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Abstract

In this paper, an optimistic parallel and distributed logic simulator, XTW, is proposed. In XTW, a new event scheduling
mechanism, XEQ, and a new rollback procedure, rb-messages, are proposed for use in optimistic logic simulation. XTW
groups LPs into clusters, and makes use of a multi-level queue, XEQ, to schedule events in the cluster. XEQ has an O(1)
event scheduling time complexity. Our new rollback mechanism replaces the use of anti-messages by an rb-message, and
eliminates the need for an output queue at each LP. Experimental comparisons to Clustered Time Warp reveal a superior
performance on the part of XTW, while experimental results on large circuits (5-million-gate to 25-million-gate) demon-
strate that XTW scales well with both the size of a circuit and the number of processors used in the simulation.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, a new optimistic synchronization mechanism, XTW [1], is proposed in an effort to improve
the performance of Time Warp [2] in the domain of VLSI simulation. In Time Warp causality errors are cor-
rected by rolling back the state of the simulation to a previous correct state and eliminating erroneously sent
messages and their effects by the sending of anti-messages. XTW was inspired by several characteristics of dis-
crete event logic simulation. XTW has a new event scheduling algorithm, XEQ, and a new rollback mecha-
nism, rb-messages.

Discrete event simulations of circuits at the logic, behavioral and register-transfer level all exhibit the fol-
lowing characteristics:

(1) Events generated by an LP are produced in chronological order (see Fig. 1).
(2) In a parallel discrete event simulation which uses a communication facility guaranteeing FIFO order,

messages from a source LP arrive at a destination LP in chronological order (Fig. 1).
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Fig. 1. A single LP, single input channel model in PDES.
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(3) LPs are sparsely connected.
(4) The LP topology is static during the simulation.

Observations 1 and 2 show that events are naturally sorted when they are generated and propagated. These
observations are the keys to our approach and inspire us to create a new multi-level queue, XEQ, accompanied
by an event scheduling algorithm which utilizes these naturally sorted events. We make use of XEQ to create
the rb-messages mechanism in order to reduce the rollback cost in Time Warp. Observations 3 and 4 make it
feasible to implement XEQ and rb-messages in a large circuit simulations.

We explore how to utilize the naturally sorted (i.e. zero-cost) events in discrete event circuit simulation.
First, we examine a parallel logic simulator using Time Warp. One LP is an event-generator and resides on
Node 1, while another component is a NOT gate residing on Node 2. The LPs communicate with each other
via a FIFO communication facility (Fig. 1). In Fig. 1, we can see that the event scheduling cost at Node 1 is
O(1), consisting of the cost to append the generated events to the input queue and to de-queue the head event
from the input queue. At Node 2, the event scheduling cost is also O(1), consisting of the cost to append the
events coming from Node 1 to the input queue and to de-queue the head event from the input queue.

When there are a large number of LPs residing on one node and multiple input sources on one LP, the sit-
uation is totally different. Events generated by different LPs and coming from different sources have to com-
pete with each other in order to be inserted into the input queue (Fig. 2). In Time Warp, an LP can be rolled
back and generate out of order events, further complicating matters. In the next section we describe a data
structure, XEQ, which makes it is possible to preserve the zero-cost sorted events and has an O(1) event-sched-
uling cost. A new rollback mechanism, rb-messages, is proposed to reduce the rollback overhead.
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Fig. 2. A multiple LPs, multiple input channels model in PDES.
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The remaining sections of this paper are organized as follows. Section 2 contains a detailed description of
XEQ and rb-messages along with an analysis of their complexity. Section 3 contains our experimental results.
Section 4 describes related work. The concluding section of the paper follows. Appendix A contains brief
descriptions of four optimization techniques which are made use of in XTW.
2. XTW

XTW makes use of clusters of LPs. The clusters represent groups of gates which belong to the same func-
tional unit. Each cluster has a multi-level event queue, XEQ, associated with it. A cluster level event queue
(CLEQ) which is part of XEQ stores events which are sent to other clusters.

