
Information Processing Letters 17 (1983) 43-46 

North-Holland 
19 July 1983 

A DISTRIBUTED SOLUTION OF THE DISTRIBUTED TERMINATION PROBLEM * 

S.P. RANA 

Computer Centre, Indian lnstrfu~e of Technologr. Haut Khas, New, Delhi - 11002Y, India 

Communicated by W.L. Van der Poe1 

Received April 1982 

A distributed and fully symmetric solution is presented for the distributed termination problem. In contrast to the existing 
solutions. the above solution does not require a predesignated process to detect termination. The case of asynchronous 

communications is also discussed. 

Keywords: Distributed programming, termination detection. decentralized control 

1. Introduction 

A reasonable expectation from a program, say 
P, is that it should terminate soon after accom- 
plishing the task for which it was written. The 
termination issue is trivial if P is a sequential 
program; however, if P is a distributed program, 
additional effort is needed to ensure the proper 
termination of P. The termination problem was 
brought into prominence by Francez [ 11. 

The distributed termination problem is briefly 
stated as follows. We are given a distributed pro- 
gram P consisting of communicating sequential 
processes P,, Pz,. . . , P,. The necessary condition 
for a process P, to terminate is that it satisfies a 
local predicate BI, 1 < i < n. However, a process 
can only terminate when all other processes of the 
program P satisfy their local predicates simulta- 
neously or alternatively we say that a process only 
terminates when the global termination condition 
is satisfied. 

Note that in a distributed environment the 

processes only communicate by exchanging mes- 
sages and that there is no central controller to 

* This work was in part supported by DST Project No. 

HCS/DST/634/78. 

observe the state of all processes simultaneously. 
Several algorithms have appeared in the literature 
to solve the distributed termination problem 
[2,3,4,5]. All of these works rely upon a predesig- 
nated process to detect the global termination. The 
solution presented in this paper differs from others 
in the vital aspect that any of the n processes may 
initiate a detection wave and may possibly succeed 
in detecting the global termination condition. The 
resulting protocol is fairly simple, as will be seen 
in the next section. 

Although an arbitrary process may initiate a 
detection wave, eventually the last processes to 
satisfy their local predicate would succeed in de- 
tecting the termination and thus be responsible for 
initiating the termination wave. After presenting 
the solution in Section 2, its correctness and per- 
formance is discussed in Section 3. The last section 
concludes with a mention of similar works and 
comments on the termination problem in the case 
of asynchronous communications. 

2. A distributed solution 

The solution presented below is fully distrib- 
uted and syummetric in the sense that each pro- 
cess follows an identical protocol and that there is 

0020-0190/83/$3.00 0 1983. Elsevier Science Publishers B.V. (North-Holland) 43 



Volume 17. Number I INFORMATION PROCESSINGLETTERS I') July 19X3 

no specialized process in P. 
It is required that the clocks of the individual 

nodes executing the processes are synchronized. 
The feasibility of such a synchronization is estab- 
lished by Lampson [6]. 

Each process has the ability to note down the 
clock time whenever it satisfies its local predicate. 
Also a process sending a message can time-stamp 
it, if required by writing the current clock time. 

The solution presented here is expressed in CSP 

like notation and hence a synchronous mode of 
communication is implicit. The solution can easily 

be modified for the case of asynchronous com- 
munications, as will be pointed out in the conclud- 
ing section. 

Briefly, the essential features of the present 
solution are the following: 

(i) The processes are assumed to be connected 

by a virtual (or real) hamiltonian cycle and the 
control communication is always on this cycle in a 
single direction, either clockwise or anticlockwise. 
Thus each processor has a successor on the cycle 
to which it can forward a message and a predeces- 
sor from which a message can be received. 

The control communication is the communica- 
tion introduced in order to detect termination and 
to allow the processes to terminate. In contrast to 
the control communication we have the basic com- 
munications which are incurred among the 
processes to solve the problem at hand. 

(ii) Whenever a process satisfies its local predi- 

cate, it notes down the current clock-time and 
forwards a detection message, with the time-stamp 
equal to the current clock time and with a counter 
initialized 1, to its successor on the cycle. 

(iii) A process is said to be active if it is not 
satisfying its local predicate, otherwise it is said to 
be passive. 

If an active process receives a detection message 
from its predecessor it simply purges it. 

