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Abstract— In this paper, a new event scheduling mechanism
XEQ and a new rollback procedure rb-messages are proposed for
use in optimistic logic simulation. We incorporate both of these
techniques in a simulator XTW. XTW groups LPs into clusters,
and makes use of a multi-level queue,XEQ, to schedule events in
the cluster. XEQ has an O(1) event scheduling time complexity.
Our new rollback mechanism replaces the use of anti-messages
by an rb-message, and eliminates the need for an output queue
at each LP. Experimental comparisons to Time Warp reveal a
superior performance on the part of XTW, while comparisons
to a sequential version of XTW reveal good speed-up.

1 INTRODUCTION

In the competitive arena of VLSI design, the size of circuits
has increased as Moore’s law predicted -the transistor density
on integrated circuits doubles every couple of years. One result
of this is the steadily increasing computational requirements
for circuit simulation and verification. Parallel and distributed
simulation has the potential to provide a solution to this
problem.

The fundamental problem in distributed simulation is one
of synchronizing the processes involved in the simulation.
The two major approaches to synchronization are referred to
as conservative and optimistic. We focus upon the optimistic
algorithms in this paper, of which Time Warp [1] is the most
visible. In Time Warp (TW) causality errors are corrected by
rolling back the state of the simulation to a previous correct
state and eliminating erroneously sent messages and their
effects sending anti-messages.

VLSI simulation is a low granularity and tightly coupled
computational task which poses a significant challenge to the
development of a distributed simulator.

Clustered Time Warp (CTW) [2], [3] was developed with
logic simulation in mind. As the name implies, in CTW
LPs (representing gates) are gathered into clusters. Several
techniques were developed for use with CTW to obtain check-
points and to roll back the LPs in a cluster. The algorithms
described in this paper are intended for use with clusters of
gates as well, and are an outgrowth of CTW.

A number of other efforts have been directed at VLSI
simulation including [4] which employ optimistic algorithms
and [5], which employ conservative algorithms. [5] contains a
good survey of work before 1995.

In this paper, a new optimistic synchronization mecha-
nism, XTW, is proposed to improve the performance of TW.
XTW was inspired by characteristics of discrete event circuit

simulation. This new mechanism consists of a new event
scheduling algorithm –XEQ– and a new rollback mechanism
– rb-message. XEQ has O(1) cost bounded on the number
of simulated entities (not on the number of events).Rb-
message not only reduces the cost of annihilating previously
sent messages, but also dramatically decreases the number of
anti-messages – up to 13 times fewer rb-messages then anti-
messages.

The remaining sections of the paper are organized as
follows. Section2 describes the motivation for XTW. Section
?? contains a detailed description of XEQ and rb-messages,
along with an analysis of their complexity. Section 4 contains
our experimental work, in which XTW is compared to CTW
as well as to a sequential version of XTW. The concluding
section of the paper follows.

2 MOTIVATION FOR XTW

Discrete event simulations of circuits, whether at the logic,
behavioral or register-transfer level, share certain characteris-
tics, among which are:

1) Events generated by an LP are produced in chronological
order(See figure 1).

2) An LP receives events from another LP in chronological
order(See figure 1).

3) In a parallel discrete event simulation which uses a
communication facility guaranteeing FIFO order, the
messages(events) from a specific LP(source) arrive at
the destination LP in chronological order.

4) LPs aresparsely connected.
5) The LP topology is static during the simulation.

Observations 1, 2 and 3 show that events are naturally sorted
with “zero-cost” when they are generated and propagated.
These observations are the keys to our approach and inspire
us to create a new event scheduling algorithm, XEQ, which
utilizes these “zero-cost” sorted events. We make use of XEQ
to create therb-message mechanism in order to reduce the
rollback cost in TW. Observations 4 and 5 make it feasible to
implement XEQ and rb-message in large circuit simulations.

2.1 Utilizing “zero-cost” sorted events

In this section, we will explore how to utilize “zero-cost”
sorted events in discrete event circuit simulation.

