
Optimising Sybil Attacks against P2P-based Botnets

Carlton R. Davis, José M. Fernandez
École Polytechnique de Montréal,

Montréal, QC, Canada.
{carlton.davis, jose.fernandez}@polymtl.ca.

Stephen Neville
University of Victoria,
Victoria, BC, Canada.
sneville@ece.uvic.ca.

Abstract

Addressing and mitigating modern global-scale botnets
is a pressing Internet security issue, particularly, giventhat
these botnets are known to be provide attackers with the
large-scale low-cost computing infrastructure required to
engage in major spam campaigns, larger-scale phishing
attacks,etc. Over time, botnets have evolved toward us-
ing decentralized peer-to-peer (P2P) command and con-
trol (C&C) infrastructures in order to increase their re-
silience against defender countermeasures,i.e. as seen in
Storm’s use of Overnet and more recently in the appearance
of HTTP-tunneled P2P botnets, such as Waledac and Con-
ficker. The obvious question is, what are effective counter-
measures against these modern botnets? This work focuses
on evaluating, via simulation, sybil attack-based counter-
measures and how such sybil-based strategies should be tai-
lored to allow them to both be effective and implementable
on global-scales. Slower-rate sybil infection strategieswith
random placement of sybils are shown to be nearly as effec-
tive as higher-rate infection strategies with targeted place-
ment. This somewhat counter-intuitive result is important,
as the former strategy is easier to implement by a loosely
co-ordinated collective of globally scattered defenders.

1 Introduction

Botnets have evolved into effective base infrastructures
for cybercrime. They provide the low-cost large-scale army
of compromised machines required to engage in large-scale
spam and phishing campaigns, to harvest at-scale users’ pri-
vate information,e.g. credit card numbers, bank account
access information,etc., and complex networks in which
cyber-criminals can hide their tracks. Between 85 to 95
percent of spams originated from botnets [19], with spam-
ming being highly profitable to cybercriminals, with es-
timates existing that $3.5M per year was genetered from
Storm-produced pharmaceutical focused spam campaigns
[14]. “Pump-and-dump” stock spam campaign, designed

to manipulate stock values also appears to be quite lucra-
tive [12]. The underground cyber-crime economy supported
by botnets has reached the extent that botnets operators (or
masters) have become middlemen who then lease their bot-
nets out to other cyber-criminals.

The security community, historically, has had signifi-
cant success in developing countermeasures for traditional
IRC based botnets, primarily through exploiting their highly
centralized nature [1, 2, 11, 21, 25]. This success, though,
drove the botnet operators to move to decentralized com-
mand and control (C&C) infrastructures offered by the
emergence of peer-to-peer (P2P) networks. More partic-
ularly, the botnet operators move to the use of the P2P’s
distributed hash table (DHT) capabilities provided, for ex-
ample, via Overnet’s [15] integration of the Kademlia pro-
tocol [17], which provided an increased level of decentral-
ization even over the more commonly available file sharing-
based P2P protocols. The inherent resilience of these P2P-
based botnets to defensive countermeasures combined with
their profitability means that they are likely to persist forthe
foreseeable future, with minor modifications, such as em-
ploying tunneling over HTTP, to circumvent basic firewall-
based countermeasures.

From a defensive standpoint it therefore makes sense
to explore effective mitigation and disruption strategiesfor
such P2P-based botnets. More particularly, given that a
given P2P botnet can include operational nodes located
around the world it makes sense to explore the trade-off be-
tween loosely coupled mitigation strategies,i.e.uninformed
strategies where sybils are placed at random in the P2P net-
work and more tightly coupled ones,i.e. informed strategies
where sybil are strategically placed based on information
globally collected and shared. The former are more easily
implemented by globally scattered defenders acting inde-
pendently, while the latter require structured collaborations
and potentially hard to obtain global knowledge of the bot-
net’s structure.

Prior literature [4,7,13] has demonstrated the general ef-
fectiveness that Sybil attacks have on P2P-based botnets,
where a Sybil attack denotes the injection of large number

of active nodes into the botnet that provide erroneous re-
sponses to other botnet nodes’ queries. However what has
remained largely unexplored in this work is the issue of how
to best orchestrate these Sybil attacks or, more precisely,
the trade-offs inherent in core tunable Sybil attack param-
eters,i.e. the Sybil injection rate and their placement have
on the effectiveness of the Sybil attack,i.e. the degree of
disruption to the botnet’s operation. In this work we ex-
plore this question by through stochastic simulations based
of such attacks using a precise graph representation of the
P2P network generated by such botnets. The paper focused
on Kademlia-based P2P botnets as: (a) the details of this
protocol are well known and understood, (b) it has formed
the core of past P2P botnets,i.e.Storm, (c) for practical pur-
poses future P2P networks are likely to follow similar op-
erational characteristics,e.g.a DHT structure, a command
set with functionality,etc., and (d) previous work [5] seems
to indicate that it is more resilient to targeted attacks than
other P2P network protocol choices. Thereby, we expect
that results obtained with respect to Kademlia in this paper
are likely to extend to such future P2P botnets.

The main contributions of this paper are the following:

1. A more refined and accurate graph model is intro-
duced for describing the behaviour and performance
Kademlia-based P2P botnet C&C infrastructure.