XTW is an outgrowth of Clustered Time Warp [3]. Three techniques for checkpointing and rolling back in
Clustered Time Warp are described in [3], each occupying a different point in a memory vs. execution time
trade-off. XTW makes use of one of these techniques, local rollback,local checkpoint. Local checkpoint means
that an LP saves its state only if it receives a message from an LP in another cluster. Local rollback refers to
each LP rolling back individually (as opposed to requiring that all of the LPs in a cluster roll back- another
technique in Clustered Time Warp).

This section contains a detailed description of XEQ and the rb-message mechanism, along with an analysis
of their complexity. We organize the section as follows. Section 2.1 introduces the input channel structure.
Section 2.2 presents the structure of XEQ. Section 2.3 contains the event node structure. Section 2.4 presents
the XTW event scheduling mechanism and its cost analysis. Section 2.5 presents the rb-messages mechanism.

2.1. Input channel

In XTW, a new structure, the input channel is added to LPs. Each input channel models an unique input of
a circuit component and is subject to Rule 1 as follows:

• Rule 1: Each input channel can only have one unique incoming source.

Fig. 3 shows how the input channel models the connection edge of gates.
Fig. 4 shows the structure of the input channel. Each input channel contains one input event queue (ICEQ)

and one processed event queue (ICPQ). Newly arrived events are put in the ICEQ. After an event is processed,
it is put in the ICPQ. Each event has the following time-stamps: (a) a receive-time stamp which indicates when
the event occurs (b) the send-time stamp which is the Local Virtual Time of the LP when it scheduled the
event. The LVT is the receive-time of the latest processed event.

As a result of observations 1 and 2 and Rule 1, all of the normal events must arrive at each ICEQ in chro-
nological order and be naturally sorted in the ICEQs (Fig. 4).
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Fig. 3. Input channel model.
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2.2. The structure of XEQ

Fig. 5 shows the structure of XEQ. In XEQ, there are event queues at the input channel level, the LP level
and the Cluster level.

• At the input channel level, the event queue is called the ICEQ and is implemented as a list of events sorted
in increasing time-stamp order.

• At the LP level, the event queue is called the LPEQ and is implemented as a list of events sorted in increas-
ing time-stamp order.

• At the cluster level, the event queue is called the CLEQ and is implemented as a list of time-buckets sorted
in increasing time-stamp order. A time-bucket is a list of events which have the same time-stamp.

In addition, the following event pointers are added respectively for each input channel and each LP.

• CIE: At each input channel, a CIE (current-IC-event) pointer points to the event which is de-queued from
its ICEQ and is currently stored in the LPEQ or the CLEQ. This pointer is used to remove the (pointed-to)
event from the LPEQ or the CLEQ in the event of rollback.

• CLE: At each LP, a CLE (current-LP-event) pointer points to the event which is de-queued from its LPEQ
and is currently stored in the CLEQ. This pointer is used to move the (pointed-to) event from the CLEQ
back to LPEQ in the event of a rollback at the LP.
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Fig. 5. The structure of XEQ.
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2.2.1. Rules for XEQ

The following rules are enforced in XEQ:

• Rule 2: An input channel can submit only one event to its hosting LP�s LPEQ if and only if the ICEQ is not
empty. This event has the lowest time-stamp in the ICEQ and is called the current IC event. Its pointer value is

assigned to CIE.

• Rule 3: An LP can submit only one event to its hosting cluster�s CLEQ if and only if the LPEQ is not empty.

This event has the lowest time-stamp in the LPEQ, It is called the current LP event and its pointer value is

assigned to CLE.

2.3. Event node structure

Fig. 6 shows the structure of an event node and how an event node moves around among the different levels
of the event queue.

Moving an event node from one event queue to another event queue is accomplished by changing the values
of the next and the prev pointer of the event node. No copying is necessary and as a consequence, extra mem-
ory is not required at each of the event queues. An example is depicted in Fig. 6. When e1 is moved from the
ICEQ to the LPEQ, the next and prev pointers of e1 are changed from I1,I2 to L1, L2. Similarly, moving e1 to
the CLEQ or ICPQ involves changing the next and prev pointers to C1, C2 or P1, P2.

