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Abrtraci- An a t o m i c  r n a p r h o i  m e m o r y  is an implementation 
of a multiple location shared memory that can be atom- 
i d l y  read in its entirety without having t o  prevent con- 
current writing. The design of wait-free implementations 
of a t o m i c  r u a p r h t  m e m o n e r  has been the subject of exten- 
sive theoretical research in recent years. This paper in- 
troducem the coordinated-colleci algorithm, a novel wait-free 
atomic 8napshot construction which we believe b a flrst 
step in taking snapshots from theory to  practice. Unlike 
former algorithms, it uses currently available multiprocea- 
sor syncbronuation operations t o  provide an algorithm that 
has only 0(1) update complexity and O(n) scan complexity, 
with very small constants. Empirical evidence collected on a 
simulated dmtributed shared-memory multiprocessor shows 
that coordinated-collect outperforms all known wait-free, lock- 
free, and locking algorithms in terms of overall throughput 
and latency. 

1. INTRODUCTION 
An atomic snapshot memory [l], [3] is an implementation 

of a multiple location shared memory that can be atomi- 
cally read in its entirety. The ability to  collect such an 
instantaneous view is a powerful tool for designing concur- 
rent datastructures, as it greatly reduces the need to  argue 
about inconsistent views of memory. Snapshots are useful 
for applications such as checkpointing, generating concur- 
rent backups, debugging of multiprocessor programs, and 
even in a multiprocessor server of a radar tracking system, 
where multiple sensors generate updates concurrently with 
multiple requests for consistent system states. The design 
of wait-free implementations of an atomic snapshot mem- 
ory has been the subject of extensive research in recent 

An atomic snapshot memory is an abstract data type 
equivalent to a memory partitioned into n segments, one 
for each processor. There are two types of operations on 
the object, a scan and an updafe. In an update operation, 
a processor writes the contents of its associated segment, 
while in a scan, each obtains an instantaneous “global pic- 
ture” of all n segments. Snapshots should be fault-tolerant 
and non-interfering, that is, applications (for example, pro- 
grams being checkpointed) on the system should have min- 
imal disruption or loss of performance as a result of ongo- 
ing snapshots, and in the extreme should continue to run 
even in the face of severe timing anomalies. Fault-tolerance 
and non-interference are the major advantages of wait-free 
methods over standard lock-based implementations. 

This paper takes a practical look at the question of pro- 
viding wait-free implementations of atomic snapshots on 
multiprocessor architectures. A snapshot implementation 
that is to be practical should have the following properties: 
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The complexity of performing an update operation 
should be within a small constant of that of a simple 
“write” to memory, since the typical user will not want 
to sacrifice the speed of updating memory to support 
efficient snapshots. 
Register sizes and hardware synchronization primitives 
should conform with ones available on multiprocessor 
architectures. 
Memory contention should be minimized by distribut- 
ing and load-balancing work, otherwise good asymp- 
totic complexity will not result in good performance. 

A .  Atomic Snapshots 

The main contribution of this paper is in introducing 
the coordinaied-colleci algorithm, a novel atomic snapshot 
construction which we believe is a first step in taking snap- 
shots from theory to practice. It uses Load linked/Store 
condifional and FetchtYIncrement operations [13], [20], [25] 
to provide a multi-scanner algorithm’ that uses real-world 
registers, each containing at  most O( 1) values, having only 
O(1) update complexity (in fact, a t  most four operations), 
O(n) scan complexity, and O(n2) space complexity. 

Though one might think that the use of strong primitives 
like Load linked/Store conditional would allow to readily 
modify the elegant snapshot algorithms in the literature 
[l], [3], [5], [7], [9], [12], [15] to achieve similar complexity, 
it turns out that this is not the case (See table in Fig- 
ure 1). These multi-scanner snapshot protocols have an 
algorithmic structure in which each updater and/or scan- 
ner collects a view of memory in its register, and then have 
processors try to  agree which of the views to return. This 
leads to a situation where, even with the added power of 
a Load iinked/Siore conditional operation to  speed up the 
view-agreement process, the complexity of an update re- 
mains an unacceptable Q(n), and the registers used in the 
algorithms are required to hold Q(n) values. 