2. The time duration of the Sybil attack is shown to have
more bearing on the efficacy of Sybil attacks than
the number of sybils that are employed in the attack,
i.e. slower rate Sybil attacks are more effective than
faster rate attacks.

3. A sybil-to-bot ratio of approximately 1:10 is shown to
be largely sufficient for maximizing the effectiveness
of the Sybil attacks,i.e.a higher ratio does not improve
the effectiveness of the attack though it does increase
the ability of the botmaster(s) to detect the Sybil attack.

4. Finally, randomly sybil placement is shown to be
nearly as effective as placing sybils close to the botnet
search keys,i.e. little appears to be lost through the use
of an uninformed placement strategy over an informed
one. This is an important result as it implies that glob-
ally distributed, uncoordinated defenders each engag-
ing in their own sybil attacks will be nearly as effective
as a co-ordinated effort to disrupt the botnet would be.

The rest of the paper is organised as follows. Section 2
contains background information about the Kademlia pro-
tocol and the nature of Kademlia-based botnet C&C infras-
tructures. Section 3 highlights related work and outlines
differences between this and previous work. We present
the graph model we utilised for our simulations in Section
4, followed by the simulation setup in Section 5. Finally,

in Sections 6 and 7 we discuss the implications of our re-
sults, summarise our findings and present directions for fu-
ture work.

2 Background

Storm provides a convenient exemplar from which to ex-
plore Kademlia-based P2P botnets in that its inner workings
are now well understood. The information presented below,
although flavoured in terms of Storm, also pertains to P2P
botnets which follow similar core operating principals as
exhibited by the Kademlia protocol.

Storm utilised a modified version of the Overnet P2P
overlay network,i.e. an application layer network, for its
C&C infrastructure. Overnet is a proprietary implementa-
tion of the Kademlia algorithm, which is a P2P〈key, value〉
storage and look-up system. In the Overnet implemen-
tation, keysare 128-bit opaque quantities, andvaluesare
typically strings containing the IP address and other nec-
essary information of servers where given electronic data
can be found. Each node in an Overnet overlay network
has a random 128-bit ID that the node generates when it
initially joins the network. This 128-bit ID serves as part
of the node’s unique identifier, which consists of the triplet
〈IP address, port, ID〉; where port is the port number that the
Overnet protocol listens for network traffic. Kademlia stip-
ulates that the〈key, value〉 pairs should be stored on nodes
whose IDs are “close” to the associatedkey. Closeness is
defined in terms of the XOR metric: the distance of a node
with ID x from a node with IDy (or with a keyy) is defined
as the bitwise exclusive (XOR) ofx andy interpreted as an
integer,i.e., d(x, y) = (int)x ⊕ y.

Each node in a Kademlia P2P network keeps a list of
〈IP address, port, ID〉. These lists are referred to aspeer
lists, as they contain information on how to contact other
peers in the network. In Kademlia, the peer list is organised
into sub-lists calledk-buckets, containing triplets of nodes
whose distance is between2i and2i+1 from itself; where
0 ≤ i < 128. They are so-called because they are managed
to contain at mostk nodes, wherek is a configurable pa-
rameter, typically 20 for most Kademlia implementations.
Records in ak-bucket are kept sorted by time last seen, with
the least-recently seen at the head and the most recently-
seen at the tail. When a node (the recipient) receives a mes-
sage from another node (the sender), the recipient updates
thek-bucket corresponding to the sender (i.e. the one cor-
responding to the distance between itself and the sender) as
follows: If the sender is already in the recipient’sk-bucket,
the sender’s triplet gets moved to the tail of thek-bucket.
If the sender’s triplet is not in the correspondingk-bucket,
then if there are less thank triplets in thek-bucket, the
sender’s triplet is added to the tail of thek-bucket. Oth-
erwise, the recipient pings the noden that is at the head of

thek-bucket (the least-recently seen node); ifn does not re-
spond, it is evicted from thek-bucket and the recipient adds
the sender to the tail of thek-bucket. If n does respond,
the recipient movesn’s triplet to the tail of thek-bucket
and the sender’s contact is discarded. (This, as we will see,
provides a measure of protection against sybil attacks, since
only inactive nodes are forced out ofk-buckets.)

Kademlia utilises the following the four message types
which constitute the botnet commmand set for placing and
retrieving C&C information:

PING : This message is use to probe a node to determine
if it is on-line.

FIND NODE : This message type allows a node to search
for a node ID. When a node receives aFIND NODE
message, it returns the〈IP address, port, ID〉 triplet of
k nodes it knows about that are closest to the ID.

STORE : If a node wishes to publish a〈key, value〉 pair,
the node locates thek closest nodes to the key (via the
FIND NODE message) and sends each aSTORE mes-
sage, which consequently instructs the nodes to store
the〈key, value〉 pair for later retrieval. This command
is used by the botmasters to place the information it
wants the bots to find, where the value allows the bots
to find out where to go to retrieve updates or com-
mands.

FIND VALUE : A node can issue a search for a
〈key, value〉 pair via the FIND VALUE message.
When a node receives aFIND VALUE message, if it
has the value, it returns it; otherwise, it returns the
〈IP address, port, ID〉 triplet ofk nodes it knows of that
are closest to the key. This command is used by the
bots to retreive the appropiate information, by using
appropriate search keys that are either hard-coded into
the bot code or can be easily generated by it.