XEQ can be viewed as a Time Warp input queue broken into small pieces. The total space cost of XEQ is
approximately the same as that of the Time Warp input queue structure.

2.4. XTW O(1) event scheduling mechanism

XEQ is used to implement a smallest time-stamp first event scheduling mechanism within clusters which has
an O(1) time complexity.

An event is scheduled and processed in XTW via the following steps:

(1) After an event is generated, it is propagated to its destination input channel and is appended to the
ICEQ.

(2) According to Rule 2, if the ICEQ is not empty it will place the smallest receive-time event to its LPEQ.
Since the ICEQ is naturally sorted, the smallest time-stamp event is the head event of the ICEQ. Thus,
we can de-queue the head event at a cost of 1.
Info
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Fig. 6. An event node structure and its movement.
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(3) The event from the ICEQ is inserted into the LPEQ. The cost of finding the correct position into which
to insert the event is Ne. Ne is the number of events stored in the LPEQ. From Rule 2, in the worst case
the maximum value of Ne is Cic, where Cic is the number of input channels at an LP.

(4) According to Rule 3, if the LPEQ is not empty, it will submit the head event to the CLEQ. The cost of
finding the correct position in the CLEQ is Ntb, where Ntb is the number of time-buckets in the CLEQ.
From Rule 3, in the worst case the maximum value of Ntb is Clp, where Clp is the constant number of LPs
in a cluster.

Putting the above observations together, the cost of scheduling an event in XTW, SC, is

SC ¼ 1þ N e þ N tb ð1Þ

In the worst case the cost of scheduling an event is

SC ¼ 1þ Cic þ Clp ð2Þ

Since both Cic and Clp are constant, the complexity of scheduling an event is O(1). In reality, Cic is far less than
Clp in most discrete event circuit models and making use of an O(logN) data structure in the CLEQ, results in
an event scheduling cost of O(logClp).

Comparing XEQ to other event-list data structures we first note that their time complexity is bounded by
the number of events in the queue. Standard event list structures and their time complexities include the cal-
endar queue (O(1)), the splay-tree (O(logn)), the red-black tree (O(logn)), the skip-list (O(logn)) and the heap
(O(logn)). XEQ has more stable performance because it is bounded by the number of LPs, which is static dur-
ing the simulation. It is not sensitive to the distribution of events as is the calendar queue. Moreover, XEQ can
be used in both parallel and sequential discrete event circuit simulation and is easily implemented.

2.5. Rollback with rb-messages

We begin with the 2 LP example shown in Fig. 1. We assume that a rollback occurs at LP1- event e8 is
generated after e12 in LP1 and is sent to LP2. In Time Warp anti-messages for e9, e10 and e12 are sent
out to annihilate the events in LP2. However, in this example LP2, upon the arrival of e8 can annihilate
e9, e10 and e12 without the necessity of anti-messages. Consequently, the output queue can be eliminated from
each LP, since no anti-messages are required to annihilate the previously sent messages.

The advantage of above scenario is obvious—we cannot only reduce rollback overhead by eliminating anti-
messages, but can also save memory by not saving any output events. We extend the simple 2 LP scenario to
the general case via the use of rb-messages.

All events in the ICEQs and the ICPQs are maintained in receive-time chronological order. From observa-
tions 1 and 2 and Rule 1, all events are also in send-time chronological order. The event which has the smallest
receive-time in an event queue is referred to as the head event and the event which has the largest receive-time
in an event queue is referred to as the tail event. We do not distinguish between messages and events in the rest
of the paper.

In Time Warp, an event causing rollback is called a straggler. After receiving a straggler, an LP must be
rolled back to a previous time point. We call the time which the LP is rolled back to the rollback-time and
call the first event executed by an LP after rolling back a rollback-event. The following Propagation Rule is
enforced:

• Rule 4: If a rollback-event is processed, the resulting output events must be propagated.

