
Generation of Concurrency Controls

using Discrete-Event Systems

by

Christopher William Arthur Dragert

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

September 2008

Copyright c© Christopher William Arthur Dragert, 2008

Preface

The development of controls for the execution of concurrent code is non-trivial. This

work shows how existing discrete-event system (DES) theory can be successfully ap-

plied to this problem. From code without concurrency controls and a specification of

desired behaviours, a DES representation of the problem is obtained, and then used

to generate concurrency control code. By applying rigorously proven DES theory,

the resulting code comes with guarantees not present in similar works. All control

schemes generated in DES are nonblocking, yielding code that is free of both livelock

and deadlock. Additionally, the generated control scheme is minimally restrictive,

meaning only problematic behaviours are prevented. If the specifications cannot be

enforced as presented, the largest controllable subset is instead enforced. The result,

which requires no further interaction to generate, is the best possible control scheme

given the interaction between the specifications and the original code. Existing meth-

ods encounter difficulties when faced with multiple specifications that interact to form

deadlocks. Modular DES theory is successfully applied, allowing resolution of these

conflicts without requiring the user to introduce new specifications. Moreover, the

approach is independent of specific programming or specification languages. A Java

implementation is given, along with two problems showing the process in action.

i

Acknowledgments

I would like to thank Dr. Juergen Dingel and Dr. Karen Rudie for their support.

Throughout this process, they have both shown the utmost commitment to academic

freedom, and have given me a wide latitude in choosing and conducting my research.

Their advice and support along the road has been invaluable, and much of the credit

for this research belongs to their thoughtful supervision.

I would also like to thank my Mom and Dad. Without their loving support, none

of this would have been possible. My gratitude knows no bounds.

ii

Table of Contents

Preface i

Acknowledgments ii

Table of Contents iii

List of Figures vi

1 Introduction 1

Chapter 2:

Background Theory . 7

2.1 Discrete-Event Systems . 7

2.2 Concurrent Programming . 14

Chapter 3:

Process Description . 19

3.1 Introduction to the Running Example 21

3.2 Creating the Event Set . 22

3.3 Building the DES Model . 28

3.4 Formalizing Specifications . 39

iii

3.5 Constructing the Supervisor . 40

Chapter 4:

Supervisor Realization . 44

4.1 Implementing Supervisory Control . 45

4.2 Supervisor Observation and Reaction 51

4.3 Generating Code . 56

4.4 Java Implementation . 57

4.5 Code Verification . 65

Chapter 5:

Transfer Line Example . 73

5.1 Introduction . 74

5.2 Building the Plant . 79

5.3 Specifications . 83

5.4 Supervisor Synthesis . 86

5.5 Code Generation and Verification . 87

Chapter 6:

Literature Review . 90

6.1 Specifications and Concurrent Code 91

6.2 Applying DES to Concurrency . 92

6.3 Other Approaches . 93

Chapter 7:

Conclusions . 96

iv

7.1 Future Work . 98

Bibliography . 103

Appendix A:

Java Implementation of Algorithm 2 110

Appendix B:

Transfer Line in Java . 126

B.1 Code Listings . 126

B.2 Marking Implicit Events . 133

B.3 Plant . 133

B.4 Specifications . 139

B.5 Supervisor . 144

B.6 Generated Code . 148

v

List of Figures

2.1 Supervisory Control Relation . 11

2.2 Semaphore Wait . 16

2.3 Semaphore Signal . 16

3.1 Process Flow . 20

3.2 Running Example: Precedence Graph 22

3.3 Precedence Example: Thread 3 Code 23

3.4 Thread-3 Marked Code . 26

3.5 Event Marking Sample . 29

3.6 Algorithm 1 . 31

3.7 Reduced DFA . 33

3.8 Explicit Path Example . 34

3.9 Implicit Path Example . 35

3.10 Running Example: T3 DFA . 38

3.11 Running Example: T1 Specification 40

3.12 Running Example: T5 Specification 40

3.13 Running Example: Monlithic Specification 42

3.14 Running Example: Supervisor . 43

4.1 Event Location for Code Insertion . 49

vi

4.2 Controllable Event Code . 50

4.3 Uncontrollable Event Code . 50

4.4 Supervisor Observation Code . 53

4.5 Supervisor Update Code . 55

4.6 Algorithm 2: Supervisor Realization 58

4.7 Controllable Event in Java . 59

4.8 Uncontrollable Event in Java . 60

4.9 Sequence Diagram for Disabled Events 61

4.10 Sequence Diagram for Enabled Events 61

4.11 observeAndReact in Java . 62

4.12 updateSupervisorState in Java . 63

4.13 Realized Supervisor for Precedence Example 66

4.14 Instrumented Code for Model Checking 72

4.15 Assertions for model checking . 72

5.1 Transfer-Line: Block Diagram . 74

5.2 Transfer-Line: Machine1 Run Method 77

5.3 Transfer-Line: Machine2 Run Method 78

5.4 Transfer-Line: Test-Unit Run Method 79

5.5 Transfer-Line: M1 CFG-DFA pair . 80

5.6 Transfer-Line: M2 CFG-DFA pair . 80

5.7 Transfer-Line: TU CFG-DFA pair . 81

5.8 Transfer-Line: Test-Unit Class Transformed 82

5.9 Transfer-Line: B1 Capacity Specification 84

5.10 Transfer-Line: B2 Capacity Specification 84

vii

5.11 Transfer-Line: B1 Mutual Exclusion 85

5.12 Transfer-Line: B2 Mutual Exclusion 86

5.13 Transfer-Line: Assertions . 89

A.1 Java Algorithm 2: Main class . 111

A.2 Java Algorithm 2: IDESImportManager 112

A.3 Java Algorithm 2: Transition Class 116

A.4 Java Algorithm 2: Event Class . 117

A.5 Java Algorithm 2: ControlMap class 119

A.6 Java Algorithm 2: CodeGenerator . 122

B.1 Transfer-Line: Main class . 127

B.2 Transfer-Line: Part Class . 127

B.3 Transfer-Line: Machine1 Class . 128

B.4 Transfer-Line: Machine2 Class . 129

B.5 Transfer-Line: Test-Unit Class . 130

B.6 Transfer-Line: Buffer Class . 132

B.7 Transfer-Line: Transformed TU Class 134

B.8 Transfer-Line: Plant Transition Listing 136

B.9 Transfer-Line: Monolithic Specification 139

B.10 Transfer-Line: Monolithic Supervisor 144

B.11 Transfer-Line: Supervisor Class . 149

B.12 Transfer-Line: Machine1 Controlled 165

B.13 Transfer-Line: Machine2 Controlled 167

B.14 Transfer-Line: TestUnit Controlled 169

viii

Chapter 1

Introduction

Concurrency is going mainstream. Leaders in the hardware and software industries

along with academics agree that in just a few years even average programmers will

have to be able to write concurrent code effectively and efficiently [33, 40]. Although

concurrent programming has been studied for over four decades, current software

development and programming language technology has not yet succeeded in making

the design and implementation of correct concurrent code in everyday practice an easy

undertaking. At present, our ability to develop concurrent code is still insufficient.

As recently as 2006, Edward Lee wrote [27]:

“I conjecture that most multi-threaded general-purpose applications are,

in fact, so full of concurrency bugs that as multi-core architectures become

commonplace, these bugs will begin to show up as system failures.”

Lee reasoned that this was caused by the intrinsic difficulty of comprehending the

non-determinism introduced by the threading model of concurrency. This is echoed

by Herb Sutter in [40] as he states:

1

CHAPTER 1. INTRODUCTION 2

“Probably the greatest cost of concurrency is that concurrency really is

hard: The programming model, meaning the model in the programmer’s

head that he needs to reason reliably about his program, is much harder

than it is for sequential control flow.”

If a programmer cannot properly reason about his software, bugs becomes a distinct

possibility. Richard Adhikari speaks directly to this issue in [1]:

“Writing parallel computer programs is more difficult than writing stan-

dard, sequential ones because concurrency introduces entirely new poten-

tial software bugs. The most common of these are race conditions or race

hazards, where there’s a flaw in a system or process in which the output

or the result, or both, are unexpectedly and critically dependent on the

sequence or timing of other events.”

While the difficulty of developing concurrent software is generally acknowledged, the

prevalence of concurrent software continues to grow. This gap is dangerous for the

software community, and is one that must be addressed. The notable David Patterson,

former president of the ACM, states [35]:

“...From my perspective, parallelism is the biggest challenge since high-

level programming languages. It’s the biggest thing in 50 years because

industry is betting its future that parallel programming will be useful.

Industry is building parallel hardware, assuming people can use it. And

I think there’s a chance they’ll fail since the software is not necessarily in

place. So this is a gigantic challenge facing the computer science commu-

nity. If we miss this opportunity, it’s going to be bad for the industry.

CHAPTER 1. INTRODUCTION 3

Imagine if processors stop getting faster, which is not impossible. Parallel

programming has proven to be a really hard concept. Just because you

need a solution doesn’t mean you’re going to find it.”

Long aware of the importance of this issue, computer scientists have tried, with some

success, to address the problem. Existing work is largely divisible into two separate

approaches:

New programming models and programming language abstractions:

The goal is to conceive high-level concepts that allow the benefits of concurrency

to be reaped while keeping its complexities in check. Seminal work by Dijkstra on

semaphores [12], by Hoare on monitors [19], and by Brinch Hansen on languages [18]

falls into this category. The intervening years have led to the creation of many more

concurrency controls, often building on the fundamental controls introduced by the

earlier papers. The concurrency library in Java [16] is fairly representative of the

current state of the art.

These works have led to specific constructs that are used in code to enforce a

concurrency control scheme. Controls of this nature provide convenient methods to

implement concurrency control, but only after the the concurrent control scheme

is determined. They do not inform the developer as to what concurrency controls

should be included, where they should be placed, or how the controls will interact.

A developer using them must still analyze the non-deterministic behaviour of the

software before deciding how the controls should be applied to meet the objectives of

the developer, a decidedly non-trivial task.

CHAPTER 1. INTRODUCTION 4

Automatic generation of concurrency control code from specifications:

Rather than develop the concurrency control code manually, the programmer instead

specifies the desired concurrent behaviour. Concurrent control code is then generated

automatically. An example of early work on this idea is based on Habermann’s path

expressions [6]. Similar work exists with approaches differing in the kind of speci-

fication notations supported and the guarantees that the generated code provides.

Chapter 6 provides a brief survey of these approaches.

A novel approach was taken by Emerson and Clarke, in [15]. An abstract model

of the program is created, suppressing detail irrelevant to concurrency control. Spec-

ifications given in computational tree logic (CTL) are used to create and insert con-

currency controls into the model. However, the specifications must be consistent, and

both livelocks and deadlocks are possible, depending on how the specifications and

the plant interact.

While both research directions intend to facilitate development by lifting the levels

of abstraction, the second is more radical in that the concurrency control code is

automatically generated. The realization of this vision could clearly benefit from the

development of new programming models and concepts.

Recent approaches such as [13] use a model similar to Emerson and Clarke, but

are still missing a key component. Specifications only state how a program should

behave; they do not provide a complete control plan that will result in the program

behaving as instructed by the specifications. Interactions between specifications, and

interactions between specifications and code can result in unintended and undesirable

behaviours, such as deadlock. In [4], there is a system to prevent deadlocks by finding

‘last chance states’, the last chance to prevent some action that would make deadlock

CHAPTER 1. INTRODUCTION 5

inevitable. However, it is unclear on the mathematical basis. Is the resulting system

minimally restrictive? Does it prevent livelock? Is deadlock-freeness guaranteed

under all conditions? Questions aside, this work addresses the interaction between

specifications and the actual code.

In this research, we put forward a new process to automatically generate con-

currency control that addresses many of these concerns. The central distinguishing

feature of this work is the way in which the concurrency control code is computed.

To this end, we leverage well-established work in the domain of control theory. More

precisely, we employ “supervisory control synthesis” which was first proposed by Ra-

madge and Wonham [36] in order to facilitate the design of discrete-event systems

(DES). In short, this process works as follows: From a system P generating events

and a specification E describing allowed event sequences, a supervisor S is generated

such that the composition of P and S exhibits a “minimally restrictive” subset of the

allowed event sequences in E and is guaranteed nonblocking. We leverage this process

by showing how the event-generating system P can be constructed from code that is

devoid of concurrency controls, but contains user markup indicating events relevant

to the specifications. The supervisor generated is then transformed into concurrency

control code that enforces the specification. The central features of the resulting

approach are as follows:

• Precision: Strong, precise, theoretically proven guarantees can be given about

the generated code (adherence to specification, deadlock-freedom, and maximal

permissiveness).

• Generality: Any notation allowing the specification of event orderings can be

used; moreover, the approach is programming language independent in the sense

CHAPTER 1. INTRODUCTION 6

that control code for any language offering basic synchronization primitives can

be generated.

• Potential for extension: Many extensions to the DES supervisory control

problem have been developed. It is very likely that many of these will be

applicable in future work.

While results from DES control theory have already been used for verification and

analysis [49], to the best of the author’s knowledge, this work is the first to suggest

the use of supervisor synthesis for the generation of concurrency control code.

This approach targets the most troublesome aspect of developing concurrent code

by taking into account all possible thread interleavings as part of developing a control

plan. In addition, modular DES theory [46] provides a method to resolve conflicting

specifications. If multiple specifications lead to a deadlock when combined, the pro-

cess is able to identify and overcome the potential deadlock by enforcing the largest

controllable sublanguage of the specification. Introduction of a new specification is

unnecessary, as is the case with most existing procedures.

In this work, the process to apply DES to code is explored. Chapter 2 presents

relevant background in DES and concurrency theory. Chapter 3 shows how concur-

rent code, lacking concurrency controls, along with a set of specifications, can be

transformed into a DES model. Chapter 4 uses that model to generate concurrency

controls with all the guarantees provided by DES. Chapter 5 presents an extended

problem illustrating how the process overcomes conflicting specifications. Chapter

6 shows how this work relates to existing research, and Chapter 7 presents conclu-

sions and explores future work. All automata are drawn using IDES [20], and DES

operations are performed in both IDES and TCT [41].

Chapter 2

Background Theory

The research presented in this thesis addresses problems in concurrent programming

using discrete-event systems theory. Typically, these two fields are disparate and will

be presented as such. Special attention will be paid to those aspects that are used to

connect the two research areas.

2.1 Discrete-Event Systems

Discrete-Event Systems (DES) is a formal branch of control theory, distinguished

through the modeling of events as discrete, rather than continuous. As such, events

are considered to be both time-independent and instantaneous. States of the system

are also discrete, and change with the occurrence of events. For example, a messaging

protocol could be modeled as a DES using events such as ‘message sent’, ‘message

received’, ‘message lost’, and so on. At a high level, the objective in a DES supervisory

control problem is to synthesize a supervisor such that the system exhibits the largest

possible subset of desired behaviors. The Ramadge and Wonham formulation of DES

7

CHAPTER 2. BACKGROUND THEORY 8

Theory [38], which we adopt, is built on language theory using deterministic finite-

state automata. The following presentation largely mirrors that given by Cassandras

and Lafortune in [7].

2.1.1 Automata and Languages

In language theory, an alphabet Σ contains symbols σ that are concatenated to form

a string s. Strings may be concatenated with symbols (sσ) or other strings (s1s2) to

form larger strings. The set of all possible strings is given by Σ∗. A language L is a

set of strings across an alphabet, given by L ⊆ Σ∗. The prefix-closure of L is defined

as L = {s ∈ Σ∗ | ∃t ∈ Σ∗(st ∈ L)}.

Languages can be represented using deterministic finite-state automata (DFA). A

DFA F is a 5-tuple, and is given by F = (Q,Σ, δ, q0, Qm) where

• Q is a finite set of states

• Σ is the alphabet of the FSA

• δ = Q × Σ → Q is the transition function. The function δ(q, σ) = q′, where

q, q′ ∈ Q, q may equal q′, and σ ∈ Σ, defines a transition from q to q′ upon the

occurrence of σ

• q0 ∈ Q is the initial state

• Qm ⊆ Q is the set of marked states (or final states, used interchangeably)

The automaton F , always starting from q0, produces strings through a series of zero

or more event occurrences as defined by δ. As a shorthand, the transition function is

expanded recursively to take strings as input:

CHAPTER 2. BACKGROUND THEORY 9

δ′(q, ε) = q, where ε is the null (or empty) string

δ′(q, sσ) = δ(δ′(q, s), σ) for s ∈ Σ∗ and σ ∈ Σ

Two languages are produced by a DFA: a generated and a marked language, denoted

by L(F) and Lm(F), respectively, and defined as

L(F) = {s ∈ Σ∗ | δ′(q0, s) exists}

Lm(F) = {s ∈ L(F) | δ′(q0, s) ∈ Qm}.

Thus, the generated language is the set of all possible paths through the DFA, while

the marked language is the subset of the generated language with paths that end on

a marked state. The language marked by a DFA is a regular language. Additionally,

if a DFA marks a language, then it is said to be a recognizer for that language.

A DFA is said to be blocking if Lm(F) ⊂ L(F), and nonblocking if Lm(F) = L(F).

In other words, in any state q ∈ Q, where Q is a nonblocking DFA, there exists a

string s such that δ′(q, s) ∈ Qm. In a blocking DFA, there is at least one q where

there does not exist such an s. This notion of path completion to a marked state will

be used in the discussion of concurrency.

Two operations, parallel composition and product, are used to combine DFAs.

Both take two DFAs as input and produce a new DFA as output, and both are

regularly used in DES theory. The parallel composition, or synchronous product of

DFAs F1 and F2 is given by F1‖F2 = (Q1×Q2,Σ1∪Σ2, δ, (q01, q02), Qm1, Qm2), where

CHAPTER 2. BACKGROUND THEORY 10

δ(σ, (q1, q2)) =

(δ1(σ, q1), q2) if σ ∈ Σ1\Σ2 and δ1(σ, q1) is defined

(q1, δ2(σ, q2)) if σ ∈ Σ2\Σ1 and δ2(σ, q2) is defined

(δ1(σ, q1), δ2(σ, q2)) if σ ∈ Σ1 ∩ Σ2 and δ1(σ, q1) and

δ2(σ, q2) are defined

undefined otherwise

This operation allows unshared events to interleave freely, while shared events may

only occur when allowed by both automata. In the special case that there are no

shared events, the two automata simply interleave and the operation is instead called

the shuffle. The product, or intersection, of F1 and F2 is given by F1 ∩ F2 = (Q1 ×

Q2,Σ1 ∩ Σ2, δ, (x01, x02), Qm1 ×Qm2), where

δ(σ, (q1, q2)) =

(δ1(σ, q1), δ2(σ, q2)) if δ1(σ, q1) and δ2(σ, q2) are defined

undefined otherwise

Only those events contained in both DFAs can be executed in the resulting DFA, and

then only in unison.

2.1.2 Supervisory Control

With the necessary automata theory in place, relevant areas of DES theory can now be

presented. The system model, represented as a DFA, is referred to as the plant, given

by G. The plant generates events, with L(G) describing all possible event sequences.

This is sometimes referred to as the plant behaviour. The marked states represent the

desired end-points of the system, and imply that the system can terminate gracefully

once those states are reached. The marked language Lm(G) shows the possible paths

to these final states. For example, a manufacturing line could have several events

CHAPTER 2. BACKGROUND THEORY 11

corresponding to the stages in manufacturing, while the completion of a part could

be an event transitioning to a marked state.

Events are either controllable or uncontrollable. A controllable event can be dis-

abled, meaning its occurrence can be prevented, and enabled, meaning its occurrence

is allowed. Enabling an event does not force its occurrence. An uncontrollable event

cannot be disabled, and is considered to be ‘always enabled’. In a manufacturing ex-

ample, placing a part in a buffer is usually controllable, while having a machine break

down would be uncontrollable. The event set Σ is broken into a set for controllable

events, Σc and a set for uncontrollable events Σu, where Σ = Σc∪Σu and Σc∩Σu = ∅.

Supervisory control introduces a supervisor S, which is in the form of a DFA and

uses the same event set as G. A supervisor controls a plant by enabling and disabling

events in the plant. When the supervisor is coupled with the plant in this manner,

the resulting system is called the closed-loop system and is given by S/G. A control

action, given by S(x), is the set of all enabled events at supervisor state x. The

set of all control actions is the control policy. Figure 2.1 shows the feedback relation

between the supervisor and plant. The plant generates events that are observed by the

supervisor, and in turn the supervisor responds with the appropriate control action

as dictated by the control policy.

Figure 2.1: Basic supervisory control loop.

A specification E, usually in the form of a DFA, gives the set of desired behaviours

CHAPTER 2. BACKGROUND THEORY 12

for the closed-loop system and is known as the legal language. The typical goal in a

DES problem is to synthesize a supervisor S such that only those behaviours contained

in E are generated in S/G. When this is the case, S is said to enforce E. Supervisory

control is limited to enabling and disabling events in G, so specifications outside of

G are irrelevant. For this reason, specifications are usually constructed such that

E ⊆ Lm(G). If this condition is not met, then E ′ = E ∩ Lm(G) can be used without

loss of generality. Thus, a specification can be said to give the set of desirable event

orderings from all the orderings possible in the plant.

A specification is controllable with respect to G if, for all s ∈ L(E), and for

all σ ∈ Σu, sσ ∈ L(G) implies sσ ∈ L(E). In other words, if an event cannot be

prevented, it must be allowed for the system to be controllable. It has been proven

that a supervisor can always be generated to enforce a controllable language [38].

If a specification does not meet the controllability condition, then it is called un-

controllable and no supervisor can enforce it. This problem is addressed by Ramadge

and Wonham in [45], where they develop the idea of the supremal controllable sublan-

guage. Given by supC(E), it is the largest sublanguage of E that is controllable. It

is possible that supC(E) = ∅, and thus it is usually required that some minimally ac-

ceptable language A be contained in supC(E), giving the relation A ⊆ supC(E) ⊆ E.

If E is controllable, then supC(E) = E. For this reason, supC(E) is usually enforced

by a supervisor rather than E, since supC(E) is always controllable and is equal to

E if E is controllable. An S constructed to enforce supC(E) would do so by ensuring

that Lm(S/G) = Lm(supC(E)).

All supervisors given in this text are implicit, meaning that the transition function

of S is undefined on any event that is disabled by the supervisor. When a supervisor

CHAPTER 2. BACKGROUND THEORY 13

is implicit, the closed-loop system is simply S/G = S ∩G. Given this construction, a

supervisor S that recognizes supC(E) will necessarily satisfy L(S/G) = supC(E). A

supervisor is thus most easily generated by building a recognizer for supC(E). This

reduces the problem to finding supC(E). An algorithm accomplishing this is given

in [7]. The stated complexity is O(n2m2|Σ|), where n is the number of states in E,

and m is the number of states in G.

This method of supervisor construction guarantees nonblocking for free. First,

note that

Lm(S/G) = supC(E) (2.1)

and furthermore, it can be found that

L(S/G) = supC(E) . (2.2)

By taking the prefix-closure of (2.1), an expression for supC(E) is obtained, which

can then be subsituted into (2.2). The result is Lm(S/G) = L(S/G), which is the

nonblocking condition. Thus, S is nonblocking.

In the DES software packages TCT [41] and IDES [20], commands exist to auto-

matically generate a nonblocking S that enforces the largest controllable sublanguage

of a specification E on a plant G. The process is straightforward, and only G and E

need to be supplied as input to create such a supervisor.

In modular DES theory [46], multiple specifications can be synthesized into mul-

tiple supervisors. However, when multiple nonblocking supervisors are applied to a

plant, there is no assurance that the resulting system is nonblocking. Given two su-

pervisors S1 and S2 enforcing specifications E1 and E2, respectively, on a plant G,

the closed-loop system is nonblocking if and only if

Lm(S1/G) ∩ Lm(S2/G) = Lm(S1/G) ∩ Lm(S2/G).

CHAPTER 2. BACKGROUND THEORY 14

Languages satisfying this property are said to be non-conflicting. If supervisors are

not non-conflicting, then the monolithic supervisor SM is instead used. To compute

SM , the monolithic specification EM must first be constructed. This is straightfor-

ward, with EM being the product of all specifications, and is given by EM = E1∩E2.

Then, SM is synthesized using standard supervisor synthesis with EM as the specifi-

cation to be enforced. Both the monolithic construction and the non-conflicting test

extend to larger numbers of supervisors by adding identical terms for S3, S4,. . .,Sn.

2.2 Concurrent Programming

Concurrent programming describes the practice of developing software with compo-

nents designed to run in parallel. A single program is broken up into multiple threads

of execution, or threads for short. As an example, a program designed to communicate

across a network could have a thread to send data, another thread to receive data,

and a third thread to manage the overall system behaviour. Each thread executes its

own statements sequentially.