First, we examine a simple situation– a parallel discrete
event circuit logic simulation which has two components



residing on two simulation nodes. One component is an event-
generator and resides on Node1, while another component is
a NOT gate residing on Node2. Each component is modeled
as an LP and communicates with each other via FIFO order
communication facility.(See figure 1). In figure 1, we can see

Node1 Node2

input-queue

OutputQueue

input-queue

OutputQueuee12

e18

e6 e9

e6 e9

event-generator LP NOT gate LPLP1 LP2

e10

e30 e10 e12

Fig. 1. a single LP, single InCh model in PDES

that the event scheduling cost at Node1 is O(1), consisting of
the cost to append the generated events into the input queue
and to de-queue the head event from input-queue. At Node2,
the event scheduling cost is also O(1), consisting of the cost
to append the events coming from Node1 to the input-queue
and to de-queue the head event from the input-queue. In this
example, observations 1, 2 and 3 are made use of to give an
O(1) cost event scheduling algorithm.

When there are a large number of LPs residing in one node
and multiple input sources at one LP, the situation is totally
different. Events generated by different LPs and coming from
different sources have to compete with other to be inserted into
the input-queue.(see figure 2) The naturally occurring “zero-
cost” sorted events are lost by this competition. In TW, an LP
can be rolled back and generate out of order events, further
complicating matters. In the next section we describe a data
structure, XEQ, which makes it is possible to preserve the
“zero-cost” sorted events and has an O(1) event-scheduling
cost. A new rollback mechanism, rb-message, is proposed to
make it possible to utilize “zero-cost” events to reduce the
rollback overhead. We call the Time-Warp simulation system
which implements XEQ and rb-messages XTW.
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Fig. 2. a multiple LPs, multiple InChs model in PDES

3 XTW

XTW makes use of clusters of LPs. The clusters are
intended to represent the grouping of gates according to the
functional units to which they belong. Each cluster has a multi-
level event queue,XEQ, associated with it whose purpose is
event scheduling. A cluster level event queue (CLEQ) is part
of XEQ and stores events which are sent to other clusters.
XTW is an outgrowth of CTW [?]. Three techniques for
checkpointing and rolling back in CTW are described in [?],
each occupying a different point in a memory vs. execution

time trade-off. XTW makes use of one of these techniques,
local rollback,local checkpoint. Local checkpoint means that
an LP saves its state only if it receives a message from an
LP in another cluster. Local rollback refers to each LP rolling
back individually, as opposed to requiring all of the LPs in a
cluster to roll back (one of the techniques in CTW).

This section contains a detailed description of XEQ and
the rb-message mechanism, along with an analysis of their
complexity. We organize the section as follows. Section 3.1
introduces theInput-Channel structure. Section 3.2 presents
the structure ofXEQ. Section 3.4 presents the XTW event
scheduling mechanism and its cost analysis. Section 3.5
presents therb-messages mechanism and its cost analysis.

3.1 Input-Channel

In XTW, a new structure,theinput-channel(InCh) is added
to LPs. Each InCh models an unique input of a circuit
component and is subject toRule 1 as follows:

Rule 1: Each InCh can only have one unique incoming source.

Figure 3 shows how theInput-Channel models the connec-
tion edge of gates. In figure 3, G1 has two inputs from G2
and G3. G2 has one input. G3 has one input from itself and
another from others. Each input is modeled as an InCh.
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Fig. 3. Input Channel Model
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Fig. 4. The Structure of Input Channel

Figure 4 shows the structure of InCh. Each InCh con-
tains one input event queue(ICEQ) and one processed event
queue(ICPQ). Newly arrived events are put in the ICEQ. After
an event is processed, it is put in the ICPQ. Each event has two
timestamps: a)receive-time stamp is the time stamp indicating
when the event occurs(conventional definition of time stamp)
b)the send-time stamp is the Local Virtual Time(LVT) of the
LP when it scheduled E . LVT is the virtual time of the latest
processed event.

