
1

Generating Extras: Procedural AI with Statecharts
Christopher Dragert, Jörg Kienzle, Hans Vangheluwe, and Clark Verbrugge

McGill School of Computer Science: SOCS-TR-2011.1

Abstract—Populated and immersive game contexts require
large numbers of minor, background characters to fill out
the virtual environment. To limit game AI development effort,
however, such characters are typically represented by very
simplistic AI with either little difference between characters or
only highly formulaic variations. Here we describe a complete
workflow and framework for easily designing, generating and
incorporating multiple, interesting game AIs. Our approach uses
high-level, visual Statechart models to represent behaviour in a
modular form; this allows for not only simplistic, parameter-
based variation in AI design, but also permits more complex
structure-based approaches. We demonstrate our technique by
applying it to the task of generating a large number of individual
AIs for computer-controlled squirrels within the Mammoth [1]
framework for game research. Rapid development and easy
deployment of AIs allow us to create a wide variety of interesting
AIs, greatly improving the sense of immersion in a virtual
environment.

Index Terms—Game AI, Modelling, Statecharts

I. INTRODUCTION

Awell-designed artificial intelligence (AI) in a computer
game can take significant development effort. Complex

AI design is typically focused on opponents or other non-
player characters (NPCs) that are central to game play. Many
games, however, take place in populated areas, and thus also
contain a large number of background characters, or extras.
Although extras have limited to no direct impact on game me-
chanics, reasonably intelligent extras are necessary to provide
a realistic visual milieu and ensure a good sense of immersion.
Individual, manual AI design for extras is not economically
feasible; to limit development costs, these characters are often
controlled using a limited set of template behaviours along
with simple randomization of timings or probabilities.

In this work we address the problem of facilitating and
procedurally generating interesting yet variable AI behaviour
for minor game characters, as a means of improving player
immersion. Our approach constructs game AIs based on a
high-level Statechart representation, allowing a designer to
model in a high-level form. Additionally, we provide a com-
plete development path from a visual formalism into actual
game code, enabling in-game integration and experimenta-
tion. Modularity inherent within the Statechart approach is
preserved in our design, allowing for easy perturbation of AI
designs at different levels. We generate multiple AIs using
basic randomization of model parameters, as well as higher-
level variation of the Statechart behaviour based on capturing
and redirecting events or on rewriting Statechart structure.
These higher-level techniques can provide more interesting,
semantic changes in behaviour, and an automated approach
allows for rapid prototyping and batch generation.

To illustrate the power of our approach, we show in the
following sections how we modelled the AI of a squirrel NPC.
A squirrel is a good example of a game character that is not
essential to the game’s storyline, but through its behaviour
creates a feeling of immersion for the players that explore
the game world. Animals such as squirrels abstractly follow a
similar set of daily activities and potential reactions, but also
exhibit unique and individual behaviours in practice.

Following the stratified design of Kienzle et al. [2], we
develop first a basic AI composed of a set of modular, high-
level behavioural components that implements a core set of
squirrel behaviours. From this, using both high and low-level
perturbation techniques we automatically generate a variety
of AIs that produce similar, but interestingly different squirrel
behaviours. Importantly, and despite the variation, our ran-
domized squirrel AIs maintain an overall semantic consistency,
always exhibiting core squirrel activities and reactions.

The design we explore applies to any game or simulation
context in which rapid generation of varying, but interesting
AI contexts may be useful. Specific contributions of our work
include:

• We describe a Statechart-based visual modelling frame-
work and workflow suitable for producing game AI for
NPCs. This allows for flexible, high-level design and
analysis of game AI.

• Our design can function as procedural content generation.
We show how to apply automatic or manual variation at
different levels of abstraction in order to quickly produce
individual AIs with interesting differences, but still well-
defined and bounded behaviours.

• To validate our approach we develop a non-trivial simu-
lation of squirrel behaviour within a 3D virtual environ-
ment. Using our techniques we are able to easily generate
multiple and complex squirrel behaviours that provide a
rich sense of immersion with minimal design costs.

In the next section we give essential background on our
modelling formalisms. Section III describes our AI modelling
strategy in detail, and in Section IV we describe our resulting,
multi-tiered approach to content generation. Implementation
and experimental validation are presented in Sections V
and VI, followed by a review of related work in Section VII,
and future work and conclusions in Section VIII.

II. BACKGROUND

A. Statecharts and UML

Since the main purpose of the AI models is to define
reactions to game events, an event-based formalism seems
to be the most natural choice. We extend State Chart XML
(SCXML) [3], a hybrid of Rhapsody Statecharts [4] and

2

Start Endevent[guard] / action
action on entry:
action on exit:

action on entry:
action on exit:

Fig. 1. Statecharts Basic Transition

S1

g

eS11 S12

S13

S2

f
e

f

Fig. 2. Hierarchy in Statecharts

STATEMATE Statecharts [5] for our experiments, combining
State Diagrams and Class Diagrams.

Statecharts were introduced by David Harel in 1987 [6] as
a formalism for visual modelling of the behaviour of reactive
systems. A full definition of the STATEMATE semantics of
Statecharts was published in 1996 [5]. More recently, with the
introduction of UML 2.0, the Rhapsody semantics as described
in [4] is more tuned to the modelling of software systems.

At the heart of the Statecharts formalism is the notion of dis-
crete states and the transitions between them. Statecharts are
a discrete-event formalism, meaning it takes a timed sequence
of discrete events as inputs and produces a timed sequence
of discrete events as output. Internally, the system transitions
between discrete states due to either external or internal
events. In Figure 1, a simple model is shown with two states:
start and end. The small arrow pointing to start denotes
that state as the default initial state. If the system is in state
start and it receives event while condition guard evaluates
to true, the transition to state end is taken and the side-effect
action is executed. Additionally, entry/exit actions are
executed whenever a state is entered/exited. Each of the parts
of the event[guard]/action transition trigger are optional.

Figure 2 shows a composite state s1 with several nested
states. Initially, the system will be in state s11 as at the top
level, s1 is the default state and within s1, s11 is the default
state. To understand the nesting, when in a state such as s11,
upon arrival of an event such as f, an outgoing transition is
looked for which is triggered by event f. This lookup is per-
formed traversing all nested states, from the inside outwards
(this is the Rhapsody semantics). The first matching transition
is taken. This approach keeps the semantics deterministic
despite the seemingly conflicting f trigger on transitions to
both s13 and s2. When in state s12, there is no conflict
and event f will take the system to state s2. When in state
s2, event e will take the system to state s1. As the latter is
a composite state, the system will transition (after executing
s1’s entry action) to the s11, the default state of s1.

In addition to hierarchy, Statecharts add orthogonal compo-
nents and broadcast communication to state automata. Figure 3
shows orthogonal components (or and-states) ocA and ocB as
separated by a dashed line. This denotes that the system will
simultaneously be in exactly one of the or-states of each of the
orthogonal components. As such, this is a short-hand notation
for the unordered cartesian product of state sets. All orthogonal

S1

ocAs1

acAs2

f / g

ocA ocB

ocBs1

acBs2

g

Fig. 3. Orthogonal Components in Statecharts

incrSize()
size : integer

C1 1
myC2 setValue(integer)

value : integer
C2

accept events: Incr accept events: Set, Reset

myC2→
GEN(Set(val = size))

Incr / incrSize()Start
Update

Done

action on entry:
 size = 0;

after(1)

Set /
setValue(set.val)

Start Update

Done

/ setValue(0)

Reset /
setValue(0)

Fig. 4. Modelling Structure and Behaviour

components react to external events. Furthermore, events such
as g, which is output when the external event f is received
while ocA is in state ocAs1, are broadcast and are in particular
sensed by other orthogonal components.