Single processor multi-threading is common place in current operating systems

(OS), whereby each thread is given a small block of processor time to execute its

programming, and when the time is up, a context switch occurs and the next scheduled

thread begins execution. The duration of each block of processing time and the

ordering of process execution are both determined by the scheduler (a component

of the OS) and can rapidly change based upon the current computing environment.

With respect to the concurrent program attempting to run, the scheduler operates

in a non-deterministic fashion. Simply put, the exact manner in which the various

statements of different threads will interleave at run-time is unknowable a priori.

CHAPTER 2. BACKGROUND THEORY 15

Correct concurrent software must take every possible interleaving into account.

Different threads must share information if they are to work together. This is often

done through shared memory, where data is explicitly shared by multiple threads1. A

common scenario is easily imagined wherein a writer thread records data into shared

memory, followed by a reader thread subsequently reading that data. This scenario

also introduces a common concurrency bug. If the interleaving is non-deterministic,

how can we know that the reader thread will only read after the writer has completed?

What if the thread attempts to read while the other thread is writing?

2.2.1 Concurrency Controls

Concurrent programming is essentially a thread synchronization program. Concur-

rency controls cause the programs to only interleave in permitted sequences. Con-

current programs usually contain some blocks of statements that must be controlled,

and others that may interleave freely. These are known as critical sections and non-

critical sections, respectively. For example, a series of statements that perform a write

operation to shared memory would comprise a critical section.

The most common concurrency control is, by far, the semaphore. Originally

described by Dijkstra in [12], the semaphore has become the standard synchronization

primitive. A semaphore is a data structure with a counter and a corresponding queue

in the scheduler. The most basic implementation provides a Wait and a Signal

method as defined in Figs. 2.2 and 2.3, respectively.

1Message passing is also used, but will not be discussed here.

CHAPTER 2. BACKGROUND THEORY 16

Wait {
counter = counter - 1;

if (counter < 0) wait_on_queue;

}

Figure 2.2: The Wait method for a semaphore.

Signal {
counter = counter + 1;

if (counter <= 0) wake_up_one_process_on_queue;

}

Figure 2.3: The Signal method for a semaphore.

If a thread waits on a semaphore, it goes onto a scheduling queue where it lies

dormant until another thread signals it via Signal. A thread forced to wait is said

to be blocked (while the term ‘blocking’ has a different meaning in DES theory, the

intended usage should be clear through context). Through a pattern of waiting and

signalling, a correct ordering of threads can be established. When a semaphore is

initialized, it is given a number of permits. If that number is 0 or less, then the

first thread to Wait on that semaphore will block while it waits on the queue. A

number greater than 0 will allow that number of threads to pass without blocking.

A semaphore used so that the number of permits is always 0 or 1 is called a binary

semaphore.

Most operating systems now provide semaphore functionality, ensuring that

semaphore operations modifing a counter are uniterruptable. This allows thread

coordination to occur without worrying about the concurrent interactions of the con-

currency controls themselves. A variety of concurrency controls, such as monitors,

CHAPTER 2. BACKGROUND THEORY 17

locks, and thread pools, build off this basic structure. While these other controls are

not used in this work, the interested reader is referred to an introductory text, such

as [3].

2.2.2 Safety and Liveness Properties

Specifications give us system properties that must be met for the program to run as

intended. Indirectly, they give the desired interleavings of the threads in the system.

A specification is usually given as a formal logic formula. There exists a wide variety

of applicable logic systems with different descriptive powers, including automata as

described above, temporal and modal logic [14], and µ-calculus [25]. We will be using

automata, so that an easy bridge can be formed to DES theory.

Regardless of the formalization employed, all specifications can descibed as mem-

bers of one or both of two categories. Safety properties describe undesirable system

states that must never occur. For example, a specification such as “The buffer must

never overflow” is a safety property. Liveness properties declare that something (de-

sirable) must eventually happen. Examples include “The program must eventually

terminate” and “the receiver thread must eventually enter its critical section if it ever

tries to enter its critical section”. A property such as “The buffer must never overflow

and the program must eventually terminate” would be both a safety and a liveness

property. Lamport provides an accessible introduction to these concepts in [26].

Deterministic Finite-Automata are limited to describing safety properties only

as they can only express regular languages. Modal and temporal logics, such as

LTL, CTL, and CTL*, allow the specification of safety and liveness properties with

varying degrees of expressiveness [14]. µ-calculus can also specify safety and liveness

CHAPTER 2. BACKGROUND THEORY 18

properties and is the most inclusive out of the formalizations noted here.

2.2.3 Model Checking

Testing concurrent software presents a special difficulty. Since context switches can

potentially occur after every line of code, the number of possible interleavings grows

at an exponential rate. The state space quickly reaches sizes that are unmanage-

able through manual testing. Model checking performs an exhaustive search of the

state space, checking every possible interleaving. Common checks include deadlock-

freedom, assertion checks (in supporting languages), and verification of temporal logic

specifications. Emerson et al. provide a summary of the topic in [9].

Depending on the model checker employed, specifications can be given in a vari-

ety of different logic formalizations, with modal and temporal logics being the most

common. Typically, a developer will take a specification, create concurrency controls

to satisfy that specification, and then run a model checker with the specification as

input. If the check passes, then the specification has been satisfied. If it fails, then

the process repeats, with help from the check results. Oftentimes this help comes in

the form of an error trace showing the exact interleaving that led to the violation.

However, it is also possible that the problem is untractable due to excessive program

size and thus an unmanageable state space. In that case no answer is returned, and

the user must adjust the model in hopes of making the problem tractable.

Chapter 3

Process Description

Given source code without any concurrency control, and given a set of informal speci-

fications, the goal of this process is to generate concurrency control code and insert it

back into the original code such that the resulting program satisfies the specifications.

To generate a control policy, we apply supervisory control theories put forth in DES

literature [36, 37, 38]. This chapter covers the process through to the creation of the

DES model.

The fundamental connection between abstract DES theory and actual code is

made through the identification of relevant events in the code. First, the code is

instrumented to provide an event set. This will be used both to model the behaviour

of the code in an FSA, and to formalize specifications also as an FSA. Standard DES

operations are then performed to generate a supervisor guaranteed to satisfy the spec-

ifications. The control policy from the supervisor, guaranteed correct, nonblocking,

and minimally restrictive, acts as input for an algorithm that automatically generates

and inserts concurrency control code. The process is diagrammed in Fig. 3.1.

Part of the intent of this approach is to maximize automation, or at least provide

19

CHAPTER 3. PROCESS DESCRIPTION 20

Figure 3.1: Process to create and inject concurrency controls into source code. Au-
tomatable steps are noted with a dotted line.

a process that is automatable. Marking relevant events and formalizing specifications

must be done manually, but all other steps could be automated using a variety of

methods.

The steps from Fig. 3.1 are described in more detail in the following list.

Input: Threaded source code without concurrency controls, and specifications at any

level of formality giving the desired concurrent behavior of the program.

1. Build the set of relevant events. This set is used as part of the alphabet to

describe the concurrent behavior of the software.

2. For each thread in the software, build a DFA that contains transitions for each

relevant event in that thread, and introduces necessary structure-preserving

irrelevant events. The language generated by the DFA must match the actual

behaviour of the software.

CHAPTER 3. PROCESS DESCRIPTION 21

3. Build the specifications. Specifications must also be represented as DFAs and

should use the same alphabet as the DFAs from step 2.

4. Construct DES supervisors to enforce the specifications using the plant.

5. Build concurrency control code by realizing the supervisor(s). Weave the code

into the marked source code to generate the actual closed-loop system.

Output: Source code with concurrency controls that enforce the given specifications.

The following sections of this chapter bring us from the start of the process to

having a DES problem in hand, covering steps 1–4 listed above. Chapter 4 closes

the loop by generating and inserting code to act as the supervisor. The presented

process is programming language independent, and all algorithms are presented in

pseudocode. It is expected that any implementation of this process would be specific

to a programming language supporting concurrency (e.g., Java, C++, etc.).

3.1 Introduction to the Running Example

Throughout this chapter and the next, each step of the process will be described in

detail. A running example is provided both to illustrate concepts and to provide con-

tinuity. However, demonstration of the process requires that a concrete programming

language be used. Out of many possible choices, the Java programming language has

been selected. Like many other suitable languages, it provides multi-threading and

necessary concurrency controls.

A precedence problem cast in Java is addressed using the process described herein.

The relative simplicity of the problem allows readers to focus on the process being

CHAPTER 3. PROCESS DESCRIPTION 22

introduced rather than dwelling on the intricacies of the example. The problem is

comprised of five threads governed by four specifications. While all threads start

together, thread-2, thread-3, and thread-4 (T2, T3, and T4, respectively) must

wait for thread-1 (T1) to finish before executing their code. Additionally, T4 must

wait for thread-5 (T5) to finish. This is illustrated in the precedence graph in Fig. 3.2.

Figure 3.2: Precedence graph for the running example.

Code for the running example is equally straightforward, and is given in Fig. 3.3

on the next page. All five threads are identical, save for the identifier. Each thread

is essentially a shell, with behaviour limited to starting, waiting to simulate working,

and then terminating.

3.2 Creating the Event Set

To model code using DES, we must isolate events in the code that are both discrete

and instantaneous. For this, we look to statements. In programming languages,

statements are the building blocks that make up the program. Examples include

assignments, conditionals (e.g. if statements), and while and for loops. The precise

definition of a statement is highly language-dependent and typically defined in the

grammar for the language in question.

CHAPTER 3. PROCESS DESCRIPTION 23

package precedenceExample;

public class PrecedenceThread3 extends Thread {

private int id;

public PrecedenceThread3(int id) {
this.id = id;

}

public void doWork() {
int sleepTime = (int)(Math.random() * 1000);

try {
Thread.sleep(sleepTime);

}
catch(Exception e){

//do nothing

}
}

public void run() {
System.out.println(id);

doWork();

}
}

Figure 3.3: Source code for T3 in the precedence example.

CHAPTER 3. PROCESS DESCRIPTION 24

We define a software event as the instant between the completion of execution of

one program statement and the start of execution of the next. This is instantaneous

(by definition), and is also discrete, since the completion of execution of a statement

acts as a clear demarcation point. Using this definition, let the set of all software

events for a given piece of code be defined as ΣS. This definition is powerful, in that

any transition between two statements is captured as an event.

Some software events are relevant to concurrency control while most others are

not. An event that immediately preceeds a critical section, for example, would be

relevant, as entry into a critical section affects concurrency control. Leaving a critical

section would also be relevant for the same reason. However, most events, such as

those between local variable assignments, branching statements, method definitions,

math functions, and so on, are all irrelevant, insofar as no specification addresses

those events. We define a set of relevant events, ΣR, as the set of events necessary to

enforce desired concurrent behaviour. The set of irrelevant events, ΣI , contains all

software events that are not relevant and is given by ΣI = ΣS − ΣR.

Relevant events are noted in the code as comments in the form //event marking:

eventName. These markings act as flags for subsequent operations to transform code

into a DES model. As well, these events are used in the formalization of specifications.

In the final stage of the process, event markings act as targets for the insertion of

generated concurrency control code. While the idea of using comments as markup

in code is a common one, this is the first time that markup has been used in this

manner. This is a direct consequence of the novel definition of software events.

To build the set of relevant events, the informal specifications must be examined.

The specifications describe the desired concurrent behaviour, and as such, embody a

CHAPTER 3. PROCESS DESCRIPTION 25

description of what events are to be controlled, and how they are to be controlled.

By definition, a relevant event is one of these events to be controlled. Developers

of concurrent code would typically discern these events and then insert their own

control code. Instead, this process merely asks the developer to note these locations

in the code using relevant event markings. Given that, it is a reasonable expectation

that an average developer will be able to mark relevant events from specifications.

Additionally, the subsequent process of specification formalization gives the developer

a second chance in case a relevant event was missed.

Precedence Example: The precedence problem presents a set of specifications

from which the set of relevant events must be extracted. Threads T2, T3, and T4

all have conditions placed upon starting. Thus, control needs to be placed at the

very beginning of each of their run methods to enforce these conditions. A relevant

event is marked at the first line of code for each of those threads. This is shown

for T3 in Fig. 3.4 on the following page. Threads T2 and T4 are identical in struc-

ture and result. The same specifications tell us that the end of T1 is relevant and

should have an event marking after the last line of code in the run method. Similarly,

the end of T5 is also marked as a relevant event. In total, there are five relevant

events: T1-finish, T2-start, T3-start, T4-start, and T5-finish. The specifica-

tion stating that T4 must not start until T5 finishes introduces the events T4-start

and T5-finish, which are already covered. All other software events are irrelevant

events and are left unnamed at this point.

CHAPTER 3. PROCESS DESCRIPTION 26

public void run() {
//relevant event: T3-start

System.out.println(id);

doWork();

}

Figure 3.4: Java code for thread-3 showing the relevant event T3-start.

3.2.1 Controllable and Uncontrollable Events

In a DES plant, each event must be modelled as either controllable, meaning its

occurence can be prevented, or uncontrollable, meaning its occurence cannot be pre-

vented. In software, however, control will be enacted through the addition of code.

At every point in the software, it is possible to insert control code, thus making the

concept of uncontrollability unclear. An event that can be indefinitely prevented is

not truly uncontrollable.

Why then, should the concept of uncontrollable events be maintained instead of

eliminated? The primary reason is that both the control policy and generated code

will be more concise. Fewer controllable events mean fewer possible control actions

and thus less code. In addition, marking an event as uncontrollable is a shorthand

method to specify that that event must never be prevented. In practice, events that

are uncontrollable are denoted as such by appending ‘-u’ to the event label.

The following guidelines describe situations when it may be helpful to specify an

event as uncontrollabile:

• It is an irrelevant event.

• The event occurence is predicated by the actions of an external entity.

• It should never be prevented from occuring.

CHAPTER 3. PROCESS DESCRIPTION 27

Irrelevant events can be classified as uncontrollable because, by definition, they

do not appear in any specification. There is nothing to be gained, with respect to

enforcing a specification, by delaying or disabling irrelevant events. As such, it should

always be safe to classify an irrelevant event as uncontrollable.

An event occurence predicated by the actions of an external entity can be classified

as uncontrollable because it is not possible for an external entity to be controlled. As

an example, think of a network communication problem, wherein a separate thread

is created to act as a network listener, and received messages are put into shared

memory to be processed by other threads. The transition between listening for a

message and receiving a message can be modelled as uncontrollable, to represent the

fact that the actions of the remote program are outside the control of the current

program.

Most uncontrollable events will be uncontrollable because they should not be

prevented. This is largely at the discretion of the developer. Entry into a critical

section is usually controllable, while exiting a critical section could be modelled as

uncontrollable. This would ensure that a thread is never prevented from exiting a

critical section, and helps to maintain availability of resources accessed in the critical

section. To be clear, this would serve the same purpose as specifying that “It is always

the case that critical sections can be exited without delay”. However, simplying

tagging the event as uncontrollable is a more elegant solution, as a specification

would have to be formalized, while uncontrollable events require no further action.

Additionally, code to be inserted at the end of the overall process is smaller and more

efficient for uncontrollable events. Similarly, any event that is controllable but never

becomes disabled can be marked as uncontrollable. Unfortunately, this information is

CHAPTER 3. PROCESS DESCRIPTION 28

not known at this stage of the process and so events are rarely marked uncontrollable

for this reason.

Precedence Example: In this example, it is clear that T2-start, T3-start,

and T4-start must be controllable. T1-start and T5-start could be classified as

uncontrollable, as intuition suggests that these events never need to be disabled. In

this solution, they were left as controllable events.

3.3 Building the DES Model

The plant, as a model of the real unconstrained system, must generate exactly the

events that are produced by the system, and produce these events in an ordering

identical to that found in the real system. However, we are only concerned with the

aspects of the code that are relevant to concurrency control. The behaviour of the

code need not be duplicated in the abstract model. Thus, the model must merely

generate the same relevant events as the code, and in the same ordering. Since we are

using the Ramadge and Wonham framework, the plant will be represented as a DFA.

For this process to be meaningful, the code must already be broken up into threads

and ready to run as a concurrent program, minus the appropriate concurrency control

code.

We accomplish this through the use of control-flow graphs (CFG). A CFG includes

a node for each program statement, and transitions between nodes as dictated by the

branching structure of the code. A generated CFG will thus provide a model that

gives software events in the ordering dictated by the real system. Additionally, CFGs

can be represented as DFAs, since there is a finite number of program locations, and

thus a finite number of possible transitions (from each node to each other node, worst

CHAPTER 3. PROCESS DESCRIPTION 29

x = 5;

//Event Marking E

foo(x);

Figure 3.5: Relation between an event in the code and CFG.

case). Construction of CFGs can be automated using tools, such as Σoϕια [39] for

the Java programming language.

Relevant events in the CFG are identified using a simple mapping from software

events to transitions in a control-flow graph. A software event refers to a transition

between two statements, and thus there is a single originating statement and a single

statement that is the target. In the CFG, each statement is represented by a node,

with the edges in the CFG representing the possible transitions between statements.

In fact, the edges in the graph are direct representations of software events. To find

the associated software event/CFG pairing, simply locate the two statements that

precede and follow the software event, then find that same transition in the CFG.

Figure 3.5 shows a code snippet with a relevant event marking alongside the CFG for

that snippet.

Unfortunately, there is the potential for the existence of infeasible paths in a

CFG. Looking ahead, if a feasible path is disabled in response to the existence of

an infeasible path in a CFG, it suggests a flaw in the process generating a model of

the code. The claim of minimial restrictiveness must be tempered by only claiming

minimal restrictiveness with respect to the model that is being constructed, and not

CHAPTER 3. PROCESS DESCRIPTION 30

the actual code. As a way around this, a static analysis could be performed to

determine path feasibility and improve the model. Regardless, by creating a control

plan based upon the fullest possible branching structure, it is assured that the control

plan will correctly enforce specifications for any behaviour of the plant.

Since we are dealing with concurrency, the behaviour of the program is determined

by the behaviour of each thread, as they act independently of one another (before

concurrency controls are added). Thus, each thread should be modelled as its own

entity. In Java, the behaviour of a thread is determined by the contents of its run

method. To capture the behaviour, the CFG for the run method of each thread is

constructed.

Each CFG must then be transformed into a DFA. The entry node of the CFG is

converted into the initial state of the DFA. All exit nodes become marked states. All

edges in the CFG that correspond to relevant events are labelled with the relevant

event name. All irrelevant events are given a label from the sequence i1, i2, i3,....

The labels should continue incrementing across each thread, that is, labels must not

be reused across threads as this will interfere with plant generation. The irrelevant

event labels applied to a CFG plus any relevant events appearing in that CFG form

the event set for the DFA.

The above ideas lead to Algorithm 1, which is presented in Fig. 3.6. Algorithm 1

takes code annotated with relevant events and returns a reduced DFA version of the

event-marked source code. The last step in Algorithm 1 is to reduce the resulting

DFAs, which is described in the immediately following subsection.

CHAPTER 3. PROCESS DESCRIPTION 31

Algorithm 1 transforms relevant event labeled source code into

a DFA that can be used for DES operations.

Input: Event-marked code

Output: DFA representations of the code

For each thread, including the main thread:

1. Build the control-flow graph for the code executed by that

thread.

2. Set the entry node as the initial state, and all exit nodes

as marked states.

3. Label any edges that are also relevant events with the

relevant event name.

4. Discard any CFGs that contain no relevant events.

5. Label all remaining unlabeled edges using i1, i2, i3, ...

in increasing order. Do not repeat labels across

threads - instead, continue incrementing.

6. Apply reductions.

Figure 3.6: Algorithm 1 transforms source code with event markings into a DFA.

3.3.1 Reducing a DFA

The number of states and transitions in a CFG is directly related to the program size

and branching structure. However, much of the information captured in the CFG

is unrelated to concurrency control. Each resulting CFG should be reduced through

a structure-preserving transformation. For this process to be correct, the reduction

must maintain all existing relevant events and preserve their ordering.

First, any CFG that contains no relevant events can be discarded outright. Such

a CFG has no effect on the concurrent behaviours to be enforced, and can safely be

ignored. Similarly, any method or function calls in a CFG can be left as unexpanded

nodes in situations where no path through the call contains a relevant event. This

includes paths that follow through nested method calls. If, however, a method call

contains a relevant event, then the node containing that call must be expanded to

CHAPTER 3. PROCESS DESCRIPTION 32

include the method. A node that starts a thread can always be left unexpanded, as

the CFG for the new thread will be used to track the behaviour of that thread.

The main reduction proceeds by collapsing a branchless chain of (irrelevant event)-

(node)-(irrelevant event) into a single irrelevant event, using the same label as the

first irrelevant event. A branchless chain of (relevant event)-(node)-(irrelevant event)

or a branchless chain of (irrelevant event)-(node)-(relevant event) both reduce to the

single relevant event. If no path through a branch contains a relevant event, the

branch and all paths through it may be reduced to a single node. Node labels are not

used in the process and do not need to be maintained. At the end of this process,

the event set for the DFA is updated to only include those events still remaining in

the DFA.

Ideally, a DFA would be reduced such that no irrelevant events remain. However,

branching behaviour of the code may leave some irrelevant events that cannot be

removed. In Fig. 3.7, we see a code snippet on the left, the generated DFA model of

the CFG in the middle, and the reduced DFA on the right. Only upon following the

if-branch does the relevant event occur. When reducing this CFG, we must maintain

that branching structure to ensure that event ordering is not affected. Event i1 must

remain a part of the CFG.

3.3.2 Marking Irrelevant Events

Much later in the process, code will need to be inserted at the location of every event,

including any remaining irrelevant events. Event markings will act as the target for

code insertion. Since irrelevant events only arise in the CFG, there are no event

markings in the code for irrelevant events. Event markings must be made for every

CHAPTER 3. PROCESS DESCRIPTION 33

if (x)

//event A

write();

x = 4;

Figure 3.7: (From l. to r.) A code snippet, a DFA-converted CFG for that snippet,
and the reduced DFA.

irrelevant event, using the original CFGs as a map to connect an irrelevant event to

a location in code. It is most efficient to mark irrelevant events at this time, since

the CFGs are still available. As noted earlier, all irrelevant events should be treated

as uncontrollable, and should be marked with a ‘-u’.

The DFA reduction explicitly removes irrelevant events not in a branch. In other

words, irrelevant events only remain in the reduced DFA when they are on branches.

Also, since the reduction removes branching structures where no branches have a rele-

vant event, it can be inferred that where there is a remaining irrelevant event, it must

be in a branching structure where there is at least one branch with a relevant event

and at least one branch with an irrelevant event. Additionally, any remaining rele-

vant event is immediately preceeded by a branching statement because the reduction

collapes irrelevant events upwards in the CFG. Under execution, an irrelevant event

occurs if and only if a branch containing a relevant event is not taken. This mutually

exclusive occurence must be maintained in the actual code when the irrelevant event

is marked. This means that placing an irrelevant event must take more into account

than a simple location; paths must also be considered.

CHAPTER 3. PROCESS DESCRIPTION 34

Some irrelevant events lie on explicit paths, meaning there is at least one location

in the actual code that is reached only when the branch containing that irrelevant

event is followed. Figure 3.8 shows two events each on an explicit path. Event A

only occurs when the if-branch is followed, and event B only occurs when the else

branch is followed. The original (unreduced) CFG tells us that Event A should

be marked between the if-else statement and the following assignment on the if

branch, while event B should be marked between the if-else statement and the

following assignment on the else branch. Each of these locations exist in the code,

and lie on mutually exclusive paths.

if (x) {
//event A

z = 5;

}
else {

//event B

z = 0;

}
foo(z);

Figure 3.8: Two explicit paths in the CFG and the resulting event markings.

Paths through the software are not always explicit. An implicit path is a path

through a branching structure that has no location in the code unique only to that

branch. In Fig. 3.9, event A occurs when the if-branch is not taken. There is no place

in the code, however, that corresponds to the if-branch not being followed. If event A

is located immediately after the if statement, or immediately before the assignment

statement for y, then event A will occur when the path containing event E is followed.

CHAPTER 3. PROCESS DESCRIPTION 35

This violates our mutual exclusion requirement for paths.

if (x)

foo();

//Event E

y = 5;

Figure 3.9: Event A lies on an implicit path and cannot be marked.

The task now is to place code at an event location that does not exist—an im-

possible task. The solution is avoiding the problem by modifying the source code

to transform problematic implicit paths into explicit paths. At first glance, this may

seem to be a deficiency in the process. The source code is being altered, so it could be

suggested that the process only works on source code that does not contain implicit

paths. However, no new paths through the software are being introduced, and no

new functionalities are being created. The only difference is that some preexisting

implicit paths now have explicit locations. In essence, this transformation ensures

that inserted concurrency control code will be on the correct path, and thus code

introduced as part of this transformation is best thought of as part of the inserted

concurrency control code.