The output events which are generated by the rollback-event are called rb-messages in this paper.
When a new event, Enew, arrives at an LP, its receive-time is checked. If the receive-time of Enew is larger

than or equal to LVT it is scheduled as described in Section 2.4. If the receive-time of Enew is smaller than
LVT, it is a straggler (e.g. E6 at LP1 in Fig. 8). In this case the LP which receives the straggler is rolled back
as follows:
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(1) Step 1: The rollback-time is set equal to the receive time of Enew.
(2) Step 2: The current LP event which is pointed by CLE is moved from CLEQ to the LPEQ.
(3) Step 3: The current input channel events pointed by respective CIEs are moved from LPEQ to the head

of respective ICEQs.
(4) Step 4: Every input channel is rolled back. There are two cases to be considered:
A rb
(a) Case 1: The input channel is the one which receives the straggler. This input channel erases all
events in its ICEQ if any, and all ICPQ events which have receive-time larger than the rollback-
time.

(b) Case 2: The input channel is not the one receiving the straggler. This input channel is rolled back
by moving all ICPQ events which have receive-time larger than the rollback-time from ICPQ to
ICEQ.
(5) Step 5: The LP restores the states to the first state that has time-stamp smaller than or equal to the roll-
back-time.

(6) Step 6: Enew is enqueued at the head of the ICEQ.
(7) Step 7: Every input channel submits one event to the LPEQ if its ICEQ is not empty. LP places one event

to the CLEQ. This event is the rollback-event.
(8) Step 8: After the rollback-event is processed, according to Rule 4, the output events (rb-messages) must

be propagated to descendant LPs. There are five cases to consider when an LP receives a rb-message.
Fig. 7 depicts these cases while Fig. 8 depicts concrete examples of these five cases.

In Fig. 8 input channel 1 receives events from LP1 and input channel 2 receives events from LP2. We
assume that LP1 has two service times of 1 and 10. If LP1 processes an event at LVT 6 using service time
1, the output event will be E7 with receive-time 7 and send-time 6; if LP1 processes an event at LVT 6
using service time 10, the output event will be E16 with receive-time 16 and send-time 6.

Each of five cases is handled as follows:

(a) Case 1: In this case, the rb-message is not a straggler. The input channel which receives the rb-mes-

sage erases all of the events which have send-time larger than that of the rb-message from its ICEQ.
In Fig. 8, rb23 is propagated from LP1 to LP3 after the rollback event e22 is processed with service
time 1 at LP1.
-message rb1

Receive-time of rb1
is larger than LVT

Receive-time of rb1
is smaller than LVT

Send-time of rb1 is 
larger than that of 
the tail event of ICPQ

Send-time of rb1 is 
smaller than that of 
the tail event of ICPQ

Send-time of rb1 is 
larger than that of 
the tail event of ICPQ

Send-time of rb1 is 
smaller than that of 
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Fig. 7. Five rb-message arriving cases.
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(b) Case 2: In this case, the rb-message is a straggler. The send time of the rb-message is used to find the
cut-point in the ICPQ, such that all events with a send-time larger than the send-time of the rb-mes-
sage are after the cut-point. The LP sets the rollback-time equal to the receive-time of the first event
after the cut-point. Then the LP recursively applies the rollback procedure described in Steps 2–8
above.

In Fig. 8, rb16 represents this case. Rb16 is propagated from LP1 to LP3 after the rollback event
e6 is processed with service time 10 in LP1. Using the send-time 6 of Rb16, the cut-point is found
before E10 in ICPQ. The LP3 rollback-time is then set to receive-time 10 of E10. Fig. 9 shows the
LP3 after being rolled back by rb16.

(c) Case 3: In this case, the rb-message is a straggler. The LP sets the rollback-time equal to the
receive-time of the rb-message. Then the LP recursively applies the rollback procedure following
Steps 2–8.

In Fig. 8, rb11 represents this case. Rb11 is propagated from LP1 to LP3 after the rollback event
e10 is processed with service time 1 at LP1. In this case, LP3�s rollback-time is set to 11 after receiv-
ing rb11.

(d) Case 4: In this case, the rb-message is a straggler. The send time of the rb-message is used to find
the cut-point in ICPQ. The LP sets the rollback-time equal to the receive-time of the first event
after the cut-point. Then the LP recursively applies the rollback procedure following Steps 2–8
as described above.

