 
the plant and supervisor maintain synchronization as noted above. 
The changeSupervisorState method encodes the change map, 
and, on a state change, uses it to update control actions and the 
current supervisor state. Two sequence diagrams in Figs. 16 and 
17 show how the implemented process is carried out. 

3.8 Verification of Generated Code 
Given that DES theory is rigorously proven to generate correct, 
nonblocking supervisors, it is implied that the produced control 
policy satisfies the specifications and is nonblocking. However, 
the DES work is only as reliable as the input, and the concurrency 

control code is only reliable to the extent that it correctly 
implements the generated control policy. Ideally, the algorithms 
to create the DES model and synthesize code would both be 
proven correct with a formal correctness proof, but this not yet 
been done. In the short term, we provide assurance that the 
generated code is in fact correct through the use of a model-
checker. 

 

 
Figure 16.  A successful state change for an enabled event. 
 

 
Figure 17.  An unsuccessful state change for a disabled event. 
The complete code, including generated concurrency controls, 
was verified using Java Pathfinder [20] (JPF). First, the code was 
instrumented using flags and assertions. Referring again to our 
running example, a shared flag defaulting to false was created to 
mark the completion of T1. The first statement after the inserted 
control code in T2, T3, and T4 was an assertion that this flag was 
set to true. JPF did not discover any interleaving in which this 
assertion was false, thus proving that the specification was met. 
This was done for all specifications. In addition, JPF found the 
code to be free of deadlocks. Settings for JPF differed from 
default only by setting search.match_depth to true and adding 
gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty to the 
search properties. 

4. EXTENDED EXAMPLE 
4.1 Introduction 
The transfer-line problem was originally outlined as a DES 
problem by Wonham and Ramadge in [34], and is a well-studied 
problem in DES literature. We cast the problem as a Java program 
that requires concurrency control. A depiction of how parts flow 
through the system is given in Fig. 18. Machine 1 (M1) creates 
parts and places them in Buffer 1 (B1). Machine 2 (M2) removes 
parts from B1, works on them, and then places them in Buffer 2 

private static void changeSupervisorState  
                            (String event){ 
  if (event.equals("T1finish")) { 
    switch(Synchronizer.stateTracker) { 
      case(0): 
        Synchronizer.T3start.release(); 
        Synchronizer.T2start.release(); 
        Synchronizer.stateTracker = 1; 
        break; 
      case(2): 
        [...] 
    } 
  } 
  else if (event.equals("T3start")) { 
    switch(Synchronizer.stateTracker) { 
      case(1): 
        Synchronizer.stateTracker = 4; 
        break; 
      case(3): 
        [...] 
} 

Figure 15. changeSupervisorState in Synchronizer. 

public static synchronized Boolean 
    stateChangeTest(String event, Semaphore 
                    eventBlocker) { 
  if (!(eventBlocker == null)) { 
    if (!eventBlocker.tryAcquire()) { 
      return false; 
    } 
    eventBlocker.release(); 
  } 
  changeSupervisorState(event); 
  return true; 
} 

Figure 14. stateChangeTest in Synchronizer. 

Figure 13. Inserted code at T3-start. 

//relevant event: T3start 
while (true) { 
  if(Synchronizer.stateChangeTest("T3start", 
     Synchronizer.T3start)) 
    break; 
  Synchronizer.T3start.acquireUninterruptibly(); 
  Synchronizer.T3start.release(); 
} 
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(B2). The test unit (TU) removes parts from B2 and then tests 
them. If the part passes the test, it is removed from the system. If 
the part fails, it is uncontrollably placed in B11. The active 
components M1, M2, and TU only work on one part at a time. 
Specifications are quite simple. Buffer 1 has a capacity of three, 
B2 has a capacity of one, and neither buffer may overflow or 
underflow.  

If the specifications are enforced as given, the system could 
deadlock. Consider path p = 11123121. Both buffers are full and 
M2 is working on a part. Neither machine can proceed, as a buffer 
overflow could result. The test unit is prevented from taking part 
a part from B2, as it could uncontrollably reject the part and then 
overflow B1. The system is thus deadlocked despite all 
specifications being met. DES theory allows us to overcome this 
issue by generating a nonblocking supervisor that enforces the 
largest subset of controllable behaviours. 

 
Figure 18. Flow of parts in the transfer line example. 

Our Java implementation creates a thread for each of the three 
active components M1, M2, and TU. A Part class was defined to 
allow for the creation of objects to be passed through the system. 
Buffers are passive entities, and are used as shared resources by 
the active components. The main class instantiates the buffers, 
instantiates and starts the active components, then terminates.  