Our presentation begins with the introduction of a new 
single scanner protocol - a greatly simplified version of 
the innovative single scanner protocol of Kirousis, Spirakis, 
and Tsigas [23]. We build the coordinated-collect multi- 
scanner algorithm based upon our single scanner protocol. 
The algorithm has updaters perform the same O(1) se- 
quence of operations as in our single scanner algorithm, 
but uses a novel collection methodology to allow multi- 
ple scanners to return coherent scans of memory. Instead 
of deciding on one of many collected views as in former 
algorithms, coordinated-collect has all the active scanners 

A multi-scanner algorithm is one in which concurrent scan opera- 

2The version we present is unbounded but can be easily made 
tions by different processors are allowed. 

bounded using a sequential timestamp system [ZI]. 
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distribute the work and ‘help’ each other to collect values 
from the n registers into a pre-agreed shared view area. 
This allows us to achieve an O(n) scan complexity with- 
out increasing the update complexity. The helping process 
is tailored t o  maintain low contention by load-balancing 
processors over the shared view locations. We effectively 
reduce the problem of designing a practical snapshot algo- 
rithm to that of maintaining a reusable pool of view-areas. 

To solve the latter task, we introduce a novel pool ab- 
stract data type to  trace and recycle outdated shared-view 
areas in the face of multiple concurrent view requests by 
scanners. We provide two pool implementations, of O( n2) 
and O(n3) space, and compare their performance. The 
overall efficiency of our implementations is in minimizing 
concurrent access to  shared pointers 80 as to eliminate pos- 
sible memory “hot-spots” [19] (which would have left us 
with good asymptotic behavior but bad performance). 

B. A Comparison of Atomic Snapshot Algorithms 

The second contribution of our paper is a comparison of 
the performance of several single and multi-scanner algo- 
rithm snapshot techniques, including our own, on a simu- 
lated distributed shared-memory multiprocessor using the 
well accepted Proteus Parallel Hardware Simulator [lo], 
[ll]. Our choice of algorithms was driven not only by their 
asymptotic complexity, but also by the feasibility of actu- 
ally implementing them on multiprocessor machines. 

The first two compared methods are an algorithm that 
blocks updates during a scan and a lock-free algorithm that 
never blocks updates but does not guarantee scan termi- 
nation in the face of repeated updating. Of the known 
wait-free methods, we chose to implement the unbounded- 
register versions of the algorithms of [l] and [9], and the 
consensus based algorithm of [12]. The first two algo- 
rithms use n-valued read/write registers to have processors 
agree among collected views, and the last uses n-valued 
registers and an agreement mechanism which we imple- 
mented using the powerful Load linked/Store conditional 
operation. We did not implement the test&set based algo- 
rithms of [7] which achieve agreement among views using 
an unbounded number of test&set registers. Transforming 
them into bounded algorithms would introduce a substan- 
tial overhead in space and in memory contention, making 
them inferior to the Load linked/Store conditional based 
agreement scheme which we tested. Given that the above 
algorithms assume the availability of atomic n-value regis- 
ters, we tested them both under the (unrealistic) assump- 
tion that such operations are available in hardware, and 
under the (more realistic) one that each n-valued read op- 
eration takes at least n local operations. We found that 
their performance was only slightly improved by assuming 
n-valued registers were available in hardware. 

We found that our single-scanner and multi-scanner 
coordinaled-collect algorithms outperform all known a lge  
rithms both in throughput and latency. Surprisingly, their 
update throughput is as good as that of the lock free 
method which lets updates succeed at the price of very low 

scan throughput. The scan throughput of our algorithms 
remains consistently high as the number of processors in- 
creases, even though the size of the collected views grows 
linearly. However, it has an associated overhead and gen- 
erates a certain level of contention which prevent it from 
reaching the throughput of the blocking algorithm (which 
blocks all updates during a scan). 

In summary, we believe our algorithm is an example of 
using current multiprocessor synchronization operations to 
develop snapshot algorithms that are more “realistic” in 
terms of register size and the complexity of update opera- 
tions. Our hope is that it will lead to the development of a 
wait-free algorithm that has superior latency and through- 
put for both scans and updates. 

Section V presents benchmark results of some of the im- 
plementable snapshot algorithms and compares them to 
our algorithms. 

