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ABSTRACT
Discrete-Event System Theory (DES) allows the automatic
control of a system with respect to a specification describ-
ing desirable sequences of events. It offers a large body of
work with strong theoretical results and tool support. In
this paper, we advocate the application of DES to software
engineering problems. We summarize preliminary results
and provide a list of directions for future research.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming;
D.2.2 [Design Tools and Techniques]: General; F.3.1
[Specifying and Verifying and Reasoning about Pro-
grams]: Specification Techniques

General Terms
Design, Reliability, Verification

Keywords
Discrete-Event Systems, Model-Driven Development, Auto-
matic Code Generation, Concurrency, Control Theory

1. INTRODUCTION
In [15], Henzinger and Sifakis lament the “wall between

computer science and electrical engineering” which has held
the “potential of embedded systems at bay”. They point out
that hardware system designers and software system design-
ers typically use different kinds of models. In this paper, we
suggest first steps towards realizing Henzinger and Sifakis’
vision of “a new scientific foundation [...] which will en-
sure a systematic and even-handed integration” of computer
science (CS) and electrical engineering (EE). However, we
draw attention to a field of EE in which the models used
are already very similar to those used in CS: In Discrete-
Event System Theory (DES) systems are characterized by
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state changes which are caused by the occurrence of dis-
crete events rather than the passage of time. In standard
DES [28], finite state machines (FSMs) are used to specify
the system G and the permissible event sequences E; then, a
supervisor S is automatically generated such that the closed
loop system S/G only exhibits behaviours inside E.

The main contribution of this paper is the observation
that many problems in software engineering (SE) can be re-
duced to observing events of a system and restricting its
behaviour to specific sequences. We provide preliminary ev-
idence that DES offers solutions to many SE problems with
impressive theoretical foundations and guarantees.

As a motivating scenario, consider the classical problem of
synchronizing a collection of parallel threads such that some
shared resource R is accessed in a mutually exclusive and
deadlock-free fashion. After identifying the relevant events
in each thread Ti, that is, the actions representing the start
and the finish of an access to R, the control flow graph of
Ti can be used to construct an FSM Fi describing the set
of event sequences possible for Ti. The composition of all
Fi will form G. The specification E is given by an FSM
that accepts a sequence of start and finish events iff they
satisfy mutual exclusion. Standard DES can be used to gen-
erate a supervisor S such that the composition of G and S
is deadlock-free and exhibits only behaviours satisfying E;
moreover, S is guaranteed to be minimally restrictive, i.e.,
S will prohibit only those behaviours of G which will result
in a deadlock or violation of mutual exclusion. The prob-
lem of controlling concurrent programs is well-researched.
However, the use of DES is still attractive because a prov-
ably correct solution is automatically generated, and, most
importantly, that solution is guaranteed to not impose any
unnecessary restrictions.

Our recent work and that of a few other researchers sug-
gests that DES may offer rigorous solutions to many SE
problems. Moreover, there appear to be interesting similar-
ities between DES and model checking and some existing
synthesis approaches.

We will first give a very brief overview of DES. Next, we
will review preliminary results and then list potential addi-
tional areas of application and research.

2. WHAT IS DES?
Standard DES originated with Ramadge and Wonham in

the 1980s [28]. FSMs are used to model the system, also
called the plant G. Transitions in G are events, and the
generated language is referred to as the behaviour of G. An
FSM is called nonblocking if all states are reachable and
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a final state can always be reached. Under the assumption
that the system is not considered deadlocked in a final state,
nonblocking implies deadlock-freedom and livelock-freedom.
Each event is either controllable, meaning it can be disabled,
or uncontrollable, meaning it cannot or should not be pre-
vented from occurring. For example, “send message” is typ-
ically a controllable event, while “message transmit fail” is
an uncontrollable event. A specification, given as an FSM,
provides the desired behaviour of the plant, and is called the
legal language E. A plant G is called controllable with re-
spect to a specification E if, for any string s from the prefix
closure of E, there are no uncontrollable events e that could
be generated by G at the state reached by s such that se
would not be in the prefix closure of E. In other words, if
something cannot be prevented, it must be legal.

In supervisory control, a supervisor S (also an FSM) is
introduced to control the plant by enabling and disabling
events based upon the events that occur in the plant. Fig-
ure 1 shows the basic relation between supervisor and plant.