The most interesting feature of Rhapsody Statecharts is
that it allows for a combined description of structure and
behaviour of objects. This is achieved by adding Statechart
behaviour descriptions to UML Class Diagrams as shown in
Figure 4. The behaviour of individual objects (class instances)
is described by the class’ Statechart. For conceptual clarity
we require that methods in a class have local effects, and
can only change the object’s attributes. All external effects
must be modeled in the Statechart. This allows for a clean
separation of externally-visible, reactive, timed behaviour from
internal (computation) details. Objects communicate by means
of a GEN action which sends an event to a target object as
shown in Figure 4 (myC2->GEN(Set(size=2))). Events can
be handeled asynchronously or synchronously (in which case
they are similar to remote method calls). We will mostly
use asynchronous message passing. To support concurrency
between objects, our Statecharts compiler will give each object
an event queue. All object queues will be processed fairly.
Note that in the rest of this article, we will use the more
common UML notation where structure and behaviour (Class
and Statechart) are shown separately, but connected via an
association with stereotype <<behaviour>>.

B. Mammoth

Mammoth [1] is a Massively Multiplayer Online Game
(MMOG) research framework. It provides an implementation
platform for academic research related to multiplayer and
MMOGs in the fields of distributed systems, fault tolerance,
databases, networking, concurrency, but also artificial intelli-
gence, content generation, and software engineering in general.

In Mammoth, players take control of a game character called
an avatar. A game session consists of moving around in a vir-

3

tual world and interacting with the environment by executing
actions. Basic building blocks of such actions include moving
the avatar, picking up or dropping items, or communicating
with other players.

In order to allow researchers to easily conduct experiments,
Mammoth has been designed as a collection of collaborating
components that each provide a distinct set of services. The
components interact with each other through two types of well-
defined interfaces, engines and managers. The most important
component in the context of this work is the NPC Manager,
which takes care of associating AI behaviour with controllable
entities (the NPCs). At run-time, the NPC Manager passes
relevant game information to the AI, and provides an interface
for the AI to trigger game actions within the virtual world. The
current NPC manager of Mammoth supports game AI written
in Java, and game AI modelled using the approach we present
in this paper in section V.

III. GAME AI MODELLING FORMALISM

In games or simulations, a character receives information
about the environment, decides on a course of action, and
then tries to execute it. For instance, a character might observe
an obstacle, decide to turn left, then execute that action. Our
modelling formalism logically divides an AI into components
based upon this control-inspired philosophy. All components
are modelled as a Statechart with an associated class.

Components that learn about the game-state are called sen-
sors, while components that alter the game-state are classified
as actuators. Together, they comprise the interface between
the game and the AI. Only the sensors have the ability to
learn about the current game-state, and only actuators have
the ability to change it. This creates a clear distinction; the
other components can only learn about the game-state through
events, and can only change the game-state by issuing events.

Between these are a hierarchy of components that transform
sensing input to actuated output. The main form of communi-
cation between components is the asynchronous sending and
receiving of events. This yields a loose coupling between com-
ponents and hence makes reconfiguration, reuse, and creation
of variations of behaviour easier.

We explicitly model the generation of significant events
using Statecharts. The associated class has access to the state
information needed to generate an event. This is done by
inspecting the values of the attributes of the current class, or by
looking at attributes of other classes associated by composition
relationships.

The architecture of our formalism is described in Fig. 5.
The first level contains sensors, which allow the character
to observe the environment and its own state, filtering the
input and sending events to higher levels. The second level
contains components that analyze or correlate the events
from individual sensors, which might lead to the generation
of further events. Memorizer components keep track of the
observed state. Conceptually at the highest level of abstraction,
strategic deciders act to decide on a strategy for the character
based on the current state and memory.

From here, the level of abstraction decreases. The tactical
deciders plan how to best pursue strategies sent out by

Sensors

Analyzers

Memorizers

Strategic Deciders

Tactical Deciders

Executors

Coordinators

Actuators

G
eneral Event Flow

Low
 H

igh Low

Le
ve

l o
f A

bs
tra

ct
io

n

Fig. 5. Our AI Model Architecture

position
direction
speed

Squirrel

Eyes 1

myEyes int energyLevel
FoodEnergy1

myEnergy

Item

0..1 carrying

Fig. 6. Modelling the State of a Squirrel with Class Diagrams

the strategic deciders. The executors then translate tactical
decisions to low-level commands according to the constraints
imposed by the game. Coordinator components understand the
interplay of actuators and might refine the low-level commands
further. Finally, the actuators perform the desired action.

A. Modelling the State of a Squirrel

As natural creatures, squirrels have a wide variety of pos-
sible behaviours and internal states, and may of course be
modelled to arbitrary detail. For game purposes, a high level
of abstraction is sufficient. We give each squirrel a physical
size, approximated by a bounding rectangle, a position, and an
energy level. Energy has an initial high value that gradually
decreases as the squirrel moves about, but that can be restored
by eating acorns. A squirrel can also carry a game item, such
as an acorn.

The above mentioned state of a squirrel can naturally be
modelled using class diagrams as shown in Fig. 6. Each sensor
can be modelled as a stand-alone class. The composition
association is then used to connect the different components
together to form the complete state of a particular squirrel.

The advantage of using hierarchical composition is easy to
see: depending on the particular game environment, different
models of squirrels, for example ones with additional sensors
such as ears, can easily be constructed by adding new com-
ponents.

B. Sensors – Generating Important Game Events

Sensors receive basic game and squirrel state data, trans-
lating individual state observations to higher level events of
interest. This reduces the complexity of constructing higher
level, goal-directed behaviours, such as seeking food or fleeing
from players.

A simple example is shown in Fig. 7. The FoodEnergy class
encapsulates an attribute that stores the current energy level

4

energyLevel
FoodEnergy Normal

MonitorFoodEnergy [energyLevel < 40%]
/ foodLow

<<behavior>>
Low

[energyLevel > 50%]
/ foodNormal

Critical

[energyLevel < 10%]
/ foodCritical

[energyLevel > 20%]
/ foodLow

Fig. 7. Generating FoodNormal, FoodLow and FoodCritical Events

boolean newItemSighted()
Item[] getVisibleItems()
boolean newPlayerSighted()
Player getClosestPlayer()

Eyes Announcements

<<behavior>>
AnnouncingPlayersAndItems

Scanning
ForPlayers

[newPlayerSighted()] / playerSighted

[lostPlayer()] / playerLost

Scanning
ForItems

[newItemSighted()] / itemSightedPosition getPosition()

GameEntity
0..* visibleEntitiesannouncedEntities 0..*

Item

Player

Fig. 8. Generating Events based on Visible Game Entities

of the squirrel. While energy is essential for the squirrel to
function, the exact level is not of great importance. Hence
we abstract from the continuous level to three discrete states,
FoodNormal, FoodLow and FoodCritical. Only when energy is
low should the squirrel take appropriate measures. We model
the generation of a foodLow event by attaching a Statechart to
the FoodEnergy class, triggered when the energy level drops
below the low energy threshold.

A more complicated example is shown in Fig. 8. In this
case, the Eyes component wants to signal playerSighted and
playerLost events when players enter or leave the squirrel’s
line of sight. This behaviour is described in the first orthogonal
component of the Statechart Announcements. Analyzing game
data to properly detect players is an operation requiring a small
computation. It is modelled as a simple operation attached
to the Eyes class. The attached Statechart attached can use
these operations to trigger the transition that sends the desired
events. The orthogonal AnnounceItems component performs
similar event generation for detected game items.

C. Analyzers – Correlating Sensor Events

Some significant events can only be generated based on the
state of several sensors. For instance, to determine if it makes
sense to eat, information about current energy (which must be
low enough for food to not get wasted) and information about
what the squirrel is carrying (which must be something edible)
is needed. The EatAnalyzer component observes the states of
the energy sensor and the squirrel and generates readyToEat
events when appropriate.