Storm employed Overnet as a pull-structured search-
query mechanism that it adapts for its C&C infrastructure.
The search-query mechanism operates of follows: for any
given day, each node within the Storm botnet, generates
at random 1 out of the 32 possible search keys by using
a secret search key generation function, implemented in
the Storm bot code [13]. The botnet operators can there-
fore store values associated with these 32 keys on selected
nodes within the botnet. The values for the search keys
are believed to be obfuscated data that the nodes can use to
compute contact information for re-directors,i.e. bots that
act as proxies for the principal HTTP servers, also known
as motherships, through the use of a fast-flux DNS net-
work [20]. The botnet nodes can consequently pull new
commands and updates from designated repositories by us-
ing FIND VALUE messages to search for the key they gen-

erated for that day, and then compute the contact informa-
tion for these repositories and subsequently querying them
via HTTP.

3 Related work

The performance analysis contained in the original work
describing the Kademlia algorithm [17] concentrated on the
maximum latency for any node to obtain accurate answers
to its queries; a notion that is captured by the diameter of the
underlying message-passing graph. This is a natural mea-
sure in the context of the traditional file-sharing applica-
tions of P2P networks, but it is not a sufficient indicator of
performance in the context of botnets. Thus, our previous
work introduced and studied other measures more suited to
describe the performance of C& C infrastructures, such as
distribution of shortest path lengths and sizes of bounded
radius neighbourhoods, in order to describe the relative per-
formance of various mitigation strategies.

We used these measures [5] to compare four complex
network structures: Overnet (a structured P2P overlay net-
work), Gnutella (an unstructured P2P overlay network), the
Erdős-Rényi random graph model and the Barabási-Albert
scale-free network model. The aim of that work was to
compare them and determine the relative advantages and
disadvantages they offered as botnet C&C infrastructures.
In latter work [4], we used the same measures and simi-
lar simulation techniques to determine: (a) the effectiveness
of Sybil attacks as a mitigation strategy against Storm bot-
net, and (b) identify the parameters which affect the effi-
cacy of Sybil attacks in disrupting the botnet C&C struc-
ture. The graph models we utilised to represent the Overnet
P2P network presumed that the subset of nodes in the peer
lists that were being contacted were chosen at random. In
essence, these models only captured the peer list limiting
behaviour of Storm, while making abstraction of the inter-
nal structure and peculiar use of Kademlia’sk-buckets in
the value search. As such, the underlying subgraphs over
which Overnet messages transited were modelled as regu-
lar graphs, as a first order approximation. In this paper, we
use a refined graph model that more accurately captures the
Kademlia search query mechanism.

With regards to Sybil attacks being used for botnet miti-
gation, Holz, Steiner, Dahl, Biersack and Freiling [13] pre-
sented a case study showing how to use sybils to infiltrate
the Storm botnet. The authors used an Overnet crawler
which issues route requests in a breadth-first search manner
in order to find peers currently participating in the Over-
net or Storm network. The two main goals of their study
were: (a) determine the number of active Storm nodes by
infiltrating the botnet with sybils and use the sybils to “spy”
on the Storm network; and (b) determine the effect of pollu-
tion attacks (index poisoning) launched from these sybils by

posting polluted values associated with Storm search keys.
The authors evaluated the effectiveness of the pollution at-
tack by simultaneously polluting the value of a key used by
Storm, and crawling the Storm network and searching for
that key. Their investigation indicated that by polluting the
keys that Storm uses, they were able to disrupt the botnet
communication.

The portion of our work related to Sybil attacks on Storm
botnet is complementary to that of Holzet al.’s work, but it
can be differentiated as follows. First, we wish to quantita-
tively study how sybil attack parameters such as the size of
the sybil population relative to that of the botnet or the du-
ration of the attack affect C&C effectiveness. Second, we
wish to know what operational or design parameters chosen
by the botmaster could potentially reduce the effectiveness
of such attacks.

In addition to Holzet al.’s work, a number of research
efforts have focused on disrupting non-botnet P2P overlay
networks. The typical scenario for such attacks would be
that of representatives of the Recording Industry Associa-
tion of America (RIAA), or like organisations, attempting
to disrupt P2P networks, presumably in order to thwart or
to discourage the download of copyrighted digital files. In
this context, in addition to poisoning the indexes (i.e. the
DHT) with wrong values (pointing to incorrect addresses),
pollution attackscan also be considered where fake or bo-
gus content is inserted into the system, with the indexes
being polluted with the additional extra〈key, value〉 pairs
pointing to this bogus content. This reduces performance
and renders more difficult the localisation by users of the
legitimate content, i.e. thegoodputof the P2P file sharing
system. We now provide a quick overview of some of the
related research work in this area, and where necessary, in-
dicate how our work differs from the work in question.

Christin, Weigend and Chuang [3] conducted a measure-
ment study in content availability for four P2P file-sharing
overlay networks: Gnutella, eDonkey, Overnet, and Fast-
Track. Their work investigated the impact of pollution and
poisoning on content availability in file sharing networks.
Their results indicate that in order for pollution and poison-
ing to be effective in reducing content availability of popu-
lar files in the P2P networks they considered, the polluted
versions of the files need to be injected in the network on
massive scales.