Every programming language has a variety of branching structures. Some struc-

tures have the potential to introduce implicit paths while others do not. The same

branching structure may have different properties across different languages. A full

exploration of the implicit path problem is thus infeasible due to the variety of pro-

gramming languages and branching structures. However, one of two basic approaches

CHAPTER 3. PROCESS DESCRIPTION 36

can be applied to render any implicit path explicit.

The first approach works on those branching structures that have an optional

catch-all branch. For example, many languages allow an if statement to exist on its

own or as part of an if-else statement. We can infer that if there is an implicit path,

the optional catch-all else portion of the statement must have been omitted, since

the else branch would have caught the irrelevant event if it existed. This strongly

suggests the solution, which is to introduce the optional catch-all and mark the ir-

relevant event in the catch-all branch. This does not introduce a new path; it only

makes explicit the path followed when no branch in the existing branching structure

is followed. Some candidates for this approach include if statements without an

explicit else, and case-switch statements without a default switch.

The second approach is to introduce a boolean variable used to track the path

followed. This may be applied to branching structures without a catch-all branch.

For example, a while loop has an entry condition that must be met to enter the

loop; otherwise, the loop is skipped. The path followed when the loop is skipped

is an implicit path. Before the while statement, a tracking boolean is set to true,

and toggled false if the while loop is entered. At the join point for the implicit path

around the loop and the explicit path through the loop, the tracker is checked using an

introduced if statement. If the tracker is still true, the implicit path was followed and

the inside of the if statement is reached. This location is thus the explicit location

for the implicit path, and the irrelevant event should be marked here. Structures that

can be addressed with this approach include while loops and for loops.

CHAPTER 3. PROCESS DESCRIPTION 37

3.3.3 Constructing the Plant

The plant is given by some combination of all the resulting reduced DFAs. A typical

DES approach would simply take the synchronous product of all DFAs. That would

force shared events to happen in unison, and would interleave any unshared events.

However, this standard approach presents a problem. In our software model, shared

events can occur when multiple threads call a shared method or function containing

a relevant event. Multiple threads would then cause an occurence of the same soft-

ware event. Modelling this by using the synchronous product does not capture this

behaviour, since the event would only occur once, and in unison, for all threads.

To accurately capture the real behaviour, we propose a method to ‘unshare’ all

shared events. Each occurence of a shared event is renamed by adding an identifier

for the calling thread. For example, an event read that is shared by thread-1 and

thread-2 could be renamed read-t1 in the DFA for thread-1 and read-t2 for

thread-2. At the end of this renaming, there are no longer any shared events. It

is now safe to use the synchronous product operation to combine the DFAs. With

no shared events, the combination is simply the shuffle, and thus models the true

interleaving behaviour of the actual system.

Combining the threads using the shuffle operation presents a second problem.

Shuffle combines the initial states of the threads into one initial state. This is only

correct when it is assumed that all threads are in their initial state before any thread

acts. If a thread is dynamically created by another thread only after a relevant

event occurrence, this assumption would be violated, since that shared initial state

would not exist in the real system. Research on dynamic DES theory [17] proposes

a DES model wherein event-generating modules can appear and disappear during

CHAPTER 3. PROCESS DESCRIPTION 38

execution. This is uninvestigated for our work, but seems to offer an alternative to

the assumption that all threads begin at the same time. In the meantime, this work

proceeds assuming that all programs under consideration start such that all threads

are in their initial state at the same time.

Precedence Example: Each thread was processed using Algorithm 1. The

threads in the running example generated simple straight-line stuctures due to the

lack of branching behaviour. The lack of branches makes it possible for the reduction

step to remove all irrelevant events. Each thread was reduced to only two nodes

connected by a single relevant event. Fig. 3.10 shows the results on T3. Note that

the DFA for T3 shows irrelevant events i5 and i6. This is due to i1 and i2 being

used in T1, and i3 and i4 being used in T2. The other threads gave identical results

Figure 3.10: DFA-converted CFG and reduced DFA for T3.

Next, the plant is generated. Dynamic thread creation does not occur, so the

assumption regarding the initial state is not violated. There are no shared events, so

renaming events is unneccessary, and the threads can be combined using shuffle. The

resulting plant for the precedence example contains 32 states and 80 transitions, rep-

resenting all possible interleavings of the five relevant events across the five threads.

The number of states in the plant shows exponential growth resulting from the shuf-

fle operation. The plant is not shown as a figure due to the difficulty of visually

CHAPTER 3. PROCESS DESCRIPTION 39

interpreting large DFAs.

3.4 Formalizing Specifications

The DES plant made in the previous section generates all possible event sequences of

the system. A specification describes some subset of those event sequences that are to

be allowed. Specifications must be each given as a DFA since we are using DFA-based

DES theory. This limits our process to enforcing safety properties only, and precludes

liveness properties. In the previous step, relevant events were extracted from each

specification. These are now used to formalize specifications. For each specification,

take the associated relevant events, and then use them as the event set for a DFA

that generates those events in the ordering demanded by the specification.

As noted in Section 2.1.2, modular DES theory allows for the usage of multiple

specifications. Only behaviours permitted by all specifications will be allowed in the

controlled plant. It is vital that each specification does not inadvertently restrict other

behaviours. All events possible in the plant should be permitted in every specification

except where an event must be explicitly restricted by the specification. In a DFA,

this is accomplished through the addition of a self-loop at every state for each event

in the plant that is not a relevant event arising from that specification. This includes

any irreducible irrelevant events. At the end of this process, the event set for each

specification will be the same as the event set for the plant.

Precedence Example: Our running example has two safety properties to en-

force. Threads that must wait on T1 to finish are restricted by the specification in

Fig. 3.11, and the thread waiting on T5 is restricted by the specification in Fig. 3.12.

Note the self-loops for all events not arising in the specification. This results in

CHAPTER 3. PROCESS DESCRIPTION 40

specifications that permit all possible event occurences except those restricted by the

specification in question.

Figure 3.11: Specifying that T2, T3, and T4 must wait for T1 to finish.

Figure 3.12: Specifying T4 must wait for T5 to finish.

3.5 Constructing the Supervisor

With the plant and a set of modular specifications we can proceed to synthesize

a supervisor. Since we are using modular specifications, the possibility exists that

these specifications are not non-conflicting and therefore the closed-loop system may

deadlock. This can always be avoided by constructing the monolithic specification and

using it to synthesize the monolithic supervisor. Unfortunately, this approach comes

CHAPTER 3. PROCESS DESCRIPTION 41

at the cost of an exponential increase in the number of supervisor states. Since a test

for non-conflicting can be easily performed using DES tools, a typical approach would

be to test for conflicts, then employ the modular or monolithic supervisor accordingly.

In our implementation, we choose to always build the monolithic specification and

proceed with the monolithic supervisor. Though not always the most efficient, this

approach guarantees a correct result. The supervisor construction algorithm in [38]

performs this task in polynomial time for a single specification.

As noted in the introduction, two software packages were used to perform DFA

operations: IDES [20] developed at Queen’s University, and TCT [41] developed at

the University of Toronto.

Precedence Example: The monolithic specification was produced in IDES

by finding the product of the specifications in Figs.3.11 and 3.12, and is shown in

Fig. 3.13. It should be expected that initially only T1 and T5 can act, and it is clear

that this is the case. Only after both threads have acted is T4 finally allowed to act.

The monolithic specification, along with the plant from Section 3.4, was exported

to TCT, where the supervisor construction operation (SUPCON)was performed. The

resulting supervisor has 14 states and 23 transitions, and is shown in Fig. 3.14 on

page 43.

In general, there is no requirement that a specification contain only paths that are

possible in the plant. This differs from a supervisor as they must only contain paths

that are possible in the plant. Since, in this example, the specification is controllable

with respect to the plant, the largest controllable sublanguage is just the monolithic

specification. Following from this, the supervisor is just the intersection of the spec-

ification and the plant. If the specification had been uncontrollable, the supervisor

CHAPTER 3. PROCESS DESCRIPTION 42

Figure 3.13: The monolithic specification for the precedence example.

would have only permitted the largest controllable subset of the specification.

CHAPTER 3. PROCESS DESCRIPTION 43

Figure 3.14: The monolithic supervisor for the precedence example.

Chapter 4

Supervisor Realization

At the end of the previous chapter, the described process had created a supervisor,

guaranteed when coupled with the plant to result in a closed-loop system that is non-

blocking while enforcing the largest controllable sublanguage of the specifications.

The focus now shifts. This supervisor only exists as an abstract mathematical con-

struct; the supervisor must now be realized. Practically, this means that the abstract

supervisor must be transformed into code—code that can be woven into the original

source, and thus couple a realized supervisor with the actual plant. In other words,

the generated concurrency control code will be the supervisor realized into code. The

work presented in this chapter details how this is accomplished.

The problem is addressed by working from our model of supervisory control shown

in Fig. 2.1 on page 11. Several aspects are explored, revealing guiding principles

that culminate in code blocks that, when taken together, fully implement supervi-

sory control. Next, an algorithm is presented that takes an existing supervisor and

event-marked code as input and automatically generates supervisory control code.

44

CHAPTER 4. SUPERVISOR REALIZATION 45

Like the work in Chapter 3, these principles are applicable across programming lan-

guages, and code is presented as pseudocode. Since realizing a supervisor as code

necessarily involves a programming language, an implementation is necessary to gain

a full understanding. The algorithm is implemented and described in detail for the

Java programming language, showing clearly that the process can be successfully

implemented. The precedence example, introduced in Section 3.1, will be further

addressed by generating code to realize the already generated supervisor. Resulting

code is shown to be correct through model checking, a process that will be explained

at the end of the chapter.

All code (and its associated behaviour) in this chapter is novel, and is developed

based upon the reasoning presented throughout this chapter. To the best of the

knowledge of the author, supervisory control of this sort has never been implemented

with the purpose of controlling a concurrent software program.

4.1 Implementing Supervisory Control

Each step of the supervisory control process is examined in turn, and code is developed

that implements each function. The basic supervisory control model involves only two

steps. First, the plant generates an event that must be observed by the supervisor1.

In response, the supervisor issues control actions by enabling and disabling events as

per its control policy. The process repeats for each event generated by the plant. A

realized supervisor must contain code that performs these functionalities. Once the

1This requirement was relaxed in [29], and subsequent research such as [8]. Called “partial
observation”, the theory fits in as an expansion to the core Ramadge and Wonham framework, and
is not directly addressed in this work. Instead, it is noted in future work as a possible avenue for
future exploration.

CHAPTER 4. SUPERVISOR REALIZATION 46

code is generated, it is combined with the original source code to create the controlled

system.

4.1.1 Controlling Events

During code execution, a statement is executed as one or more statements at the

assembly level, with the program counter incrementing between each assembly state-

ment. Each statement at the programming level is represented by a block of state-

ments at the assembly level. Upon each increment that moves the program counter

from a block implementing one higher-level statement to another block, the program

generates the intervening abstract software event. Since this process continues un-

hindered without concurrency controls, we conclude that the default condition of a

software event is enabled. As described in Chapter 3, only a subset of these events are

relevant to concurrency control, and these are the events that appear in the super-

visor. The set of software events to manage is further limited to only those that are

modelled as controllable. Out of all software events in the program, only those that

appear in the supervisor as controllable events require concurrency control code. A

mechanism must be generated to provide the ability to enable or disable a controllable

event.

A semaphore provides the capabilities necessary to disable an event, and is nearly

universal in modern concurrent programming languages. Forcing a thread to wait

on a semaphore halts the actions of that thread, indefinitely preventing the event

occurrence, thereby disabling the impending event. Signalling that semaphore at a

later time will wake the thread, enabling the event. Each controllable event will be

assigned an exclusive semaphore, the behaviour of which will be managed by the

CHAPTER 4. SUPERVISOR REALIZATION 47

supervisor. If an event is disabled, the semaphore should have no permits, and if the

event is enabled, it should possess exactly one permit. Thus, the semaphore is a binary

semaphore. Changing the number of permits in a semaphore is the responsibility of

the supervisor, as it determines if the event is disabled or enable. However, threads

must check the semaphore using the Wait command to determine the current control

state, and this removes the permit from the semaphore if it has one. To negate this, a

permit should be immediately returned to the semaphore with a Signal instruction.

This restores the permit that was taken by the Wait, thus returning the semaphore to

its correct state. Failure to replace this permit would mean that the current control

action has changed without a supervisory control action being issued. This would

violate the model of supervisory control and lead to unpredictable consequences,

most likely taking the form of deadlocks.

Every controllable event is assigned a dedicated binary semaphore; uncontrollable

events do not require association with a semaphore as they never become disabled. If

a thread is waiting on an event semaphore, and then awakes, there is still no guarantee

that the event can actually occur. A context switch could occur causing that event to

be disabled before the thread acts. Passing the semaphore is no guarantee that the

thread is enabled. Thus, when the thread does eventually act, it is necessary that it

again checks the associated semaphore. This implies that a looping mechanism will

need to be created to recheck the semaphore. This loop is only passable when the

event is first checked and found to be enabled.

When each semaphore is created, it should be initialized so that it matches the

control state of the associated event in the initial state of the supervisor. If the event

is enabled, the semaphore should be initialized with one permit; if disabled, it should

CHAPTER 4. SUPERVISOR REALIZATION 48

have no permits. By this strategy, the semaphores initally enact the control action

in the initial state of the supervisor.

4.1.2 Observing Events

All events in the supervisor must be observed when they occur in the plant—both

controllable and uncontrollable. When the plant generates an event, the supervisor

transitions through its own internal structure based on that same event. Control

actions are then issued based upon the new state. If the supervisor does not observe

an event and fails to make the matching transition, synchronization with the plant

would be lost. The control policy could no longer be enforced, and the system would

become unpredictable. Synchronization must be maintained through observation.

Observation can be accomplished by inserting code at each event to notify the

supervisor of the event occurrence. Additionally, the supervisor must respond to the

change in state by updating its own state, and issuing a control action if necessary.

However, a context switch at this point would be problematic. Consider the following

chain of events. A thread thread-A executes an event event-A. The supervisor

observes the action and in response disables the currently enabled event (event-B)

in a second thread (thread-B). However, before the supervisor can disable event-B,

a context switch occurs and thread-B resumes execution. The actions of thread-B

result in an occurrence of event-B because the supervisor had not yet disabled the

event. This chain of events violates the control scheme in the supervisor, and shows

how a context switch between observation and supervisor reaction could cause a loss

of synchronization. Thus, it is necessary to reserve time for the supervisor to update

and react. During this time, event occurrences must be queued until the supervisor

CHAPTER 4. SUPERVISOR REALIZATION 49

has updated its own state and effected a control action.

4.1.3 Event Code

The aforementioned observations lead to the first description of actual generated code.

It is clear that actions must be taken at an event location, but what exact location

is implied? Recall that software events are abstract concepts, defined to occur as

execution passes from one statement to the next. The event location is between the

statement immediately preceding the software event and the statement immediately

following it. Thus, saying that code should be placed at an event actually means

that code should be placed between the statements couching the event, as shown

in Fig. 4.1. Note that this approach only works when events lie on explicit paths,

explaining the necessity of the transformation in Section 3.3.2 that makes implicit

paths explicit.

Preceding statement

//event marking: event1

Subsequent statement
becomes

Preceding statement

//event marking: event1

inserted concurrency control code

//event1 occurs

Subsequent statement

Figure 4.1: The effect on event location when code is inserted.

The concepts above lead to code that implements the supervisor functions neces-

sary at the event location. At every controllable event, code implementing Fig. 4.2

should be inserted. The code containing the semaphore check is trapped in a while

loop. If allowed to proceed, the thread breaks out of the loop and is allowed to pro-

ceed, thus executing the event. If the event is disabled, then the thread must wait

on the associated semaphore until signalled. Immediately the semaphore permit is

CHAPTER 4. SUPERVISOR REALIZATION 50

replaced, thus maintaining the enforced control action. Upon awakening, the while

loop returns execution to the start of this block, and the supervisor is once again

notified that the thread is trying to execute an event. At an uncontrollable event,

the event is always enabled, so the code from Fig. 4.2 reduces to mere supervisor no-

tification. This is given in Fig. 4.3. The method observeAndReact, explained in the

following section, notifies the supervisor of the event occurrence and gives reserved

time for the supervisor to act.

//event marking: eventName

while (true) {
if(observeAndReact("eventName",eventNameSemaphore))

//the event is enabled and may occur, exit the while loop

break from while;

//event is disabled, force thread to wait

Wait on eventNameSemaphore;

//semaphore has been signalled - replace the semaphore permit

Signal eventNameSemaphore;

}
//event occurs

Figure 4.2: Code to be placed at each controllable event.

//event marking: eventName-u

observeAndReact("eventName-u",null);

//no semaphore - the event is always enabled

//event occurs

Figure 4.3: Code to be placed at each uncontrollable event.

CHAPTER 4. SUPERVISOR REALIZATION 51

4.2 Supervisor Observation and Reaction

Upon observing an event, the supervisor reacts by issuing a control action if necessary.

This process must not be interrupted by other event occurrences, in the interest of

avoiding race conditions. Similarly, event occurrence and event observation must also

occur as an atomic group, once again to avoid race conditions. In fact, all three

operations must occur as an atomic group. In other words, as an event occurs, other

events must be disabled while the supervisor observes and reacts. First, the event

semaphore must be checked to ensure that the event is enabled. Secondly, if the event

occurs, the supervisor must be notified. Third, the supervisor must update its state

and issue a new control action if necessary. These three actions must occur as an

atomic group for each event, and that group can only execute in mutual exclusion

with other groups. In this manner, no race conditions are introduced.

Unfortunately, the fact that the control state of an event (i.e. if it is enabled

or disabled) is managed through a semaphore means that a thread would be forced

to wait if the semaphore is checked using Wait and the event is disabled. Since the

semaphore check is enclosed in a mutually exclusive block, no other thread would be

able to execute an event if a thread became stuck in the mutually exclusive block

due to a disabled event. Deadlock would ensue. In an implementation, this must

be avoided, possibly through a flag maintained by the supervisor indicating the con-

trol state of an event. Some programming languages provide advanced semaphore

methods that allow a semaphore to be checked without the possibility of a wait2.

Regardless, if the event is disabled, the thread must eventually be forced to wait.

This command takes place outside of the mutually exclusive group in the event code

2Java is one of these languages. Later in this chapter, this method of determining control state
will be implemented.

CHAPTER 4. SUPERVISOR REALIZATION 52

given in Fig. 4.2 on page 50. If the event is enabled, then the supervisor should check

its transition table, update its event, and issue a control action if necessary.

This leads to the code presented in Fig. 4.4. The observeAndReact method is

called at every event occurrence (as seen in Figs. 4.2 and 4.3), and as input takes

the name of the occurring event and a pointer to the semaphore associated with

that event (or null, if the event is uncontrollable). This input gives the supervisor

the information needed to update the supervisor state and issue a control action if

necessary. If the event is controllable, the supervisor determines the control state

of the event. If the event is disabled, the method returns false. This triggers the

event code to wait on the semaphore. If the event is enabled, the supervisor calls

updateSupervisorState() to update the supervisory state and issue a new control

action. Upon seeing a null semaphore, the event is uncontrollable and the supervisor

proceeds to the updateSupervisorState() method.

This code must only be accessed in mutual exclusion with itself. Only one

thread can execute an event at any time, and all other threads must wait for the

observeAndReact code to be completed before being able to access it.

4.2.1 Determining Control Actions

While the control policy dictates the events that are to be enabled and disabled in

each supervisory state, it does not include information on transitions. Thus, at every

supervisor transition, there needs to be a full review of the control state for each

event, and then changes would need to be made for each event that became enabled

or disabled. Since the control policy is unchanging, greater efficiency can be achieved

by determining the changes in control action across each transition prior to run-time,

CHAPTER 4. SUPERVISOR REALIZATION 53

observeAndReact: Notifies the supervisor that an event

is about to occur. Determines if the event can occur, and if so,

updates supervisor state and control action. Must be accessed in

mutual exclusion.

Input: name of event that is about to occur, semaphore for that

event (or null if uncontrollable)

Output: A boolean variable that is true if the event can occur,

and false if the event is disabled.

observeAndReact(String eventName,Semaphore sem) {
if event is controllable {
if event is disabled {

//event cannot occur

return false }
}
//event can occur

updateSupervisorState(eventName);

return true;

}

Figure 4.4: Code for observeAndReact.

and then hard-coding this in the Supervisor class as a table look-up.

We define a new construct, which we will call the change map, to track changes in

the control action based upon transitions. The change map is constructed as follows.

Recall that transitions in the supervisor are defined by the transition function δ, and

each transition is given by δ(q, σ) = q′, where q is the source state, q′ is the target

state, and σ is the event on the transition. For each transition in the supervisor,

we compare the set of disabled events at the source q and target q′. We define two

similar functions, the disabling function, ∆D, and the enabling function, ∆E as

∆D(q, σ′) = {σ ∈ Σ | σ is enabled in q and is disabled in δ(q, σ′)}

CHAPTER 4. SUPERVISOR REALIZATION 54

∆E(q, σ′) = {σ ∈ Σ | σ is disabled in q and is enabled in δ(q, σ′)}

Together, these two functions form the change map. For any transition δ(q, σ), the

change map can be consulted to determine exactly which events must be enabled and

which must be disabled. In practice, the source state for the transition is always the

current supervisory state, and thus only the event σ would need to be observed by

the supervisor before consulting the change map.

In Fig. 4.5, the given sample code provides a model to implement this supervisor

functionality. Essentially, the code searches through the list of events to find the

information for the event that is occurring. Then, it searches through the list of

possible transitions for that event to find the transition for the current supervisor

state. In the presented pseudocode, it is shown as a brute force search by going

through all options using for loops. An implementation could use any one of a

variety of search methods and branching structures. Once the transition is isolated,

the supervisor state is updated. Finally, a series of statements enable and disable

events as instructed by the change map by adding or removing the permit from the

associated semaphores. These statements are responsible for actually issuing the

control action.

4.2.2 Comments on Correctness

The code introduced in this chapter combines to form an implementation of supervi-

sory control. Consider the initial state s of the program. Semaphores are initialized

such that the control action at this state matches the control action from the supervi-

sor’s initial state. A subsequent transition to a child program state s′ causes an update

to the control action as informed by the change map, which is built directly from the

CHAPTER 4. SUPERVISOR REALIZATION 55

updateSupervisorState: Updates the current state of the

supervisor and issues control actions.

Input: Name of pending enabled event.

Output: None, updates state and issues control actions inline.

updateSupervisorState(event e){
enable all events in ∆E(supervisorState, e):

add a permit to the semaphores for these events

disable all events in ∆D(supervisorState, e):

remove the permit from the semaphores for these events)

supervisorState = δ(supervisorState, e)

}

Figure 4.5: Pseudocode showing the updateSupervisorState method.

control policy in the correct-by-design supervisor. Any accesses to the semaphores

explicitly ensure that the semaphore is left unchanged, meaning that the supervisor

and only the supervisor changes the current control action. By this reasoning, it is

claimed that s′ also enforces the correct control action. This same logic can be ap-

plied from s′ to another state s′′, and so on, eventually reaching all states since the

supervisor is reachable. This shows that the correct control action is applied at every

state. Thus, the supervisor code starts in the correct state, safely transitions to new

states, and safely issues control actions as informed by the change map. This strongly

suggests that the code above embodies a viable method to implement a supervisor.

Like all abstract algorithms, this approach is only effective when implemented

correctly. If concurrency bugs, such as a deadlock or a race condition, are introduced,

then the implementation is clearly lacking. Claims of correctness are accordingly

withheld until the algorithm is implemented and can be analyzed. The implementa-

tion must read the current state, determine if an event is allowed, and then update

CHAPTER 4. SUPERVISOR REALIZATION 56

the control action without introducing the possibility for deadlock or race conditions

due to the supervisory control process. While attention has been paid to preventing

the introduction of concurrency bugs during supervisor realization, the difficulty in

spotting these bugs is one of the reasons why this entire process has been developed.

The lack of concurrency bugs must be confirmed on an actual implementation, and

is best done through model-checking.

4.3 Generating Code

The supervisor implementation developed above is at the core of the code generation

process. However, the presented pseudocode cannot be completed without additional

input, and thus must be implemented as skeletons. The goal of the algorithm is

to use information from the input to flesh out the skeletons, and thereby generate

concurrency control code in the form of a realized supervisor. For input, the algorithm

will take the results of Chapter 3: event-marked code and a DES supervisor. Output

will be the event-marked code with added concurrency controls that implement the

supervisor.

The algorithm to generate concurrency control code is presented in Fig. 4.6 on

page 58. The algorithm can be implemented in any language that supports file ma-

nipulation. However, an implementation must be made to work for the programming

language used in the event-marked source, since it will generate new code to be in-

serted back into that event-marked source. The pseudocode samples developed above

must be implemented in the same programming language as the source. For the pur-

poses of this algorithm, it is assumed that that step has been completed, and that

skeletons of those algorithms are available to be used as part of algorithm 2.