As a result of observations 1, 2, and 3 (theFIFO commu-
nication assumption) andRule 1, all of the events must arrive



at each ICEQ in chronological order and be naturally sorted
in the ICEQs(see Figure 4).

3.2 The Structure of XEQ
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Fig. 5. The Structure of XEQ

Figure 5 shows the structure of XEQ. In XEQ, there are
event queues at the Input-Channel level, the LP level and the
Cluster level.

� At the Input-Channel level, the event queue is called the
ICEQ and is implemented as a list of events sorted in
increasing timestamp order.

� At the LP level, the event queue is called theLPEQ and
is implemented as a list of events sorted in increasing
timestamp order.

� At the cluster level, the event queue is called theCLEQ
and is implemented as a list oftime-buckets sorted in
increasing timestamp order. Atime-bucket is a list of
events which have the same time-stamp.

In addition, the following two event pointers are added respec-
tively for eachInput-Channel and each LP.

� CIE: At each Input-Channel, a CIE(current-IC-event)
pointer points to the event which is de-queued from its
ICEQ and is currently stored in the LPEQ or the CLEQ.
This pointer is used to remove the (pointed-to) event from
the LPEQ or the CLEQ in the event of rollback.

� CLE: At each LP, a CLE(current-LP-event) pointer points
to the event which is de-queued from its LPEQ and
is currently stored in the CLEQ. This pointer is used
to move the (pointed-to) event from the CLEQ back to
LPEQ in the event of a rollback at the LP.

3.2.1 Rules for XEQ: The following rules are enforced in
XEQ:

� Rule 2: An InCh can submit only one event to its hosting
LP’s LPEQ if and only if the ICEQ is not empty. This
event has the lowest time-stamp in the ICEQ and is called
the current IC event. Its pointer value is assigned to CIE.

� Rule 3: An LP can submit only one event to its hosting
cluster’s CLEQ if and only if the LPEQ is not empty. This
event has the lowest time-stamp in the LPEQ, It is called
the current LP eventand its pointer value is assigned to
CLE.

3.3 Event Node Structure, Space Cost of XEQ

Figure 6 shows the structure of an event node and how
an event node moves around among the different levels of the
event queue.
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Fig. 6. an event node structure and its movement

Moving an event node from one event queue to another
event queue is accomplished by changing the values of the
next and the prev pointer of the event node. No copying is
necessary and as a consequence, extra memory is not required
at each of the event queues. An example is depicted in figure
6. When e1 is moved from the ICEQ to the LPEQ, the only
operation necessary is changing the next and prev pointer of
e1 from I1,I2 to L1, L2. Similarly, moving e1 to the CLEQ or
ICPQ just involves changing the next and prev pointer value
to C1, C2 or P1, P2.

XEQ can be viewed as a Time Warpinput queue broken into
small pieces. The total space cost of XEQ is approximately
the same as that of the Time Warpinput queue structure.

3.4 XTW O(1) Event Scheduling Mechanism

XEQ is used to implement a smallest timestamp first event
scheduling mechanism within clusters which has an O(1) time
complexity.

An event is scheduled and processed in XTW via the
following steps:

1) After an event is generated, it is propagated to its
destination InCh and is appended into the respective
ICEQ.

2) According toRule 2, if the ICEQ is not empty, it will
submit the smallest receive-time event to its LPEQ.
Since the ICEQ is naturally sorted, the smallest times-
tamp event is just the head event of ICEQ. Thus, we can
simply de-queue the head event at a cost of 1.

3) The event from the ICEQ is inserted into the LPEQ. The
cost of finding the correct position into which to insert
the event is��. �� is the number of events stored in
LPEQ. Based onRule 2, in the worst case, the maximum
value of�� is ���, where��� is the number of InChs
at an LP.

4) According toRule 3, if the LPEQ is not empty, it will
submit the head event to its CLEQ. The cost of finding
the correct position in the CLEQ is���, where��� is
the number of time-buckets in the CLEQ. Based onRule
3, in the worst case, the maximum value of��� is ���,
where��� is the constant number of LPs in a cluster.