Both buffers are accessed by more than one thread. To ensure 
data integrity of the shared resource, we include two new 
specifications. B1 must be accessed in mutual exclusion, and B2 
must also be accessed in mutual exclusion. Also, each buffer 
access is coupled with console output describing the action taken. 
To ensure output matches the program state, the output statement 
is considered part of the buffer access and is synchronized 
accordingly. Finally, we assume that when an active component 
starts accessing a buffer (either to read or write), it finishes 
uncontrollably. 

4.2 Defining Relevant Events 
Each specification implies a set of relevant events as follows. In 
practice, each event is marked in the code as it is refined from the 
specification. In naming our relevant events, we adopt the practice 
of appending the label of an uncontrollable relevant event with a 
‘-u’.  

B1 may not overflow or underflow: This specification refers to 
parts being placed in or removed from B1. Any section of code 
that acts to place a part in B1 is thus preceded by a software 
event. This happens in M1, and also in TU if a part is rejected 
(this event is also uncontrollable, as indicated in the problem 
description). Similarly, M2 also has a relevant event arising from 

                                                                 
1 This diverges slightly from the standard description, as usually 

events 1 and 3 are uncontrollable, and there is a controllable 
event to start the creation of a part in M1. 

the removal of parts from B1. The added relevant events are 
M1addB1-start, TUaddB1-start-u, and M2getB1-start.  

B2 may not overflow or underflow: Similar to the specification 
above, any code that places a part in B2 is relevant, along with 
any event that removes a part from B2. Placing a part in B2 occurs 
in M2, and removing a part occurs in TU. The added relevant 
events are M2addB2-start and TUgetB2-start. 

B1 and B2 must each be accessed in mutual exclusion: Buffer 
access start events are already introduced. Events are needed to 
note the end of a buffer access. As noted in our description, all 
finish events are uncontrollable. The added relevant events are 
M1addB1-finish-u, TUaddB1-finish-u, M2getB1-finish-u, 
M2addB2-finish-u, and TUgetB2-finish-u. 

The code for M1 appears in Fig. 19, and the code for TU appears 
in Fig. 20, both with event annotations. The doWork() method in 
the active threads causes a brief wait to simulate work being done 
on a part. 

 

 

//M1 run method 
public void run() {   
  while (true) { 
    //wait for some random period 
    doWork(); 
    //create a new Part    
    Part newPart = new Part(); 
    //put it in the target buffer 
    //relevant event: M1addB1-start 
    System.out.println("Machine1 tries to put 
                        a part in " + target); 
    target.addPart(newPart); 
    //relevant event: M1addB1-finish-u 
  } // loop forever 
}

Figure 19. M1 Code with relevant events italicized. 

//TU run method 
public void run() { 
  while (true) { 
    //get a part from the source 
    //relevant event: M2getB1-start  
    System.out.println("TestUnit tries to get a  
                        part from " + source); 
    Part currentPart = source.removePart(); 
    //relevant event: M2getB1-finish-u 
    //test that part for some period of time 
    doWork(); 
    if (!testPart()) { 
      //no good!  send back to rejectBin 
      //relevant event: TUaddB1-start 
      System.out.println("TestUnit tries to put 
                   a part in " + rejectBuffer); 
      rejectBuffer.addPart(currentPart); 
      //relevant event: TUaddB1-finish-u 
    } 
    else { 
      //else part is good, remove from system 
      //take no action 
    }   
  } //loop forever 
}

Figure 20.  TU Code with relevant events italicized. 
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4.3 Code to DES 
Using Algorithm 1 (Fig. 7), we build the DES plant for the 
system. In Figs. 21 and 22, we see the FSA-transformed CFG 
coupled with the reduced CFG for M1 and TU. 

 
Figure 21. M1 FSA-converted CFG and reduced FSA. 

 
Figure 22. TU FSA-converted CFG and reduced FSA. 

Figure 21 exhibits an irrelevant event i11 that cannot be removed. 
Although it does appear in any specification, an occurrence of i11 
provides information that is important to the system. It means that 
events TUaddB1-start-u and TUaddB1-finish-u will not occur, 
and implies that a part has been removed from the system, 
duplicating the behaviour of event 5 from Fig. 18. In other words, 
an occurrence of this irrelevant event allows us to observe the 
non-occurrence of relevant events, which is vital information 
when controlling event orderings. 

The plant is given by the synchronous product of each of the 
reduced FSAs. The resulting plant has 32 states and 104 
transitions, representing all possible interleavings of the three 
threads being considered. A visual representation is not helpful 
due to the large state-space. 

The next step is formalizing the specifications. Any event from 
the plant (including irrelevant events) that does not appear in a 
specification is placed in self-loop. The first specification to 
formalize is that B1 may not overflow or underflow. Recall that 
B1 has a capacity of three, that two events add parts (M1addB1-
start, TuaddB1-start-u), and one event removes parts (M2getB1-
start). Prevention of overflow is ensured by disallowing adding 
when three buffer-add actions have occurred without a 
corresponding remove event. To prevent underflow, a remove 
event is only permitted when an unmatched add event has 

occurred. The formal specification is given in Fig. 23, with 
unlabelled self-loops. 