(iv) If a passive process receives a detection 
message, it compares the time-stamp of the mes- 
sage with the noted time when it last satisfied its 
local predicate. If the latter time is greater than the 
time-stamp of the message, the message is purged, 
otherwise the counter of the message is incre- 
mented by 1 and is forwarded to the successor on 
the cycle. 

44 

(v) If a passive process receives a detection 

message with the value of counter equal to n. the 
global termination is concluded. The process sends 
a termination message to the successor and 

terminates. 
The solution is now formally presented below. 

Let the given distributed problem be expressed 
as 

P:: [P, II ‘. . II Pnj 

where, for each 1 < i < n. P, :: * [S,]. 
Let BTIME, denote the time when P, last satisfied 

its local predicate B,. Further, let TIME and COUNT 

denote the time-stamp and counter respectively on 
a detection message. 

First let us write a modified version of a process 

P, to reflect the copying of current clock-time 
whenever the local predicate is satisfied. The pro- 
cess P, waits in its top level for receipt of basic 
messages from other processes. Whenever P, re- 
ceives a message the predicate again becomes false. 

The modified P, can be expressed as 

P, :: B, := false; 

*[ s; 
q B, + BTIME, := CLOCK-TIME 

where CLOCK-TIME gives the current clock-time of 
the processor holding the process P,. 

When B, is true, the process P, can send a 

detection message to its successor denoted as P, ~ ,_ 
Detection messages may also be received by P, 
from its predecessor P, _ ,. The actions taken by P, 
in the above situations are included in the follow- 
ing version of P,: 

P,::B,:= false; 

* 1 S,’ 
q B, * BTIME, := CLOCK-TIME; 

TIME := BTIME,; 

P , +, ! detection-message (TIME, COUNT) 

q P , ~, ? detection-message (TIME, COUNT) -t 

[-B,+ purge the message 

q 0, + 
[TIME < BTIME, 4 purge the message 
OTIME 2 BTIME, - 

COUNT := COUNT + 1; 

P , + , ! detection-message 
(TIME, COUNT) 

I 
1 



Volume 17. Number I INFORMATION PROCESSING LETTERS 19 July 1983 

Finally Pi must have a provision to check 
whether its own detection message reached back to 
it, in which case P, must initiate a termination 
wave and then terminate itself. Also if not 
terminated, P, must be prepared to receive a 
termination message from Pi_ ,. Thus the final 
version of P, is as follows: 

P, :: I+ := false; 

* 1s; 
00, -t BTIME, := CLOCK-TIME]; 

TIME:= BTIME,; 

COUNT := 1; 

P, +, ! detection-message (TIME, COUNT) 

oP, ~, ?detection-message (TIME. COUNT) -t 

[COUNT = n + 

P, +, ! terminate-message; 

TERMINATE 

q COUNT f n --* 
[-& + purge the message 

DB, * 
[TIME < BTIME, + purge the message 
OTIME > BTIME, + 

COUNT := COUNT + 1; 

P, + , ! detectlon-message 
(TIME, COUNT) 

111 
P,_, ? termination-message + 

P , +, ! termination-message; 
TERMINATE 

1 

3. Correctness 

Two assertions are proved below, in order to 
show the correctness of the proposed solution in 
the preceding section. 

Assertion 1. If the global termination condition is 
satisfied, termination will be eventually detected. 

Proof. Assume that all processes in P satisfy their 
local predicates simultaneously at some time in- 
stant, say t. Suppose that P, is the latest process to 
satisfy its local predicate B,, viz. P, satisfies B, at 
time t. 

Consider the detection message of P,, having 
the time-stamp t. Since all processes have satisfied 
their local predicates for the last time at or earlier 
than time t, the detection message of P, will not be 
purged by any process. Thus P, will eventually get 

its detection message back and the termination 
will be detected. 

Assertion 2. There is no possibility of detecting f&e 
termination. 

Proof. Detecting false termination implies getting 
a detection message with the counter value n, even 
when the global termination condition is not 
satisfied. 

Consider a detection message with time-stamp t 
forwarded by a process P,. This implies that P, 
became passive for the last time at or earlier than 
time t. Process Pi may again become active if some 
active process, say P,, initiates basic communica- 
tion with it. 