Putting the above observations together, the cost of scheduling
an event in XTW, SC, is:

�� � � ��� ���� (1)



In the worst case the cost of scheduling an event is :

�� � � � ��� � ��� (2)

Since both��� and ��� are constant, the complexity of
scheduling an event is O(1). In reality,� �� is far less than
��� in most discrete event circuit models and making use of
an O(lgN) data structure in the CLEQ, results in an event
scheduling cost of���������.

Comparing XEQ other event-list data structures we first
note that their time complexity is bounded by the number
of events in the queue. Standard event list structures and
their time complexities include the calendar queue O(1), the
splay-tree(�������), the red-black tree(�������), the skip-
list(����� ��) and the heap(�������)r. XEQ has more stable
performance because it is bounded by the number of LPs,
which is static during the simulation. It is not sensitive to
the distribution of events as is the calendar queue. Moreover,
XEQ can be used in both parallel and sequential discrete event
circuit simulation and is easily implemented.

3.5 Rollback with Rb-messages

3.5.1 Motivation for the Rb-messagesMechanism: We be-
gin with the 2-LP example shown in figure 1. This time, we
assume that a rollback occurs in LP1- event e8 is generated
after e12 in LP1 and is sent to LP2. In Time-Warp, anti-
messages for e9, e10 and e12 will be sent out one by one to
annihilate the events in LP2. However, in this example, LP2,
upon the arrival of e8 can annihilate e9, e10 and e12 without
the necessity of anti-messages. Consequently, the output-queue
can be eliminated from each LP, since no anti-messages are
required to annihilate the previous sent messages.

The advantage of above scenario is obvious – we can
not only can reduce rollback overhead by eliminating anti-
messages, but can also save memory by not saving any output-
events. We extend the simple 2-LP scenario to the general case
via the use ofrb-messages, described in the following section.

3.5.2 The Rb-messagesMechanism : In XTW, each event
has two timestamps: a)receive-time stamp is the time stamp in-
dicating when the event occurs(conventional definition of time
stamp) b)the send-time stamp is the Local Virtual Time(LVT)
of the LP when it scheduled E. All events in ICEQs and ICPQs
are maintained in receive-time order. We call the event has
the smallest receive-time in an ICEQ or an ICPQ as the head
event, and the event has the largest receive-time as the tail
event. We define aninterted-point as a position that a new
event is inserted into, such that all the events with receive-
time smaller than the new event is before theinterted-point
and all events with receive-time larger than the new event is
after theinsertd-point. If there is any event after theinterted-
point, the first event after theinterted-point is called as the
after-inserted-point-event.

In Time-Warp, an event causing rollback is called a strag-
gler. In XTW, a new event can arrive at aninput-channel in one
of the six cases as depict in fig 7.straggler is an event which
has a receive-time smaller than the Local Virtual Time(LVT) or
has a send-time smaller than the send-time of the tail event of

the ICPQ in its arrivinginput-channel. We do not distinguish
between “messages” and “events” in the rest of the paper.
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Fig. 7. rb-messages case analysis
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Fig. 8. rb-messages, an LP receives a straggler rb-message

Figure 8 depicts examples of therb-messages mechanism.
We describe how therb-messages mechanism works in the
XTW rollback procedure as follows:

After an event,Ev, arrives at an LP, it is handled in two cases
as if it is a straggler or not.

If Ev is not a straggler, there are two cases:
1) Ev is not a straggler and its send-time is larger than the

ICEQ tail event’s send-time, e.g. e55 in figure 8. Ev then
is scheduled in a normal way as described in section3.4.

2) Ev is not a straggler, but its send-time is smaller than
the send-time of ICEQ’s tail event, e.g. e54 in figure 8.
Then Ev searches the ICEQ from tail to head to find the
“insert-point” which is the position after the first event
that has the send-time smaller than or equal to the Ev’s.
The“insert-point” could be at head of event. All events
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Fig. 9. rb-messages, an LP receives a no-straggler rb-message

that have send-time larger than Ev’s are deleted from
ICEQ. Ev then will be scheduled in a normal way as
described in section3.4.