Another example of an analyzer component is the ThreatAn-
alyzer, which is represented in Fig. 9. While in the Analyzing
state, if the distance to the closest player is smaller than a
given distance, then the highThreat or lowThreat events are
generated and the component moves to a Cooldown state
where no new events are generated. After one second, the
component moves back to the Analyzing state. As a result,
threat events are generated every second until there are no
players in the vicinity of the squirrel anymore.

float distanceFromClosestPlayer()
ThreatAnalyzer

Analyzing

GenerateWarnings [distanceFromClosestPlayer()
 < lowThreshold]

<<behavior>>

Cooldown

after(1)

Squirrel
Eyes

[else] / lowThreat

[distanceFromClosestPlayer()
 < highThreshold] / highThreat

Fig. 9. Generating Events based on the State of Several Components

rememberFood(GameEntity g)
removeFood(GameEntity g)

position[] placesWithFood
FoodMemorizer NoFoodSighted

RememberFood
itemSighted(i)[i.isEdible()] / this.rememberFood(i)

<<behavior>>

FoodSighted

itemPickedUp(i)[i.isEdible()] /
 this.removeFood(i)

Eyes

[placesWithFood.getSize() = 0]

[else]

itemSighted(i)[i.isEdible()] /
this.rememberFood(i)

Fig. 10. Remembering the Position of Sighted Food

D. Memorizers – Modelling Memory

Aside from reacting to current events, squirrels must also
make decisions based on previous observations. In order to
remember interesting states or events for future strategical
decisions, we need to add state to the models that act as the
squirrel’s “memory”.

Occurrences of events can be remembered using boolean or
enumeration fields, or states in a Statechart. An example of
the latter is shown in Fig. 10, which depicts a FoodMemorizer
component. When an edible item is sighted, the Statechart
transitions into a FoodSighted state and stores the position of
the discovered food in the placesWithFood array. When a food
item is picked up (signalled by the itemPickedUp event), the
position is removed from the array.

Remembering complex state, for instance geographical in-
formation, is less trivial, and usually requires the construction
of an elaborate data structure that stores the state to be
remembered in an easy-to-query form. This could be done,
for instance, by an ObstacleMap component, which listens to
ObstacleDetected events sent by the eyes and then updates the
map data structure accordingly.

E. Strategic Deciders – Deciding on a High-Level Goal

Now provided with knowledge of the game-state, it is possi-
ble to model the high level strategy of the squirrel. An example
Brain component is depicted in Fig. 11. At the highest level
of abstraction, the squirrel brain switches between different
operating modes based on events. It starts in the Safe state,
which is a concurrent state with two compartments. In the
left compartment, the squirrel starts in the Wandering mode,
and switches to LookingForFood mode if energy becomes low.
In the right compartment the model states that whenever the
squirrel is ready to eat, it will eat. If at any point in time the
squirrel is exposed to a high threat, then wandering, looking
for food, and eating activities are interrupted as the brain
switches to fleeing mode. A low threat event on the other hand
only interrupts wandering, e.g., a squirrel currently looking for
food is willing to take a small risk to reach its goal.

5

Safe

SquirrelStrategy

Looking
ForFood

EatWhen
Ready

Fleeing

lowThreat

Wandering

[threatAnalyzer.isSafe()]

foodLow

foodNormal

readyToEat / eat

highThreat

Brain

<<behavior>>

boolean isSafe()

ThreatAnalyzer

1 threatAnalyzer

Fig. 11. The Squirrel Brain Strategy

DecidingHowBestToFleeFleePlanner

Climbing
Tree

<<behavior>>

Idle

MovingAway

[else] / moveAwayFrom(
myEyes.getClosestPlayer())

startFleeingstopFleeing

FleeTactic

[myEyes.seeTree()] /
climbTree(myEyes.getClosestTree())

Eyes
1 myEyes

Fig. 12. Planning how to Flee

Mode changes are announced by sending corresponding
events to the tactical deciders (or planners). To make this
happen, each of the states of the brain has enter and exit
actions defined: when entering the Wandering state, the start-
Wander event is sent; when exiting the Wandering state, the
stopWander event is sent; and so on for all other brain modes.

F. Tactical Deciders – Planning how to Achieve the Goal

High-level goals sent by the strategic decider must be
translated into lower-level commands understandable by the
different actuators of the squirrel. Translation is not trivial,
since it can require complex tactical planning decisions to
be made. This can include consideration of the game history,
learned by consulting the memorizers.

Each mode in the squirrel brain has a corresponding planner
component. Fig. 12 illustrates how the FleePlanner decides on
a flee tactic: when the squirrel wants to flee, it checks if there
is a tree nearby. If yes, the climbTree event is sent. Otherwise,
the best tactic is to move in the opposite direction of the threat.
This is achieved by sending a moveAwayFrom event.

Another tactical decider for our squirrel is the Looking-
ForFoodPlanner component. It first looks for food using
information provided by the Eyes. If food is visible, it is
picked up. Otherwise, the FoodMemorizer is consulted to
obtain positions of previously seen food. The squirrel then
visits these positions hoping that the food is still there. If no
food has been sighted in the past, the squirrel wanders around
randomly, hoping to eventually find some.

G. Executors – Mapping the Decisions to Actuator Commands

Executors map the decisions of the tactical deciders to
events that the actuators can understand. This mapping is

PickingUpPickupExecutor

Attempting
Pickup

<<behavior>>

Idle

MovingToItem

[else] /
moveTo(i.getPosition())

pickupItem(i)

PickupExecution

[i.isInRange()]

destinationReached

destinationUnreachable /
pickupFailed

/ takeItem(i)

Fig. 13. Executing an Item Pickup

constrained by game rules; if, for instance, an AI controls a car,
a Steering executor must translate waypoint events generated
by a planner component into events that the MotorControl and
SteeringWheelControl actuator components understand.

In the case of our squirrel, we have a PickupExecutor
component that knows how to interpret the pickupItem events
generated by planners such as the LookingForFoodPlanner.
The model is shown in Fig. 13. Another example executor is
the moveAwayFrom executor, which, given a position to move
away from, generates moveTo events for the leg actuators.

H. Coordinators – Resolving Undesired Actuator Interactions

For modularity and composability reasons, executors in-
dividually map tactical decisions to actuator events. This
mapping can result in inefficient and maybe even incorrect
behaviour when the effects of actuator actions are correlated.
In such a case it is important to add an additional coordinator
component that deals with this issue.

For example, our squirrel might want to continuously look
at a threatening player in order to always know about the exact
position of the latter. Coupled with a simultaneous decision to
move, this requires coordinating head and body rotations to
ensure natural results. Our simple game environment does not
model squirrels to this level of detail, so we do not include
any coordinators of this type in our current design.

I. Actuators – Signalling the Action to the Game

At our level of abstraction, the squirrel actuators are very
simple. A squirrel’s legs can walk to a certain destination.
The hands of the squirrel can take items and put them in the
squirrel’s mouth. The mouth can drop items and eat edible
items. We suggest to model each actuator as a separate Control
component.

Fig. 14 shows the Legs component, the actuator controlling
the movement of the squirrel. The Statechart shows that,
upon receipt of a moveTo event, the actuator moves into a
Moving state. The associated class of the actuator then calls
the appropriate internal method to cause the NPC to move
within the game.

The Legs component in Fig. 14 is actually a special kind
of actuator, a feedback actuator. Feedback actuators not
only translate events from the Statechart world to game-
environment-specific commands, they also provide feedback
to the Statechart world on the outcome of a command. In
other words, they are both actuators and sensors. In our case,

6

Legs Stationary

ActuateLegs
moveTo(p) / this.setDestination(p)

<<behavior>>
Moving[this.reachedPosition(p)] /

destinationReached

[this.amBlocked()] / destinationUnreachable

Fig. 14. The Legs Feedback Actuator

the Legs send destinationReached and destinationUnreachable
events to provide feedback on the outcome of a move.