Dumitriu, Knightly, Kuzmanovic and Stoica [8] pre-
sented analytical modelling and simulation studies involv-
ing the Gnutella [9] P2P system. Their studies investigated
the effect of file-targeted attacks and network-targeted at-
tacks. In the former, attackers put large number of cor-
rupted versions of a single file on the network; whereas
in network-targeted attacks, attackers respond to network
queries for any file with erroneous information. Their re-
sults indicate that success of file-targeted attacks dependon

the clients behaviour and that the attack succeeds over the
long term only if the clients are unwilling to share files and
they are slow to remove corrupt files from the machine. The
network-targeted attacks, however, are effective in decreas-
ing the system goodput.

Singh, Ngan, Druschel and Wallach [23] studied the im-
pact of Eclipse attacks in P2P overlay networks. In an
Eclipse attack, a set of malicious colluding nodes arrange
for targeted correct nodes to be paired with only members
from the malicious coalition. If successful, the attackers
can mediate and ultimately control the traffic intended for
the correct nodes, and in so doing “eclipse” the nodes from
the rest of the network. Their work indicates that known de-
fences are limited in preventing Eclipse attacks. Nonethe-
less, Holzet al. [13] do show that whereas Eclipse attacks
are feasible in Kad —a Kademlia-based distributed hash ta-
ble (DHT)— it is infeasible in Overnet, because Overnet
keys are distributed throughout the entire hash table space,
rather than be restricted to a particular zone.

Liang, Naoumov and Ross [16] presented a methodology
for estimating index poisoning levels and pollution levelsin
structured and unstructured file sharing networks.

Naoumov and Ross [18] show how index poisoning and
routing poisoning can be used to create denial-of-service
engines out of P2P systems. With index poisoning, the
attackers insert bogus records into the P2P index system.
These bogus records indicate that a popular file is located
at the targeted IP address and port number. This can result
in large amount of traffic which can overwhelm the targeted
node. In the case of routing poisoning, the attackers attempt
to make the targeted node a neighbour of a large number of
P2P nodes. This can result in the targeted node receiving
large amount of maintenance traffic and, hence, be the vic-
tim of a bandwidth-consuming DDoS attack. The use of
such a technique in attacking a botnet is not appropriate as
only a single node (or a few) would be isolated, leaving the
rest unaffected.

Finally, Steiner, En-Najjary and Biersack [24] indicate
how Kad can be used and misused. The authors shows how
Sybil attacks can be used to perpetuate Eclipse and denial-
of-service attacks in Kad. They also presented a centralised
scheme for preventing sybils from gaining access to Kad.

Unfortunately, however, while the idea of pollution and
poisoning attacks is not new to botnet mitigation strategies,
the quantitative studies that have been conducted on their
performance do not apply directly to the context of botnet
mitigation. The main reason why is that performance ob-
jectives of the bot master (getting the most machines to get
the update message/command in time) do not coincide with
those of the file-sharing P2P network user (maximise good-
put of shared material). Thus the need for botnet-specific re-
search on the quantitative effectiveness of such techniques.

Other work on P2P botnets include the following: Griz-

zard, Sharma, Nunnery and Dagon [10], Dittrich and Di-
etrich [6], and Ruitenbeek and Sanders [22]. The authors
of [10] provided an overview of P2P botnets, and presented
a case study of Storm. In [6], the authors presented a botnet
study which examine the features of Nugache P2P botnet
and compare how current proposals for dealing with P2P
botnets would or would not affect a pure-P2P botnet such as
Nugache. Finally, [22] presented a stochastic model of P2P
botnet formation. The authors used the stochastic model to
examine how different factors impact the growth of botnets.
The focus of our work is different from the above mentioned
works on P2P botnet, in that we examine the effect of Sybil
attacks on Kademlia-based P2P botnets.

4 Kademlia-based P2P botnet graph model

Kademlia-based P2P botnets can be modelled as a di-
rected graphG = (V, E), whereV andE are the vertex set
and edge set ofG, respectively. For any nodesu, v ∈ V ,
the edge(u, v) exists iff the〈IP address, port, ID〉 triplet for
nodev is in one of nodeu’s k-buckets,i.e. somewhere in
u’s peer list. This graphG thus represents the “knowl-
edge” that peers have of each other. As outlined in Sec-
tion 2, the nodes of Kademlia-based P2P botnets utilise
FIND VALUE queries to find search keys whose values can
be used to compute contact information for re-directors in
the botnet fastflux network. When a nodev receives a
FIND VALUE message from a nodeu, it selectsk nodes
it knows of that are closest to the search key, and sends the
〈IP address, port, ID〉 triplet of thek nodes back tou. In the
meanwhile,u sendsFIND VALUE messages to thek clos-
est nodes it knows, as it receives information about nodes
closer and closer to the search keyu. It can be deduced from
the above that only nodes whose IDs are relatively close to
the key (whose value is being queried) will be on the search
path initiated from a nodeu for this key. Furthermore, not
all edges inE will be utilised in the search of a given key,
no matter who initiates the search.

To model the messages exchanged between nodes in-
volved in the searches of a given keyz, irrespective of the
initiating node, we construct the subgraph ofGz = (V, Ez)
as follows. For allu in V , let d(u, z) be in the range
(2i, 2i+1], i.e. 2i < d(u, z) ≤ 2i+1. This implies that
u will initially look for answers from nodes in thei-th k-
bucket. Then we say that given a nodev in u’s peer list,
i.e. (u, v) ∈ E, the corresponding edge(u, v) will also be
in Ez only if one of the following conditions hold:

1. v is in thei-th k-bucket ofu, containing records whose
IDs are closest toz, i.e.d(v, z) ∈ (2i, 2i+1]

2. v is not in the i-th k-bucket (because it contains less
thank entries), butv is one of thek closest nodes toz
in u’s peer list.