If Ev is a straggler, then XTW rollback procedure works in
following steps:

1) Thecurrent LP event which is pointed by CLE is moved
from CLEQ to the LPEQ.

2) The current InCh events pointed by respective CIE is
moved from LPEQ to the head of respective ICEQs.

3) The input-channel which receives the straggler is rolled
back and set the LProllback-time accordingly as in
following cases:

a) Ev has the receive-time smaller than LVT and has
the send-time larger than the send-time of the tail
event in ICPQ, e.g., e37 at IC1 figure 8. Then the
input-channel, which Ev arrives at, erases all events
in its ICEQ. The LProllback-time is set equal to
the receive-time of Ev (See figure 8).

b) Ev has the receive-time smaller than LVT and has
the send-time smaller than the send-time of last
event in ICPQ, e.g., e36 at IC1 in figure 8. Then
Ev searches the ICPQ from tail to head to find
the “insert-point”. We call the first event after the
“insert-point” as Ei, such as, e33 at IC1. The LP
rollback-time will be set in following two cases:
i) The receive-time of Ei is larger than the

receive-time of Ev, then the LProllback-time
is set equal to the receive-time of Ev. (See

figure 9, LP1 at LVT 26)
ii) The receive-time of Ei is smaller than the

receive-time of Ev, then the LProllback-time
is set equal to the receive-time of Ei.

In both cases, theinput-channel, which Ev arrives
at, erases all events in its ICEQ and all events after
the“insert-point” in ICPQ. It should be noted that
Ei is erased as well. (See figure 9, LP1 at LVT 26).

c) Ev has the receive-time larger than LVT, but has
the send-time smaller than the send-time of the
tail event in ICPQ, e.g., e47 at IC1 in figure 8.
Then Ev searches the ICPQ from tail to head to
find the“insert-point”. The LProllback-time is set
equal to the receive-time of Ei. Theinput-channel,
which Ev arrives, erases all events in its ICEQ and
all events after the“insert-point” in ICPQ. (See
figure 9., LP1 at LVT 12)

4) After the rollback-time is set, all input-channels which
do not receive the straggler are rolled back by moving
events which has receive-time smaller than or equal to
the rollback-time from ICPQ to ICEQ.

5) The LP restores the states to the first state that has time-
stamp smaller than or equal to therollback-time.

6) Every input-channel submit one event to LPEQ if its
ICEQ is not empty. LP submits one event to CLEQ.
We call the first event submitted by an LP after rolling
back as a “rollback event”. In XTW the following
“Propagation Rule” is enforced in addition to the normal
propagation rule:

� Rule 4: If a rollback event is processed, the output
events must be propagated.

The output-events, which are generated by therollback
event and forced to propagate, are mainly used to
propagate the rollback and thus called as rb-messages
in this paper. Rb-messages are normal output events and
will be handled by subordinated LPs in the same way
as described above.

Recursively applying the above “roll back, send rb-
messages” procedure will eventually erase all incorrect com-
putations resulting from the original incorrect message send.

3.5.3 Eliminating the Output Queueand the anti-messages:
From the above description, we can see that theanti-messages
mechanism is eliminated in XTW, and therefore theoutput
queue, which is used to store all of the anti-messages, can be
obviated in XTW as well. Since an anti-message is saved for
every output event, considerable time and space are expected
to be saved with the elimination of theoutput queue. This is
one of the fundamental virtues of therb-messages mechanism.

4 EXPERIMENTAL EVALUATION OF XTW

Two sets of experiments are presented in this section:

� In subsection 4.2, a set of experiments compares CTW
and XTW.

� In subsection 4.5, a set of experiments compares XTW
and a sequential XTW simulator(XSS).