In Fig. 8, we assume that the following activities happen: (1) E33 in LP3 has been processed and
LP3 is at LVT 33. (2) The rollback-event e7 is processed at LP1 with service time 10, and a rb-mes-
sage, rb17, is generated with receive-time 17 and send-time 7. (3) rb17 is propagated to LP3. When
rb17 arrives at input channel1 of LP3, its receive-time (17) is smaller than the LVT (33). Rb17 is a
straggler. Using the send-time 7 of rb17, the cut-point is found before E10 which has send-time 9.
Since the receive-time 17 of rb17 is larger than that of E10, 10, LP3 sets the rollback-time to the
receive-time of E10, i.e. 10.

(e) Case 5: In this case, the rb-message is a straggler. The LP sets the rollback-time equal to the
receive-time of the rb-message. Then the LP recursively applies the rollback procedure of Steps
2–8.
e3
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e4
rt:4
st:3

e3
rt:3
st:2

LP3 after rolled back by rb16

rb16
rt:16
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Input-Channel 1

ICPQ ICEQ

Input-Channel 2

ICPQ ICEQ

e12
rt:12
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e11
rt:11
st:10

e33
rt:33
st:32

Fig. 9. Rb-messages, an LP receives a straggler rb-message.
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In Fig. 8, rb9 represents this case. Rb9 is propagated from LP1 to LP3 after the rollback event e8
is processed with service time 1 at LP1. In this case, the LP3 rollback-time is set to 9 after receiving
rb9.
Recursively applying the roll back, send rb-messages procedure will eventually erase all incorrect compu-
tations resulting from the original incorrect message send.

From the above description, we can see that the anti-messages mechanism is eliminated in XTW, and there-
fore the output queue, which is used to store all of the anti-messages can be dispensed with as well. Since an
anti-message is saved for every output event, considerable time and space is saved with the elimination of the
output queue. This is one of the fundamental virtues of the rb-messages mechanism.
3. Experimental evaluation of XTW

In this section, three sets of experiments are presented. In Section 3.2 a set of experiments is presented to
show how much the rb-messages mechanism contributes to simulation performance. In Section 3.3, a set of
experiments is described which compares Clustered Time Warp to XTW, while in Section 3.4 a set of exper-
iments examines the scalability of XTW.

3.1. Experimental environment

The XTW–Clustered Time Warp experiments were conducted on a Myrinet network of seven personal
computers. Each computer is equipped with dual Pentium III 450 processors and 256 MB of internal memory.
The rb-messages mechanism experiments and the scalability experiments were conducted on CLUMEQ [4].
CLUMEQ is a Beowulf cluster with 128 Appro 1100i 1U nodes connected by a Myrinet. Each CLUMEQ
node has dual Athlon 1900+ processors with 3 G bytes of memory.

All of the results reported in this paper are the average values of multiple runs. XTW employs MPI, thereby
guaranteeing a FIFO order of message communication.

The following metrics are made use of for our performance evaluation:

• Simulation Time: defined as the elapsed real time for the simulation. The partitioning time is included in all
XTW results.

• Speedup: defined as the ratio of the simulation time of a simulator using one processor to the simulation
time of the same simulator using more than one processor.

• Throughput: defined as the number of processed events per second.
• Goodput: defined as the number of committed, processed events per second.
• Committed rate: defined as the ratio of the Goodput to the Throughput.

3.2. Rb-messages mechanism

In XTW, the rb-messages mechanism replaces the anti-message mechanism. In order to determine how
much the rb-messages mechanism alone contributes to the simulation performance, we created a simulator
which is identical to XTW except for its use of anti-messages, and compared its performance to that of rb-mes-
sages. XEQ is used in both simulators along with the same event scheduling mechanism. The Simulation Time

Ratio, defined as the ratio of the simulation time using anti-messages to the simulation time using rb-messages,
is the metric used for this comparison.