J. Squirrel AI Model Example Component Interaction

At run-time, communication among our components is done
using events, and hence the individual components are only
loosely coupled. Some communication must be synchronous,
such as consulting a memorizer. This is accomplished through
asynchronous events that are paired to have a call/callback.

Fig. 15 shows a possible sequencing of events triggered by
the Eyes detecting a player. The playerSighted event causes the
ThreatAnalyzer to calculate the distance between the squirrel
and the sighted player and finally output a lowThreat event.
This in turn causes the Brain to switch to Fleeing mode and
generate a startFleeing event. The FleePlanner checks for
trees nearby, but since there are none decides to flee by moving
away from the player by generating a moveAwayFrom event.
The MoveAwayFrom executor finally calculates an appropriate
destination position based on the player position and the
squirrel position, and generates the moveTo event that triggers
the Legs to start moving in the desired direction.

IV. CONTENT GENERATION

Content generation is the process of creating new elements
to put into the game world. Rather than create truly novel AIs,
our methodology seeks to enrich the gameplay experience by
giving variation and personality to existing AIs. We present
several methods that take AIs designed using the above de-
scribed hierarchical Statechart model and generate variations.
We show that our modifications are safe, in that they ensure
semantic correctness of the resulting AI. The end goal is to
create many different versions of an AI, each able to fill the
original role, but with variation that add flavour and life.

Three approaches are employed. First, we describe how to
employ parameter modification to create new AIs. Next, the
benefits of a modular approach are discussed. Specifically, we
look at how the addition, removal, or swapping of Statecharts
can lead to new AI behaviour. Finally, rule-based variations
of state charts are introduced, showing how a Statechart can
be transformed to create a new behaviour while maintaining
semantic correctness. In each section, we comment on how
these changes must be managed to ensure validity of the
generated AI.

A. Varying Parameter Values

Non-player characters typically have many properties that
are defined when the character is instantiated. These can
include properties such as maximum energy, movement speed,

inventory size, and so on. Varying these parameters is a
obvious method to create differentiated instances of an NPC.
However modifying a finely tuned AI could easily lead to
incorrect behaviour, and thus several guidelines need to be
enforced to ensure semantic correctness of resulting NPCs.

First, all parameters must have appropriate ranges. Some
parameters can support dramatic modifications, while others
have a very small range. Some parameters can change from
negative to positive (and vice versa), while others cannot. For
example, if the speed of an average squirrel is 5 units/second,
increasing that up to 50 units/second would clearly be an
error, as would negating the speed since it would reverse the
direction of all moves. Thus, each parameter to be modified
should have a defined range. Speed for a squirrel could have
the range [4, 6].

Since the discussion is based upon creating semantically
correct variations, thought should be given as to the selection
of values within the range. Some properties are artificial and
can have a wide range. An example of this is the wait time
for a squirrel performing random exploration. High or low
values are equally valid, and there is no ‘typical’ behaviour
that players will expect. A random value within the defined
range is acceptable for parameters of this class.

Other parameters tend to the mean. These tend to be phys-
ical properties of the natural being that is being represented.
For example, adult squirrels would tend to be roughly the same
speed, though some exceptional squirrels may move noticeably
faster and injured squirrels may move much slower. To account
for this, a probability distribution should be employed, such
as a Gaussian. One approach would be to set the standard
deviation from the mean to half of the distance between the
mean and the range limits for that parameter. Anything that
falls more than two standard deviations away could be rerolled.

Parameters can have interdependencies. Some are critical
dependencies, where violations will cause erratic or incorrect
behaviour. As an example, we refer back to Fig. 9. Perhaps
the lowThreshold parameter has a range of [3, 10], while
highThreshold has a range of [1, 5]. A possible outcome is
for the highThreshold to be greater than the lowThreshold.
The result would be the removal of any behaviour associ-
ated exclusively with a low threat state, since the Statechart
would transition immediately to the high threat state. If the
lost behaviour is essential, then the resulting AI would be
semantically incorrect. In cases like this, parameters should
be generated with dynamic ranges. To solve the problem with
threat ranges, a generator could use a range of [1, 5] for
highThreshold, then use a range of [1 + highThreshold, 10]
to generate the value for lowThreshold.

Some dependencies are non-critical. These relationships will
not cause errors in the behaviour if ignored, but can reduce the
realism of the resulting NPCs. Respecting these relationships
will give better results. For example, a larger squirrel tends
to move slower than its smaller counterpart. If there is a
parameter that defines the size of the squirrel, a more realistic
generation strategy will increase or decrease the generated
movement speed of the squirrel.

These steps are summarized in our parameter modification
strategy, presented in Fig. 16

7

p : Player : Eyes : FleeExecutor:ThreatAnalyzer :Brain : FleePlanner

playerSighted(p)

getPosition()

lowThreat

:Legs

Sensors Strategical
Deciders

Tactical
Deciders Executors ActuatorsAnalyzers

getPosition()

: Squirrel

Data

startFleeing

moveAwayFrom(p)
p := getClosestPlayer()

seeTrees()

getPosition()
getPosition()

moveTo(q)

Fig. 15. Possible Event Sequence when a Player is Seen by a Squirrel

1. For each parameter:
2. Create a range for each parameter.
3. Decide on the probability distribution best suited

for that parameter.
4. Examine parameters for dependencies. For each

dependency:
5. Determine if the dependency is critical.
6. If critical, assign dynamic ranges to resolve

problem.
7. If non-critical, resolve if desired, perhaps using

dynamic ranges.

Fig. 16. Strategy to Perform Parameter Modification

B. Varying Component Configurations

Whereas the previous subsection presented how different be-
haviours of an individual component of an AI can be generated
by changing parameter values, this subsection presents how
different overall behaviours of an AI can be generated with
little effort by assembling existing components in different
configurations.

1) Removing Components: The easiest way to generate a
new configuration from an existing one is to simply omit some
of the components. In our modelling approach this is easy
to do, since the communication among components is done
using events. As a result, the components are only loosely
coupled, since the component that generates an event does
not know and therefore does not depend on which components
react to the event, and vice versa. Theoretically, by selectively
omitting components of an AI with n components, there are
2n possible configurations. Practically, however, only a very
small number of AIs generated by component omission exhibit
realistic behaviour.

The strategic deciders are usually the most essential com-
ponents. In general, most AIs will only have one ”brain” that
performs management at the highest level. Taking that out
would sever the connection between the input and the output of
the AI. In our squirrel example, removing the Brain component
would result in a squirrel that performs no actions whatsoever.

Removing sensors or acutators is also dangerous. Since
these components form the interface with the game at large,
their funtionality cannot be replaced by other components. For
instance, a squirrel without legs to actuate move commands
cannot move, nor would any other class have the methods
required to issue move commands to the game. The squirrel

would be unable to perform core squirrel activities and thus
would be invalid.

Interface components can be safely removed when there is
an alternate. For instance, our squirrel model heavily depends
on its Eyes to navigate in the world and find food. If our model
had other sensors, such as a Nose that can also be used to find
food, removing any one of them might generate interesting
behaviour. Also, some components may be extra, such as
VocalChords, and can be safely removed without invalidating
the squirrel.

In general, the best component candidates to remove are an-
alyzers and coordinators, followed by planners and executors.
Without a given analyzer, the AI is not able to correlate sensor
events, i.e., it is only capable of reacting to ”raw” sensor data.
Without a given coordinator, the AI’s actions might become
less efficient. As a result, the AI behaviour appears a little
clumsy. Removing tactical deciders takes away the ability for
an AI to perform one of its high-level goals. For our squirrel
model, removing the FleePlanner would result in a squirrel
that freezes when exposed to a threat. Removing an executor
results in an AI that has difficulty in carrying out a tactical
plan. However, the squirrel could still perform orthogonal tasks
without issue.