If P, has already forwarded the detection mes- 
sage with time-stamp t, then P, was passive at time 
t and was made active later by another process. 
Continuing the chain of argument like this, we 
find that there is an active process P, which com- 
municates with a passive process who has already 
forwarded the detection message with time-stamp 
t; whereas P, itself has not received the above 
detection message so far. 

It is clear that P, will purge the detection 
message when it reaches him because P, was active 
at a time equal to or later than t. Thus a detection 
message initiated at time t never reaches its 
originator if there is a single process that has been 
active after time t. Hence there is no possibility of 
detecting a false termination. 

4. Discussion 

In the solution presented in this paper a process 
has to make a simple check to decide whether a 
detection message is to be purged, forwarded or it 
indicates the termination. It is difficult to estimate 
the total number of control messages circulated till 
the detection of termination, because this depends 
upon the manner in which the values of B,‘s 
change. However, once a global termination condi- 
tion is true, it takes only one round to detect the 
termination. The total number of messages re- 
quired could be reduced by some refinement, but 
possibly at the cost of delaying the detection of 
termination. 

45 



Volume 17, Numbrr I INFORMATION PROCESSING LETTERS 1’) Jul\ IYX? 

It is pointed out that more than one process can 
detect termination. This happens when few 
processes become passive for the last time simulta- 
neously. Instead of being a problem, the above 
situation has an advantage that the termination 
wave is now propagated in parallel. 

In the termination detection approaches de- 
scribed in few earlier works (viz. [ 1.2,5]), a restric- 

tion is imposed on creating new channels. The 
present paper does not assume such a restriction. 
Further, the above-mentioned works, besides 

specifying a predesignated node to detect termina- 
tion. rely upon the existence of a spanning tree 
over which control communications are prop- 
agated. In order to analyze the performance of the 
above solutions, one must consider the overhead 
of creating a spanning tree. In the solution pre- 
sented here, there is no such overhead. Note that if 
a hamiltonian cycle can be constructed, out of the 
existing channels. encompassing all the n processes, 
then, in the present approach, there is no need to 
introduce additional channels too. However, such 
a cycle has to be identified first. A solution quite 

different from ours is proposed in [4] for the 
hamiltonian cycle based control communication; 
however, again a special node is predesignated to 
initiate all control communications. 

A notable feature of the present and all earlier 
approaches is that the processes are assumed to 
communicate by using only synchronous com- 
mands; similar to that of CSP [7]. If an asyn- 
chronous communication is assumed, the known 
solutions do not work. The simple reason is that 
the condition ‘all processes simultaneously passive’ 
is no longer sufficient to guarantee proper 
termination. 

Two potential approaches to deal with the 
asynchronous communications case are: 

(i) Modify th e global termmation condition: 

ensure that all processes satisfy their local pre- 
dicates at a particular time and no message is 
pending to be delivered. 

(ii) Modify the local predicates: all processes 

are modified such that an acknowledgement is 
expected (sent) for each basic communication mes- 
sage sent (received) by a process. Let B, denote the 
modified local predicate of B,; then B, becomes 
true only when B, is true and all expected 
acknowledgements have been received. 

By using the latter approach. the solution 
described in Section 2 is directly applicable to the 
case of asynchronous communications. 

References 

[I] N. Frances, Distributed termination, ACM - TOPLAS 2 
(1)(1980)42Z55. 

[2] N. France2 and M. Rodeh. Achieving distributed termma- 

tion without freezing. Tech. Rept. TR-72. IBM Israel Scien- 

tific Centre. 1979. 

[3] E.W. DiJkstra and C.S. Scholten. Termination detection for 
diffusing computation. EWD-687. Nuenen. 

[4] N. Frances. M. Rodeh and M. Slntzoff. Distributed 
termination with interval assertmna. Tech. Rept. TR * 186. 

Computer Sclencr Department. TECHNION - Israel In- 

stitute of Technologq. 1980. 

[5] K.M. Chandy and J. Misra. Termination detection of dif- 
fusing computations in communicating sequential processes. 

ACM TOPLAS (1982) (appeared earlier as Tech. Rept. 

TR-144. The University of Texas at Austin, 1980). 

[6] L. Lamport. Time. clocks and the ordering of events in a 

distributed system, Comm. ACM 21 (7) (1978) 558-565. 

[7] C.A.R. Hoare, Communicating sequential processes. Comm. 

21 (X) (1978) 666-677. 

46 