Note that because of the 2nd condition, any such subgraph
of more thank nodes will necessarily bek-regular,i.e. all
nodes will have exactlyk neighbours inGz.

We indicated in Section 2 that the botnet operators store
〈key, value〉 pairs on selected nodes. The Kademlia proto-
col stipulates that a〈key, value〉 pair should be stored on
the k nodes whose IDs are closest to the search key. Let
Kz ⊆ V represent this set of nodes on which the〈z, value〉
pair will be so stored, where|Kz| ≤ k. These nodes con-
stitute the “kernel” of the graphGz in that any node inKz

should know the value alllowing bots to find re-directors.

Nodes in the network will find eventually find a node in
Kz by using theFIND VALUE messages to query peers for
the keyz. More precisely, theFIND VALUE query works as
follows. The initiator nodeu selectsα amongst thek clos-
est nodes toz (whereα is parallelisation parameter typically
set to 3). It then sends each them in parallel aFIND VALUE
message forz. The selected nodes are taken from a single
k-bucket, or if thek-bucket which contains records whose
ID are closest to the keyz has less thank records, the ad-
ditional nodes are selected from adjacentk-bucket(s). Each
of the queried nodes does the following: if it has the value
nodeu seeks, it sends it tov, otherwise it sends thek nodes
that it knows of which are closest toz. In the recursive step,
u sendsFIND VALUE messages to nodes it learnt about
through previous queries (as long as they are within amongs
thek closest toz it knows of). The recursive process con-
tinues until a node returns the value nodev seeks, or until
v gets responses from thek closest nodes it has seen. As
described in [17], this process is guaranteed to converge in
O(log |V |) iterations; in other words, the diameter ofGz is
bounded byO(log |V |).

Let V
(r)
z represent the set of nodes who have a path in

Gz of lengthr or less from them to a node inKz, i.e. u ∈

V
(r)
z if ∃v ∈ KZ such that the distance dist(u, v) ≤ r.

This means, that nodes inV (r)
z will necessarily get a correct

answer to the query from a node inKz within r iterations
or less of the search algorithm. Hence we call this set the
reachable botnetwith parameterr.

From the size of the active botnet, we then obtainreach-
able ratioν(r) = |V

(r)
z |/|V |, which we postulate is an ef-

fective measure that can be used to assess the efficacy of
Kademlia-based P2P botnets C&C structure. It represents
the fraction of nodes in the network that can obtain the cor-
rect value (associated with a given botnet search key) as a
result ofFIND VALUE queries terminating withinr iter-
ations, and consequently can receive updates and new in-
structions from the botnet operators.

5 Simulation setup

We assessed the effectiveness of Sybil attacks in disrupt-
ing Kademlia-based P2P botnet C&C structure, using the
graph model we presented in Section 4. In our simulation
analysis, we assumed that sybils join the botnet and send
frequentPING, FIND NODE andFIND VALUE messages
in attempts to get their identification triplets inserted into
other nodes’k-buckets. As indicated in Section 2, when a
nodeu participating in an Overnet network, receives a mes-
sage from a another nodev, if the k-bucket where the ID of
v “belongs” is not full,v’s identification triplet gets inserted
into thek-bucket. If the givenk-bucket is full,u pings the
nodes (starting from the least recently seen) whose identi-
fication triplets appear in thek-bucket. If all the nodes re-
spond tou’s ping message,u discardv’s information; other-
wise the identification triplet of the least recently seen node
which does not respond to the ping message is replaced with
u’s identification triplet.

In our sybil attack model, when sybils identification
triplets are inserted intok-buckets and subsequently receive
FIND VALUE messages, they send fictitious values to the
querying nodes. The Kademlia protocol stipulates that a
node terminates itsFIND VALUE query as soon as it re-
ceives the value it searches. Consequently, if a sybil re-
sponds to nodev’s FIND VALUE query before any of the
“real” nodes,v will not find an “authentic” value for the
search key it sought. For our simulation analysis, we as-
sumed that each node has an equal probability of responding
first to aFIND VALUE query issued simultaneously. Our
simulation addresses the following questions:

1. How does the efficacy of Sybil attacks vary as a func-
tion of the relative growth rates of the sybil and botnet
populations? More precisely, ifBGR represents the
growth rate of the botnet (new infections minus natu-
ral attrition per simulation step), andSBR represents
the sybil birth rate, then we looked at values ofSBR

equal to0, 0.5 ∗ BGR, BGR, 2 ∗ BGR and4 ∗ BGR.
We assume that sybils are not subject to attrition, of
course.