Next, the mutual exclusion specification for B1 is formalized. 
There are six events that access B1: TUaddB1-start, TUaddB1-
finish, M1addB1-start, M1addB1-finish, M2getB1-start, and 
M2getB1-finish. Whenever a start event begins an access to the 
buffer, the associated finish event must occur before any start 
event can occur. The FSA is given in Fig. 24. Specifications for 
B2 are handled in the same manner as B1 and are not shown here.  

 
Figure 23. B1 overflow/underflow specification. 

 

 
Figure 24. B1 mutual exclusion specification. 

As noted in the problem introduction, the specifications are 
conflicting. Thus, creating four separate modular supervisors will 
lead to a blocking supervisor. To avoid this, we combine the 
specifications into a monolithic specification using IDES. In this 
case, the monolithic supervisor is comprised of 52 states with 176 
transitions. The event i11 accounts for 52 of those transitions. As 
an irrelevant event, no specification restricts this event (except in 
self-loop) and therefore it appears as a self-loop at every state.  

4.4 Creating the Supervisor and Code 
With the plant and the monolithic supervisor in hand, a supervisor 
may now be synthesized. Using TCT, a nonblocking supervisor 
was generated. The supervisor itself contains 69 states and 114 
transitions. Recall that deadlock could be reached when all 
buffers are simultaneously filled. In addition to enforcing the 
specifications as given, the control behaviour also resolves the 
conflict noted in the problem description. Essentially, this is done 
by reserving room in B1 for TU to uncontrollably return a part 
back without overflow. The resulting behavior is a proper subset 
of the specified behavior. Without introducing a new 
specification, the conflict has been resolved and deadlock 
freedom has been achieved. Furthermore, the user never had to be 
aware of the deadlock potential, nor act to prevent it. 

Using the Java implementation of Algorithm 2 (Fig. 12), code was 
generated to effect supervisory control. The generated code is of 
similar form to the code presented in §3.7, differing in event 
names, change map details, and the size of the change map.  
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Once again, the resulting code was instrumented with assertions 
and model-checked with Java Pathfinder. It was found to be 
deadlock free in all states and never in violation of the 
specifications. 

5. RELATED WORK 
Early work is based on Campbell and Habermann's “path 
expressions” [8], which allow the specification of the allowed 
sequences of operations on an object of an abstract data type. In 
[2], Andler extends this idea by proposing “predicate path 
expressions” (PPEs) and also describes an implementation scheme 
which is based on the translation of PPEs to finite automata. 
Every invocation of an operation of the data type is bracketed by 
a prologue and an epilogue which consults the automaton and 
ensures only conforming invocations can proceed. The potential 
for deadlock in the generated code is not discussed, but the use of 
formal methods is suggested. 
Emerson and Clarke in [13] generate program abstractions called 
“synchronization skeletons”, which suppress detail irrelevant to 
synchronization. Specifications are given in Computational Tree 
Logic (CTL), but can only create a synchronization skeleton if the 
CTL specifications are satisfiable. The program is modelled as a 
‘finite model’, similar to an FSA. A scheme is developed that 
details when each thread is allowed to enter a critical section 
without violating the specifications. A similar method was 
proposed by Manna and Wolper in [24] using Linear Temporal 
Logic (LTL) rather than CTL. Our work mirrors this general 
approach by developing concurrency code separately through the 
use of specifications. However, the substitution of DES solves 
several issues, such as unsatisfiable or conflicting specifications, 
and provides guarantees on the quality of the solution. 
The general approach from [13] has been adopted several times, 
differing by the usage of alternate specification formalization or a 
different modelling technique. In [6], specifications are given 
using process algebra, whereas [36] employs Bultan's Action 
Language. Tools allow the formal analysis of the specifications. 
An approach based on global invariants is discussed in [10]. The 
invariants specify allowed behaviour and use specific counter 
variables that keep track of how many processes are currently 
executing user-specified regions. Patterns of some common 
specifications are given. Support for model checking the 
generated code is provided to detect synthesis errors. 
Alt, Sander and Wilhelm present an approach for the generation 
of synchronization code for parallel compilers [3]. The compiler 
is modularized into engines. A global dependence graph is 
computed from specifications of the input-output behaviour of 
these engines. From this graph, code controlling the invocation of 
engines and access to shared data structures is generated. 
Deadlock avoidance is guaranteed.  
Matos et al. describe a technique for the automatic generation of 
synchronization conditions based on finite-state machine 
descriptions of both the components and the specifications [26]. A 
synchronous communication model such as Esterel, Lustre, or 
SMV is assumed. The resulting code needs to be checked for 
deadlocks, because “circular dependence between synchronized 
components” will cause deadlocks. The tool implementing the 
approach supports this by outputting an SMV representation of 
the system. 