4.1 Experimental Environment

All experiments were conducted on a network of seven
personal computers. Each computer is equipped with dual
Pentium III 450 processors and 256 Megabytes of internal
memory. The network is connected by a Myrinet switch which
operates at one Gigabyte per second. XTW employs MPI
as the software communication platform which guarantees a
FIFO order in communication. All of the XTW experimental
data presented is the average value from at least 100 runs,
while each set of CTW data is the average value from at least
10 runs.

It should be noted that both XTW and CTW use one
dedicated processor as a managing node which does data
collection and GVT computing, however, none simulation
computing is executed on this managing node. To make the
experiment results clearer to illustrate the parallel trend, this
managing node is not counted in the number of processors in
all experiments result.

4.2 XTW vs. Time Warp (CTW)

In this subsection, we present results comparing the per-
formance of XTW and CTW [?] [3]. We compare XTW to
CTW because CTW is oriented towards logic simulation, and
exhibited a superior performance to Time Warp [?] in this
domain.

In our experiments, thelocal roll back, local checkpoint
mechanism is made use of in CTW. Local checkpoint means
that an LP saves its state only if it receives a message from an
LP in another cluster. Local rollback refers to each LP rolling
back individually, i.e. the same technique used in Time Warp.

We conducted experiments on various benchmark circuits.
The results show that CTW has the best performance on the
circuit s90k – a combination benchmark circuit which consists
of two s38584 and two s38417 and has around 90,000 gates. In
the following, we present the XTW-CTW comparisons making
use of s90k.

The following metrics are used for the performance com-
parison:

� Simulation Time: Simulation Time is defined as the
elapsed real time for the simulation. The averageSimula-
tion Time across the participating processors is presented.

� Speedup: Speedup is defined as the ratio of the simulation
time of a simulator using one processors and the simu-
lation time of the same simulator using more than one
processors.

� Throughput: Throughput is defined as the number of
processed events per second.

� Good-put: Good-put is defined as the number of commit-
ted processed events per second.

� Committed Rate: Committed Rate is defined as the ratio
of the Good-put and theThroughput.

Both CTW and XTW use the same partitioning algorithm.
The time to perform the partitioning is not included in the
simulation time. Since CTW crashes when more than 3
processors are used in a simulation, all of the CTW results
are presented with up to 3 processors.

4.2.1 Simulation Time: Figure 10 showsthe simulation
time vs. the number of processors. The results demonstrate
that XTW outperforms CTW in all parallel simulations with
any number of processors.
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4.3 Good-put and Committed Rate

Figure 11 depicts the good-put vs. the number of proces-
sors. Figure 12 shows the committed rate vs. the number of
processors. Figure 11 shows that XTW has an almost linear
increase in the good-put, while CTW has a relatively flat one.
Figure 12 reveals the reason behind this phenomenon- XTW
has a higher committed event rate than CTW. Moreover, XTW
has an almost flat reduction in committed event rate when
more processors are used, while CTW has a relatively steep
reduction in its committed event rate. These results indicate
that XTW has a more efficient rollback mechanism.
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Fig. 11. good-put vs. the number of processors

4.4 Speedup

Figure 13 showsspeedup vs. the number of processors. It
should be noted that the larger the throughput of a simulator,
the harder it is to obtain a goodspeedup. Although XTW has a
much larger goodput than CTW, the results indicate that XTW
still has a biggerspeedup than CTW in all the cases. Moreover,
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Fig. 12. committed events rate vs. the number of processors

XTW has an almost linear increase inspeedup while CTW has
a relatively flat one. This clearly demonstrates that XTW has
a smaller overhead than CTW.
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4.5 XTW vs. Sequential Simulator

***********You need to change NTW to CTW in figures
10 and 11. Also, how does the maximum simulation time
across all of the processors differ from the simulation time?
If there is a difference, why are you using the maximum
simulation time?****************

In this subsection, several benchmark circuits are simulated
by both XTW and a sequential simulator. The purpose of these
experiments is to compare the performance between parallel
and sequential simulations.

4.5.1 The Sequential Simulator: The sequential simulator
actually is a sequential version of XTW which implements
the same event-scheduling and logic simulation algorithms as
does parallel XTW. The sequential simulations are processed
on one of the cluster PCs with a single processor.