CHAPTER 4. SUPERVISOR REALIZATION 57

Step 3 deliberately lacks clarity, as each programming language has different meth-

ods of sharing data between threads. In Java and C++, the supervisor could be

created as a static class with the data (methods/functions and variables) marked as

public so that other threads can access them. Other programming languages share

data using global variables or other methods. So long as all threads can access the

data in the supervisor, the requirement in step 3 is satisfied.

4.4 Java Implementation

Implementing Algorithm 2 in the Java programming language first involves the imple-

mentation of all pseudocode skeletons in Java. Using those, a program implementing

Algorithm 2 was written. This work was done in Java, though this is by no means

necessary. Algorithm 2 was implemented in Java, with the exception of the final

step of the algorithm, which was performed manually. Note that there are no devel-

opment issues preventing the implementation of step 8. Regardless, since step 8 is

not being performed, it is not necessary to include the event-marked code as input.

A proper implementation would require this. This section details how the algorithm

was implemented. The implementation details are largely irrelevant to understanding

the overall project, and as such all details are remanded to Appendix A. Interested

readers are referred there if they wish to examine the implementation.

The implementation can read a supervisor from an IDES model (.xmd) [20], com-

pute the change map, and output code that realizes the supervisor. While the im-

plemented portion does not automatically insert event code into the original source,

there are no hurdles preventing this. The supervisor is implemented as a public static

Supervisor class, and any variables or methods in the supervisor are accessed directly

CHAPTER 4. SUPERVISOR REALIZATION 58

Algorithm 2 generates concurrency control code by realizing a DES

supervisor, then inserts it into the source code.

Input: Event-marked code, supervisor.

Output: Code with concurrency controls

1. Analyze the DES supervisor. Determine the event set

including event controllability, and note all transitions.

Determine the events enabled and disabled at each state.

2. Build the change map by cycling through all transitions and

comparing the events enabled and disabled at the source

and the target.

3. Create a supervisor in code such that data in the supervisor

can be accessed by all threads.

4. For each controllable event, create a semaphore with a

unique name in the code supervisor. Initialize each semaphore

to 0 if the associated event is disabled in the initial state

of the DES supervisor, or 1 if it is enabled.

5. Add code implementing observeAndReact to the supervisor.

6. Add code implementing updateSupervisorState to the supervisor,

completing the code by using the information from the event

names, transition structure, and change map.

7. For each event, complete the skeleton implementing the event

code by inserting the event name and the associated

semaphore name, using the controllable or uncontrollable event

code as necessary.

8. Search through the source to find event markings. Insert

the appropriate event code at the event markings.

Figure 4.6: Algorithm 2 creates concurrency control code through supervisor realiza-
tion.

CHAPTER 4. SUPERVISOR REALIZATION 59

using Supervisor.variable or Supervisor.methodName().

4.4.1 Supervisor Implementation

Each of the pseudocode skeletons were transformed into Java skeletons, ready for

use by the implementation of Algorithm 2. Each of these skeletons is incomplete

without information from the supervisor; in these cases, data to be supplied later is

indicated using double angle brackets (e.g. <<eventName>>). Additionally, some of

the code presented here has been developed with information from model-checking

earlier versions of the resulting code, in which case it is noted.

First, the event code is examined. For controllable events, the Java code skeleton

is given in Fig. 4.7, and for uncontrollable events, the Java code skeleton is given in

Fig. 4.8. Both of these methods make calls to observeAndReact in the Supervisor

class. In Fig. 4.9, a sequence diagram shows how these skeletons behave for an enabled

event. In Fig. 4.10, the sequence diagram shows the behaviour for a disabled event.

Basically, the event must wait until another thread executes an event that causes the

supervisor to issue a control action enabling the disabled event.

while (true) {
if (Supervisor.observeAndReact(<<"eventName">>,

Supervisor.<<eventNameSem>>))

break;

Supervisor.<<eventNameSem>>.acquireUninterruptibly();

Supervisor.<<eventNameSem>>.release();

}

Figure 4.7: Java code skeleton to be completed and inserted at controllable events.

In Java, the semaphore Wait command is implemented as the semaphore method

CHAPTER 4. SUPERVISOR REALIZATION 60

Supervisor.observeAndReact(<<"eventName-u">>, null);

Figure 4.8: Java code skeleton to be completed and inserted at uncontrollable events.

acquire(), and Signal becomes release(). However, the semaphore method

acquireUninterruptibly() was used rather than acquire(). When a thread waits

using the acquire() method, it is possible to force an early wake before being sig-

nalled via the release(). This would throw an exception, the possibility of which

caused errors to be discovered in model checking. These errors are avoided by using

acquireUninterruptibly() as it prevents interrupts.

The Java implementation for the observeAndReact method is given in Fig. 4.11.

This is, in fact, a proper Java implementation and not a skeleton—the method does

not require any information from the supervisor to be completed. To ensure mu-

tually exclusive access, it is defined as synchronized, a Java keyword that is the

equivalent of wrapping all calls to that method in a Mutex semaphore. The specialty

Java method Semaphore.tryAcquire() is used to determine the control state of the

event; if a permit is not available in the semaphore, execution simply proceeds, never

blocking. This allows the thread to move out of the synchronized method, eventually

blocking on the semaphore in the inserted event control code. If a permit is present,

the tryAcquire() method will remove a permit from the semaphore and execution

proceeds. As in the event code, this permit is immediately replaced, to ensure that

the current control action is not altered.

Finally, the Java implementation of updateSupervisorState is given in Fig. 4.12.

Unfortunately, this method is almost entirely based on the supervisor itself, so the

Java skeleton is still largely pseudocode. To search through the supervisor for the

CHAPTER 4. SUPERVISOR REALIZATION 61

Figure 4.9: A sequence diagram of the interaction between thread and supervisor
when an event is disabled.

Figure 4.10: A sequence diagram of the interaction between thread and supervisor
when an event is enabled.

CHAPTER 4. SUPERVISOR REALIZATION 62

public static synchronized boolean observeAndReact

(String event, Semaphore eventBlocker) {
if (!(eventBlocker == null)) {
if (!eventBlocker.tryAcquire())

return false;

eventBlocker.release();

}
updateSupervisorState(event);

return true;

}

Figure 4.11: The Java implementation of observeAndReact.

transition that is occurring, there is a large if-else statement that contains a branch

for each event. Using the current supervisor state, a switch-case statement finds

the instructions for updating the supervisor state and issuing control actions. This

manner of searching is by no means a unique method to isolate the occurring event,

and no claim is made as to its optimality or efficiency, other than to say that this

method is essentially brute-force and is far from optimal.

The updateSupervisorState method issues control actions by adding and re-

moving permits from event semaphores. It is not possible in Java to directly add or

remove a permit from a semaphore. Instead, the supervisor can only remove a per-

mit by acquiring the semaphore using the acquireUninterruptably() method . By

design, this operation will never block on the semaphore, since the change map only

instructs the supervisor to disable events when they are currently enabled, and thus

the related semaphore always has a permit when the supervisor attempts to acquire

the semaphore. To enable an event, a permit must be added, which is accomplished

by releasing the associated semaphore using release().

A concrete example can be seen in the following section, where the precedence

CHAPTER 4. SUPERVISOR REALIZATION 63

private static void updateSupervisorState(String event) {
if (event.equals(<<"eventName">>)) {

//for the first event in the supervisor, insert:

switch(Supervisor.supervisorState) {
//for each state with this event as a transition out, insert:

case(<<sourceState>>):

//for each event to be enabled, insert:

Supervisor.<<eventSemaphore>>.release();

//for each event to be disabled, insert:

Supervisor.<<eventSemaphore>>.acquireUninterruptibly();

Supervisor.supervisorState = <<targetState>>;

break;

}
}

//for each additional event in the supervisor, insert:

else if (event.equals("T3start")) {
switch(Supervisor.supervisorState) {
//for each state with this event as a transition out, insert:

case(<<sourceState>>):

//for each event to be enabled, insert:

Supervisor.<<eventSemaphore>>.release();

//for each event to be disabled, insert:

Supervisor.<<eventSemaphore>>.acquireUninterruptibly();

Supervisor.supervisorState = <<targetState>>;

break;

}
}

}

Figure 4.12: The Java skeleton for updateSupervisorState.

CHAPTER 4. SUPERVISOR REALIZATION 64

example is completed and the complete supervisor is listed. It is assumed that the

current supervisor state is tracked in a variable called Supervisor.supervisorState.

4.4.2 Results on Precedence Example

Code to provide concurrency control was generated for the precedence example using

the Java implementation of Algorithm 2. The IDES supervisor generated at the

end of Chapter 3 was examined, determining event information and the transition

structure. This was used to build the change map. Next, the Supervisor class was

created. This class is given in full in Figure 4.13, which spans several pages. The

supervisor contains a semaphore named after each controllable event, initialized to

match the initial supervisory state. The observeAndReact method was inserted, and

the updateSupervisor state method was completed and inserted.

This implementation adds an initialization method init() that sets all supervisor

variables to their initial values. When the code was model checked, issues were found

with the initialization of the variables in Supervisor. Curiously, these errors were

not reproducible via manual testing, and do not seem consistent with the operation

of the Java programming language. It is unknown if these errors are due to the model

checker, the code, or Java itself. However, adding an initialization method, called in

the main method of the Main class before any threads were started, eliminated these

errors. Being tangential to the research, the matter was not further pursued.

All events in the precedence example are controllable, so at each event code from

Fig. 4.7 was inserted, differing only by the event name. The supervisor was created

as a static class as described above. Though it appeared to make no difference in

manual testing, calling the initialization method before creating the threads removed

CHAPTER 4. SUPERVISOR REALIZATION 65

possible deadlocks detected by model checking.

4.5 Code Verification

Given that DES theory is rigorously proven to generate correct, nonblocking super-

visors, it is implied that the produced control policy satisfies the specifications and

is nonblocking. However, the DES work is only as reliable as the input, and the

concurrency control code is only reliable to the extent that it correctly implements

the generated control policy. It would be reasonable to show that Algorithms 1 and 2

used to create the DES model and synthesize code, respectively, are correct through

a formal correctness proof. However, this only goes so far in deciding the correctness

of implemented code. Model checking can provide assurance that the code, as im-

plemented, is correct. Model checkers are limited to work with a specific language,

and we restrict further discussion of model checking to Java Pathfinder [22] (JPF), a

model checker that works on Java source code.

By default, JPF will search for deadlocks only. However, this does not give the full

assurance of correctness that is desired. The implemented code should be deadlock

free, but should also satisfy all specifications. The easiest way to search for violated

specifications is to instrument the code with assertions that would fail if and only

if the specification were violated. A violated assertion causes an exception, which

JPF can search for by adding gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty

to the search properties.

Model checking even small examples can be expensive with regards to memory

and time. When running JPF, the Java virtual machine was given extra memory

by using the switch -Xmx1536m, where 1536 is the amount of memory, in megabytes,

CHAPTER 4. SUPERVISOR REALIZATION 66

package precedenceExample;

import java.util.concurrent.*;

public class Supervisor {

static Semaphore T1finish;

static Semaphore T3start;

static Semaphore T4start;

static Semaphore T5finish;

static Semaphore T2start;

static int supervisorState;

public static volatile boolean t1finished;

public static volatile boolean t5finished;

public static void init() {
Supervisor.T1finish = new Semaphore(1);

Supervisor.T3start = new Semaphore(0);

Supervisor.T4start = new Semaphore(0);

Supervisor.T5finish = new Semaphore(1);

Supervisor.T2start = new Semaphore(0);

Supervisor.supervisorState = 0;

Supervisor.t1finished = false;

Supervisor.t5finished = false;

}

public static synchronized boolean observeAndReact(String

event, Semaphore eventBlocker) {
if (!(eventBlocker == null)) {
if (!eventBlocker.tryAcquire()) {
return false;

}
eventBlocker.release();

}
updateSupervisorState(event);

return true;

Figure 4.13: Realized supervisor for precedence example.

CHAPTER 4. SUPERVISOR REALIZATION 67

}

private static void updateSupervisorState(String event) {

if (event.equals("T1finish")) {
switch(Supervisor.supervisorState) {
case(0):

Supervisor.T3start.release();

Supervisor.T2start.release();

Supervisor.T1finish.acquireUninterruptibly();

Supervisor.supervisorState = 1;

break;

case(2):

Supervisor.T3start.release();

Supervisor.T4start.release();

Supervisor.T2start.release();

Supervisor.T1finish.acquireUninterruptibly();

Supervisor.supervisorState = 5;

break;

}
}
else if (event.equals("T3start")) {
switch(Supervisor.supervisorState) {
case(1):

Supervisor.T3start.acquireUninterruptibly();

Supervisor.supervisorState = 4;

break;

case(3):

Supervisor.T3start.acquireUninterruptibly();

Supervisor.supervisorState = 6;

break;

case(5):

Supervisor.T3start.acquireUninterruptibly();

Supervisor.supervisorState = 8;

break;

Figure 4.13 continued.

CHAPTER 4. SUPERVISOR REALIZATION 68

case(7):

Supervisor.T3start.acquireUninterruptibly();

Supervisor.supervisorState = 10;

break;

case(9):

Supervisor.T3start.acquireUninterruptibly();

Supervisor.supervisorState = 12;

break;

case(11):

Supervisor.supervisorState = 13;

break;

}
}
else if (event.equals("T4start")) {
switch(Supervisor.supervisorState) {
case(5):

Supervisor.T4start.acquireUninterruptibly();

Supervisor.supervisorState = 9;

break;

case(7):

Supervisor.T4start.acquireUninterruptibly();

Supervisor.supervisorState = 11;

break;

case(8):

Supervisor.T4start.acquireUninterruptibly();

Supervisor.supervisorState = 12;

break;

case(10):

Supervisor.supervisorState = 13;

break;

}
}
else if (event.equals("T5finish")) {
switch(Supervisor.supervisorState) {
case(0):

Supervisor.T5finish.acquireUninterruptibly();

Figure 4.13 continued.

CHAPTER 4. SUPERVISOR REALIZATION 69

Supervisor.supervisorState = 2;

break;

case(1):

Supervisor.T4start.release();

Supervisor.T5finish.acquireUninterruptibly();

Supervisor.supervisorState = 5;

break;

case(3):

Supervisor.T4start.release();

Supervisor.T5finish.acquireUninterruptibly();

Supervisor.supervisorState = 7;

break;

case(4):

Supervisor.T4start.release();

Supervisor.T5finish.acquireUninterruptibly();

Supervisor.supervisorState = 8;

break;

case(6):

Supervisor.T4start.release();

Supervisor.T5finish.acquireUninterruptibly();

Supervisor.supervisorState = 10;

break;

}
}
else if (event.equals("T2start")) {
switch(Supervisor.supervisorState) {
case(1):

Supervisor.T2start.acquireUninterruptibly();

Supervisor.supervisorState = 3;

break;

case(4):

Supervisor.T2start.acquireUninterruptibly();

Supervisor.supervisorState = 6;

break;

case(5):

Supervisor.T2start.acquireUninterruptibly();

Figure 4.13 continued.

CHAPTER 4. SUPERVISOR REALIZATION 70

Supervisor.supervisorState = 7;

break;

case(8):

Supervisor.T2start.acquireUninterruptibly();

Supervisor.supervisorState = 10;

break;

case(9):

Supervisor.T2start.acquireUninterruptibly();

Supervisor.supervisorState = 11;

break;

case(12):

Supervisor.supervisorState = 13;

break;

}
}

}
}

Figure 4.13 continued.

CHAPTER 4. SUPERVISOR REALIZATION 71

made available. Additionally, JPF was set to ignore repeated states at lower search

depths by setting search.match depth to true.

Precedence Example: The complete code, including generated concurrency

control, was model checked using JPF. First, the code was instrumented using flags

and assertions so that it could be verified that the specifications were properly en-

forced. The first specification, that T1 must finish before T2, T3, and T4 could start,

was instrumented using a boolean variable Supervisor.t1finished. Initialized to

false in the supervisor, this variable was not set true until T1 completed, as seen in

Fig. 4.14. It is important to note that this was done before the event T1-finish was

observed by the supervisor. If this ordering were reversed, the supervisor could enable

events in the other threads before the tracking variable correctly noted that T1 had,

in fact, completed. At the beginning of each of T2, T3, and T4, the assertion assert

(Supervisor.t1finished) was inserted, as shown in Fig. 4.15 for T3. This assertion

must be inserted immediately after the event, to ensure that when T3-start occurs,

t1finished is already set to true. If this assertion ever evaluated to false, then the

violating path was one that also violated the specification. Similar instrumentation

was added for the specification relating to T5 and T4.

After instrumentation, JPF was run on the precedence example. JPF found the

code to be free of deadlocks and free from assertion violations. The model check com-

pleted within seconds on an AMD Athlon 64 3800+ desktop machine with 2GB of

RAM running Windows XP x64. These results show that the generated concurrency

control code for the precedence example is both nonblocking and within specifica-

tion. The supervisor realization process presented in this chapter has successfully

solved a single concurrency control problem. Further conclusions are withheld until

CHAPTER 4. SUPERVISOR REALIZATION 72

an additional example is explored.

public void run() {
doWork();

System.out.println(id);

//tracker noting that T1 has finished

Supervisor.t1finished = true;

//event marking: T1finish

while (true) {
...

Figure 4.14: Instrumentation tracking the finish of T1 for model checking.

public void run() {
//event marking: T3start

while (true) {
if (Supervisor.observeAndReact("T3start", Supervisor.T3start))

break;

Supervisor.T3start.acquireUninterruptibly();

Supervisor.T3start.release();

}
//model checking assertion

assert(Supervisor.t1finished);

System.out.println(id);

doWork();

}

Figure 4.15: In T3, asserting that T1 has finished.

Chapter 5

Transfer Line Example

The transfer-line problem is a well-studied problem in DES literature, and is described

by Wonham in [44]. The problem is interesting in that it is modular, with the spec-

ifications presenting a conflict that must be addressed. The specifications cannot be

directly enforced, otherwise a deadlock will ensue. Thus, the solution involves finding

the largest controllable subset of the specifications through supervisor construction.

The problem is made relevant to this work by recasting it as a concurrency control

problem in Java. The goal of this example is to show that the process, as presented

in Chapters 3 and 4, can solve a concurrency control problem that is not addressed

by existing processes. By automatically working around the conflicting specifications,

this problem showcases the generative aspect of the process that is lacking in other

work.

In the interest of readability, not all work relating to this problem is given in

this chapter. Only work that is unique or necessary in obtaining a solution will be

presented. That being said, all omitted work is included in Appendix B, and will be

referenced accordingly.

73

CHAPTER 5. TRANSFER LINE EXAMPLE 74

5.1 Introduction

The transfer-line problem is centered around creating and processing parts that get

moved between machines and buffers. Figure 5.1 gives a block diagram of the system,

with the arrows showing the flow of parts. Additionally, each arrow refers to an event

causing the corresponding part movement. Machine 1 (M1) creates parts and places

them in Buffer 1 (B1) via event 1. Machine 2 (M2) removes parts from B1 with event 2,

works on them, and then on event 3 places them in Buffer 2 (B2). The test unit (TU)

removes parts from B2 via event 4 and then tests them. If the part passes the test,

event 5 removes it from the system. If the part fails, event 6 uncontrollably returns

the part to B1. The two buffers are both passive entities, while M1, M2, and TU are

active components and cause the events. Each active component can only work on

one part at a time. Specifications are quite simple. Buffer 1 has a capacity of three

parts, B2 has a capacity of one part, and buffers must never overflow or underflow.

Figure 5.1: A block diagram showing the transfer-line system.

If the specifications are enforced as given, the system can deadlock. Path p =

11123121 is a event ordering that leads to problems. Both buffers are full at the end

of p, and M2 is busy working on a part. If M1 acts by causing an occurence of event

1, B1 will overflow. If M2 acts by causing event 3, B2 will overflow. If the test unit

takes a part from B2, it could reject the part and then overflow B1 via event 6. Thus,

CHAPTER 5. TRANSFER LINE EXAMPLE 75

no active component can act and the system is deadlocked, despite all specifications

being met. DES theory allows us to overcome this issue by generating a nonblocking

supervisor that enforces the largest subset of controllable behaviours.

5.1.1 Java Implementation

The Java implementation creates a thread for each of the three active components M1,

M2, and TU. A Part class was defined to allow for the creation of objects to be passed

through the system. Buffers are objects that are instantiated by the Main class and

are used as shared resources by the active components. The Main class instantiates

the buffers and active components, starts the active components, then terminates.

Listings of actual code are given in Appendix B, Section B.1.

To ensure data integrity of the shared buffers, we add mutual exclusion specifi-

cations. Simply put, B1 must be accessed in mutual exclusion, and B2 must also be

accessed in mutual exclusion. For user output, each buffer access is coupled with

console output describing the result of the action. To ensure output matches the

program state, the output statement is considered part of the buffer access and is

thus included in the mutual exclusion specification.

5.1.2 Building the Event Set

Specifications describe the intended behaviour of the program. Each specification will

describe the behaviour of some portion of the code. By identifying these sections,

relevant events can then be determined. Each relevant event refers to a specific

location in the code—a location that must be marked. To build the event set, every

specification must be examined in turn, and then the location of relevant events

CHAPTER 5. TRANSFER LINE EXAMPLE 76

marked in code.

• B1 may not overflow or underflow: This specification refers to parts being

placed in or removed from B1. Thus, any software event that is immediately fol-

lowed by code that places a part into B1 is a relevant event. This happens in M1,

and also in TU if a part is rejected (this event is also uncontrollable, as indicated

in the problem description). Similarly, M2 also has a relevant event arising from

the removal of parts from B1. The added relevant events are M1addB1-start,

TUaddB1-start-u, and M2getB1-start.

• B2 may not overflow or underflow: Similar to the specification above, any

software event followed by code that places a part in B2 becomes a relevant

event, along with any software event followed by code that removes a part from

B2. Placing a part in B2 only occurs in M2, and removing a part occurs in TU.

The added relevant events are M2addB2-start and TUgetB2-start.

• B1 and B2 must each be accessed in mutual exclusion: Buffer access

start events are already defined as relevant events. New relevant events are

needed to note completion of buffer access. Any software event that immedi-

ately follows a buffer access (add or remove) becomes relevant. Also, we assume

that when an active component finishes with a buffer, that finish is uncontrol-

lable. The added relevant events are M1addB1-finish-u, TUaddB1-finish-u,

M2getB1-finish-u, M2addB2-finish-u, and TUgetB2-finish-u.

Now that the events have been determined, they are marked in code. Each event

falls in the run method of one of M1, M2, or TU. The event-marked run method for M1

is given in Fig. 5.2 on the next page, the event-marked run method for M2 is given in

CHAPTER 5. TRANSFER LINE EXAMPLE 77

Fig. 5.3 on the following page, and the event-marked run method for TU is given in

Fig. 5.4 on page 79.

There is a legitimate question as to where these events should be marked. Would

it be correct to instead locate the events in the Buffer class? In this implementation,

active components output console messages on buffer accesses. The messages should

be synchronized with the actual buffer access, ensuring that the output reflects the

actual program state. For this reason, the relevant events must be marked in the

active components. Were this not the case, either location would lead to a correct

solution. However, locating events in the buffer class would lead to a shared event,

resulting in a more complicated solution.

public void run() {
while (true) {

//wait for some random period

doWork();

//create a new Part

Part newPart = new Part();

//event marking: M1addB1-start

//put it in the target buffer

System.out.println("Machine 1 tries to put a part in " + target);

target.addPart(newPart);

//event marking: M1add-B1-finish-u

} // loop forever

}

Figure 5.2: The event marked run method for M1.

CHAPTER 5. TRANSFER LINE EXAMPLE 78

public void run() {
while (true) {

//get part from source Buffer

//event marking: M2getB1-start

System.out.println("Machine 2 tries to get a part from "

+ source);

Part currentPart = source.removePart();

//event marking: M2getB1-finish-u

//we have a part - do some work on it

doWork();

//put the part in the next buffer

//event marking: M2addB2-start

System.out.println("Machine 2 tries to put a part in " + target);

target.addPart(currentPart);

//event marking: M2addB2-finish-u

//reset machine 2

doWork();

} //loop forever

}

Figure 5.3: The event marked run method for M2.

CHAPTER 5. TRANSFER LINE EXAMPLE 79

public void run() {
while (true) {

//get a part from the source

//event marking: TUgetB2-start

System.out.println("Test Unit tries to get a part from "

+ source);

Part currentPart = source.removePart();

//event marking: TUgetB2-finish-u

//test that part for some period of time

doWork();

if (Math.random() > rejectionChance) {
//no good! send back to rejectBin

//event marking: TUaddB1-start-u

System.out.println("Test Unit tries to put a part in "

+ rejectBuffer);

rejectBuffer.addPart(currentPart);

//event marking: TUaddB1-finish-u

}
} //loop forever

}

Figure 5.4: The event marked run method for TU.