This can be automated through the use of a flagging system.
Given the full set of components, a subset should be designated
as removable. The generation tool can then optionally remove
any flagged components, knowing that the result will still
be valid. Conditionals should again be used to validate the
generated result. If a squirrel has Eyes and Nose components,
both flagged as removable, then a realistic condition would be
Eyes ∨ Nose, ensuring that at least one of the two sensing
components will always be included. Squirrels that violate this
would not be valid and should be discarded immediately.

2) Replacing Components: A more advanced and effective
way of generating new configurations from an existing AI
is to replace components by other equivalent components.
For example, it would make sense to replace our squirrel
FleePlanner with a component that, instead of preferring to
climb trees, would first try to run away from the threat, and
only when trapped decide to climb a tree. To make things
work, the replacement component must have a compatible
component interface, meaning it should expect the same events

8

that the replaced component expected.
Our components actually have a loose coupling between the

Statechart and the associated class. To replace a component,
one could either associate an existing class with a new
Statechart, or create a new class and associate it with an
existing Statechart. The new elements must respect the existing
interface, i.e., a new Statechart must use the same calls to the
associated class that the old state diagram did, and similar for
the reverse case.

Often there is a semantic equivalence between components,
but not a syntactical one, i.e., the event that the first component
produces is not the one that the reacting component expects.
The meaning of the event, however, is the same. For example,
the squirrel Brain generates a startWander event, but the
ExplorationPlanner expects a startExploration event. To solve
this problem, our approach allows the developer to specify
that specific events of specific components are renamed, which
makes it possible to use the ExplorationPlanner instead of the
WanderPlanner within our squirrel model.

In order to automate the generation of new AI using
component replacement, a library of semantically equivalent
components needs to be created together with mappings that
specify the correspondence between events.

3) Adding Components: Finally, it is possible to create
new AI behaviours by adding components to an existing
configuration. Components belonging to any category between
sensors and strategic deciders are easy to add. New sensors
augment the ways the AI can perceive the environment. For
example, ears could allow a squirrel to detect approaching
game entities even in the dark. New analyzers can help the
AI to detect high-level events that are based on correlated
occurrences of low-level events. New memorizers expand the
capability of the AI to react based on historical information.

Components belonging to any category between the strate-
gic deciders and the actuators are more tricky to add. Adding a
new actuator component, for example, is easy, but it typically
also requires the addition of a new executor that generates
events that the actuator can react to. Following the same
reasoning, a new planner is needed, and the strategic decider
needs to be replaced with an updated model that activates the
new planner when the situation is appropriate.

In the special case where the new actuator triggers be-
haviour that is completely orthogonal to any already existing
behaviour, it is possible to add a second strategic decider that
runs concurrently with the original one, controlling the newly
added components independently. For example, a squirrel
could have a second Brain that determines when the squirrel
should wag its Tail, a new actuator. However, the general case
requires also the addition of new coordinators to take care of
interactions between the existing actuators and the one that is
to be added.

The ultimate power of varying configurations is achieved
when event renaming is combined with component addition.
This makes it possible for a component to intercept events
generated by another component and to transform them or
delay them. The StutterExecutor component shown in Fig. 17
is an example of an executor component that, when asked to
stutterMove to a given position, moves towards the destination

setFinal(Position)
Position getNext()
boolean destinationReached()

Position finalDest
StutterExecutor

Idle

Stutter
stutterMove(p) / setFinal(p)

<<behavior>>

Moving

[destinationReached()]

Pausing

/ moveTo(getNext())

[else] / moveTo(getNext())

Fig. 17. Adding Stutter Behaviour to the Squirrel Movement

for a moment, then waits some time, then continues moving,
then waits some time again, etc.

In normal situations, squirrels tend to move in this stuttering
pattern. When under threat or when picking up food, however,
squirrels run directly to their destination position without stop-
ping on the way. In our current squirrel model there are three
executors that produce moveTo events: the WanderExecutor,
the PickupExecutor and the MoveAwayFromExecutor. Using
our event renaming approach, it is possible to transform the
moveTo events generated by the WanderExectutor to stutter-
Move events. As a result, our squirrel moves intermittently
while exploring, but still runs straight for the target when
picking up an acorn or when fleeing from a threat.

C. Varying Component Models

The most drastic variations consist of arbitrary structural
modifications of the AI behaviour models. As with the previ-
ous variations, these modifications still need to preserve the
semantics.

We have chosen to to explicitly model these variations in the
form of transformation rules as these allow one to represent
changes in the same modelling notation as the transformed
models themselves. In rule-based model transformation [7]
such as graph transformation, the transformation unit is a rule.
A transformation rule uses model patterns as pre-conditions
and post-conditions. The pre-condition pattern determines the
applicability of a rule: it is usually described with a Left-Hand
Side (LHS) and optional Negative Application Conditions
(NACs). The LHS defines the pattern that must be found in
the input model to apply the rule. The NAC defines a pattern
that shall not be present, inhibiting the application of the
rule. The Right-Hand Side (RHS) imposes the post-condition
pattern to be found after the rule was applied. An advantage
of using rule-based transformation is that it allows us to
specify the transformation as a set of operational rewriting
rules instead of using imperative programming languages.
Model transformation can thus be specified at a higher level
of abstraction (hiding the implementation of the matching
algorithms), closer to the domain of the models it is applied
on. When a model transformation is executed, rule scheduling
describes in what order the rules will be applied (inter-rule

9

Fig. 18. The re-setting rule.

management). The priority-based rule scheduling we use tries
every rule in decreasing order of priority. When a rule matches,
it is applied and the process starts again from the highest-
priority rule, until no more rules match.

A typical modification is encoded in the “re-setting a
component” rule which wraps a Statechart in a single super-
state with a transition looping from that state to itself. This
transition is triggered by a “reset” event and effectively brings
the Statechart back to its original state. This rule is shown
in Figure 18. The LHS identifies a Statechart region. The
transformation label “1” allows one to refer to that particular
matched entity in other parts of the rule. The NAC specifies
that this region should not be inside a Statechart state (orthog-
onal nor composite). This allows us to select only the top-level
region of a Statechart. The RHS subsequently wraps the top-
level region inside a new state (evidenced by the new label
“3”) with a new transition with trigger “reset” looping on it.

Another modification is the moving of a global state such as
Fleeing in Figure 11 into a single orthogonal component. This
has as an effect that activities in the other orthogonal compo-
nents (EatWhenReady in our example) are not interrupted.

V. MAMMOTH IMPLEMENTATION

Mammoth provides the game framework for validating the
results of our method. To enable Statecharts within Mammoth,
we employed SCXML [3]. Generation of large numbers of AIs
required the ability to quickly and easily import these into the
Mammoth game world; the workflow issues are addressed here
and a solution is presented.

A. NPCs in Mammoth

All non-player characters in Mammoth are controlled by an
NPC Manager. On each iteration of the game loop, the NPC
Manager executes the AIs of each NPC. This will sometimes
result in a change to the game-state by causing the controlled
NPC to take action. Actions could be moving, picking up
objects, sending messages, or others.

AIs are individually housed in roles, which act as the
high level containers for the various behaviours of each
AI. Examples of roles in a medieval setting would be a
shopkeeper, a city guard, a knight, or even a riding horse. In
Mammoth, the squirrel AI described herein is implemented as
a role. Specific behaviours are implemented as tasks; examples
include moving, wandering, and eating. This arrangement is
deliberately modular, in that any role can have any subset of

the available tasks, with each role creating its own instances
of tasks employed.

Adding Statecharts to Mammoth was done at the level of
the task. Roles facilitate the operation of these Statecharts by
acting as an event clearinghouse. All events, generated by the
tasks, are passed directly to the containing role, where they are
propagated in order of creation to all contained tasks. Tasks
with Statecharts forward events to the Statechart’s execution
environment, where the event is processed and the Statechart
reacts accordingly.