Our computation model follows [8], [9], [16]. An atomic 
snapshot memory is an object partitioned into n segments 
Mem[l], .., Mem[n) each of type Data. There are two types 
of allowable actions for any process i: Update(?-), and 
Scani ( r l ,  . . . , rn) for any i E { 1. . n}. Updatei (r) changes 
the value of Mem[i] to r and ScaQ(view[l..n]) returns a 
view of memory, a collection view[l..n] = Mem[I..n] of val- 
ues. Scan and update operations are atomic, that is, be- 
have as if they were executed instantaneously within their 
associated execution interval. This is captured by requiring 
that the implementation of any atomic snapshot memory 
be linearizable [16]. 

Formally, assume that each processor is sequential, that 
is, does not start a scan or update operation until it has 
finished the previous one. We define a partial real-time 
order on scan and update operations and denote it as “+” 

[24], where A + B means that the execution of operation 
A was completed before that of B was started. Operations 
are concurrent if neither A + B nor B + A. 

An atomic snapshot memory implementation is correct if 
for every execution there is a sequence containing all scan 
and update events, each completely preceding the other, 
such that: 

1. It extends the real-time order of operations as defined 
by +, and 

2. Maintains the sequential semantics of scan and update 
operations; that is, if view is returned by some scan 
operation, then each view[i] is the value written by 
the last update, operation which precedes the scan in 
the sequence. 

We will be interested in getting an implementation that 
is wait-free, that is, the execution of any implemented scan 
or update operation completes within a bounded number 
of machine operations [17]. 

31n the lock free algorithm, the scanner repeatedly collects the con- 
tents of the registers. If it has read twice the content of the registers 
and no register has been changed, it returns the collected values as a 
result. 
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Fig. 1 .  A Comparison of Atomic Snapshot Algorithms 

11. THE SINGLE-COLLECT ALGORITHM 

We begin by presenting a greatly simplified variant of 
the Kirousis, Spirakis and Tsigas one scanner snapshot al- 
gorithm [23]. This algorithm uses only atomic read/write 
register operations, and achieves optimal time and space 
complexity: O(n)  for a scan operation and O(1) for an 
update operation. The algorithm uses a sequential time- 
stamp scheme (a  register of 64 bits will suffice, though one 
can replace it by a bounded sequential timestamp system 
[14], [21]). The code for scan and update operations appears 
in Figure 2. 

scan0  
{ 

curr-saq = curr-seq+l; 
for  j=i t o  n { 

high-r=rCj] .high; 
if (high-r.saq < curr-seq) 

v i e s  [J] Zhigh-r ; 
else 

viewCjl=rCjl .low; 
1 
return(view) ; 

> 
Update(ra1) 
{ 

seq=curr-saq; 
h igh-rr  [i] .high; 

if (saq=high-r.ssq) 
rCi] .high=[val,aaql ; 

r[i] .low=hhigh-r; 
rCil .high=[val.seql ; 

alae { 

3 
> 

Fig. 2. The Single-Collect algorithm - code for P, 

The algorithm uses a shared array rC1.. m] of records, 
each record having two components high and low, and 
a shared variable currseq which holds a current time- 
stamp (sequence number) of the latest scan operation, in- 
cremented at the start of each scan operation. Each update 
operation first reads this number, and the idea is to make 

‘The code is presented in C-style programming 

sure that the scanner returns only values that were writ- 
ten by update operations that did not read its time-stamp. 
This means that these updates started before the scan, and 
so all their associated values could have ezisted in memory 
at the point in time when the increment of the timestamp 
was performed. To guarantee that such a value is found for 
each updater, we must keep in memory its latest update 
value having a timestamp preceding that of the current 
scan. For this purpose we use the low field of each update 
location. 

111. THE COORDINATED-COLLECT ALGORITHM 

The key idea behind our new multi-scanner algorithm 
is to have updaters perform the same sequence of oper- 
ations as in the single-collect algorithm (Figure 2), and 
have concurrent scanners work together in collecting a 
view. The difficulty is that this coordinated collecting 
must be performed efficiently and in a wait-free manner 
on real architectures using only bounded space. We do 
so using a combination of Load-linked/Store-Conditional, 
FetchtYIncrement, and FetchtYDecrement operations. 