5.2 Building the Plant

As per Algorithm 1 presented in Fig. 3.6 on page 31, control-flow graphs were pro-

duced en route to obtaining the DFA representation of each thread. The Main class,

Part class, and Buffer class were immediately discarded, as none of these classes

contained either a relevant event or a method call that led to a relevant event (other

than the thread.run() calls in the Main class, which are ignored).

The CFGs for M1, M2, and TU were produced as they contained relevant events.

Nodes representing calls to the buffer were left unexpanded as the calls contain no

CHAPTER 5. TRANSFER LINE EXAMPLE 80

relevant events. The CFGs were transformed into DFAs and then reduced as described

in Algorithm 1. In Fig. 5.5, both the original CFG and the reduced DFA are given

for M1. In Fig. 5.6, the CFG-DFA pair is given for M2, and Fig. 5.7 on the next page

presents the CFG-DFA pair for TU.

Figure 5.5: Transfer-Line: The CFG and the reduced DFA for M1.

Figure 5.6: Transfer-Line: The CFG and the reduced DFA for M2.

The reduced DFA for TU presents a remaining irrelevant event, i9. It lies on the

CHAPTER 5. TRANSFER LINE EXAMPLE 81

Figure 5.7: Transfer-Line: The CFG and the reduced DFA for TU.

transition between the if statement that tests a part and the while statement at the

beginning of the code. This is an implicit path, so the source must be transformed

to make that path explicit. Since this is on an if statement, and there is no existing

else component, the if statement is transformed into an if-else statement to make

the path explicit. The run method in TU is thus modified and the irrelevant event i9

is marked inside. This is shown in Fig. 5.8 on the following page.

As there are no shared events to be dealt with, and as all threads start at the

same time (thus meeting the no-dynamic threads assumption), it is safe to build

the plant. The plant is given by the synchronous product of each of the reduced

DFAs. The resulting plant has 32 states and 104 transitions, representing all possible

interleavings of the three threads being considered. A visual representation is not

helpful due to the large state-space. The full transition listing is given in Appendix

B, Fig. B.8 on page 136.

CHAPTER 5. TRANSFER LINE EXAMPLE 82

public void run() {
while (true) {

//get a part from the source

//event marking: TUgetB2-start

System.out.println("TestUnit tries to get a part from "

+ source);

Part currentPart = source.removePart();

//event marking: TUgetB2-finish-u

//test that part for some period of time

doWork();

if (Math.random() > rejectionChance) {
//no good! send back to rejectBin

//event marking: TUaddB1-start-u

System.out.println("TestUnit tries to put a part in "

+ rejectBuffer);

rejectBuffer.addPart(currentPart);

//event marking: TUaddB1-finish-u

}

//code to make i9 explicit

else {
//event marking: i9

}
//end of code making i9 explicit

} //loop forever

}

Figure 5.8: Transformed run method for TU placing i9 on a now explicit path.

CHAPTER 5. TRANSFER LINE EXAMPLE 83

The event set for the plant is exactly {M1addB1-start, M1addB1-finish-u,

M2getB1-start, M2getB1-finish-u, M2addB2-start, M2addB2-finish-u,

TUaddB1-start-u, TUaddB1-finish-u, TUgetB2-start, TUgetB2-finish-u, i9}.

This is clearly noted as all specifications will use this same event set. Addition-

ally, because of the presence of an irrelevant event in the event set, this event set was

not available before this stage.

5.3 Specifications

Each of the specifications is now ready to be presented as a separate DFA. All use the

same event set as the plant. The overflow and underflow specifications are similar to

those found in [44]. It is important to remember that only those behaviours covered

by a specification should be affected. All events that do not appear in the constructed

DFA are added in self-loop to all states. A self-loop is a transition that begins and

ends at the same state; events appearing in self-loop occur freely without having an

effect on the system. Note: In the following figures showing the formal specifications,

events in self-loop are not shown.

The first specification addressed is that B1 may not overflow or underflow. Re-

call that B1 has a capacity of three, that two events add parts (M1addB1-start and

TuaddB1-start-u), and only one event removes parts (M2getB1-start). Preven-

tion of overflow is ensured by disallowing both adding events when three buffer-add

actions have occurred without any counter-balancing remove events. To prevent un-

derflow, a remove event is only permitted when an unmatched add event has oc-

curred. The formal specification is given in Fig. 5.9 on the following page. The set

of events in self-loop is {M1addB1-finish-u, M2getB1-finish-u, M2addB2-start,

CHAPTER 5. TRANSFER LINE EXAMPLE 84

M2addB2-finish-u,

TUaddB1-finish-u, TUgetB2-start, TUgetB2-finish-u, i9}.

Figure 5.9: Specification preventing B1 overflow and underflow. Events in self-loop
are not labelled.

The specification preventing overflow and underflow for B2 is treated similarly

to the specification for B1. Here, only M2addB2-start adds parts to B2, and only

TUgetB2-start removes them. The capacity of B2 is only one part, so each add

must be followed by a remove. A remove can never precede an add. The formal

specification is given in Fig. 5.10. The set of events in self-loop is {M1addB1-start,

M1addB1-finish-u, M2getB1-start, M2getB1-finish-u, M2addB2-finish-u,

TUaddB1-start-u, TUaddB1-finish-u, TUgetB2-finish-u, i9}.

Figure 5.10: Specification preventing B2 overflow and underflow. Events in self-loop
are not labelled.

Next, the mutual exclusion specification for B1 is formalized. There are six events

that access B1: TUaddB1-start, TUaddB1-finish, M1addB1-start, M1addB1-finish,

M2getB1-start, and M2getB1-finish. Whenever a start event begins an access to

the buffer, the associated uncontrollable finish event must occur before any new start

CHAPTER 5. TRANSFER LINE EXAMPLE 85

event can occur. The DFA is given in Fig. 5.11. The set of events in self-loop is

{M2addB2-start, M2addB2-finish-u, TUgetB2-start, TUgetB2-finish-u, i9}.

Figure 5.11: Specification enforcing mutually exclusive access to B1. Events in self-
loop are not labelled.

Last is the mutual exclusion specification for B2. This buffer is accessed by

M2addB2-start, M2addB2-finish-u, TUgetB2-start, and TUgetB2-finish-u. The

formalized DFA is given in Fig. 5.12 on the next page. The set of self-loop events is

{M1addB1-start, M1addB1-finish-u, M2getB1-start, M2getB1-finish-u,

TUaddB1-start-u, TUaddB1-finish-u, i9}.

The four specifications taken together form a set of modular specifications. At

this stage, it is not typically known if the specifications lead to conflicting or non-

conflicting specifications. Usually the next step would be to synthesize multiple su-

pervisors and then test for conflicts. However, prior knowledge of the problem tells

us that the specifications will in fact lead to conflicting supervisors. To avoid this,

CHAPTER 5. TRANSFER LINE EXAMPLE 86

Figure 5.12: Specification enforcing mutually exclusive access to B2. Events in self-
loop are not labelled.

the monolithic supervisor is generated by finding the intersection of all specifications.

Only those behaviours allowed in all specifications are allowed in the monolithic speci-

fication. It is for this reason that it is imperative to properly assign events to self-loops

when creating specifications.

The monolithic specification was computed using IDES. As it contains 52 states

and 176 transitions, it is too large to display here. A full transition listing is provided

in Appendix B as Fig. B.9 on page 139.

5.4 Supervisor Synthesis

Both the plant and monolithic supervisor were exported to TCT, wherein the SUPCON

operation was employed to generate a supervisor. The supervisor contains 69 states

and 114 transitions. As with other large DFAs, it is not represented here, though

interested readers can find a transition listing in Appendix B as Fig. B.10 on page 144.

Instead of producing the exact legal language, the supervisor produces the largest

controllable nonblocking subset of the legal language. This resolves the deadlock that

CHAPTER 5. TRANSFER LINE EXAMPLE 87

arises due to the conflicting specifications.

For sake of comparison, the conflicting modular supervisors were generated and

coupled with the plant. The closed-loop system contains 71 states and 116 transitions,

exactly two more of each than the monolithic supervisor. Recall that in Section 5.1 on

page 74, a path was presented that leads to system deadlock. The path results in both

B1 and B2 being at capacity while M2 is working on a part. When the modular closed-

loop system was examined, this path was found to have been preserved. When B2 is

full, M2 is working on a part, and B1 contains two parts, M1 was allowed to place a third

part in B1, thus filling it. After this, the system was in a deadlock state. In the Java

implementation, the final M1-addB1-start is followed by an M1-addB1-finish-u;

these two transitions lead to the two additional states and events that are found in

the modular supervisor but not the monolithic one. In the monolithic supervisor, the

event where M1 places that final part in B1 is disabled, despite the fact that the event

is allowed in all specifications. By doing this, the ensuing deadlock is avoided without

introducing a new specification or modifying one that already exists.

5.5 Code Generation and Verification

Using the event-marked code and the generated supervisor, Algorithm 2 was applied

to generate code. Generated code is largely boilerplate in nature, and follows exactly

the results of Chapter 4. No significant errors or problems were encountered during

the process; everything ran as expected. Readers interested in the actual generated

code are referred to Appendix B, Section B.6.

Like the precedence example, the transfer-line solution was subjected to model

checking with the JPF tool. The code was instrumented with assertions to check

CHAPTER 5. TRANSFER LINE EXAMPLE 88

for specification violation. Since all specifications relate to buffer access or buffer

overflow/underflow, the added assertions were all in the Buffer class. Figure 5.13

gives an excerpt of the Buffer class containing all added assertions.

The instrumentation to verify mutual exclusions works by tracking buffer access.

Each buffer is given a flag, defaulting to false, that indicates if the buffer is in use.

When any thread accesses a buffer by either adding or removing a part, the first action

is to assert that the flag is false, which is to say, the buffer is not in use. Immediately

after the assertion, the flag is set to true indicating the buffer is now being accessed.

Once the access is complete, the flag is reset to false. If a thread were to access a

buffer while it was already in use, the flag would be true and the assertion would fail.

JPF would identify this as an exception and report the error.

Instrumention for overflow and underflow was straightforward. The buffer class

already checked for overflows and underflows with corresponding output to the con-

sole. After the output statements, an assert(false) statement was inserted. If

these statement were ever reached, then overflow or underflow had occured, the failed

assertion would cause an exception, and JPF would identify the error.

Model checking of this problem completed in under an hour on the same AMD

Athlon 64 3800+ desktop machine with 2GB of RAM running Windows XP x64 used

for the precedence example. Settings were the same as those used for the precedence

example. Once again, the model check was successful, finding no deadlock and no

assertion violation. This leads us to conclude that the generated code is deadlock-free

and within specification.

CHAPTER 5. TRANSFER LINE EXAMPLE 89

//new boolean tracker for mutual exclusion

boolean active;

public void addPart(Part p) {
//assertion to catch Mutex violations

assert(!active);

active = true;

if (holding < size) {
holding++;

//System.out.println (name + " is holding " + holding

+ " parts.");

partBuffer.add(p);

}
else {

System.out.println(name + " overflow!!!");

//following assertion catches overflows

assert false;

}
active = false;

}
public Part removePart() {

//assertion to catch Mutex violations

assert(!active);

active = true;

if (holding > 0) {
holding--;

//System.out.println (name + " is holding " + holding

+ " parts.");

active = false;

return partBuffer.remove();

}
else {

System.out.println(name + " underflow!!!");

//following assertion catches underflows

assert false;

return null;

}
}

Figure 5.13: Transfer-Line: Buffer class with assertions for model checking.

Chapter 6

Literature Review

Many approaches have been undertaken to automatically generate concurrency con-

trol code. In the software engineering community, it is common to create formal spec-

ifications, and then apply them in the synthesis of concurrent control code. These

approaches guarantee that the specifications are faithfully implemented, but usually

do not guarantee that the resulting code will be correct and deadlock-free. Control

theorists use DES to automatically generate correct control schemes, but are not con-

cerned with code. By combining results from these previously disparate fields, we use

DES to generate correct control schemes that are then translated into code. Relevant

results from each field are discussed in the first two sections. In addition, there are

alternate approaches to concurrent code generation that do not fit easily into these

categories. These are discussed as other approaches at the end of this chapter.

90

CHAPTER 6. LITERATURE REVIEW 91

6.1 Specifications and Concurrent Code

Serious efforts have long been made to automatically synthesize concurrency controls

from specifications. Early work is based on Campbell and Habermann’s Path Ex-

pressions [6], which allow the specification of the allowed sequences of operations on

an object of an abstract data type. In [2], Andler extends this idea by proposing

Predicate Path Expressions (PPEs) and also describes an implementation scheme

which is based on the translation of PPEs to finite automata. Every invocation of an

operation of the data type is bracketed by a prologue and an epilogue which consults

the automaton and ensures only conforming invocations can proceed. The potential

for deadlock in the generated code is not discussed, but the use of formal methods is

suggested. These methods focus on translating a specification into code—they do not

consider how these specifications might interact with each other or with the program.

Emerson and Clarke, in [15], use branching time temporal logic to produce ‘syn-

chronization skeletons’, which are program abstractions suppressing detail irrelevant

to synchronization. Specifications are given in Computational Tree Logic (CTL), but

can only be used to create a synchronization skeleton if the CTL specifications are

satisfiable. The program is modelled as a ‘finite model’ (a simpler version of a deter-

ministic finite-state automaton) through the definition of non-critical sections, critical

sections, and try sections found at the boundary when moving from non-critical to

critical sections. Using CTL formulae, a scheme is developed that details when each

thread is allowed to enter a critical section without violating the specifications. A

similar method was proposed by Manna and Wolper in [31] using Linear Temporal

Logic (LTL) rather than CTL. In a broad manner, our work mirrors this approach.

However, the substitution of DES solves several major issues, such as unsatisfiable or

CHAPTER 6. LITERATURE REVIEW 92

conflicting specifications, and can provide guarantees on the quality of the solution.

The general approach from [15] has been adopted several times, differing by the

usage of an alternate specification formalization or a different modelling technique.

In [5], specifications are given using process algebra, whereas [47] employs Bultan’s

Action Language. Tools allow the formal analysis of the specifications. An approach

based on global invariants is discussed in [11]. The invariants specify allowed be-

haviour and use specific counter variables that keep track of how many processes are

currently executing user-specified regions. Patterns of some common specifications

are given. Support for model checking the generated code is provided to detect syn-

thesis errors. These approaches improve the range of implementable specification,

but still run into the same issues as [15].

6.2 Applying DES to Concurrency

A theory of controlling discrete-event systems was intiated by Ramadge and Wonham

in [36, 37, 45, 38]. The authors indicate that DES theory is applicable to computing,

but the idea is left unexplored. To the best of our knowledge, the application of DES

to software development is left unaddressed in the DES community.

Modular DES, developed in [46], extends the standard DES framework. The work

allows for multiple supervisors to act on a system, and thus introduces an easy method

to include multiple specifications. In addition, it provides a simple mathematical

test to ensure that the modular supervisors, when coupled with the plant, will be

nonblocking. This test is vitally important to our work, as it will be used to identify

undesired interactions between inconsistent specifications.

There has been work in the opposite direction, where results from model-checking

CHAPTER 6. LITERATURE REVIEW 93

have been applied to DES results. The supervisor control problem was revisited by

Ziller and Schneider in [48, 49], where the authors generalize the supervisor syn-

thesis algorithm to allow for specifications given in the µ-calculus. This allows the

consideration of fairness properties in addition to safety and liveness properties.

Some limited attempts have been made by control theorists to address the con-

currency control problem. Thistle, in [42], adapted the verification framework from

Manna and Pnueli [30] to solve the control problem for a small set of abstract con-

current processes. It used linear temporal logic and modeled both the system and

specifications as a set of logic statements. This approach allowed safety properties

and some liveness properties, but was manual in nature. In a certain context, one

could argue that any DES problem with more than one module being used to form

the plant does in fact deal with concurrency. This is partly why DES seemed to be

an interesting approach to the problem. However, no known approach deals explicitly

with the development of concurrency controls in software.

6.3 Other Approaches

Alt, Sander and Wilhelm present an approach for the generation of synchronization

code for parallel compilers [3]. The compiler is modularized into engines. A global

dependence graph is computed from specifications of the input-output behaviour of

these engines. From this graph, code controlling the invocation of engines and access

to shared data structures is generated. Deadlock avoidance is guaranteed, but the

access policy has no guarantee on its restrictiveness.

Matos et al.[32] describe a technique for the automatic generation of synchroniza-

tion conditions based on finite-state machine descriptions of both the components

CHAPTER 6. LITERATURE REVIEW 94

and the specifications [20]. A synchronous communication model such as Esterel,

Lustre, or SMV is assumed. The tool implementing the approach supports this by

outputting an SMV representation of the system. The resulting code needs to be

checked for deadlocks, because “circular dependence between synchronized compo-

nents” will cause deadlocks. This contrasts with controllability results in DES, where

the largest controllable subset is used to resolve circular dependencies.

In [4], Autili et al. describe a tool called SYNTHESIS, which produces correct and

deadlock free distributed component systems. Several examples are cited where the

tool is successfully applied. They introduce a concept of ‘last chance’ states, which

are the last chance to prevent a deadlock by preventing some transition. This echoes

early DES work by Ramadge and Wonham, wherein last chance states correspond

to the last states where control could be applied. The mirroring here highlights the

relevance of introducing DES theory to concurrency control problems, as it is made

clear by this thesis that success can be found using DES-like techniques.

Aspect-oriented programming, introduced by Kiczales et al. in [24], is based on

identification of cross-cutting concerns, coding each concern individually, and then

weaving it back into the main code base. Recent related work [13] deals explicitly

with concurrent aspects. Here, each thread is modeled as an aspect with the weav-

ing advice acting as the concurrent control scheme. Advice can be represented as a

finite-state graph, and aspects are modeled to act in parallel. Unlike DES, there is

no mathematical guarantee on the correctness of the result, since there is no given

method to confirm the viability of the control scheme a priori. As the authors note,

“In addition, because of the inherent difficulty of developing correct concurrent pro-

grams, [...] a model for concurrent aspects should support the use of automatic

CHAPTER 6. LITERATURE REVIEW 95

verification techniques, such as model checking...”.

Chapter 7

Conclusions

This work presented a process to use discrete-event systems to generate concurrency

controls. The primary result has been to show that DES can be successfully applied

to the problem of concurrency control coding. This has been facilitated through

the design of two algorithms—one to transform code into a DES plant, and one to

transform a DES supervisor into concurrency control code. The efficacy of the process

has been demonstrated by solving two example problems. It has been shown that the

process presented, and more generally DES, is a viable approach in the automatic

generation of concurrency control code.

The basic link between DES and software was formed through the novel concept

of software events, and applied by the process of event marking. The process to make

implicit paths explicit, and the unsharing of shared events provides the means to

disambiguate any event and makes the link solid. This also naturally leads to the

introduction of uncontrollable events to the concurrency control discussion.

Constructing the CFG allows for the behaviour of the program to be captured in

an automated fashion. Specifications describe the desired paths through the program,

96

CHAPTER 7. CONCLUSIONS 97

and provide the desired concurrent behaviour. After the application of DES theory,

a supervisor is synthesized. One of the strengths of this process lies in the generative

nature of DES. Unlike other concurrency control generation methods found in the

literature, DES actually generates a control policy. Using a model of the code, and

a set of specifications, a supervisor is built to enforce the largest controllable subset

of the specifications. Furthermore, the control policy embodied by the supervisor

is guaranteed to create a nonblocking closed-loop system, free of both deadlock and

livelock. All of these claims about the supervisor and DES have been mathematically

proven in DES literature.

Once the abstract supervisor has been synthesized, a novel approach is taken to

realize the supervisor as code. Special allowances had to be made to account for the

instantaneous nature of DES theory, and the fact that supervisor actions take time

when actually implemented. This led to the careful synchronization of the observation

and control action steps of the supervisory control loop, found in the looping nature of

the semaphore checks at the event and the ordering of steps in the observeAndReact

and updateSupervisorState. Additionally, using the event markings, it should be

possible to encapsulate the entire code generation process as part of a tool. In fact,

this was partially done in this initial research, showing the viability of automation.

A problem common in concurrency control code generation is solved by the in-

troduction of DES. While specifications may be consistent with each other, it is

possible that when applied to the code, deadlocks may result. This problem has been

called ‘circular dependency’, and is known as conflicting specifications in DES litera-

ture. This process automatically resolves these problems by finding the ‘best-possible’

solution, that is, the supervisor that enforces the largest controllable subset of the

CHAPTER 7. CONCLUSIONS 98

specified behaviour while guaranteeing a nonblocking system. By creating a nonblock-

ing supervisor using the monolithic specification, the problem is avoided without any

user intervention. No other known approach to generate concurrency control code can

guarantee this. These claims are directly supported by the solution to the transfer-line

problem, which had exactly this type of problem. By correctly generating a working

solution, the process was able to overcome conflicting specifications.

Few references and results are recent. Though this is somethime worrisome, it is

the author’s opinion that this reflects positively on our work. Primarily, this work is

the union of two generally disparate fields—control theory from electrical engineering

and software development from computer science. The groundwork has existed for

this connection to be made since the early 1980’s, but to our knowledge, this research

is the first to make it. The absence of directly related work only reinforces the

conclusion that this work is novel.

7.1 Future Work

As a first foray into the strategy of using discrete-event systems to automatically

generate concurrency controls, this work is largely a proof-of-concept. There are

many areas that readily present themselves for future work. Most are centered around

expanding the capabilities of the process described, while a few focus on improving

it.

It should be noted that, while these research directions do not seem to be mutually

exclusive, they do represent different forks in DES research. Working in multiple

theories may require significant theoretical investments in the DES research before

a single coherent DES framework can be constructed. For instance, a theory of

CHAPTER 7. CONCLUSIONS 99

DES based around µ-calculus exists, and a theory of dynamic DES exists, but the

combination has not been researched—there is not yet a µ-calculus based dynamic

DES theory.

7.1.1 Liveness Specifications

The Ramadge and Wonham DES framework was originally built using DFAs as the

modelling structure. Since specifications are given as DFAs, only specifications ex-

pressible as a regular language can be used in the current process. This excludes any

liveness specifications, and is a significant limitation on this work. All specifications

are either safety, liveness, or both, so incorporating liveness specifications will yield

a much more versatile solution.

First and foremost among these is the µ-calculus given by [25], which is able to

express both safety and liveness conditions. Ziller and Schneider rework the supervisor

synthesis problem [48, 49] to start from a plant and specifications both given as sets of

µ-calculus equations. The generated supervisor is also a set of µ-calculus equations.

Work on this would be divided into two tasks. First, the plant is currently built

from CFGs that are transformed into DFAs. Since µ-calculus subsumes regular lan-

guages, the DFAs can be converted into µ-calculus equation sets. A method for this

would need to be implemented. Secondly, the resulting supervisor gives a control

policy. This must be extracted from the µ-calculus equations and used to synthesize

code. This is complicated by the complex path information that gives the µ-calculus

its expressiveness. How can this path information be translated into code?

There are other formulations of DES that can be applied, though none are as

expressive as the µ-calculus formulation. These include a CTL* recasting of the

CHAPTER 7. CONCLUSIONS 100

supervisory control problem by Jiang and Kumar [21], work on the infinite behaviour

of finite automata by Thistle and Wonham [43], and a wide range of material based on

Petri-nets (see [7] for an introduction to the field). However, due to the expressiveness,

work using the µ-calculus seems to offer the greatest potential.

7.1.2 Thread Creation and Termination

This work assumes that threads all come into existence at the same time, then run

their course. However, this is not a safe assumption in general. Dynamic thread

creation in languages such as Java and C++ allow for threads to be created and

started at almost any point in the code. The method used here, synchronous product,

to combine thread DFAs first assumes that all threads start at the same time.

A change in this assumption would have to cover the possibility of threads appear-

ing and disappearing over the course of the execution. Either the plant would have

to be mapped out in full, for all possible appearance/disappearance sequences, or a

system would have to be created that assumes nothing and instead reacts to changes

in the plant. Dynamic DES theory, proposed by Grigorov and Rudie in [17], offers a

DES framework that accounts for changes in the plant over time, and could offer a

way to work around this assumption.

7.1.3 Multiple Thread Instances

It is possible in an object oriented language to create a thread object, then instantiate

it repeatedly. As an example, consider a database application with many identical

reader threads, and many identical writer threads. A typical specification would

be that when no writers are writing, multiple readers can access a shared resource

CHAPTER 7. CONCLUSIONS 101

simultaneously. A specification of this type is difficult to formalize when each reader

and each writer is treated as a separate entity. This becomes even harder when the

number of reader and writer threads is not known at run time. What is needed is a

method to abstract individual and identical threads into a group, such as a group of

readers or a group of writers.