B. SCXML Description

The Mammoth implementation represented Statecharts us-
ing State Chart XML (SCXML). SCXML defines a repre-
sentation of Statecharts in a human-readable XML format.
Proposed as a W3C standard [3], the working draft gives the
authoritative definition of the language.

States are defined using <state> tags. Attributes allow
the specification of name and final status, amongst others.
Transitions use the <transition> tag, and each transition
can define the event and/or condition that triggers the transi-
tion, as well as the target. States can contain inner states, and
those doing so must have an <initial> block that contains
a conditionless transition to the default sub-state. Orthongonal
components (called parallel states in SCXML) and history
states are also supported.

The action portion of a transition, as well as the
onentry and onexit blocks of a state, are represented
as executable content in SCXML. Upon a transition, these
locations are checked and the context executed. Some tags
defining executable content include the <log/> tag, which
logs to the SCXML log; the <assign/> tag, which can assign
variable data; conditionals, such as <if/> and <else/> ; and
others.

All executable content contains either the expr or cond at-
tribute. Upon execution, contents of these attributes are passed
to the implementation-specific expression-evaluator. Commons
SCXML [8], developed through the Apache Commons project,
is an open source Java implementation of SCXML. It pro-
vides Java libraries that create a complete SCXML execution
environment, including the ability to parse SCXML files
and execute the resulting state machine. Commons SCXML
supports Commons Java Expression Language (JEXL) [9],
also provided through Apache Commons. An executing state
machine has a context, which is a simple hash table that
can be populated with references external to the Statechart.
Evaluation first resolves identifiers by looking them up in
the context. Next, any method calls are evaluated through
the use of reflection. Finally, the expression is evaluated and
the appropriate action taken (based on the tag containing the
expression).

C. SCXML Integration

Tasks in Mammoth were enhanced by adding an SCXML
Engine. When an task is instantiated, it loads the indicated
SCXML file and passes it to the SCXML Commons parser.

10

<?xml version="1.0" encoding="ASCII"?>
<scxml xmlns="http://www.w3.org/2005/07/scxml"

version="1.0" initialstate="safe">
<parallel id="parallel">
<state id="safe">

<initial> <transition target="Wandering"/> </initial>
<state id="Wandering">
<onentry>

<log expr="this.createEvent(’start_wander’,null)"/>
</onentry>
<transition event="foodLow" target="LookingForFood"/>
<transition event="lowThreat" target="fleeing">

<log expr="this.createEvent(’fleeLow’,_eventdata)"/>
</transition>
<onexit>

<log expr="this.createEvent(’stopWander’, null)"/>
</onexit>

</state>
<state id="LookingForFood"/>
<transition event="foodNormal" target="Wandering"/>

</state>
</state>
<state id="EatWhenReady">
<transition event="readyToEat" target="EatWhenReady">
<log expr="this.createEvent(’eat’)"/>

</transition>
</state>
<transition event="high_threat" target="fleeing">
<log expr="this.createEvent(’fleeHigh’,_eventdata)"/>

</transition>
</parallel/>
<state id="fleeing">
<transition cond="ThreatAnalyzer.isSafe()" target="safe">

<log expr="this.createEvent(’stop_flee’,_eventdata)"/>
</transition>
</state>

</scxml>

Fig. 19. SCXML version of the Squirrel Brain Statechart presented in Fig. 11

The parser creates the execution environment in the form of
an SCXML engine, along with a JEXL evaluator.

The execution environment and Mammoth are connected
through the context, which is simply a hash map. Anything
not added to the context is unaccessible from the Statechart,
including the class to which the Statechart is associated. We
mitigate this via a simple solution: before execution, the
context is loaded with the key ‘this’, mapping to a reference
to the associated class. Thus, expressions in the SCXML that
refer to the associated class appear as this.foo() . Other
fields in the associated object’s class can be accessed by
the Statechart either by adding them to the context, or by
using get/set methods with a this.getFoo() call. Other
convenient references may also be added. A memorizer may
put a reference to its memory data structure, for instance.
While it is possible to add anything to the context, we
consider adding references outside of the associated object to
be a degenerate approach and avoid this to maintain proper
semantics.

Fig. 19 presents the Statechart from Fig. 11 in SCXML for-
mat. The structure is straightforward. Unfortunately, SCXML
does not provide side-effect free executable content tags, so we
use the <log/> tag as a workaround. Since we do not employ
a logger, <log/> has no effect, but still triggers the JEXL
Evaluator, allowing methods to be called without side-effects.

D. Loading NPCs

To facilitate the quick introduction of newly generated roles
and behaviours into Mammoth, a run-time loading system

<?xml version="1.0" encoding="UTF-8"?>
<ai xmlns="http://mammoth.cs.mcgill.ca">

<roleAssignments>

<assignment npcName="Squirrel1">
<role location="external"

roleName="squirrel.role.xml"/>
</assignment>

[...]

<assignment npcName="Squirrel2">
<role location="internal"

roleName="squirrel"/>
</assignment>

</roleAssignments>

</ai>

Fig. 20. External XML file showing an AI mapping.

for Mammoth was developed. An external XML file, corre-
sponding to the players in the game world, defines a mapping
between NPCs and the AIs that are to control them. The role
for each NPC is instantiated as described above, then assigned
to the player.

While this allowed roles to be quickly and easily changed,
it was still limited to the roles that were hard-coded within
Mammoth. This was insufficient for the purposes of AI gener-
ation, where a more dynamic system was required. Forcing a
developer to directly modify the source code to accommodate
each change is in clear opposition to the goal of easily
generating new AIs.

The solution came in the form of external XML-based role
definitions. To match the existing structure within Mammoth,
a special type of role, called an external role, was created.
External roles are classes in Mammoth that act as an role, but
contain no tasks by default. Instead, they are empty vessels,
ready to be told by an external source what tasks should be
loaded, and what their parameters should be.

Figure 20 shows the XML file employed to map roles to
NPCs. A role with an internal location, such for “Squirrel2” in
this example, uses a built-in lookup table within Mammoth to
instantiate the role with the given name. In this case, the role
already contains the code to instantiate the contained tasks. A
role with an external location, such as “Squirrel1,” creates an
External Role, and uses the given XML file to create tasks.

Task information is the entirety of the content in an XML
role file. In Fig. 21, an external definition of a squirrel role is
given. Each <task> block gives the information required to
instantiate a task. First, the class attribute tells us what task
class will be used. Next, the scxmlFile attribute points to the
SCXML file that is to be associated with the class. A special
constructor is used to instantiate an externally specified task.
It accepts a set of parameters, populated from the XML role,
and uses reflection to set the fields in the task. By accepting
an arbitrary SCXML file, the user is free to give each role
different behaviours for the same task in different roles.

VI. VALIDATION

The techniques we describe ensure model validity, but some
experimentation is still required to detect subtle component
interactions, and correct any misconceptions as to parameter

11

<?xml version="1.0" encoding="UTF-8"?>
<role xmlns="http://mammoth.cs.mcgill.ca" name="squirrel">
<tasks>

<task class="Mammoth.AI.NPC.SCXML.SCXMLWanderPlanner"
type="scxml">

<scxmlFile value="SCXMLWanderPlanner.scxml" />
<xRadius value="2.5" />
<yRadius value="2.5" />
<restTimeMin value="2000" />
<restTimeRange value="5000" />

</task>

<task class="Mammoth.AI.NPC.SCXML.SCXMLFleePlanner"
type="scxml">

<scxmlFile value="SCXMLFleePlanner.scxml" />
</task>

<task class="Mammoth.AI.NPC.SCXML.
SCXMLProximityMemorizer" type="scxml">

<scxmlFile value="SCXMLProximityMemorizer.scxml"/>
<lowThreat value="1.0" />
<highThreat value="0.5" />

</task>

[...]