Fig. 10 shows that XTW using rb-messages has a 1.2–2.3 relative speedup compared to XTW using anti-
messages. In Fig. 10, the 10M circuit simulation time ratio jumps from 1.3 with 12 processors to 2.3 with 16
processors. We noted that with 12 processors, both the rb-message simulator and the anti-message simulator
exhibit considerable memory swapping. With 16 processors, because the rb-message simulator eliminates the
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output queue it consumes less memory—a negligible amount of memory swapping was observed. Neverthe-
less, the anti-message simulator with 16 processors has the same amount of memory swapping as with 12 pro-
cessors. Thus the simulation time ratio jumps to 2.3 with 16 processors. When more processors are used,
memory swapping is reduced in both the rb-message simulator and the anti-message simulator, and the sim-
ulation time ratio is dominated by the efficiency difference between the mechanisms.

3.3. XTW vs. Clustered Time Warp

In this section, we present results comparing the performance of XTW and Clustered Time Warp [3,5]. We
make this comparison because Clustered Time Warp is oriented toward logic simulation, and exhibits a supe-
rior performance to Time Warp [3] in this domain.

In our experiments, the local roll back, local checkpoint mechanism is made use of in Clustered Time Warp.
Local checkpoint means that an LP saves its state only if it receives a message from an LP in another cluster.
Local rollback refers to each LP rolling back individually, i.e. the same technique used in Time Warp.

We conducted experiments on various benchmark circuits. The results show that Clustered Time Warp has
the best performance on circuit s90k—a combination circuit which consists of ISCAS89 benchmark circuits
s38584 and s38417, and has around 90,000 gates. We present the XTW–Clustered Time Warp comparisons
making use of s90k. Both Clustered Time Warp and XTW use the same partitioning algorithm. The time
to perform the partitioning is not included in the simulation time.

Since Clustered Time Warp crashes when more than 3 processors are used in a simulation, all of the Clus-
tered Time Warp results are presented with up to 3 processors.

3.3.1. Simulation time

Fig. 11 shows the simulation time vs. the number of processors. The results demonstrate that XTW outper-
forms Clustered Time Warp in all parallel simulations with any number of processors.

3.3.2. Goodput and committed rate

Fig. 12 depicts the goodput vs. the number of processors. Fig. 13 shows the committed rate vs. the number
of processors. Fig. 12 shows that XTW has an almost linear increase in the goodput, while Clustered Time
Warp has a relatively flat one. Fig. 13 reveals the reason behind this phenomenon—XTW has a higher com-
mitted event rate than Clustered Time Warp. Moreover, XTW has an almost flat reduction in the committed
event rate when more processors are used, while Clustered Time Warp has a relatively steep reduction in its
committed event rate. These results indicate that XTW has a more efficient rollback mechanism.
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3.3.3. Speedup

Fig. 14 shows speedup vs. the number of processors. Although XTW has a much larger goodput than Clus-
tered Time Warp, our results indicate that XTW has a larger speedup than Clustered Time Warp in all the
cases. Moreover, XTW has an almost linear increase in speedup while Clustered Time Warp has a relatively
flat one. This clearly demonstrates that XTW has a smaller overhead than Clustered Time Warp.

3.4. XTW scalability experiments

In this section we explore the scalability of XTW with respect to the size of the circuit and the number of
processors. Three circuits (5-million-gate, 10-million-gate and 25-million-gate) are simulated on CLUMEQ.

There is an absence of large benchmark circuits described as gate-level netlists in the public domain. Con-
sequently, we developed a hierarchical mechanism to generate the synthetic circuits which we used in the
experiments described in this section.
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The benchmark circuits are generated as follows:

(1) A module-level netlist, consisting of real world circuits (which can be described in Verilog or VHDL) is
created. This module-level netlist is used to describe the connections between the modules of the bench-
mark circuit.

(2) Each node (module) of the module-level netlist is instantiated into a gate-level netlist.

By making use of this hierarchical approach, we can generate a synthetic benchmark circuit of any size. The
design of a large circuit follows a divide and conquer approach, in which the design is broken up into a col-
lection of individual modules and in which the interfaces between individual modules are clearly defined. As a
consequence of this approach, most communication occurs within (as opposed to between) the modules.
Based upon this observation, we made use of a straightforward DFS-module partitioning algorithm in our
experiments-the algorithm partitions the modules of the circuit design. One shortcoming of this approach
is that it can result in an unbalanced partition, i.e. different numbers of gates can be assigned to different
computers.