Parameterized DES, as proposed by de Oliveira et al. in [34], seems to offer a

solution to the problem. States in the FSA model are given parameters that track

some system value. In the case of a reader-writer problem, parameters could store

the number of readers currently reading, the number of writers waiting to write,

or other important values. A similar theory called “counting abstraction”, given in

[10], is used by Yavuz-Kahveci and Bultan in [47] to model an arbitrary number of

processes. These results may be applicable in expanding the work at hand.

7.1.4 Other Areas

A wide range of other research areas exist. First, efficiency of the process has not been

addressed. This is especially true in regards to the generated code. Quite simply,

efficiency was never a consideration in this research. It is felt that significant gains

could be made in this area by a person with a good background in concurrency and

efficiency.

Aspect-oriented programming has the straightforward functionality to weave code

together. This could form the basis of an elegant solution to weave generated su-

pervisor code back into the marked source code. In Java specifically, tools such as

AspectJ [23] may be effective in facilitating this.

CHAPTER 7. CONCLUSIONS 102

Real-time systems are not addressed by the standard Ramadge-Wonham frame-

work. There is, however, an expansion to the framework that provides this capability.

In [28], the concept of time is built into the model using clock-tick events that occur

in regular intervals.

Distributed systems provide a different set of challenges for a concurrent system.

Additionally, there is the potential for remote events to be unobservable by a lo-

cal supervisor. Theories of DES based around partial observation [8] allow for the

construction of supervisors with unobservable events. Additionally, the generated

code would need to be different, as distributed programming differs from concurrent

programming.

To make a stronger claim of usefulness, further problems should be addressed,

especially problems with a non-obvious solution. The presented problems are simple

and possess obvious solutions. Solving additional problems would both demonstrate

the value of the solution, and likely give insight as to ways in which the process can

be refined and improved.

Finally, it is possible for infeasible paths to be preserved in the DFA models, as

the content of the code is never examined. This could result in control decisions

being made to avoid paths that are not actually viable. This is a special concern

in situations where branching decisions are not made until run time, such as the

completion of a method call on an instance of an object in a language that supports

polymorphism. Some type of static analysis could be worked into the process to help

remove infeasible paths.

Bibliography

[1] R. Adhikari. Intel, Microsoft: The future of computing is parallel. TechNews-

World, Mar. 2008. http://www.technewsworld.com/story/62199.html?wlc=

1221878232.

[2] S. Andler. Predicate path expressions. In Proceedings of the 6th ACM Symposium

on Principles of programming languages, pages 216–236, Jan. 1979.

[3] G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Pro-

gramming. Addision Wesley, 2000.

[4] M. Autili, P. Inverardi, A. Navarra, and M. Tivoli. Synthesis: A tool for auto-

matically assembling correct and distributed component-based systems. In ICSE

’07: Proceedings of the 29th International Conference on Software Engineering,

pages 784–787, 2007.

[5] E. Bontà, M. Bernardo, J. Magee, and J. Kramer. Synthesizing concurrency

control components from process algebraic specifications. In Proceedings of the

8th International Conference on Coordination Models and Languages, pages 221–

362, Jun. 2006.

103

BIBLIOGRAPHY 104

[6] R. H. Campbell and A. N. Habermann. The specification of process synchro-

nization by path expressions. Lecture Notes on Computer Science, 16:89–102,

1974.

[7] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.

Springer Science+Business Media, Inc., 1999.

[8] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. Supervisory control of

discrete-event processes with partial observations. IEEE Transactions on Auto-

matic Control, 33(3):249–260, Mar. 1988.

[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[10] G. Delzanno. Automatic verification of parameterized cache coherence proto-

cols. In Proceedings of the 12th International Conference on Computer Aided

Verification, pages 53–68, London, UK, 2000. Springer-Verlag.

[11] X. Deng, M. B. Dwyer, J. Hatcliff, and M. Mizuno. Invariant-based specifica-

tion, synthesis, and verification of synchronization in concurrent programs. In

Proceedings of the 24th International Conference on Software Engineering, pages

442–452, 2002.

[12] E. W. Dijkstra. Cooperating Sequential Processes. Academic Press, 1965.

[13] R. Douence, D. Le Botlan, J. Noyé, and M. Südholt. Concurrent aspects. In

Proceedings of the 5th International Conference on Generative Programming and

Component Engineering, pages 79–88, 2006.

[14] E. A. Emerson. Handbook of Theoretical Computer Science, chapter Temporal

and Modal Logic. North-Holland Publishing Company, 1995.

BIBLIOGRAPHY 105

[15] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthe-

size synchronization skeletons. Science of Computer Programming, 3(2):241–266,

1982.

[16] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java Con-

currency in Practice. Addison-Wesley, 2006.

[17] L. Grigorov and K. Rudie. Near-optimal online control of dynamic discrete-event

systems. Discrete Event Dynamic Systems, 16(4):419–449, 2006.

[18] P. Brinch Hansen. The programming language concurrent Pascal. IEEE Trans-

actions on Software Engineering, 1(2):199–207, Jun. 1975.

[19] C. Hoare. Monitors: An operating system structuring concept. Communications

of the ACM, 17(10):549–557, 1974.

[20] IDES: The integrated discrete-event systems tool. Discrete-Event Control

Systems Lab, Queen’s University, available at http://www.ece.queensu.ca/

hpages/labs/discrete/software.html, Mar. 2008.

[21] S. Jiang and R. Kumar. Supervisory control of discrete event systems with

CTL* temporal logic specifications. Proceedings of the 40th IEEE Conference on

Decision and Control, 5:4122–4127, 2001.

[22] Java Pathfinder. Robust Software Engineering Group, NASA Ames Re-

search Center, Sourceforge project page available at http://javapathfinder.

sourceforge.net, Mar. 2008.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-

wold. An overview of aspectj. In ECOOP ’01: Proceedings of the 15th European

BIBLIOGRAPHY 106

Conference on Object-Oriented Programming, pages 327–353, London, UK, 2001.

Springer-Verlag.

[24] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and

J. Irwin. Aspect-oriented programming. In Proceedings of the European Confer-

ence on Object-Oriented Programming, volume 1241, pages 220–242, 1997.

[25] D. Kozen. Results on the propositional µ-calculus. In Proceedings of the 9th

Colloquium on Automata, Languages and Programming, pages 348–359, 1982.

[26] Leslie Lamport. A simple approach to specifying concurrent systems. Commu-

nications of the ACM, 32(1):32–45, 1989.

[27] Edward A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[28] Y. Li and W. M. Wonham. Supervisory control of real-time discrete-event sys-

tems. Information Sciences, 46:159–183, 1988.

[29] F. Lin and W. M. Wonham. On observability of discrete-event systems. Infor-

mation Science: An International Journal, 44(3):173–198, 1988.

[30] Z. Manna and A. Pnueli. Verification of concurrent programs: A temporal proof

system. Technical Report CS-TR-83-967, Stanford University, Dept. of Computer

Science, 1983.

[31] Z. Manna and P. Wolper. Synthesis of communicating processes from temporal

logic specifications. ACM Transactions on Programming Languages and Systems,

6(1):68–93, Jan. 1984.

BIBLIOGRAPHY 107

[32] G. Matos, J. Purtilo, and E. White. Automated computation of decomposable

synchronization conditions. Proceedings of the 2nd IEEE High-Assurance Sys-

tems Engineering Symposium (HASE 97), pages 72–77, Aug. 1997.

[33] R. Merritt. Wintel will fund parallel software lab at Berkeley. EE Times, Feb.

2008. http://www.eetimes.com/showArticle.jhtml?articleID=206503988.

[34] C. Oliveira, J. Cury, and C. Kaestner. Synthesis of supervisors for parameterized

and non-regular discrete event systems. To appear in IEEE Transactions on

Automatic Control.

[35] D. Patterson. A conversation with John Hennessy and David Patterson. ACM

Queue, 4(10), Dec. 2006.

[36] P. J. Ramadge and W. M. Wonham. Supervision of discrete event processes.

In Proceedings of the 21st IEEE Conference on Decision and Control, volume 3,

pages 1228–1229, Dec. 1982.

[37] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete-

event processes. SIAM Journal of Control and Optimization, 25(1):206–230,

1987. Also appears as Systems Control Group Report #8311, Department of

Electrical Engineering, University of Toronto, 1983.

[38] P. J. Ramadge and W. M. Wonham. The control of discrete event systems.

Proceedings of the IEEE, 77(1), Jan. 1989.

[39] Σoϕια: A Java bytecode analysis tool. University of Nebraska-Lincoln, available

at http://sofya.unl.edu/, Mar. 2008.

BIBLIOGRAPHY 108

[40] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobbs Journal, 30(3), Mar. 2005.

[41] TCT. Systems and Control Group, Dept. of Electrical and Computer Engineer-

ing, University of Toronto, available at http://www.control.toronto.edu/DES,

Mar. 2008.

[42] J. Thistle and W. M. Wonham. Control problems in a temporal logic framework.

International Journal of Control, 44(4):943–976, 1986.

[43] J. G. Thistle and W. M. Wonham. Control of infinite behavior of finite automata.

SIAM Journal on Control and Optimization, 32(4):1075–1097, 1994.

[44] W. M. Wonham. Supervisory control of discrete-event systems. Systems Control

Group, University of Toronto, 2006.

[45] W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage

of a given language. SIAM Journal of Control and Optimization, 25(3):637–659,

1987. Also appears as Systems Control Group Report #8312, Department of

Electrical Engineering, University of Toronto, 1983.

[46] W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete-

event systems. Mathematics of Control, Signals, and Systems, 1:13–30, 1988.

[47] T. Yavuz-Kahveci and T. Bultan. Specification, verification, and synthesis of

concurrency control components. In Proceedings of the 2002 ACM SIGSOFT

International Symposium on Software Testing and Analysis, pages 169–179, May

2002.

BIBLIOGRAPHY 109

[48] R. Ziller and K. Schneider. A µ-calculus approach to supervisor synthesis. Work-

shop Methoden und Beschreibungssprachen zur Modellierung und Verifikation

von Schaltungen und Systemen, pages 132–143, 2003.

[49] R. Ziller and K. Schneider. Combining supervisor synthesis and model check-

ing. ACM Transactions on Embedded Computing Systems (TECS), 4(2):221–362,

May 2005.

Appendix A

Java Implementation of Algorithm

2

As in all Java programs, the implementation begins with a Main class, as given in

Fig. A.1 on the next page. The program takes the IDES supervisor as input using

a command line argument. The event-marked code is not needed, since the pro-

gram doesn’t perform the insertion of generation into existing files. After checking

for existence of the file, the program creates an IDESImportManager that has the

responsibility of parsing the IDES file.

The IDESImportManager class is given in Fig. A.2 on page 112. An IDES file

stores its information in an XML format, so an XML parser is created and used to

read information. Only event and transition information is important for the purposes

of this algorithm; much of the file is layout information for the IDES interface and is

not relevant here. A Transition object is created for each transition, and an Event

object is created for each event. Those classes are listed in Fig. A.3 on page 116 for

the Transition class, and Fig. A.4 on page 117 for the Event class.

110

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 111

package controlCodeGenerator;

import java.io.*;

public class Main {

public static File controlMap;

public static File supervisor;

public static void main(String[] args) {
//args[0] is the IDES file for the supervisor in .xmd format

//create file object for the IDES supervisor

try {
supervisor = new File(args[0]);

if (!supervisor.exists()) {
throw new Exception();

}
}
catch (Exception e) {

String output = "Error opening file!\r\n"}
+ "\r\nTerminating program...");

System.out.println(output);

System.exit(-1);

}

//read information from IDES file

IDESImportManager idesFile = new IDESImportManager(args[0]);

idesFile.analyze();

//now build the ControlMap from the implicit supervisor

idesFile.buildControlMap();

//generate the concurrent code

CodeGenerator generator = new CodeGenerator(idesFile);

generator.buildCode();

}
}

Figure A.1: The Main class in the Java implementation of Algorithm 2.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 112

package controlCodeGenerator;

import java.util.Vector;

import java.util.HashSet;

import java.util.Iterator;

import java.io.*;

import javax.xml.parsers.*;

import org.xml.sax.*;

public class IDESImportManager {

HashSet<Event> events;

HashSet<Event> controllableEvents;

Vector<Transition> transitions;

ControlMap controlMap;

String fileName;

//creates the FileReader

public IDESImportManager(String fileName) {
this.fileName = fileName;

events = new HashSet<Event>();

controllableEvents = new HashSet<Event>();

transitions = new Vector<Transition>();

}

protected void addEvent(Event e) {
events.add(e);

if (e.getControllable())

controllableEvents.add(e);

System.out.println(e);

}

protected void addTransition(Transition t) {
transitions.add(t);

System.out.println(t);

}

Figure A.2: The IDESImportManager class parses an inputted IDES supervisor.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 113

//get Methods

public HashSet<Event> getControllableEvents() {
return controllableEvents;

}
public ControlMap getControlMap() {
return controlMap;

}
public HashSet<Event> getEvents() {
return events;

}
public Vector<Transition> getTransitions() {
return transitions;

}

public void buildControlMap() {
controlMap = new ControlMap(controllableEvents);

for (Iterator<Transition> it = transitions.iterator();

it.hasNext();) {
controlMap.updateControlMap(it.next());

}
controlMap.display();

}

public Event getEventById(int id) {
Iterator<Event> it = events.iterator();

try {
while(it.hasNext()) {

Event e = it.next();

if (e.id == id) {
return e;

}
}
throw new Exception();

}
catch (Exception e) {

System.out.println("Error - transition ID inconsistent!");

Figure A.2 continued.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 114

System.exit(1);

return null;

}
}

public void analyze() {

//set up an xml parser for the IDES file

SAXParserFactory parserFactory = SAXParserFactory.newInstance();

parserFactory.setValidating(false);

try {
SAXParser parser = parserFactory.newSAXParser();

parser.parse(new File(fileName), new IDESHandler(this));

}
catch (Exception e) {

System.out.println(e.getMessage());

System.exit(1);

}
}

private class IDESHandler extends

org.xml.sax.helpers.DefaultHandler {

StringBuffer accumulator = new StringBuffer();

IDESImportManager parent;

String type = "none";

//data accumlators

String name;

int id;

int source;

int target;

boolean controllable;

public IDESHandler(IDESImportManager reader){
parent = reader;

}

Figure A.2 continued.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 115

public void startElement(String uri, String localName,

String qname, Attributes attr) {
if (qname.equals("event")){

type = "event";

id = Integer.parseInt(attr.getValue(0));

}
if (qname.equals("controllable") && type.equals("event")){

controllable = true;

}
if (qname.equals("name")&& type.equals("event")){

type = "eventname";

}
if (qname.equals("transition") && !type.equals("ignore")){

source = Integer.parseInt(attr.getValue(1));

target = Integer.parseInt(attr.getValue(2));

id = Integer.parseInt(attr.getValue(3));

Event eventMatch = parent.getEventById(id);

parent.addTransition(new Transition(eventMatch,

source, target));

}
}
public void endElement(String uri, String localName,

String qname) {
if (qname.equals("data")) {

type = "ignore";

}
}
public void characters(char[] ch, int start, int length) {
if (type.equals("eventname")){

name = new String(ch, start, length);

parent.addEvent(new Event(name, id, controllable));

type = "none";

controllable = false;

}
}

}
}

Figure A.2 continued.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 116

package controlCodeGenerator;

//a simple class to store transition information

public class Transition {
//tracks the highest numbered state

static int maxStates = 0;

Event event;

int source;

int target;

//constructor

public Transition(Event event, int source, int target) {
this.event = event;

this.source = source;

this.target = target;

if (source > maxStates)

maxStates = source;

if (target > maxStates)

maxStates = target;

}
//get methods

public Event getEvent() {
return event;

}
public int getSource() {
return source;

}
public int getTarget() {
return target;

}
public static int getNumStates() {
return maxStates;

}
public String toString() {
return ("Transition - source: " + this.source + ", target: "

+ this.target + ", event name: " + this.event.getName());

}
}

Figure A.3: The Transition class, used to store transition information.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 117

package controlCodeGenerator;

public class Event {

String name;

int id;

boolean controllable;

public Event(String newName, int id, boolean controllable) {
//must clean up name so that it only contains letters and numbers

char[] nameCharArray = newName.toCharArray();

String cleanName = "";

for (int i = 0; i < nameCharArray.length; i++) {
char current = nameCharArray[i];

if ((current >= 48 && current <= 57) ||

(current >= 65 && current <= 90) ||

(current >= 97 && current <= 122)) {
cleanName+=current;

}
}

this.name = cleanName;

this.id = id;

this.controllable = controllable;

}

//get methods

public String getName() {
return name;

}
public int getId() {
return id;

}
public boolean getControllable() {
return controllable;

}

Figure A.4: The Event class, used to store event information.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 118

public String toString() {
return ("Event - name: " + this.name + ", id: "

+ this.id + ", controllable: " + this.controllable);

}

public boolean equals(Event e){
return e.getName().equals(this.name);

}
}

Figure A.4 continued.

Once the IDESImportManager has run its course, the main method proceeds to

build the change map through the use of the control map. The control map is a

DES formalization that lists the events disabled by the supervisor at each state. The

supervisor is assumed to be implicit, so any controllable event not appearing as a

transition from a state is considered to be disabled. The ControlMap class, shown in

A.5 provides the capabilities to build a control map, and also acts as an object that

contains a control map. The change map is never formally constructed. Instead, when

the change map is needed while constructing the UpdateSupervisorState method,

the control map is referenced to build just the section of the change map used at

that point. During the execution of the program the full set of operations needed to

construct the complete change map are performed, albeit in a piecemeal fashion. It

would work equally well to construct the change map in full at this point, but instead

the operations are broken up and performed later. Regardless, the change map is

used exactly as described in Algorithm 2.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 119

package controlCodeGenerator;

import java.util.ArrayList;

import java.util.HashSet;

import java.util.Iterator;

public class ControlMap {

ArrayList<StateControlMap> stateControlMaps;

HashSet<Event> controllableEvents;

public ControlMap(HashSet<Event> controllableEvents){
stateControlMaps = new ArrayList<StateControlMap>();

this.controllableEvents = controllableEvents;

}

public void updateControlMap(Transition trans) {
int id = trans.getSource();

StateControlMap currentState;

try {
currentState = stateControlMaps.get(id);

}
catch (java.lang.IndexOutOfBoundsException e) {

stateControlMaps.add(id, new StateControlMap(id,

controllableEvents));

currentState = stateControlMaps.get(id);

}
currentState.removeEvent(trans.getEvent());

}

public HashSet<Event> getDisabledEventByID(int stateID) {
for (Iterator<StateControlMap> it = stateControlMaps.iterator();

it.hasNext();){
StateControlMap map = it.next();

if (map.getID()==stateID)

return map.getDisabledEvents();

Figure A.5: The ControlMap class builds the implicit control map for a DES super-
visor.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 120

}
return null;

}

public void display() {
for (Iterator<StateControlMap> it = stateControlMaps.iterator();

it.hasNext();) {
StateControlMap currentState = it.next();

System.out.print(currentState);

}
}

private class StateControlMap {

private int stateID;

private HashSet<Event> disabledEvents;

public StateControlMap(int id, HashSet<Event> events) {
stateID = id;

disabledEvents = new HashSet<Event>(events);

}

public int getID() {
return stateID;

}

public HashSet<Event> getDisabledEvents() {
return disabledEvents;

}

public void removeEvent(Event e) {
disabledEvents.remove(e);

}

public String toString() {
String output = ("ID: " + stateID + ", disabled events: ");

Figure A.5 continued.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 121

for (Iterator<Event> iths = disabledEvents.iterator();

iths.hasNext();) {
output += iths.next().getName()+",";

}
return output + "\r\n";

}
}

}

Figure A.5 continued.

Now that the supervisor has been analyzed, and the control map is prepared, code

may be generated. The CodeGenerator class, listed in Fig. A.6 on the next page,

handles the creation of code. It follows Algorithm 2 in function. In this incarnation,

it simply outputs the constructed Supervisor class to the console.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 122

package controlCodeGenerator;

import java.util.HashSet;

import java.util.Vector;

import java.util.Iterator;

public class CodeGenerator {

IDESImportManager idesInfo;

public CodeGenerator(IDESImportManager idesFile) {
idesInfo = idesFile;

}
public void buildCode() {

//the proper package name is unknown as no code is read in.

System.out.println("package controlCodeGenerator;\r\n");
System.out.println("import java.util.concurrent.*;\r\n");
System.out.println("public class Supervisor {\r\n");

//define a semaphore for each controllable event

HashSet<Event> controllableEvents =

idesInfo.getControllableEvents();

for (Iterator<Event> it = controllableEvents.iterator();

it.hasNext();) {
Event e = it.next();

System.out.println(" static Semaphore " + e.name +";");

}
System.out.println(" static int supervisorState;");

System.out.println("");

//now create the initialization method

System.out.println(" public static void init() {\r\n");
//need to set up the initial state

HashSet<Event> initialDisEvents = idesInfo.getControlMap().

getDisabledEventByID(0);

for (Iterator<Event> it = controllableEvents.iterator();

it.hasNext();) {
Event e = it.next();

Figure A.6: The code listings for the CodeGenerator class.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 123

System.out.print(" Supervisor." + e.name

+ " = new Semaphore(");

if (initialDisEvents.contains(e)) {
System.out.println("0);");

}
else {

System.out.println("1);");

}
}

//initialize state tracker

System.out.println(" Supervisor.supervisorState = 0;");

System.out.println(" }\r\n");

//insert the synchronized state change method

System.out.println(" public static synchronized boolean

observeAndReact(String event, Semaphore eventBlocker) {");
System.out.println(" if (!(eventBlocker == null)) {");
System.out.println(" if (!eventBlocker.tryAcquire()) {");
System.out.println(" return false;");

System.out.println(" }");
System.out.println(" eventBlocker.release();");

System.out.println(" }");
System.out.println(" updateSupervisorState(event);");

System.out.println(" return true;");

System.out.println(" }\r\n");

//insert the updateSupervisorState method

System.out.println(" private static void updateSupervisorState

(String event) {\r\n");

HashSet<Event> events = idesInfo.getEvents();

boolean doneFirst = false;

for (Iterator<Event> it = events.iterator(); it.hasNext();) {
Event e = it.next();

if (doneFirst) {

Figure A.6 continued.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 124

System.out.println(" else if (event.equals("̈

+ e.getName() + ")̈) {");
}
else {

System.out.println(" if (event.equals("̈

+ e.getName() + ")̈) {");
doneFirst = true;

}
//now we have to change the state for each transition

// using the event as the base

System.out.println(stateChangesByEvent(e) + "\r\n }");
}
System.out.println(" }");
System.out.println("}");

}

private String stateChangesByEvent(Event e) {
String output = " switch(Supervisor.supervisorState) {\r\n";
Vector<Transition> transitions = idesInfo.getTransitions();

for (Iterator<Transition> it = transitions.iterator();

it.hasNext();) {
Transition t = it.next();

if (t.getEvent() == e) {
//this event qualifies, time to create code for it

output+= " case(" + t.getSource() + "):\r\n";
HashSet<Event> enabled = new HashSet<Event>();

HashSet<Event> disabled = new HashSet<Event>();

HashSet<Event> sourceEvents = idesInfo.getControlMap().

getDisabledEventByID(t.getSource());

HashSet<Event> targetEvents = idesInfo.getControlMap().

getDisabledEventByID(t.getTarget());

for (Iterator<Event> seit = sourceEvents.

iterator(); seit.hasNext();){
Event sourceDisabledEvent = seit.next();

if (null!=targetEvents) {
if (!targetEvents.contains(sourceDisabledEvent)) {

Figure A.6 continued.

APPENDIX A. JAVA IMPLEMENTATION OF ALGORITHM 2 125

enabled.add(sourceDisabledEvent);

}
}

}
if (null!=targetEvents) {
for (Iterator<Event> teit = targetEvents.iterator();

teit.hasNext();){
Event targetDisabledEvent = teit.next();

if (!sourceEvents.contains(targetDisabledEvent))

disabled.add(targetDisabledEvent);

}
}
if (!enabled.isEmpty()) {
for (Iterator<Event> eit = enabled.iterator();

eit.hasNext();){
Event eventToEnable = eit.next();

output+=" Supervisor." + eventToEnable.getName()

+ "." + "release();\r\n";
}

}
if (!disabled.isEmpty()) {
for (Iterator<Event> dit = disabled.iterator();

dit.hasNext();){
Event eventToDisable = dit.next();

output+=" Supervisor." + eventToDisable.getName()

+ "." + "acquireUninterruptibly();\r\n";
}

}
output+= " Supervisor.supervisorState = "

+ t.getTarget() + ";\r\n";
output+= " break;\r\n";

}
}
output+= " }";
return output;

}
}

Figure A.6 continued.