</role>

Fig. 21. Squirrel.xml, defining a squirrel NPC for use in an external role.

dependencies. In our design this is facilitated by providing
a direct path to game integration, allowing us to easily test
different constraints and observe the impact on generated AI
quality within the actual virtual context.

To quantitatively assess results we need a metric for de-
termining whether squirrels meet minimal levels of “squirrel-
like” behaviour. Certainly, all squirrel NPCs should sometimes
gather acons and eat, and should move around occasionally.
This gives us a fitness function for a squirrel AI:

(acorns gathered > 0) ∧ (distance moved >
min) ∧ (energy gained > min)

This type of fitness function allows for hard limits on certain
behaviours. If we wanted squirrels that never ran out of energy
and never approached a player, then we could easily add:

¬(energy = 0) ∧ ¬(player distance > min)

Experimentally, we developed squirrel AIs through the auto-
matic creation of external squirrel roles, adjusting parameters
to improve the resulting behaviour. Each test involved 50 new
squirrel AIs. Squirrels were tested over a five minute period,
gathering information needed by the fitness function. After
the test, failing squirrels were examined and used to improve
generated behaviour.

Modularity was valididated by adding and removing Stat-
echarts. Each new AI was given a 50% chance of including
a StutterExecutor as per Fig. 17. Brave squirrels were also
generated by giving generated AIs a 25% chance to have
no ThreatAnalyzer. Without this, the components interested
in fleeing would never be activated, meaning such squirrels
could fearlessly move past the player.

In our tests, maximum energy was set to a low value of
30 000 for all squirrels. This gives the squirrels exactly 30
seconds of movement, during which time they must find and
eat an acorn, or else they run out of energy and become stuck.
The short window forces the squirrels to act.

A. Results
Initially, generation was done using minimal constraints.

However, this caused an infinite loop whenever AIs were
generated with a higher threshold for critical energy than that
of low energy. If such an NPC has an energy level between
the critical and low threshold, the energy sensor class will
incorrectly report that it has both high and critically low levels
of energy. Transitions in the associated Statechart are guarded
by conditions based upon the current energy level, and as a
result the Statechart will cycle endlessly. This reinforces the
need to properly identify and manage critical dependencies.

Using dynamic ranges for all dependencies (both critical
and non-critical) allowed validation to proceed. The first test
was highly unsuccessful, with about 50% failing. Examination
showed that most failures were due to not eating a single acorn.
To give the squirrels more chance to eat, the lower bound for
the low energy threshold was increased. The result was that
squirrels hit low energy sooner, meaning they spent less time
on undirected wandering, and more time on trying to pick up
food. This immediately increased the number of valid squirrels
up to about 75%.

The failing squirrels tended to one of two problems. First,
they gained very little energy despite eating. This tells us that
squirrels were eating acorns while their energy was too high,
and getting only a very small energy gain. The fix for this
was to push the critical energy threshold lower. Secondly, a
number of squirrels moved only a small distance and did not
find any acorns. This implies that their wander radius used in
searching was too small. The fix here was simply increasing
the minimum radius of the wander range.

These next squirrels performed with 90% success. A visual
observation showed us that squirrels fearful of the player (i.e.,
with a ThreatAnalyzer) could become caught in a cycle where
they tried to pick up an acorn, encountered the player, fled,
then tried to pick up the same acorn. Figure 22 shows a squirrel
caught in this cycle. This is desired behaviour, in that the
player could be thought of as ‘protecting’ the acorn. To capture
this specialized interaction, the fitness function was adjusted
to

(((acorns gathered > 0) ∧ (energy gained >
min)) ∨ (fled)) ∧ (distance moved > min)

These settings repeatedly generated groups of squirrels that
were 95% fit. The few remaining invalid squirrels all had a
StutterExecutor, and simply did not expend enough energy to
eat their gathered acorns. The wait time on wandering was thus
reduced to increase activity. This final change led to several
groups of 100% valid squirrels.

Using only these listed prototype iterations, we were able
to quickly converge to a generation of only valid AIs. Fig-
ure 23 presents a screenshot that shows several of these valid
squirrels, happily gathering under a tree and collecting acorns
near the player.

In spite of the tighter constraints, there was still more than
sufficient variation to consider the method worthwhile. Some
squirrels moved almost constantly, industriously collecting
dozens of acorns. Others remained indolent, only moving
when necessary to eat and collecting only a few acorns. This

12

Fig. 22. A squirrel hungrily eyes the unreachable acorn near the player.

Fig. 23. Several squirrels gather near a concentration of acorns.

difference was noticeable when observing squirrels, and evi-
dent in the fitness numbers. Future work is required, however,
to develop or apply further quantitative metrics for assessing
player-observed variability [10].

VII. LITERATURE REVIEW

A. AI modelling

The use of visual modelling environments is not new to the
gaming industry. Also known under the name of Visual Script-
ing Languages, finite state machines and other formalisms
have been used to model various features of games [11],
including cinematics and story narratives [12]. The main
objective of developing such systems is to offload work from
the programmers to the game designers and the animators,
allowing them to participate in the development of the game
without requiring any programming or scripting knowledge
[13].

More interesting is the use of a modelling environment to
define the behaviour of agents, as proposed by Simbionic and
its toolset which allow a developer to describe the behaviour
of intelligent agents using finite state machines [14]. We
base our framework on statecharts, as they generalize FSMs
with improved encapsulation, while still allowing for efficient
implementations and visual development environments [15].

Our work directly builds on the Statechart AI-design described
by Kienzle et al. [2].

Visual modelling environments can also be found in com-
mercial engines. The Unreal Engine 3 [16] includes Unre-
alKismet, a visual scripting system, which provides artists
and level designers the freedom to design stories and action
sequences for non player characters within a game without
the need for programming. One key feature of UnrealKismet
is the support for hierarchy of components, which makes
it possible to structure complicated behaviour descriptions
nicely. The difference with our approach is that the models in
UnrealKismet essentially describe the decision making steps
of an AI algorithm graphically. Our approach does not model
the control flow explicitly. The behaviour emerges based on
the components that listen for and react to events.

Also worth mentioning is ScriptEase [17], a textual tool
for scripting sequences of game events and reactions of non
player characters. Although it does not use a visual formalism,
ScriptEase introduces a pattern template system – a library of
frequently used sequences of events – that allows designers to
put together complex sequences with little programming.

Interest has recently grown in using behaviour trees for
building complex game AI [18]. Like Statecharts, behaviour
trees are inherently hierarchical, with encapsulated substates
allowing for improved component reuse as well as more
scalable implementations. Recent work on behaviour trees
has shown that AI generation is possible using evolutionary
techniques [19]. We believe the event-driven approach of Stat-
echarts has more flexibility for purposes of rapid, automatic
and varied generation, although it would be interesting to
explore how to adapt our techniques to a behaviour tree context
as well.

B. AI generation
Procedural content generation has been most successfully

applied to visual game assets, and especially virtual terrains
[20], [21], including urban [22] and residential architecture
[23], interiors [24], and extending up to entire cities [25]. In
structured game contexts, higher level content, such as game
levels, can also be effectively generated [26].

Interesting variability in character behaviour is quite diffi-
cult to produce procedurally, and many games make use of
simple scripts or rule-systems for minor characters [27]. For
improved realism, group behaviour, such as found in crowd
simulation [28] can be an efficient way of increasing player
immersion. Individual AIs can also be modified at runtime,
evolving strategy and better adapting to the current game
context [18], [29], and increasing diversity [30]. For casually
encountered characters such as extras, there is less opportunity
for adaptation and so we have focused on the problem in
terms of static generation. It would, of course be possible to
apply our techniques at runtime to dynamically select or even
construct behaviours.