2. What impact does the duration of the attack have on
the efficacy of the botnet?

To answer the above questions, we performed 50 sets of
simulation runs. In each run, the simulated Overnet net-
work started with 20,000 nodes and grew for∆t time steps;
where∆t varied from 20 to 40. In each run, both the node
IDs and the search keys are chosen uniformly at random.
We assumed a botnet node birth rate of 2% per time step and
a node death rate of 1% per simulation times step, where the
locations in the botnet of node births or deaths is chosen at
random from a uniform distribution. Hence, the net bot-
net growth rate per time stepBGR was kept constant at 1%

 0
 5000

 10000
 15000
 20000
 25000
 30000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 n

od
es

Number of iterations

SBR = 0
SBR = 0.5 * BGR

SBR = BGR

SBR = 2.0 * BGR
SBR = 4.0 * BGR

(a) Sybils ID chosen randomly

 0
 5000

 10000
 15000
 20000
 25000
 30000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 n

od
es

Number of iterations

SBR = 0
SBR = 0.5 * BGR

SBR = BGR

SBR = 2.0 * BGR
SBR = 4.0 * BGR

(b) Sybils assigned IDs that are close to the search key

Figure 1. Sybil attacks results for ∆t = 20.

of the botnet’s size for all the simulation runs; whereas the
rate at which sybils were added to the network,i.e. the sybil
birth rate (SBR) varied from 0 to4 ∗ BGR. At the end of
each simulations, the sizeV (r)

z of the reachable botnet and
the reachable ratioν(r) was computed for various values of
r from 1 to 10. In all cases, the same Kademlia implementa-
tion parameters were chosen (k = 20, α = 3) but we chose
to limit the overall size of the peer list to200 nodes.

6 Results and discussion

Figures 1 through 3 show the size of the reachable botnet
(y-axis) versus the parameterr (x-axis), for various values
of sybil birth rateSBR shown in various lines, and for sybil
attack duration of length∆t = 20, 30 and40, respectively.
Each figure contains two graphs comparing the case where
a) sybil IDs are chosen at random, and b) sybils are assigned
IDs that are close to the search key (informed choice). The
baseline within these graphs is provided by theSBR = 0
curve (the uppermost one), which shows the botnet’s be-
haviour when no disruptions are present,i.e.no sybil attack.

What these figures make clear is that once the Sybil at-
tack is begun: (a) the ability to reach nodes falls off quite
dramatically with only approximately 20% of the botnets
nodes being reachable,i.e. able to find a true response to
their key-value pair search, (b) the degree of the impact is
largely indepedent of the scale of the Sybil attack,i.e. the

(a) Sybils ID chosen randomly

SBR Number
of sybils

Reduction
in ν

Standard
deviation

0 0 0% 0.04%
0.5 ∗ BGR 2,000 65.52% 4.19%
BGR 4,000 63.36% 4.78%
2 ∗ BGR 8,000 62.78% 3.69%
4 ∗ BGR 16,000 63.47% 4.08%

(b) Sybils assigned IDs that are close to the search key

SBR Number
of sybils

Reduction
in ν

Standard
deviation

0 0 0% 0.01%
0.5 ∗ BGR 2,000 71.71% 3.29%
BGR 4,000 72.39% 3.79%
2 ∗ BGR 8,000 71.73% 2.98%
4 ∗ BGR 16,000 72.14% 3.46%

Table 1. Sybil attacks results, ∆t = 20, final
number of bots = 24,000.

 0
 5000

 10000
 15000
 20000
 25000
 30000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 n

od
es

Number of iterations

SBR = 0
SBR = 0.5 * BGR

SBR = BGR

SBR = 2.0 * BGR
SBR = 4.0 * BGR

(a) Sybils ID chosen randomly

 0
 5000

 10000
 15000
 20000
 25000
 30000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 n

od
es

Number of iterations

SBR = 0
SBR = 0.5 * BGR

SBR = BGR

SBR = 2.0 * BGR
SBR = 4.0 * BGR

(b) Sybils assigned IDs that are close to the search key

Figure 2. Sybil attacks results for ∆t = 30.

(a) Sybils ID chosen randomly

SBR Number
of sybils

Reduction
in ν

Standard
deviation

0 0 0% 0.01%
0.5 ∗ BGR 3,000 68.48% 2.88%
BGR 6,000 70.40% 2.97%
2 ∗ BGR 12,000 69.83% 3.31%
4 ∗ BGR 24,000 70.39% 2.78%

(b) Sybils assigned IDs that are close to the search key

SBR) Number
of sybils

Reduction
in ν

Standard
deviation

0 0 0% 0.01%
0.5 ∗ BGR 3,000 74.95% 2.81%
BGR 6,000 74.46% 3.23%
2 ∗ BGR 12,000 74.54% 2.76%
4 ∗ BGR 24,000 74.93% 2.87%

Table 2. Sybil attacks results, ∆t = 30, final
number of bots = 26,000.

 0
 5000

 10000
 15000
 20000
 25000
 30000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 n

od
es

Number of iterations

SBR = 0
SBR = 0.5 * BGR

SBR = BGR

SBR = 2.0 * BGR
SBR = 4.0 * BGR

(a) Sybils ID chosen randomly

 0
 5000

 10000
 15000
 20000
 25000
 30000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 n

od
es

Number of iterations

SBR = 0
SBR = 0.5 * BGR

SBR = BGR

SBR = 2.0 * BGR
SBR = 4.0 * BGR

(b) Sybils assigned IDs that are close to the search key

Figure 3. Sybil attacks results for ∆t = 40.