In [5], Autili et al. describe a tool called SYNTHESIS that 
produces correct and deadlock-free distributed component 
systems. Several examples are cited. They introduce a concept of 
'last chance' states, which are the last chance to prevent a 
deadlock by preventing some transition. This echoes early DES 
work by Ramadge and Wonham, wherein last chance states 
correspond to the last states where control could be applied. The 
mirroring here highlights the relevance of introducing DES theory 
to concurrency control problems, as it is made clear by this paper 
that success can be found using DES-like techniques. 
Aspect-oriented programming, introduced by Kiczales et al. in 
[21], is based on identification of cross-cutting concerns, coding 
each concern individually, and then weaving it back into the main 
code base. Recent work [12] deals explicitly with concurrent 
aspects. Advice is represented as a finite-state graph, and aspects 
are modelled to act in parallel. The authors note, “because of the 
inherent difficulty of developing correct concurrent programs, [...] 
a model for concurrent aspects should support the use of 
automatic verification techniques, such as model checking…” 
Once again, the value of DES is apparent, as it can not only 
produce control policies, but can provide formally proven 
guarantees on correctness and nonblocking. 
Detailed information about the guarantees provided by the code 
generated by each of the approaches listed above was difficult to 
obtain. For instance, it is not always clear to what extent the 
generated code is nonblocking or minimally restrictive. In 
contrast, our approach is very clear on this point since it is 
directly based on a large body of research in DES control theory. 
A more thorough account of how the approaches differ with 
respect to usability, expressiveness, and guarantees is necessary 
and left as a topic for future work. 

Also unique to this approach is the ability for DES theory to 
enforce conflicting or impossible specifications by instead 
enforcing the largest controllable sublanguage. For instance, the 
Dining Philosophers problem can be automatically solved without 
introducing special specifications to resolve the deadlock. Our 
extended example in section 4 demonstrated this through the use 
of conflicting modular specifications. 

5.1 Applying DES to Concurrency 
A theory of controlling discrete-event systems was detailed by 
Ramadge and Wonham in [29]. The authors indicate that DES 
theory is applicable to computing, but the idea is left unexplored. 
To the best of our knowledge, the application of DES to software 
development is left unaddressed in the DES community. 
There has been work in the opposite direction, where results from 
model-checking have been applied to DES results. The supervisor 
control problem was revisited by Ziller and Schneider in [37,38], 
where the authors generalize the supervisor synthesis algorithm to 
allow for specifications given in the μ-calculus. This allows the 
consideration of both safety and liveness properties, including 
fairness properties. 
Some early attempts have been made by control theorists to 
address the concurrency control problem. Thistle, in [32], adapted 
the verification framework from Manna and Pnueli [23] to solve 
the control problem for a small set of abstract concurrent 
processes. It used LTL and modelled both the system and 
specifications as a set of logic statements. This approach allowed 

155



safety properties and some liveness properties, but was largely a 
manual process 

6. CONCLUSIONS 
This paper demonstrated a process to apply existing DES theory 
to the automatic generation of concurrency control code. The 
generated control scheme is guaranteed to be nonblocking and 
minimally restrictive while enforcing the largest controllable 
subset of the desired behaviour. An algorithm was provided to 
transform source code into FSA models through event marking. A 
second algorithm takes a DES supervisor and transforms it into 
concurrency control code. 

The primary result is the formation of a link between concurrent 
software development and DES theory. This introduces very 
exciting avenues of future research: For instance, the DES theory 
we used has already been extended in a large variety of ways 
(e.g., support for liveness properties through CTL [4], CTL* [19], 
LTL [32], the μ-calculus [37], and real-time systems [28]). 
Parameterized DES [27] suggests a methodology to abstract 
multiple instances of the same thread. Hierarchical DES as in [39] 
could be applied for large programs with multiple libraries. 
Chances are good that at some of these results can be leveraged to 
extend our work. 

The decision to use the FSA-based version of DES limits our 
process to safety properties only. Other more expressive DES 
theories exist, such as those based on Petri-nets [16], CTL* 
specifications [19], or μ-calculus [37].  The last two can express 
liveness properties. While recasting the presented process using a 
different model of DES is a non-trivial task, it is our belief that 
this work shows that DES is effective when applied to 
concurrency control problems.  Thus, it is worth undertaking the 
technical work required to recast our process using a more 
expressive theory. Primarily, such a recasting would involve 
transforming code into the applicable model, rather than an FSA.  

The primary limitations of this work involve the generality of 
code in an implementation. Dynamic DES needs to be introduced 
to properly treat dynamic thread generation. Static verification 
could eliminate unfeasible paths arising in FSA construction due 
to run-time decisions such as polymorphism. Moreover, this work 
does not consider efficiency; future work must also address this. 
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