Appendix B

Transfer Line in Java

Complete work for the transfer-line problem is given here. This includes Java code

listings, CFGs and FSAs, as well as generated code in the concurrency-controlled

output. The problem is covered in full in Chapter 5.

B.1 Code Listings

The first set of figures provides code listings for each of the classes used in the transfer-

line example. Rather than give the original code that acted as the input for the

process, the listings given include event markings. First is the Main class in Fig. B.1.

This class instantiates the buffers and threads, starts the threads, then terminates.

The Part class in Fig. B.2 is instantiated for each part to be transferred through

the system. The Buffer class is given in B.6, while the three active components M1,

M2, and TU are given in Fig. B.3 on page 128, Fig. B.4 on page 129 and Fig. B.5 on

page 130, respectively.

126

APPENDIX B. TRANSFER LINE IN JAVA 127

package transferLine;

public class Main {
final static int BUFFER_1_SIZE = 3;

final static int BUFFER_2_SIZE = 1;

//arbitrary reject chance of 1/4

final static double TEST_REJECT_CHANCE = 0.25;

public static void main(String[] args) {
// build the system

Buffer b1 = new Buffer(BUFFER_1_SIZE, "Buffer1");

Buffer b2 = new Buffer(BUFFER_2_SIZE, "Buffer2");

Thread m1 = new Machine1(b1);

Thread m2 = new Machine2(b1,b2);

Thread tu = new TestUnit(b2,b1,TEST_REJECT_CHANCE);

//start the threads

m1.start();

m2.start();

tu.start();

}
}

Figure B.1: Transfer-Line: Main class.

package transferLine;

//each part is an object that is instantiated and passed

//between threads

public class Part {

public Part() {
//no instance variables

}
}

Figure B.2: Transfer-Line: Part class.

APPENDIX B. TRANSFER LINE IN JAVA 128

package transferLine;

//creates new parts and puts them into the first buffer

public class Machine1 extends Thread {

//the target for created parts

Buffer target;

public Machine1(Buffer target) {
new Thread();

this.target = target;

this.setName("Machine1");

}

public void doWork() {
try {

Thread.sleep((int)(Math.random()*1000));

}
catch (Exception e) {

//do nothing

}
}

public void run() {
while (true) {

//wait for some random period

doWork();

//create a new Part

Part newPart = new Part();

//event marking: M1addB1-start

//put it in the target buffer

System.out.println("Machine1 tries to put a part in " + target);

target.addPart(newPart);

//event marking: M1add-B1-finish-u

} // loop forever

}
}

Figure B.3: Transfer-Line: Machine1 class.

APPENDIX B. TRANSFER LINE IN JAVA 129

package transferLine;

public class Machine2 extends Thread {

//the source and target for parts used by this machine

Buffer source;

Buffer target;

public Machine2(Buffer source, Buffer target) {
new Thread();

this.source = source;

this.target = target;

this.setName("Machine2");

}

public void doWork() {
try {

Thread.sleep((int)(Math.random()*10));

}
catch (Exception e) {

//do nothing

}
}

public void run() {
while (true) {

//get part from source Buffer

//event marking: M2getB1-start

System.out.println("Machine2 tries to get a part from "

+ source);

Part currentPart = source.removePart();

//event marking: M2getB1-finish-u

//we have a part - do some work on it

doWork();

//put the part in the next buffer

Figure B.4: Transfer-Line: Machine2 class.

APPENDIX B. TRANSFER LINE IN JAVA 130

//event marking: M2addB2-start

System.out.println("Machine2 tries to put a part in "

+ target);

target.addPart(currentPart);

//event marking: M2addB2-finish-u

//reset machine 2

doWork();

} //loop forever

}
}

Figure B.4 continued.

package transferLine;

public class TestUnit extends Thread{

Buffer source;

Buffer rejectBuffer;

double rejectionChance;

public TestUnit(Buffer source, Buffer rejectBuffer,

double rejectionChance) {
new Thread();

this.source = source;

this.rejectBuffer = rejectBuffer;

this.rejectionChance = rejectionChance;

this.setName("TestUnit");

}
public void doWork() {
try {

Thread.sleep((int)(Math.random()*10));

}
catch (Exception e) {

//do nothing

}
}

Figure B.5: Transfer-Line: TestUnit class.

APPENDIX B. TRANSFER LINE IN JAVA 131

public void run() {
while (true) {

//get a part from the source

//event marking: TUgetB2-start

System.out.println("TestUnit tries to get a part from "

+ source);

Part currentPart = source.removePart();

//event marking: TUgetB2-finish-u

//test that part for some period of time

doWork();

if (Math.random() > rejectionChance) {
//no good! send back to rejectBin

//event marking: TUaddB1-start-u

System.out.println("TestUnit tries to put a part in "

+ rejectBuffer);

rejectBuffer.addPart(currentPart);

//event marking: TUaddB1-finish-u

}
} //loop forever

}
}

Figure B.5 continued.

APPENDIX B. TRANSFER LINE IN JAVA 132

package transferLine;

import java.util.LinkedList;

public class Buffer {

String name;

//the maximum number of parts in the buffer

int size;

//the current number of parts in the buffer

int holding;

LinkedList<Part> partBuffer;

public Buffer(int size, String name) {
this.name = name;

this.size = size;

holding = 0;

partBuffer = new LinkedList<Part>();

}

public void addPart(Part p) {
if (holding < size) {

holding++;

System.out.println (name + " is holding "

+ holding + " parts.");

partBuffer.add(p);

}
else {

System.out.println(name + " overflow!!!");

}
}

public Part removePart() {
if (holding > 0) {

holding--;

System.out.println (name + " is holding "

+ holding + " parts.");

return partBuffer.remove();

Figure B.6: Transfer-Line: Buffer class.

APPENDIX B. TRANSFER LINE IN JAVA 133

}
else {

System.out.println(name + " underflow!!!");

return null;

}
}

public String toString() {
return name;

}
}

Figure B.6 continued.

B.2 Marking Implicit Events

The reduced DFA in Fig. 5.7 has an irrelevant event that lies on an implicit path.

Event i9 arises from an if statement. To make this explicit, a source transform is

used to give the if statement an else branch. The transformed source for TU is given

in Fig. B.7.

B.3 Plant

The reduced DFAs for M1, M2, and TU were combined using the shuffle operation.

The resulting plant has 32 states and 104 transitions. A transition listing is provided

in Fig. B.8 on page 136. State 0 is the initial state, and is the only marked state.

APPENDIX B. TRANSFER LINE IN JAVA 134

package transferLine;

public class TestUnit extends Thread{

Buffer source;

Buffer rejectBuffer;

double rejectionChance;

public TestUnit(Buffer source, Buffer rejectBuffer,

double rejectionChance) {
new Thread();

this.source = source;

this.rejectBuffer = rejectBuffer;

this.rejectionChance = rejectionChance;

this.setName("TestUnit");

}

public void doWork() {
try {

Thread.sleep((int)(Math.random()*10));

}
catch (Exception e) {

//do nothing

}
}

public void run() {
while (true) {

//get a part from the source

//event marking: TUgetB2-start

System.out.println("TestUnit tries to get a part from "

+ source);

Part currentPart = source.removePart();

//event marking: TUgetB2-finish-u

Figure B.7: Transfer-Line: Excerpt of TestUnit class showing event i9 made explicit.

APPENDIX B. TRANSFER LINE IN JAVA 135

//test that part for some period of time

doWork();

if (Math.random() > rejectionChance) {
//no good! send back to rejectBin

//event marking: TUaddB1-start-u

System.out.println("TestUnit tries to put a part in "

+ rejectBuffer);

rejectBuffer.addPart(currentPart);

//event marking: TUaddB1-finish-u

}

//code to make i9 explicit

else {
//event marking: i9

}
//end of code making i9 explicit

} //loop forever

}
}

Figure B.7 continued.

APPENDIX B. TRANSFER LINE IN JAVA 136

Transition: Source="0" Target="1" Event="M2getB1-start"

Transition: Source="0" Target="2" Event="M1addB1-start"

Transition: Source="0" Target="3" Event="TUgetB2-start"

Transition: Source="1" Target="4" Event="M2getB1-finish"

Transition: Source="1" Target="5" Event="M1addB1-start"

Transition: Source="1" Target="6" Event="TUgetB2-start"

Transition: Source="2" Target="5" Event="M2getB1-start"

Transition: Source="2" Target="0" Event="M1addB1-finish"

Transition: Source="2" Target="7" Event="TUgetB2-start"

Transition: Source="3" Target="6" Event="M2getB1-start"

Transition: Source="3" Target="7" Event="M1addB1-start"

Transition: Source="3" Target="8" Event="TUgetB2-finish"

Transition: Source="4" Target="9" Event="M2addB2-start"

Transition: Source="4" Target="10" Event="M1addB1-start"

Transition: Source="4" Target="11" Event="TUgetB2-start"

Transition: Source="5" Target="10" Event="M2getB1-finish"

Transition: Source="5" Target="1" Event="M1addB1-finish"

Transition: Source="5" Target="12" Event="TUgetB2-start"

Transition: Source="6" Target="11" Event="M2getB1-finish"

Transition: Source="6" Target="12" Event="M1addB1-start"

Transition: Source="6" Target="13" Event="TUgetB2-finish"

Transition: Source="7" Target="12" Event="M2getB1-start"

Transition: Source="7" Target="3" Event="M1addB1-finish"

Transition: Source="7" Target="14" Event="TUgetB2-finish"

Transition: Source="8" Target="13" Event="M2getB1-start"

Transition: Source="8" Target="14" Event="M1addB1-start"

Transition: Source="8" Target="15" Event="TUaddB1-start-u"

Transition: Source="8" Target="0" Event="i9"

Transition: Source="9" Target="0" Event="M2addB2-finish"

Transition: Source="9" Target="16" Event="M1addB1-start"

Transition: Source="9" Target="17" Event="TUgetB2-start"

Transition: Source="10" Target="16" Event="M2addB2-start"

Transition: Source="10" Target="4" Event="M1addB1-finish"

Transition: Source="10" Target="18" Event="TUgetB2-start"

Transition: Source="11" Target="17" Event="M2addB2-start"

Transition: Source="11" Target="18" Event="M1addB1-start"

Transition: Source="11" Target="19" Event="TUgetB2-finish"

Figure B.8: Transfer-Line: Transitition listing for the plant.

APPENDIX B. TRANSFER LINE IN JAVA 137

Transition: Source="12" Target="18" Event="M2getB1-finish"

Transition: Source="12" Target="6" Event="M1addB1-finish"

Transition: Source="12" Target="20" Event="TUgetB2-finish"

Transition: Source="13" Target="19" Event="M2getB1-finish"

Transition: Source="13" Target="20" Event="M1addB1-start"

Transition: Source="13" Target="21" Event="TUaddB1-start-u"

Transition: Source="13" Target="1" Event="i9"

Transition: Source="14" Target="20" Event="M2getB1-start"

Transition: Source="14" Target="8" Event="M1addB1-finish"

Transition: Source="14" Target="22" Event="TUaddB1-start-u"

Transition: Source="14" Target="2" Event="i9"

Transition: Source="15" Target="21" Event="M2getB1-start"

Transition: Source="15" Target="22" Event="M1addB1-start"

Transition: Source="15" Target="0" Event="TUaddB1-finish-u"

Transition: Source="16" Target="2" Event="M2addB2-finish"

Transition: Source="16" Target="9" Event="M1addB1-finish"

Transition: Source="16" Target="23" Event="TUgetB2-start"

Transition: Source="17" Target="3" Event="M2addB2-finish"

Transition: Source="17" Target="23" Event="M1addB1-start"

Transition: Source="17" Target="24" Event="TUgetB2-finish"

Transition: Source="18" Target="23" Event="M2addB2-start"

Transition: Source="18" Target="11" Event="M1addB1-finish"

Transition: Source="18" Target="25" Event="TUgetB2-finish"

Transition: Source="19" Target="24" Event="M2addB2-start"

Transition: Source="19" Target="25" Event="M1addB1-start"

Transition: Source="19" Target="26" Event="TUaddB1-start-u"

Transition: Source="19" Target="4" Event="i9"

Transition: Source="20" Target="25" Event="M2getB1-finish"

Transition: Source="20" Target="13" Event="M1addB1-finish"

Transition: Source="20" Target="27" Event="TUaddB1-start-u"

Transition: Source="20" Target="5" Event="i9"

Transition: Source="21" Target="26" Event="M2getB1-finish"

Transition: Source="21" Target="27" Event="M1addB1-start"

Transition: Source="21" Target="1" Event="TUaddB1-finish-u"

Transition: Source="22" Target="27" Event="M2getB1-start"

Transition: Source="22" Target="15" Event="M1addB1-finish"

Transition: Source="22" Target="2" Event="TUaddB1-finish-u"

Figure B.8 continued.

APPENDIX B. TRANSFER LINE IN JAVA 138

Transition: Source="23" Target="7" Event="M2addB2-finish"

Transition: Source="23" Target="17" Event="M1addB1-finish"

Transition: Source="23" Target="28" Event="TUgetB2-finish"

Transition: Source="24" Target="8" Event="M2addB2-finish"

Transition: Source="24" Target="28" Event="M1addB1-start"

Transition: Source="24" Target="29" Event="TUaddB1-start-u"

Transition: Source="24" Target="9" Event="i9"

Transition: Source="25" Target="28" Event="M2addB2-start"

Transition: Source="25" Target="19" Event="M1addB1-finish"

Transition: Source="25" Target="30" Event="TUaddB1-start-u"

Transition: Source="25" Target="10" Event="i9"

Transition: Source="26" Target="29" Event="M2addB2-start"

Transition: Source="26" Target="30" Event="M1addB1-start"

Transition: Source="26" Target="4" Event="TUaddB1-finish-u"

Transition: Source="27" Target="30" Event="M2getB1-finish"

Transition: Source="27" Target="21" Event="M1addB1-finish"

Transition: Source="27" Target="5" Event="TUaddB1-finish-u"

Transition: Source="28" Target="14" Event="M2addB2-finish"

Transition: Source="28" Target="24" Event="M1addB1-finish"

Transition: Source="28" Target="31" Event="TUaddB1-start-u"

Transition: Source="28" Target="16" Event="i9"

Transition: Source="29" Target="15" Event="M2addB2-finish"

Transition: Source="29" Target="31" Event="M1addB1-start"

Transition: Source="29" Target="9" Event="TUaddB1-finish-u"

Transition: Source="30" Target="31" Event="M2addB2-start"

Transition: Source="30" Target="26" Event="M1addB1-finish"

Transition: Source="30" Target="10" Event="TUaddB1-finish-u"

Transition: Source="31" Target="22" Event="M2addB2-finish"

Transition: Source="31" Target="29" Event="M1addB1-finish"

Transition: Source="31" Target="16" Event="TUaddB1-finish-u"

Figure B.8 continued.

APPENDIX B. TRANSFER LINE IN JAVA 139

B.4 Specifications

The monolithic specification was built. It contains 52 states and 176 transitions. A

transition listing is given in Fig. B.9 below. State 0 is the initial state, and is the

only marked state.

Transition: Source="0" Target="1" Event="M1addB1-start"

Transition: Source="0" Target="2" Event="TUaddB1-start-u"

Transition: Source="0" Target="3" Event="M2addB2-start"

Transition: Source="0" Target="0" Event="i9"

Transition: Source="1" Target="4" Event="M1addB1-finish"

Transition: Source="1" Target="5" Event="M2addB2-start"

Transition: Source="1" Target="1" Event="i9"

Transition: Source="2" Target="4" Event="TUaddB1-finish-u"

Transition: Source="2" Target="6" Event="M2addB2-start"

Transition: Source="2" Target="2" Event="i9"

Transition: Source="3" Target="5" Event="M1addB1-start"

Transition: Source="3" Target="6" Event="TUaddB1-start-u"

Transition: Source="3" Target="7" Event="M2addB2-finish"

Transition: Source="3" Target="3" Event="i9"

Transition: Source="4" Target="8" Event="M1addB1-start"

Transition: Source="4" Target="9" Event="M2getB1-start"

Transition: Source="4" Target="10" Event="TUaddB1-start-u"

Transition: Source="4" Target="11" Event="M2addB2-start"

Transition: Source="4" Target="4" Event="i9"

Transition: Source="5" Target="11" Event="M1addB1-finish"

Transition: Source="5" Target="12" Event="M2addB2-finish"

Transition: Source="5" Target="5" Event="i9"

Transition: Source="6" Target="11" Event="TUaddB1-finish-u"

Transition: Source="6" Target="13" Event="M2addB2-finish"

Transition: Source="6" Target="6" Event="i9"

Transition: Source="7" Target="12" Event="M1addB1-start"

Transition: Source="7" Target="13" Event="TUaddB1-start-u"

Transition: Source="7" Target="14" Event="TUgetB2-start"

Figure B.9: Transfer-Line: Transition listing for the monolithic specification.

APPENDIX B. TRANSFER LINE IN JAVA 140

Transition: Source="7" Target="7" Event="i9"

Transition: Source="8" Target="15" Event="M1addB1-finish"

Transition: Source="8" Target="16" Event="M2addB2-start"

Transition: Source="8" Target="8" Event="i9"

Transition: Source="9" Target="0" Event="M2getB1-finish"

Transition: Source="9" Target="17" Event="M2addB2-start"

Transition: Source="9" Target="9" Event="i9"

Transition: Source="10" Target="15" Event="TUaddB1-finish-u"

Transition: Source="10" Target="18" Event="M2addB2-start"

Transition: Source="10" Target="10" Event="i9"

Transition: Source="11" Target="16" Event="M1addB1-start"

Transition: Source="11" Target="17" Event="M2getB1-start"

Transition: Source="11" Target="18" Event="TUaddB1-start-u"

Transition: Source="11" Target="19" Event="M2addB2-finish"

Transition: Source="11" Target="11" Event="i9"

Transition: Source="12" Target="19" Event="M1addB1-finish"

Transition: Source="12" Target="20" Event="TUgetB2-start"

Transition: Source="12" Target="12" Event="i9"

Transition: Source="13" Target="19" Event="TUaddB1-finish-u"

Transition: Source="13" Target="21" Event="TUgetB2-start"

Transition: Source="13" Target="13" Event="i9"

Transition: Source="14" Target="20" Event="M1addB1-start"

Transition: Source="14" Target="21" Event="TUaddB1-start-u"

Transition: Source="14" Target="0" Event="TUgetB2-finish"

Transition: Source="14" Target="14" Event="i9"

Transition: Source="15" Target="22" Event="M1addB1-start"

Transition: Source="15" Target="23" Event="M2getB1-start"

Transition: Source="15" Target="24" Event="TUaddB1-start-u"

Transition: Source="15" Target="25" Event="M2addB2-start"

Transition: Source="15" Target="15" Event="i9"

Transition: Source="16" Target="25" Event="M1addB1-finish"

Transition: Source="16" Target="26" Event="M2addB2-finish"

Transition: Source="16" Target="16" Event="i9"

Transition: Source="17" Target="3" Event="M2getB1-finish"

Transition: Source="17" Target="27" Event="M2addB2-finish"

Transition: Source="17" Target="17" Event="i9"

Transition: Source="18" Target="25" Event="TUaddB1-finish-u"

Figure B.9 continued.

APPENDIX B. TRANSFER LINE IN JAVA 141

Transition: Source="18" Target="28" Event="M2addB2-finish"

Transition: Source="18" Target="18" Event="i9"

Transition: Source="19" Target="26" Event="M1addB1-start"

Transition: Source="19" Target="27" Event="M2getB1-start"

Transition: Source="19" Target="28" Event="TUaddB1-start-u"

Transition: Source="19" Target="29" Event="TUgetB2-start"

Transition: Source="19" Target="19" Event="i9"

Transition: Source="20" Target="29" Event="M1addB1-finish"

Transition: Source="20" Target="1" Event="TUgetB2-finish"

Transition: Source="20" Target="20" Event="i9"

Transition: Source="21" Target="29" Event="TUaddB1-finish-u"

Transition: Source="21" Target="2" Event="TUgetB2-finish"

Transition: Source="21" Target="21" Event="i9"

Transition: Source="22" Target="30" Event="M1addB1-finish"

Transition: Source="22" Target="31" Event="M2addB2-start"

Transition: Source="22" Target="22" Event="i9"

Transition: Source="23" Target="4" Event="M2getB1-finish"

Transition: Source="23" Target="32" Event="M2addB2-start"

Transition: Source="23" Target="23" Event="i9"

Transition: Source="24" Target="30" Event="TUaddB1-finish-u"

Transition: Source="24" Target="33" Event="M2addB2-start"

Transition: Source="24" Target="24" Event="i9"

Transition: Source="25" Target="31" Event="M1addB1-start"

Transition: Source="25" Target="32" Event="M2getB1-start"

Transition: Source="25" Target="33" Event="TUaddB1-start-u"

Transition: Source="25" Target="34" Event="M2addB2-finish"

Transition: Source="25" Target="25" Event="i9"

Transition: Source="26" Target="34" Event="M1addB1-finish"

Transition: Source="26" Target="35" Event="TUgetB2-start"

Transition: Source="26" Target="26" Event="i9"

Transition: Source="27" Target="7" Event="M2getB1-finish"

Transition: Source="27" Target="36" Event="TUgetB2-start"

Transition: Source="27" Target="27" Event="i9"

Transition: Source="28" Target="34" Event="TUaddB1-finish-u"

Transition: Source="28" Target="37" Event="TUgetB2-start"

Transition: Source="28" Target="28" Event="i9"

Transition: Source="29" Target="35" Event="M1addB1-start"

Figure B.9 continued.

APPENDIX B. TRANSFER LINE IN JAVA 142

Transition: Source="29" Target="36" Event="M2getB1-start"

Transition: Source="29" Target="37" Event="TUaddB1-start-u"

Transition: Source="29" Target="4" Event="TUgetB2-finish"

Transition: Source="29" Target="29" Event="i9"

Transition: Source="30" Target="38" Event="M2getB1-start"

Transition: Source="30" Target="39" Event="M2addB2-start"

Transition: Source="30" Target="30" Event="i9"

Transition: Source="31" Target="39" Event="M1addB1-finish"

Transition: Source="31" Target="40" Event="M2addB2-finish"

Transition: Source="31" Target="31" Event="i9"

Transition: Source="32" Target="11" Event="M2getB1-finish"

Transition: Source="32" Target="41" Event="M2addB2-finish"

Transition: Source="32" Target="32" Event="i9"

Transition: Source="33" Target="39" Event="TUaddB1-finish-u"

Transition: Source="33" Target="42" Event="M2addB2-finish"

Transition: Source="33" Target="33" Event="i9"

Transition: Source="34" Target="40" Event="M1addB1-start"

Transition: Source="34" Target="41" Event="M2getB1-start"

Transition: Source="34" Target="42" Event="TUaddB1-start-u"

Transition: Source="34" Target="43" Event="TUgetB2-start"

Transition: Source="34" Target="34" Event="i9"

Transition: Source="35" Target="43" Event="M1addB1-finish"

Transition: Source="35" Target="8" Event="TUgetB2-finish"

Transition: Source="35" Target="35" Event="i9"

Transition: Source="36" Target="14" Event="M2getB1-finish"

Transition: Source="36" Target="9" Event="TUgetB2-finish"

Transition: Source="36" Target="36" Event="i9"

Transition: Source="37" Target="43" Event="TUaddB1-finish-u"

Transition: Source="37" Target="10" Event="TUgetB2-finish"

Transition: Source="37" Target="37" Event="i9"

Transition: Source="38" Target="15" Event="M2getB1-finish"

Transition: Source="38" Target="44" Event="M2addB2-start"

Transition: Source="38" Target="38" Event="i9"

Transition: Source="39" Target="44" Event="M2getB1-start"

Transition: Source="39" Target="45" Event="M2addB2-finish"

Transition: Source="39" Target="39" Event="i9"

Transition: Source="40" Target="45" Event="M1addB1-finish"

Figure B.9 continued.