Table 1
Goodput (events/s) vs. number of processor

Number of nodes 5-Million-gate 10-Million-gate 25-Million-gate

58 7979605.22 7409170.01 5127921.82
52 7398898.55 6640353.16 4224213.26
48 6076230.10 6116893.97 3073751.46
44 5642259.97 5792584.54 2596966.32
40 5409749.92 4753970.33 1890728.53
36 4823315.03 4233274.93 1442845.16
32 4214269.92 3581280.84 1223729.46
28 3988396.51 3031265.69 1038491.47
24 3197840.34 2194713.49 848558.51
20 2503215.12 1642900.35 1005911.43
16 1719632.75 891090.69 688868.01
12 1227617.98 454356.90 N/A
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Table 1 shows the goodput of three circuits simulated on 12–58 CLUMEQ nodes. The simulations of the
25-million-gate circuit on 12 nodes could not be completed. From the data in Table 1, we see a consistent trend
of an increasing goodput with the number of processors. The goodput decreases as the size of circuit increases,
a consequence of a larger number of events in a larger circuit imposing a heavier load on the communications
network and the memory hierarchy.

Since the 25-million gates circuit can only be simulated with 16 or more processors, we use the simulation
time with 16 processors as the base with which to calculate the speedups. Fig. 15 shows the speedup vs. the
number of processors. In Fig. 15, we see that XTW scales almost linearly with the number of processors
and scales well with the size of the circuits.

4. Related work

In append-queues [6], the events from a sender LP are appended to a sender-queue associated with its Id at
the receiver. A schedule-list which sorts the head element of each sender queue is maintained for event sched-
uling. An event that has been scheduled and processed is appended to a processed-queue associated with the
event�s receiver Id. Aggressive cancellation is used in append-queues. Append-queues was compared with a
multi-list algorithm using the WARPED [7] simulation kernel. Append-queues was observed to have a lower
cost for normal event scheduling and a higher cost for rollback event scheduling. The extra scheduling cost for
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rollback happens in event re-insertion. In append-queues, processed-queues have no relationship to sender-
queues, so each rolled back event has to be re-inserted one by one from a processed-queue back to a respective
sender-queue. This causes an extra scheduling cost compared to the multi-list algorithm. In the XEQ event-list
structure, a new event is appended to an event queue in an input channel. After the event is processed, it is
appended to the processed-queue in the same input channel (Fig. 4). When rollback happens in XTW, only
one search operation is needed in each processed-event queue to find the cut-point. The event queue is
appended to the end of processed-queue. The event after the cut-point becomes the head element of the event
queue (Section 2.1). Thus, the XEQ structure does not have the extra scheduling cost in rollback which is a
part of append-queues. Moreover, the new rb-message mechanism in XTW further reduces the rollback cost.

5. Conclusion

In this paper, two new mechanisms for improving the efficiency of distributed logic simulation were intro-
duced. The first, XEQ, is a multi-level input queue which lies behind an O(1) event scheduling algorithm. The
second, rb-messages, reduces the rollback costs. It also reduces the cost of saving events by eliminating the
output queue at each LP. Both of these mechanisms assume the use of clusters of LPs. These mechanisms were
combined with a version of Clustered Time Warp to produce a simulation framework which we call XTW.

The cost of these algorithms was analyzed in theory. Comparisons to Clustered Time Warp revealed that
XTW has a far superior performance. Clustered Time Warp out-performs Time Warp in logic simulation.
Experimental comparisons to a sequential version of XTW suggested that it is scalable, while experiments with
large, synthetic circuits further support this conclusion.

It is certainly desirable to make use of XTW on large, real circuits and to modify it for use in behavioral and
mixed behavioral/logic simulations. In addition, the development of efficient partitioning and/or load balanc-
ing algorithms is vital for the further development of XTW. We hope to continue our work in these directions.