Figure 1: Supervisor-Plant Relation

Given a plant G and a legal language E, standard DES
supervisor synthesis automatically generates a supervisor S
such that the closed-loop system, S/G, given by the syn-
chronous product of S and G, is guaranteed to be nonblock-
ing and recognizes the largest controllable subset of the legal
language.

The supervisor S guarantees not only deadlock-freedom
and adherence to the specification E, but also minimal re-
strictiveness1. These strong theoretical guarantees set DES
apart from most alternative approaches to related problems
(e.g., generation of concurrency controllers [8], component
adaptors [38], or resource managers [7]). DES supervisor
synthesis is computable in polynomial time with respect to
the product of the state sizes of G and E. However, just like
model checking, DES supervisor synthesis suffers from the
state-space explosion problem: The size of the plant may be
exponential in the number of processes.

Many extensions of standard DES exist. For instance,
modular supervisory control [42], allows for multiple specifi-
cations and multiple supervisors to act independently on a
single plant. However, for the composite system to be non-
blocking, the constituent modules must satisfy additional
criteria. In partial observation [24], supervisors are no longer
assumed to be able to observe all events that the plant gen-
erates but instead must base their control decisions on only
partial information. In hierarchical DES [44] information
is aggregated so that only crucial information is seen by
a higher-level coordinator whose decisions then impact a
lower-level controller. In decentralized DES [6, 30], mul-

1Note that the language recognized by S/G will be empty if
a deadlock or specification violation is unavoidable; in that
case, the supervisor will prevent G from executing at all.

tiple supervisors, each of which only has partial observa-
tions and partial control, perform separate actions so that
together some overall goal is enforced. Standard DES has
also been extended to include real-time constraints [3], prob-
abilities [37] and dynamic systems, whereby the plant may
vary over time [13]. For a more detailed description of DES
the reader is referred to [4].

Most industrial applications of DES appear to be in the
context of manufacturing systems [2, 43, 23] but other ap-
plications include communication systems [29] and failure
diagnosis [32]. Many DES tools exist (e.g., [35, 19, 9, 34]).

3. PRELIMINARY RESEARCH RESULTS
To the best of our knowledge, so far DES has been ap-

plied to only five domains related to software: analysis of
database transactions, protocol verification, feature interac-
tion, execution of workflows and concurrent software.

DES for analysis of database transactions.
In [22], standard DES is used for comparing the perfor-

mance of different database transaction execution protocols.

DES for protocol verification.
In [29], decentralized DES control is used to model agents

in a telecommunication network. Results from [30] are used
to detect errors in a protocol at the data link layer of a
communication network. We believe that comparable tech-
niques could be used to do verification at other levels of a
distributed system.

DES and feature interaction.
Modular supervisory control and partial observation are

brought to bear on the problem of feature interaction in
telecommunication services [36]. Services and features for
multiple subscribers in a telephone network are modelled
as FSMs. Negative interactions between features can be
captured by the kinds of conflicts automatically detected
among modular DES supervisors. Consequently, the work
on conflict resolution in DES seems relevant here [41].

DES for execution of IT workflows.
The use of DES for the safe execution of IT automation

workflows is described in [40]. The generated supervisor
ensures that the execution of a, for instance, BPEL workflow
does not deadlock or visit any“forbidden” states specified by
the user.

DES for concurrent programs.
Two research teams have independently applied DES for

the generation of controllers for concurrent software [39, 11].
The motivating scenario is very similar to the one sketched
in the introduction, that is, the supervisor controls the ex-
ecution of a collection of concurrently executing threads.
In [39], the system model G is obtained by translating the
control flow graph (CFG) of each thread into a Petri net and
composing the results. A technique called supervisory con-
trol based on place invariants is used to construct a supervi-
sor that ensures the deadlock-free execution of the threads.
Validation is carried out by executing randomly generated
concurrent programs. Our own work [10, 11] targets the
same scenario and also leverages the CFGs for the construc-
tion of G. However, standard DES is used. Moreover, the
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user can supply a specification E (in the form of an FSM)
that every sequence of events exhibited by the concurrent
program must satisfy. The concurrent program is assumed
to be marked up manually with the events mentioned in the
specification. Binary semaphores are inserted just before ev-
ery controllable event and used by the supervisor to enable
and disable events. The Java PathFinder model checker is
used to validate that the system augmented by a Java imple-
mentation of the supervisor behaves as desired. An overview
the process presented in [10, 11] is given in Figure 2.