APPENDIX B. TRANSFER LINE IN JAVA 143

Transition: Source="40" Target="46" Event="TUgetB2-start"

Transition: Source="40" Target="40" Event="i9"

Transition: Source="41" Target="19" Event="M2getB1-finish"

Transition: Source="41" Target="47" Event="TUgetB2-start"

Transition: Source="41" Target="41" Event="i9"

Transition: Source="42" Target="45" Event="TUaddB1-finish-u"

Transition: Source="42" Target="48" Event="TUgetB2-start"

Transition: Source="42" Target="42" Event="i9"

Transition: Source="43" Target="46" Event="M1addB1-start"

Transition: Source="43" Target="47" Event="M2getB1-start"

Transition: Source="43" Target="48" Event="TUaddB1-start-u"

Transition: Source="43" Target="15" Event="TUgetB2-finish"

Transition: Source="43" Target="43" Event="i9"

Transition: Source="44" Target="25" Event="M2getB1-finish"

Transition: Source="44" Target="49" Event="M2addB2-finish"

Transition: Source="44" Target="44" Event="i9"

Transition: Source="45" Target="49" Event="M2getB1-start"

Transition: Source="45" Target="50" Event="TUgetB2-start"

Transition: Source="45" Target="45" Event="i9"

Transition: Source="46" Target="50" Event="M1addB1-finish"

Transition: Source="46" Target="22" Event="TUgetB2-finish"

Transition: Source="46" Target="46" Event="i9"

Transition: Source="47" Target="29" Event="M2getB1-finish"

Transition: Source="47" Target="23" Event="TUgetB2-finish"

Transition: Source="47" Target="47" Event="i9"

Transition: Source="48" Target="50" Event="TUaddB1-finish-u"

Transition: Source="48" Target="24" Event="TUgetB2-finish"

Transition: Source="48" Target="48" Event="i9"

Transition: Source="49" Target="34" Event="M2getB1-finish"

Transition: Source="49" Target="51" Event="TUgetB2-start"

Transition: Source="49" Target="49" Event="i9"

Transition: Source="50" Target="51" Event="M2getB1-start"

Transition: Source="50" Target="30" Event="TUgetB2-finish"

Transition: Source="50" Target="50" Event="i9"

Transition: Source="51" Target="43" Event="M2getB1-finish"

Transition: Source="51" Target="38" Event="TUgetB2-finish"

Transition: Source="51" Target="51" Event="i9"

Figure B.9 continued.

APPENDIX B. TRANSFER LINE IN JAVA 144

B.5 Supervisor

Using the plant and the monolithic specification, a supervisor was synthesized in TCT

using the SUPCON operation. It has 69 states and 114 transitions. State 0 is the initial

state, and is the only marked state. The transition structure is given in Fig. B.10.

Transition: Source="0" Target="1" Event="M1addB1-start"

Transition: Source="1" Target="2" Event="M1addB1-finish"

Transition: Source="2" Target="3" Event="M1addB1-start"

Transition: Source="2" Target="4" Event="M2getB1-start"

Transition: Source="3" Target="5" Event="M1addB1-finish"

Transition: Source="4" Target="6" Event="M2getB1-finish"

Transition: Source="5" Target="7" Event="M1addB1-start"

Transition: Source="5" Target="8" Event="M2getB1-start"

Transition: Source="6" Target="9" Event="M1addB1-start"

Transition: Source="6" Target="10" Event="M2addB2-start"

Transition: Source="7" Target="11" Event="M1addB1-finish"

Transition: Source="8" Target="12" Event="M2getB1-finish"

Transition: Source="9" Target="13" Event="M2addB2-start"

Transition: Source="9" Target="12" Event="M1addB1-finish"

Transition: Source="10" Target="13" Event="M1addB1-start"

Transition: Source="10" Target="14" Event="M2addB2-finish"

Transition: Source="11" Target="15" Event="M2getB1-start"

Transition: Source="12" Target="16" Event="M1addB1-start"

Transition: Source="12" Target="17" Event="M2addB2-start"

Transition: Source="13" Target="18" Event="M2addB2-finish"

Transition: Source="13" Target="17" Event="M1addB1-finish"

Transition: Source="14" Target="19" Event="TUgetB2-start"

Transition: Source="14" Target="18" Event="M1addB1-start"

Transition: Source="15" Target="20" Event="M2getB1-finish"

Transition: Source="16" Target="21" Event="M2addB2-start"

Transition: Source="16" Target="20" Event="M1addB1-finish"

Transition: Source="17" Target="21" Event="M1addB1-start"

Transition: Source="17" Target="22" Event="M2addB2-finish"

Figure B.10: Transfer-Line: Monolithic supervisor transition listing.

APPENDIX B. TRANSFER LINE IN JAVA 145

Transition: Source="18" Target="22" Event="M1addB1-finish"

Transition: Source="19" Target="23" Event="TUgetB2-finish"

Transition: Source="20" Target="24" Event="M1addB1-start"

Transition: Source="20" Target="25" Event="M2addB2-start"

Transition: Source="21" Target="26" Event="M2addB2-finish"

Transition: Source="21" Target="25" Event="M1addB1-finish"

Transition: Source="22" Target="27" Event="TUgetB2-start"

Transition: Source="22" Target="26" Event="M1addB1-start"

Transition: Source="22" Target="28" Event="M2getB1-start"

Transition: Source="23" Target="29" Event="TUaddB1-start-u"

Transition: Source="23" Target="0" Event="i9"

Transition: Source="24" Target="30" Event="M2addB2-start"

Transition: Source="24" Target="31" Event="M1addB1-finish"

Transition: Source="25" Target="30" Event="M1addB1-start"

Transition: Source="25" Target="32" Event="M2addB2-finish"

Transition: Source="26" Target="32" Event="M1addB1-finish"

Transition: Source="27" Target="33" Event="TUgetB2-finish"

Transition: Source="28" Target="34" Event="M2getB1-finish"

Transition: Source="29" Target="2" Event="TUaddB1-finish-u"

Transition: Source="30" Target="35" Event="M2addB2-finish"

Transition: Source="30" Target="36" Event="M1addB1-finish"

Transition: Source="31" Target="36" Event="M2addB2-start"

Transition: Source="32" Target="37" Event="TUgetB2-start"

Transition: Source="32" Target="35" Event="M1addB1-start"

Transition: Source="32" Target="38" Event="M2getB1-start"

Transition: Source="33" Target="39" Event="TUaddB1-start-u"

Transition: Source="33" Target="2" Event="i9"

Transition: Source="34" Target="40" Event="TUgetB2-start"

Transition: Source="34" Target="41" Event="M1addB1-start"

Transition: Source="35" Target="42" Event="M1addB1-finish"

Transition: Source="36" Target="42" Event="M2addB2-finish"

Transition: Source="37" Target="43" Event="TUgetB2-finish"

Transition: Source="38" Target="44" Event="M2getB1-finish"

Transition: Source="39" Target="5" Event="TUaddB1-finish-u"

Transition: Source="40" Target="45" Event="TUgetB2-finish"

Transition: Source="41" Target="44" Event="M1addB1-finish"

Transition: Source="42" Target="46" Event="M2getB1-start"

Figure B.10 continued.

APPENDIX B. TRANSFER LINE IN JAVA 146

Transition: Source="43" Target="47" Event="TUaddB1-start-u"

Transition: Source="43" Target="5" Event="i9"

Transition: Source="44" Target="48" Event="TUgetB2-start"

Transition: Source="44" Target="49" Event="M1addB1-start"

Transition: Source="45" Target="50" Event="TUaddB1-start-u"

Transition: Source="45" Target="6" Event="i9"

Transition: Source="45" Target="51" Event="M2addB2-start"

Transition: Source="46" Target="52" Event="M2getB1-finish"

Transition: Source="47" Target="11" Event="TUaddB1-finish-u"

Transition: Source="48" Target="53" Event="TUgetB2-finish"

Transition: Source="49" Target="52" Event="M1addB1-finish"

Transition: Source="50" Target="12" Event="TUaddB1-finish-u"

Transition: Source="50" Target="54" Event="M2addB2-start"

Transition: Source="51" Target="54" Event="TUaddB1-start-u"

Transition: Source="51" Target="10" Event="i9"

Transition: Source="51" Target="55" Event="M2addB2-finish"

Transition: Source="52" Target="56" Event="TUgetB2-start"

Transition: Source="53" Target="57" Event="TUaddB1-start-u"

Transition: Source="53" Target="12" Event="i9"

Transition: Source="53" Target="58" Event="M2addB2-start"

Transition: Source="54" Target="17" Event="TUaddB1-finish-u"

Transition: Source="54" Target="59" Event="M2addB2-finish"

Transition: Source="55" Target="59" Event="TUaddB1-start-u"

Transition: Source="55" Target="14" Event="i9"

Transition: Source="56" Target="60" Event="TUgetB2-finish"

Transition: Source="57" Target="20" Event="TUaddB1-finish-u"

Transition: Source="57" Target="61" Event="M2addB2-start"

Transition: Source="58" Target="61" Event="TUaddB1-start-u"

Transition: Source="58" Target="17" Event="i9"

Transition: Source="58" Target="62" Event="M2addB2-finish"

Transition: Source="59" Target="22" Event="TUaddB1-finish-u"

Transition: Source="60" Target="63" Event="TUaddB1-start-u"

Transition: Source="60" Target="20" Event="i9"

Transition: Source="60" Target="64" Event="M2addB2-start"

Transition: Source="61" Target="25" Event="TUaddB1-finish-u"

Transition: Source="61" Target="65" Event="M2addB2-finish"

Transition: Source="62" Target="65" Event="TUaddB1-start-u"

Figure B.10 continued.

APPENDIX B. TRANSFER LINE IN JAVA 147

Transition: Source="62" Target="22" Event="i9"

Transition: Source="63" Target="31" Event="TUaddB1-finish-u"

Transition: Source="63" Target="66" Event="M2addB2-start"

Transition: Source="64" Target="66" Event="TUaddB1-start-u"

Transition: Source="64" Target="25" Event="i9"

Transition: Source="64" Target="67" Event="M2addB2-finish"

Transition: Source="65" Target="32" Event="TUaddB1-finish-u"

Transition: Source="66" Target="36" Event="TUaddB1-finish-u"

Transition: Source="66" Target="68" Event="M2addB2-finish"

Transition: Source="67" Target="68" Event="TUaddB1-start-u"

Transition: Source="67" Target="32" Event="i9"

Transition: Source="68" Target="42" Event="TUaddB1-finish-u"

Figure B.10 continued.

APPENDIX B. TRANSFER LINE IN JAVA 148

B.6 Generated Code

The following class listings show the final version of the transfer-line code with au-

tomatically generated concurrency control inserted. A Supervisor class was cre-

ated and added to the program, and is shown in Fig. B.11. Modified were the

Machine1 class, the Machine2 class, and the TestUnit class, which are shown in

Figs. B.12, B.13, and B.14, respectively. The Main class was also modified to call the

Supervisor.init() method. The method call was added just before the M1, M2, and

TU threads were started.

APPENDIX B. TRANSFER LINE IN JAVA 149

package transferLine;

import java.util.concurrent.*;

public class Supervisor {

static Semaphore M1addB1start;

static Semaphore M2getB1start;

static Semaphore TUgetB2start;

static Semaphore M2addB2start;

static int stateTracker;

public static void init() {
Supervisor.M1addB1start = new Semaphore(1);

Supervisor.M2getB1start = new Semaphore(0);

Supervisor.TUgetB2start = new Semaphore(0);

Supervisor.M2addB2start = new Semaphore(0);

Supervisor.stateTracker = 0;

}

public static synchronized boolean observeAndReact(String event,

Semaphore eventBlocker) {
if (!(eventBlocker == null)) {
if (!eventBlocker.tryAcquire()) {
return false;

}
eventBlocker.release();

Figure B.11: Transfer-Line: Supervisor class.

APPENDIX B. TRANSFER LINE IN JAVA 150

}
stateChange(event);

return true;

}
private static void updateSupervisorState(String event) {
if (event.equals("TUaddB1startu")) {
switch(Supervisor.stateTracker) {
case(23):

Supervisor.stateTracker = 29;

break;

case(33):

Supervisor.stateTracker = 39;

break;

case(43):

Supervisor.stateTracker = 47;

break;

case(45):

Supervisor.stateTracker = 50;

break;

case(51):

Supervisor.stateTracker = 54;

break;

case(53):

Supervisor.stateTracker = 57;

break;

case(55):

Supervisor.stateTracker = 59;

break;

case(58):

Supervisor.stateTracker = 61;

break;

case(60):

Supervisor.stateTracker = 63;

break;

case(62):

Supervisor.stateTracker = 65;

break;

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 151

case(64):

Supervisor.stateTracker = 66;

break;

case(67):

Supervisor.stateTracker = 68;

break;

}
}
else if (event.equals("M1addB1start")) {
switch(Supervisor.stateTracker) {
case(0):

Supervisor.M1addB1start.drainPermits();

Supervisor.stateTracker = 1;

break;

case(2):

Supervisor.M1addB1start.drainPermits();

Supervisor.M2getB1start.drainPermits();

Supervisor.stateTracker = 3;

break;

case(5):

Supervisor.M1addB1start.drainPermits();

Supervisor.M2getB1start.drainPermits();

Supervisor.stateTracker = 7;

break;

case(6):

Supervisor.M1addB1start.drainPermits();

Supervisor.stateTracker = 9;

break;

case(10):

Supervisor.M1addB1start.drainPermits();

Supervisor.stateTracker = 13;

break;

case(12):

Supervisor.M1addB1start.drainPermits();

Supervisor.stateTracker = 16;

break;

case(14):

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 152

Supervisor.M1addB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 18;

break;

case(17):

Supervisor.M1addB1start.drainPermits();

Supervisor.stateTracker = 21;

break;

case(20):

Supervisor.M1addB1start.drainPermits();

Supervisor.stateTracker = 24;

break;

case(22):

Supervisor.M1addB1start.drainPermits();

Supervisor.M2getB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 26;

break;

case(25):

Supervisor.M1addB1start.drainPermits();

Supervisor.stateTracker = 30;

break;

case(32):

Supervisor.M1addB1start.drainPermits();

Supervisor.M2getB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 35;

break;

case(34):

Supervisor.M1addB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 41;

break;

case(44):

Supervisor.M1addB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 49;

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 153

break;

}
}
else if (event.equals("i1")) {
switch(Supervisor.stateTracker) {
case(23):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 0;

break;

case(33):

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Supervisor.stateTracker = 2;

break;

case(43):

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Supervisor.stateTracker = 5;

break;

case(45):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 6;

break;

case(51):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 10;

break;

case(53):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 12;

break;

case(55):

Supervisor.M1addB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 14;

break;

case(58):

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 154

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 17;

break;

case(60):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 20;

break;

case(62):

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 22;

break;

case(64):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 25;

break;

case(67):

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 32;

break;

}
}
else if (event.equals("M2getB1finish")) {
switch(Supervisor.stateTracker) {
case(4):

Supervisor.M1addB1start.release();

Supervisor.M2addB2start.release();

Supervisor.stateTracker = 6;

break;

case(8):

Supervisor.M1addB1start.release();

Supervisor.M2addB2start.release();

Supervisor.stateTracker = 12;

break;

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 155

case(15):

Supervisor.M1addB1start.release();

Supervisor.M2addB2start.release();

Supervisor.stateTracker = 20;

break;

case(28):

Supervisor.M1addB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 34;

break;

case(38):

Supervisor.M1addB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 44;

break;

case(46):

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 52;

break;

}
}
else if (event.equals("M1addB1finish")) {
switch(Supervisor.stateTracker) {
case(1):

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Supervisor.stateTracker = 2;

break;

case(3):

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Supervisor.stateTracker = 5;

break;

case(7):

Supervisor.M2getB1start.release();

Supervisor.stateTracker = 11;

break;

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 156

case(9):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 12;

break;

case(13):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 17;

break;

case(16):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 20;

break;

case(18):

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 22;

break;

case(21):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 25;

break;

case(24):

Supervisor.stateTracker = 31;

break;

case(26):

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 32;

break;

case(30):

Supervisor.stateTracker = 36;

break;

case(35):

Supervisor.M2getB1start.release();

Supervisor.stateTracker = 42;

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 157

break;

case(41):

Supervisor.M1addB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 44;

break;

case(49):

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 52;

break;

}
}
else if (event.equals("TUgetB2finish")) {
switch(Supervisor.stateTracker) {
case(19):

Supervisor.stateTracker = 23;

break;

case(27):

Supervisor.stateTracker = 33;

break;

case(37):

Supervisor.stateTracker = 43;

break;

case(40):

Supervisor.M2addB2start.release();

Supervisor.stateTracker = 45;

break;

case(48):

Supervisor.M2addB2start.release();

Supervisor.stateTracker = 53;

break;

case(56):

Supervisor.M2addB2start.release();

Supervisor.stateTracker = 60;

break;

}
}

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 158

else if (event.equals("M2getB1start")) {
switch(Supervisor.stateTracker) {
case(2):

Supervisor.M1addB1start.drainPermits();

Supervisor.M2getB1start.drainPermits();

Supervisor.stateTracker = 4;

break;

case(5):

Supervisor.M1addB1start.drainPermits();

Supervisor.M2getB1start.drainPermits();

Supervisor.stateTracker = 8;

break;

case(11):

Supervisor.M2getB1start.drainPermits();

Supervisor.stateTracker = 15;

break;

case(22):

Supervisor.M1addB1start.drainPermits();

Supervisor.M2getB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 28;

break;

case(32):

Supervisor.M1addB1start.drainPermits();

Supervisor.M2getB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 38;

break;

case(42):

Supervisor.M2getB1start.drainPermits();

Supervisor.stateTracker = 46;

break;

}
}
else if (event.equals("TUgetB2start")) {
switch(Supervisor.stateTracker) {
case(14):

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 159

Supervisor.M1addB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 19;

break;

case(22):

Supervisor.M1addB1start.drainPermits();

Supervisor.M2getB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 27;

break;

case(32):

Supervisor.M1addB1start.drainPermits();

Supervisor.M2getB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 37;

break;

case(34):

Supervisor.M1addB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 40;

break;

case(44):

Supervisor.M1addB1start.drainPermits();

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 48;

break;

case(52):

Supervisor.TUgetB2start.drainPermits();

Supervisor.stateTracker = 56;

break;

}
}
else if (event.equals("TUaddB1finishu")) {
switch(Supervisor.stateTracker) {
case(29):

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 160

Supervisor.stateTracker = 2;

break;

case(39):

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Supervisor.stateTracker = 5;

break;

case(47):

Supervisor.M2getB1start.release();

Supervisor.stateTracker = 11;

break;

case(50):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 12;

break;

case(54):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 17;

break;

case(57):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 20;

break;

case(59):

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 22;

break;

case(61):

Supervisor.M1addB1start.release();

Supervisor.stateTracker = 25;

break;

case(63):

Supervisor.stateTracker = 31;

break;

case(65):

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 161

Supervisor.M1addB1start.release();

Supervisor.M2getB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 32;

break;

case(66):

Supervisor.stateTracker = 36;

break;

case(68):

Supervisor.M2getB1start.release();

Supervisor.stateTracker = 42;

break;

}
}
else if (event.equals("M2addB2finish")) {
switch(Supervisor.stateTracker) {
case(10):

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 14;

break;

case(13):

Supervisor.stateTracker = 18;

break;

case(17):

Supervisor.M2getB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 22;

break;

case(21):

Supervisor.stateTracker = 26;

break;

case(25):

Supervisor.M2getB1start.release();

Supervisor.TUgetB2start.release();

Supervisor.stateTracker = 32;

break;

case(30):

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 162

Supervisor.stateTracker = 35;

break;

case(36):

Supervisor.M2getB1start.release();

Supervisor.stateTracker = 42;

break;

case(51):

Supervisor.stateTracker = 55;

break;

case(54):

Supervisor.stateTracker = 59;

break;

case(58):

Supervisor.stateTracker = 62;

break;

case(61):

Supervisor.stateTracker = 65;

break;

case(64):

Supervisor.stateTracker = 67;

break;

case(66):

Supervisor.stateTracker = 68;

break;

}
}
else if (event.equals("M2addB2start")) {
switch(Supervisor.stateTracker) {
case(6):

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 10;

break;

case(9):

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 13;

break;

case(12):

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 163

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 17;

break;

case(16):

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 21;

break;

case(20):

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 25;

break;

case(24):

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 30;

break;

case(31):

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 36;

break;

case(45):

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 51;

break;

case(50):

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 54;

break;

case(53):

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 58;

break;

case(57):

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 61;

break;

case(60):

Supervisor.M2addB2start.drainPermits();

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 164

Supervisor.stateTracker = 64;

break;

case(63):

Supervisor.M2addB2start.drainPermits();

Supervisor.stateTracker = 66;

break;

}
}
else {

//should never reach this!

System.out.println("Supervisor failure");

assert (false);

}
}

}

Figure B.11 continued.

APPENDIX B. TRANSFER LINE IN JAVA 165

package transferLine;

//creates new parts and puts them into the first buffer

public class Machine1 extends Thread {

//the target for created parts

Buffer target;

public Machine1(Buffer target) {
new Thread();

this.target = target;

this.setName("Machine1");

}

public void doWork() {
try {

Thread.sleep((int)(Math.random()*1000));

}
catch (Exception e) {

//do nothing

}
}

public void run() {
while (true) {

//wait for some random period

doWork();

//create a new Part

Part newPart = new Part();

//event marking: M1addB1-start

while (true)

if (Supervisor.observeAndReact("M1addB1start",

Supervisor.M1addB1start))

break;

Supervisor.M1addB1start.acquireUninterruptibly();

Supervisor.M1addB1start.release();

Figure B.12: Transfer-Line: Machine1 with added concurrency control.

APPENDIX B. TRANSFER LINE IN JAVA 166

//put it in the target buffer

System.out.println("Machine1 tries to put a part in " + target);

target.addPart(newPart);

//event marking: M1add-B1-finish

Supervisor.observeAndReact("M1addB1finish", null);

} // loop forever

}
}

Figure B.12 continued.

APPENDIX B. TRANSFER LINE IN JAVA 167

package transferLine;

public class Machine2 extends Thread {

//the source and target for parts used by this machine

Buffer source;

Buffer target;

public Machine2(Buffer source, Buffer target) {
new Thread();

this.source = source;

this.target = target;

this.setName("Machine2");

}

public void doWork() {
try {

Thread.sleep((int)(Math.random()*10));

}
catch (Exception e) {

//do nothing

}
}

public void run() {
while (true) {

//get part from source Buffer

//event marking: M2getB1-start

while (true)

if (Supervisor.observeAndReact("M2getB1start",

Supervisor.M2getB1start))

break;

Supervisor.M2getB1start.acquireUninterruptibly();

Supervisor.M2getB1start.release();

System.out.println("Machine2 tries to get a part from "

+ source);

Figure B.13: Transfer-Line: Machine2 with added concurrency control.

APPENDIX B. TRANSFER LINE IN JAVA 168

Part currentPart = source.removePart();

//event marking: M2getB1-finish

Supervisor.observeAndReact("M2getB1finish", null);

//we have a part - do some work on it

doWork();

//put the part in the next buffer

//event marking: M2addB2-start

while (true)

if (Supervisor.observeAndReact("M2addB2start",

Supervisor.M2addB2start))

break;

Supervisor.M2addB2start.acquireUninterruptibly();

Supervisor.M2addB2start.release();

System.out.println("Machine2 tries to put a part in "

+ target);

target.addPart(currentPart);

//event marking: M2addB2-finish

Supervisor.observeAndReact("M2addB2finish", null);

//reset machine 2

doWork();

} //loop forever

}
}

Figure B.13 continued.

APPENDIX B. TRANSFER LINE IN JAVA 169

package transferLine;

public class TestUnit extends Thread{

Buffer source;

Buffer rejectBuffer;

double rejectionChance;

public TestUnit(Buffer source, Buffer rejectBuffer,

double rejectionChance) {
new Thread();

this.source = source;

this.rejectBuffer = rejectBuffer;

this.rejectionChance = rejectionChance;

this.setName("TestUnit");

}

public void doWork() {
try {

Thread.sleep((int)(Math.random()*10));

}
catch (Exception e) {

//do nothing

}
}

public void run() {
while (true) {

//get a part from the source

//event marking: TUgetB2-start

while (true)

if (Supervisor.observeAndReact("TUgetB2start",

Supervisor.TUgetB2start))

break;

Supervisor.TUgetB2start.acquireUninterruptibly();

Supervisor.TUgetB2start.release();

Figure B.14: Transfer-Line: TestUnit with added concurrency control.

APPENDIX B. TRANSFER LINE IN JAVA 170

System.out.println("TestUnit tries to get a part from "

+ source);

Part currentPart = source.removePart();

//event marking: TUgetB2-finish

Supervisor.observeAndReact("TUgetB2finish", null);

//test that part for some period of time

doWork();

if (Math.random() > rejectionChance) {
//no good! send back to rejectBin

//event marking: TUaddB1-start-u

Supervisor.observeAndReact("TUaddB1startu", null);

System.out.println("TestUnit tries to put a part in "

+ rejectBuffer);

rejectBuffer.addPart(currentPart);

//event marking: TUaddB1-finish-u

Supervisor.observeAndReact("TUaddB1finishu", null);

}
else {

//event marking: i9

Supervisor.observeAndReact("i9", null);

}
} //loop forever

}
}

Figure B.14 continued.