VIII. CONCLUSIONS AND FUTURE WORK

Constructing multiple, but varied AIs for minor characters
is a challenging task. While game AI construction has tra-
ditionally been focused on increasing the depth of character

13

complexity, AI for extras can be seen as presenting problems
in terms of breadth: simplified generation and game integra-
tion, as well as the ability to automatically create a large
variety of behaviours is important. Our approach includes
a graphical design context and workflow that allows us to
easily incorporate AIs into our game framework, aiding initial
high-level design and prototyping. Our quest to “minimize
accidental complexity” led to the adoption of a Statecharts-
based modelling formalism. This, as the essential features
of the AI such as reactive, timed, event-based behaviour
is most elegantly, concisely and re-usably expressed using
the Statecharts formalism. Our modelling strategy allows us
to introduce non-trivial variation into AIs, and we describe
techniques based on multiple levels of abstraction. Importantly,
these techniques also focus on ensuring semantic stability,
limiting the extent to which behaviour can become unrealistic,
and thus greatly mitigating the need for detailed runtime
verification of individual AIs.

Significant future work is possible based on our framework
and approach. We have focused here on extras and less impor-
tant characters, but of course more important characters could
also be modelled and generated using these same techniques.
This would involve special considerations for their role in the
game in terms of their interactions with the player.

We plan to extend our work on rule-based transformations.
We explored only a few, simple rule designs; an extensive
library of transformation schemas would further increase
high level variability, and could be easily incorporated into
our design. Furthermore, whereas our current exploration of
AI variants is supervised by a modeller, a fully automatic
exploration becomes feasible when transformation rules are
applied in random order. As this may lead to AI models
which exhibit non-realistic behaviour, automatic “performance
analysis” based on simulated behaviour traces is needed to cull
undesired variants.

ACKNOWLEDGMENT

The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada for its support.

REFERENCES

[1] J. Kienzle, C. Verbrugge, B. Kemme, A. Denault, and M. Hawker,
“Mammoth: A Massively Multiplayer Game Research Framework,” in
4th International Conference on the Foundations of Digital Games
(ICFDG). New York, NY, USA: ACM, April 2009, pp. 308 – 315.

[2] J. Kienzle, A. Denault, and H. Vangheluwe, “Model-based design of
computer-controlled game character behavior,” in Model Driven Engi-
neering Languages and Systems, ser. LNCS. Springer, 2007, no. 4735,
pp. 650–665.

[3] J. Barnett, R. Akolkar, R. Auburn, M. Bodell, D. C. Burnett, J. Carter,
S. McGlashan, T. Lager, M. Helbing, R. Hosn, T. Raman, K. Reifenrath,
and N. Rosenthal, “State chart XML (SCXML): State machine notation
for control abstraction,” W3C, W3C Working Draft, May 2010.

[4] D. Harel and H. Kugler, “The Rhapsody semantics of Statecharts (or,
on the executable core of the UML),” LNCS, vol. 3147, pp. 325 – 354,
2004.

[5] D. Harel and A. Naamad, “The STATEMATE semantics of Statecharts,”
ACM Transactions on Software Engineering and Methodology, vol. 5,
no. 4, pp. 293–333, October 1996.

[6] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, pp. 231–274, 1987.

[7] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer,
“Systematic Transformation Development,” Electronic Communications
of the EASST, vol. 21, 2010.

[8] Apache Commons, “Commons SCXML,” http://commons.apache.org/
scxml/, November 2010.

[9] ——, “Commons JEXL,” http://commons.apache.org/jexl/, November
2010.

[10] R. McDonnell, M. Larkin, S. Dobbyn, S. Collins, and C. O’Sullivan,
“Clone attack! perception of crowd variety,” ACM Trans. Graph., vol. 27,
pp. 26:1–26:8, August 2008.

[11] S. Jacobs, “Visual design of state machines,” in Game Programming
Gems 5, K. Pallister, Ed. Charles River Media, 2005, pp. 169–176.

[12] C. J. Pickett, C. Verbrugge, and F. Martineau, “(P)NFG: A Language
and Runtime System for Structured Computer Narratives,” in Game-On-
NA 2005 - 1st International North American Conference on Intelligent
Games and Simulation. Eurosis, August 2005, pp. 23 – 32.

[13] S. Gill, “Visual Finite State Machine AI Systems,” Gamasutra: http://
www.gamasutra.com/features/20041118/gill-01.shtml, November 2004.

[14] D. Fu and R. T. Houlette, “Putting AI in entertainment: An AI authoring
tool for simulation and games,” IEEE Intelligent Systems, vol. 17, no. 4,
pp. 81–84, 2002.

[15] P. Kolhoff, “Level up for finite state machines: An interpreter for
statecharts,” in AI Game Programming Wisdom 4, S. Rabin, Ed. Charles
River Media, 2008, pp. 317–332.

[16] Unreal Technology, “The Unreal Engine 3,” http://www.
unrealtechnology.com/html/technology/ue30.shtml, 2007.

[17] C. Onuczko, M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton,
T. Roy, K. Waugh, M. Carbonaro, and J. Siegel, “A Pattern Catalog
For Computer Role Playing Games,” in Game-On-NA 2005 - 1st
International North American Conference on Intelligent Games and
Simulation. Eurosis, August 2005, pp. 33 – 38.

[18] M. Dyckhoff, “Evolving Halo’s behaviour tree AI,” Presenta-
tion at GDC, 2007, http://www.bungie.net/images/Inside/publications/
presentations/publicationsdes/engineering/gdc07.pdf.

[19] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees
for the commercial game DEFCON,” in Applications of Evolutionary
Computation, ser. LNCS. Springer, 2010, vol. 6024, pp. 100–110.

[20] R. M. Smelik, K. J. de Kraker, S. A. Groenewegen, T. Tutenel, and
R. Bidarra, “A survey of procedural methods for terrain modelling,” in
Proceedings of the CASA Workshop on 3D Advanced Media In Gaming
And Simulation (3AMIGAS), Jun. 2009, pp. 25–34.

[21] J. Doran and I. Parberry, “Controlled procedural terrain generation using
software agents,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 2, no. 2, pp. 111–119, Jun. 2010.

[22] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, “Instant architec-
ture,” in ACM SIGGRAPH 2003 Papers. New York, NY, USA: ACM
Press, 2003, pp. 669–677.

[23] P. Merrell, E. Schkufza, and V. Koltun, “Computer-generated residen-
tial building layouts,” in The 3rd ACM SIGGRAPH Conference and
Exhibition on Computer Graphics and Interactive Techniques in Asia,
December 2010, to appear.

[24] E. Hahn, P. Bose, and A. Whitehead, “Persistent realtime building
interior generation,” in Sandbox ’06: Proceedings of the 2006 ACM
SIGGRAPH Symposium on Videogames, 2006, pp. 179–186.

[25] N. Rudzicz and C. Verbrugge, “An iterated subdivision algorithm
for procedural road plan generation,” in 4th Annual North American
Conference on intelligent games and simulation (GameOn’NA 2008).
Montréal, Canada: Eurosis, Aug. 2008, pp. 40–47.

[26] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-based
level generation for 2D platformers,” in FDG ’09: Proceedings of the
4th International Conference on Foundations of Digital Games. New
York, NY, USA: ACM, 2009, pp. 175–182.

[27] I. Millington, Artificial Intelligence for Games. Morgan Kaufmann,
2006.

[28] P. Kruszewski, “Real-time crowd simulation using AI.implant,” in AI
Game Programming Wisdom 3, S. Rabin, Ed. Charles River Media,
2006, pp. 233–248.

[29] C. J. Darken, “Individualized NPC attitudes with social networks,” in
AI Game Programming Wisdom 4, S. Rabin, Ed. Charles River Media,
2008, pp. 571–578.

[30] I. Szita, M. Ponsen, and P. Spronck, “Effective and diverse adaptive
game AI,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 1, no. 1, pp. 16–27, Mar. 2009.