Figure 2: Process to create and inject concur-
rency controls into source code (automated steps are
marked with ‘a’)

As future work, we are investigating the use of µ-calculus-
based DES [45] to allow for the specification of liveness prop-
erties. Moreover, neither approach supports dynamic thread
creation; results from dynamic DES [13] may be helpful here.

4. ADDITIONAL AREAS OF APPLICATION
AND RESEARCH

DES provides a mechanism to enforce event orderings.
Consequently, at least the following potential areas of ap-
plication and research suggest themselves.

Component based software engineering.
The goal behind attaching behavioural specifications to

interfaces is to describe permissible uses of the interface to
facilitate component composition and enable modular rea-
soning. Examples for approaches supporting behavioural
interface constraints can be found on the programming lan-
guages level (e.g., Java Modeling Language (JML) [5], Eif-
fel [25], or session types [16, 17]), on the middleware level
(e.g., Corba IDLs), on the software architecture level (e.g.,
behaviour protocols [27]), on the modeling level (e.g., UML’s

Protocol State Machines [26]), and even on the operating
systems level [18, 33]. Interestingly, many of the specifi-
cation formalisms used are similar to FSMs and describe
permissible sequences of events (i.e., interface accesses).

Work leveraging these kinds of interface specifications in-
cludes Microsoft’s SDV [1], and work on component adap-
tation and assembly [38]. In [38], a coordinator is gener-
ated that guarantees the deadlock-free and specification-
violation-free execution of a collection of components which
are assumed to adhere to a particular architectural style
and to have syntactically matching interfaces. The approach
does not use DES, but some noteworthy similarities exist.
Models and specifications are given as FSMs (finite labelled
transition systems). Moreover, while the details still remain
to be checked, the coordinator construction appears similar
to the supervisor synthesis in DES, using, for instance, a
notion of “last chance states”, that is, states which present
the last opportunity to prevent a deadlock.

We believe that an application of DES to the problem of
checking and enforcing behavioural interface specifications
is very promising. Relevant extensions of standard DES in-
clude hierarchical, decentralized and dnynamic DES.

Run-time monitoring, steering and adaptive comput-
ing.

The work on run-time monitoring and steering (e.g., [14,
21, 20]) anticipates current work on adaptive and self-manag-
ing systems. In standard DES, the system model is fully
known and the synthesis algorithm uses it to construct a su-
pervisor that is prepared for all possible system behaviours.
Software monitors on the other hand typically do not have
full knowledge of future system behaviours. Supervisory con-
trol with limited lookahead [31, 13] deals with this situation
by allowing the supervisor to be constructed dynamically
(“on-the-fly”) based on limited information about the future
behaviour of the system. We suggest investigating the appli-
cability of this DES extension to adaptive and self-managing
systems. Interestingly, the application of steering to DES
has already been explored [12].

DES and other analysis and synthesis techniques.
The theoretical and practical similarities and differences

between the various forms of model checking and supervi-
sor synthesis are worth investigating. Techniques from µ-
calculus model checking are used in [45] to develop a version
of DES that supports µ-calculus specifications. However, we
are not aware of any work attempting to leverage DES for
model checking. An intriguing vision is the use of supervisor
synthesis to enable model checkers to not only to find bugs
but also corresponding bug fixes.

Other approaches to supervisor or controller synthesis ex-
ist. For instance, the work in [38] has already been men-
tioned. Moreover, game theory has been used to generate
deadlock-avoiding resource managers [7]. Comparing these
approaches with DES may be very fruitful.

5. CONCLUSION
In this paper, we argue that researchers in DES and SE

should become much more aware of each other’s problems
and techniques, because this would not only benefit both
fields but also help bridge the gap between EE and CS.
Apart from the more concrete research problems outlined
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above, more general, overarching research challenges include:
Which parts of DES are most suitable for which kinds of
SE problems? Given that DES also is prone to the state
explosion problem, which optimization and implementation
techniques ensure sufficient scalability? How useful are tech-
niques from, e.g., hierarchical and decentralized DES or op-
timistic, non-blocking concurrency to this end? How can the
application of DES to a specific problem be simplified via
automatic techniques that, e.g., extract models from code
or prepare code for supervisory control through instrumen-
tation (as in, e.g., [21])?
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