(a) Sybils ID chosen randomly

SBR Number
of sybils

Reduction
in ν

Standard
deviation

0 0 0% 0.01%
0.5 ∗ BGR 4,000 73.14% 2.90%
BGR 8,000 72.99% 2.77%
2 ∗ BGR 16,000 73.78% 2.81%
4 ∗ BGR 32,000 73.61% 3.03%

(b) Sybils assigned IDs that are close to the search key

SBR Number
of sybils

Reduction
in ν

Standard
deviation

0 0 0% 0.01%
0.5 ∗ BGR 4,000 77.03% 2.29%
BGR 8,000 77.06% 2.57%
2 ∗ BGR 16,000 77.19% 2.64%
4 ∗ BGR 32,000 77.46% 2.80%

Table 3. Sybil attacks results, ∆t = 40, final
number of bots = 28,000.

SBR = 0.5 ∗ BGR Sybil attack performs as well as the 8-
times more expensiveSBR = 4 ∗ BGR attack, and (c) the
results for random and informed Sybil placements are also
nearly identical.

Part of the explanation for these somewhat counter-
inutitive results is that the P2Pk-bucket update protocol
makes sure that only the most active nodes remain on
it. This is accomplished through the two-stage drop pro-
cess that is used prior to removing any node from ak-
bucket, with the second stage requiring that nodes be non-
responsive to a direct query prior to their being dropped.
Hence, sybils can only replace nodes within the botnet that
have died, as active nodes are never selected for replace-
ment. Therefore, the number of sybils active in the botnet
only needs to reach a level where the probability of a sybil
being selected as the node to replace a dead node is higher
than the probability that a real botnet node is selected. In-
jecting sybils above this rate will have little to no impact on
the effectiveness of the Sybil attack as the probability that
one of these extra sybils will be selected as a replacement
node decreases as more sybils are added, given that these
sybils are more likely to be further away in XOR distance
from the node that is being replaced. In other words, only
a relatively small number of nodes close to the search key
have a high probability of being selected as the replacement
node for a dead node in the correspondingk-bucket, hence,
the Sybil attack rate only needs to be high enough to make
it highly probable that one of the selected close node will be
a sybil and not an active botnet node.

Tables 1 through 3 detail more clearly the differences

between the random Sybil placement strategy and the more
informed strategy of placing the Sybils near the location of
the stored key-value pair, where the former models the com-
posite of a set of uncoordinated defenders each engaging in
their own Sybil attacks whereas the latter models a coordi-
nated Sybil attack strategy. More particularly, although an
advantage of between 3.41%-9.03% is gained in effective-
ness via the informed Sybil placement strategy, the drop in
effectiveness via the more easily implemented random strat-
egy is not that severe, particularly when it is viewed in light
of the global-scale of modern botnets. Moreover, the degree
of separation between the strategies quickly decreases as
the duration of the Sybil attacks are increased. Once again
this is due to the fact that only dead nodes within peer lists
are eligible for replacement,i.e. as the attack duration in-
creases more bot attrition occur leading to more Sybils be-
ing selected as replacement nodes. Additionally, it can be
observed that slowing down the Sybil attack is a far more
effective strategy than just increasing the number of Sybils,
e.g. 4000 Sybil with ∆t = 40 with random placement
provides 73.14% effectivness whereas16, 000 Sybil with
∆t = 20 with random placement provides only 63.47% ef-
fectivness. This is important if the resources of the Sybil at-
tacker are such that the total number of sybil is constrained,
e.g.by limitation of bandwith and/or CPU. In this case, it
seems that trading-off number of sybils for a slower rate of
activity and a longer attack is an advantageous strategy.

An interesting observation from these tables is also
that the Sybil attack effectiveness appear to be heading to
asymptotic levels of around 75% and 77.5% effectiveness
for the random and informed placement strategies respec-
tively. Currently, it is unclear whether these constitue true
asymptotes and if so, why do they occur at these levels.

7 Conclusion and Future Work

Within this work graph theory-based simulations have
been used to explore the effectiveness of Sybil attack strate-
gies against modern P2P-based botnets. The resulting anal-
ysis has shown, at least within the context of the simulations
run, that a random Sybil placement strategy performs nearly
as well as a more informed placement strategy and that ex-
tending the Sybil attack duration is more important than just
increasing the number of Sybils that are used. This has im-
portant implications for real-world botnet defenses in that
it strongly suggest that independent defenders need not co-
ordinate their Sybil attack strategies in order to effectively
disrupt the botnet. More particularly, the highly diffuse na-
ture of P2P botnets, which the botmasters have exploited
to gain robust networks, is also what leads to the random
Sybil placement strategies being nearly as effective as in-
formed placement strategies. Hence, it is unlikely that the
botmasters can easily adapt their botnets to be more resilient

to random placement strategies without making the botnets
less diffuse and, hence, easier to “roll-up” via other known
botnet countermeasures.

The results also imply that there exists an optimal Sybil
attack rate that is itself tied to the specific birth and death
rates that occur on the given botnet. Deriving this optimal
Sybil attack rate requires the development a deeper analy-
sis of the graph theory models in order to extract the ratio
of the likelihoods that a given dead node will be replace
by either a Sybil or an active botnet node. Deriving these
likelihoods is a non-trivial problem given their inherent de-
pendence on the location of the dead node within the botnet
as well as its location within the various peer lists to which
it belongs. These likelihoods also depend directly on the is-
sue of which new node is the first to respond to a given peer
list replacement request. This in turn is affected by the un-
derlying network fabric upon which the P2P botnet exists
as on overlay; hence, packet-level simulation studies may
be required to accurately assess optimal Sybil attack rates
under varying conditions. Finally, there is a need to deter-
mine whether the observed asymptotic behaviors represent
true asymptotes and, if so why, or whether they are merely
artifacts of the specific simulation runs or methods.