4.5.2 Benchmark Circuits and Metrics: Three benchmark
circuits were used in the experiments. They are as follows:

� s38584 circuit with a total of 20996 gates
� s180k consisted of four s38584 and four s38417 circuits

with a total around 180,000 gates

� s360k consisted of eight s38584 and eight s38417 circuits
with a total around 360,000 gates

The performance metrics which we employ are defined as
follows:

� max simulation time is defined as the maximum elapsed
real time across the participating processors for each
simulation. The partitioning time is included inmax
simulation time.

� peak memory usage is defined as the maximum peak
memory usage across the participating processors for
each simulation.

� absolute speedup is defined as the ratio of the sequential
simulation time to themax simulation time for a parallel
execution.
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Fig. 14. max simulation time vs. number of processors

4.5.3 Max Simulation Time, Absolute Speedup and Good-
put: Figure 14 shows themax simulation time vs. the number
of processors. The one processor point is the result of the
sequential simulator. In Figure 14, we can clearly see a trend
that the max simulation time decreases as the number of
processors increases. Moreover, this trend is enhanced as the
size of circuit and the number of vectors are increased (e.g.
simulations for s180k and s360k). However, themax simula-
tion time of simulations for s38584, which is a relatively small
circuit, only decreases slightly as the number of processors
increases and has a bump at the point of 3 processors due
to the unbalanced load across processors. It should be noted
that the max simulation time of simulations for the s360k
circuit decreases steeply from one processor to two and more
processors due to the swap-memory used in the sequential
simulations.

Figure 15 and Figure 16 present respectively theabsolute
speedup and thegood-put vs. the number of processors for
three benchmark circuits simulated with 50 vectors and 100
vectors. In both figures, there is a general trend of increasing
speedups and good-puts with an increasing number of pro-
cessors, circuit size and number of vectors. A slight drop of
absolute speedup in s38584 with 3 processors is due to the
unbalanced loads assigned across the processors.

The trends in Figure 14, Figure 15 and Figure 16 all clearly
indicate that XTW is scalable and is capable of simulating
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large circuits.
4.5.4 Peak Memory Usage: To quantify parallelpeak mem-

ory usage, we consider the following metric:Peak memory
usage ratio(PMUR) is defined as the ratio of thepeak memory
usage of a parallel simulation to that of a sequential simulation.
Let PPMU be the parallel peak memory usage and SPMU be
the sequential peak memory usage.

Peak Memory Usage Ration = Parallel Peak Memory Us-
age/Sequential Peak Memory Usage

Figure 17 displays the results of thepeak memory usage
ratio for the two large circuits –s180k and s360k. In Figure 17,
although there are some increases due to unbalanced loads
across the processors, we can clearly see a general trend
of decreasing peak memory usage ratios with an increase
in the number of processors for all simulations. This trend
indicates thatXTW is capable of simulating large circuits that
the sequential simulator is not capable of simulating because
of insufficient memory in a single machine.

5 CONCLUSION

In this paper, two new mechanisms for improving the
efficiency of distributed logic simulation were introduced. The
first, XEQ is a a multi-level input queue, which results in an
���� event scheduling. The second,rb-messages, reduces the
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Fig. 17. peak memory usage ratio vs. the number of processors(s180k and
s360k)

rollback and message cancellation costs. It also reduces the
cost of saving events by eliminating the output queue at each
LP. Both of these mechanisms presume the use of clusters
of LPs. These mechanisms were combined with a version
of Clustered Time Warp to produce a simulation framework,
XTW.

The cost of these algorithms were analyzed in theory.
Comparisons to CTW revealed that XTW has a far superior
performance. Comparisons to a sequential version of XTW
revealed its scalability.

It is certainly desirable to make use of XTW on larger
circuits and to modify it for use in behavioral and mixed
behavioral/logic simulation. In addition, the development of
efficient partitioning and/or load balancing algorithms is vital
for the further development of XTW. We hope to continue our
work in these directions.
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