Appendix A. Optimization techniques for parallel logic simulation

Many optimization techniques for Time Warp have been developed in order to attack different overheads,
to stabilize Time Warp or to simply add useful features. We describe four of these techniques which are made
use of by XTW:

(1) Rollback Relaxation
(2) Clustered Time Warp
(3) Bounded Time Window
(4) Event-lookahead Time Warp.

A.1. Rollback relaxation

Rollback relaxation is a novel technique for attacking the state-saving overhead in Time Warp [8]. To apply
rollback relaxation, LPs are classified into Time Warp categories: memoryless and memoried LPs. A memoried
LP is actually an ordinary LP in Time Warp. The output of a memoried LP is a function of both input values
and internal state values. In such LPs event processing may use internal state information from previous event
processing activities in order to produce an output event. Thus a state-saving mechanism must be implemented
in a memoried LP in order to enable the restoration of state variables in case of a rollback. A memoryless LP�s
output behavior is completely determined by the values of its inputs. Event processing by a memoryless LP
will never use internal state information from past event processing to produce an output event.

All memoryless LPs qualify for rollback relaxation. In rollback relaxation, no state is saved during process-
ing. When a straggler arrives, the LP reconstructs any required input state from the events of input queues.
Wilsey et al. proposed the use of multiple input queues in order to accelerate the search on each input variable
for state reconstruction.
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In logic simulation, the gates (AND, OR and XOR etc.) can be modeled as memoryless LPs. Obviously, the
rollback relaxation mechanism can reduce the state-saving overhead by a considerable amount if there are a
large number of memoryless LPs in the simulation.

A.2. Clustered Time Warp

Clustered Time Warp (CTW) is a hybrid system in which LPs are scheduled sequentially within clusters,
and clusters are synchronized by Time Warp [9]. Clustered Time Warp has the following three variations:

• Clustered Rollback–Clustered Checkpoint (CRCC): In this technique, all of the LPs in a cluster are rolled
back upon the arrival of a straggler. This is the most conservative approach and requires less memory than
the Time Warp other checkpointing techniques. Because all of the processes in a cluster are rolled back, the
performance of the simulation is decreased.

• Local Rollback–Local Checkpoint (LRLC): Individual LPs perform their own rollbacks as in Time Warp.
Checkpoints are taken upon the arrival of a message from another cluster. This is the closest of the tech-
niques to a pure Time Warp and performs fairly well in terms of execution time. However, the price to pay
is memory.

• Local Rollback–Clustered Checkpoint (LRCC): This is the midway between CRCC and LRLC and gives
performance results between CRCC and LRLC in terms of both execution time and memory consumption.

Experimental results [9] indicate that the LRLC approach is the fastest and that it consumes more memory
then the other approaches. Since we apply other techniques to reduce memory usage, we make use of the
LRLC approach in order to minimize the simulation time.

A.3. Event-lookahead Time Warp

The Event-lookahead Time Warp (ETW) [10] technique reduces unnecessary intermediate events by combin-
ing multiple input events which arrive at each gate within the same clock cycle and generating one output
event for these combined events. This is done instead of generating individual output event(s) for each input
event. Clearly, more events executing in the same clock-cycle results in a better efficiency. However, in unit-
delay logic simulation, a one unit time lookahead is too small to engage large numbers of events within each
clock-cycle. Thus, ETW has a limited effect on unit-delay logic simulations. It should be noted that all of the
experiments described in this paper are unit-delay simulations.

A.4. Bounded Time Window

It is possible for an overly optimistic LP or cluster to be rolled back and thereby cause many of its descen-
dants to roll back as well. Moreover, this increased number of rollbacks may cause Time Warp to be unstable.
A simple approach to preventing some LPs from advancing too far ahead of the pack in is to bound how far
one LP can advance ahead of the others in virtual time. The Bounded Time Window (BTW) mechanism is an
example of this approach [11,12].

A variation of this approach is to define the window in terms of the number of processed, uncommitted
events (NPUE) that may reside at an LP. In Breathing TimeWarp [13], the user must specify this NPUE param-
eter. An LP is blocked when the number of processed events at the LP with time-stamp larger than GVT reaches
NPUE. The LP becomes unblocked when the GVT advances and some of these events are committed.
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