References

[1] P. Barford and V. Yegneswaran. An inside look at bot-
nets.Advances in Information Security, 27:171–191, March
2007.

[2] J. R. Binkley and S. Singh. An algorithm for anomaly-
based botnet detection. InProceedings of the2nd confer-
ence on Steps to Reducing Unwanted Traffic on the Internet
(SRUTI’06), July 2006.

[3] N. Christin, A. Weigend, and J. Chuang. Content availabil-
ity, pollution and poisoning in file sharing peer-to-peer net-
works. InProceedings of the6th ACM conference on Elec-
tronic commerce, pages 68–77, June 2005.

[4] C. Davis, J. Fernandez, S. Neville, and J. McHugh. Sybil
attacks as a mitigation strategy against the storm botnet. In
Proceedings of the3rd International Conference on Mali-
cious and Unwanted Software (MALWARE 2008), October
2008.

[5] C. Davis, S. Neville, J. Fernandez, J.-M. Robert, and
J. McHugh. Structured peer-to-peer overlay networks: Ideal
botnets command and control infrastructures? InProceed-
ings of the13th European Symposium on Research in Com-
puter Security (ESORICS’08), October 2008.

[6] D. Dittrich and S. Dietrich. P2p as botnet command and
control: A deeper insight. InProceedings of the3rd Inter-
national Conference on Malicious and Unwanted Software
(MALWARE 2008), October 2008.

[7] J. Douceur. The sybil attack. InProceedings of the1st Inter-
national Workshop on Peer-to-Peer Systems, pages 251–260,
March 2002.

[8] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and
W. Zwaenepoel. Denial-of-service resilience in peer-to-peer

file sharing systems.ACM SIGMETRICS Performance Eval-
uation Review, 33:38–49, June 2005.

[9] Gnutella Project. Gnutella.http://www.gnutella.
com, March 2001.

[10] J. Grizzard, V. Sharma, C. Nunnery, B. Kang, and D. Dagon.
Peer-to-peer botnets: overview and case study. InProceed-
ings of the1

st Workshop on Hot Topics in Understanding
Botnets (HotBots 2007), April 2007.

[11] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting botnet
command and control channels in network traffic. InPro-
ceedings of the15th Annual Network and Distributed Sys-
tem Security Symposium (NDSS’08), February 2008.

[12] M. Hanke and F. Hauser. On the effects of stock spam e-
mails. Journal of Financial Markets, 11:57 – 83, 2008.

[13] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling.
Measurements and mitigation of peer-to-peer-based botnets:
A case study on storm worm. InProceedings of the1st

USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET’08), April 2008.

[14] C. Kanich, C. Kreibich, K. Levchenko, B. Enright,
G. Voelker, V. Paxson, and S. Savage. Spamalytics: an em-
pirical analysis of spam marketing conversion. InProceed-
ings of the15th ACM conference on Computer and commu-
nications security (CCS’08), October 2008.

[15] K. Kutznet and T. Fuhrmann. Measuring large overlay net-
works the overnet example. InKiVS, May 2006.

[16] J. Liang, N. Naoumov, and K. Ross. The index poisoning
attack in p2p file sharing systems. InProceedings of25th

IEEE International Conference on Computer Communica-
tions (INFOCOM 2006), April 2006.

[17] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer
information system based on the XOR metric. InRevised
Papers from the1st International Workshop on Peer-to-Peer
Systems (IPTPS ’02), March 2002.

[18] N. Naoumov and K. Ross. Exploiting p2p systems for DDoS
attacks. InProceedings of the1st international conference
on Scalable information systems (INFOSCALE 2006), May
2006.

[19] A. Pathak, Y. Hu, and Z. Mao. Peeking into spammer behav-
ior from a unique vantage point. InProceedings of the1st

USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET’08), April 2008.

[20] P. Porras, H. Saidi, and V. Yegneswaran. A multi-perspective
analysis of the storm (peacomm) worm. Technical re-
port, Computer Science Laboratory, SRI Internatal, October
2007.

[21] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multi-
faceted approach to understanding the botnet phenomenon.
In Proceedings of the6th ACM SIGCOMM conference on
Internet measurement, October 2006.

[22] E. Ruitenbeek and W. Sanders. Modeling peer-to-peer bot-
nets. InProceedings of the5th International Conference on
Quantitative Evaluation of Systems (QEST ’08), pages 307–
316, September 2008.

[23] A. Singh, T.-W. Ngan, P. Druschel, and D. Wallach. Eclipse
attacks on overlay networks: Threats and defenses. In
Proceedings of25th IEEE International Conference on
Computer Communications (INFOCOM 2006), pages 1–12,
April 2006.

[24] M. Steiner, T. En-Najjary, and E. Biersack. Exploitingkad:
possible uses and misuses.ACM SIGCOMM Computer
Communication Review, 37:65–70, October 2007.

[25] W. Strayer, R. Walsh, C. Livadas, and D. Lapsley. Detecting
botnets with tight command and control. InProceedings
of the31

st IEEE Conference on Local Computer Networks,
November 2006.