The crux of our algorithm lies in replacing the commonly 
used idea of collecting separate views and agreeing, us- 
ing an n-process consensus protocol or primitive, on one of 
them, with the idea of agreeing on a memory location, and 
coordinating the collecting of a view into it without using 
n-consensus. The high level description of the algorithm 
appears in Figure 3. 

On a high level, a process wishing to perform a scan 
proposes its own-view as a space in which all scanners will 
perform a coordinated-collect. Each scanner first invokes a 
get-view operation, which returns as result a “free” view, 
that is, a view which no other scanner needed its use. An 
initialization operation is performed on this returned view, 
and it is becomes the scanner’s suggested view. We use a 
pool of view spaces, from which groups of concurrent scan- 
ners pick “free” view spaces. The pool behaves as if it 
contains a n  unbounded number of free views, though in 
reality we will use a view recycling mechanism. 

Processes agree which view to collectively work on using 
a “helping” methodology in the style of Herlihy’s announce 
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array (171: every process proposes its ovn-viev and posts 
it in its announce entry. The agreed view, on which the 
“filling up’’ takes place, is determined by a shared pointer, 
which is advanced in an agreement upon completion of fill- 
ing up a view. At any point in time, only one view is being 
filled up, that is, filling up operations are totally ordered. 
In order to help filling up a view, each scanner has to suc- 
cessfully acquire it, and after filling it up, the scanner 
releases it. A scanner helps filling up at  most two views, 
since the second filled up view can be returned as a result. 

The acquire of a view fails only when all scanners which 
participated in its filling up, have already released it, and 
the view is being recycled by a scanner for a new scan o p  
eration. Any failed acquire operation, is followed by an 
advance of the shared counter. Therefore, after a t  most n 
failed acquire operations, the scanner is assured that its 
om-viev has been filled up. 

The filling up of a view is done in the same style of the 
single-collect scan operation. The main difference is that 
there might be many processors concurrently participating 
in the filling process. In order to  achieve better perfor- 
mance, we distribute the the work onto many locations in 
a coordinated way using a shared counter from which pro- 
cesses get the next address to update. s 

Theorem III . l :  Given a watt-free implementation of a 
pool object with operations get-view ,init ,acquire and re- 
lease having time complexity O(g(n)), O(i (n ) ) ,  O(a(n)) 
and O(r(n) )  respectively, and with O(s(n))  space complex- 
ity in terms of O(1) value registers then: 

1. The coordinated-collect multi scanner algorithm is 
correct and wait-free . 

2. The scan complexity is O(g(n)  + i ( n )  + n * a(.) + 
r (n )  + n) steps, the update complexity is O( 1) steps 
and the space complexity is O(s(n)) .  

Using the pool constructions we provide, we conclude: 
Corolla y Ill.,?: The coordinated-collect multi scanner 

algorithm achieves O(n) scan complexity and O( 1) update 
complexity. 

IV. POOL OBJECTS 
We define a pool object as an abstract datd type whose 

elements are objects of type view each consisting n register 
fields. The pool object allows the following operations on 
its view elements: 

get-view returns a view V from the pool . 
init(V) initializes view V of the pool . 
acqurre(V) marks view V as acquired and returns 

release(V) marks view V as released. 
is-empiy(V,j) checks the j-th register field of vtew V of 

We denote a successful acquire operation (i.e. returns 
True), as successful-acquire. 

Definition I V . l :  A correct scanner is a processor P, 
which satisfies the following conditions: 

boolean (True/False). 

the pool, and returns boolean (True/False). 

We could have replaced that single location shared counter by a 
fsster and lower contention counting network or diffracting tree, but 
this goes beyond the scope of this paper. 

s can0  
{ 

own-view = get-viewO; 
init(own-view); 
aasign own-view to my announce entry; 
while (own-view is not f u l l )  { 

curr-vies = view pointed by 

if (curr-view ia  f u l l )  

e l s e  

the current entry in  the announce array; 

advance on the announce array; 

help-f ill(curr-view) ; 
1 
rel*aae(own,view) ; 
return<om-view); 

1 

help,fill(curr,view) 

if ( aucceaaful-acquire(curr-view) ) { 

increued carr-seq in  cum-view; 

“.ingle-collect” sty10 ; 

f i r s t  = successful usignment of 

f i l l  curr-view’. registera i n  a 

mark curr-view 15 f u l l ;  
advance on the announce array; 
if ( ( f i ra t )  or (help-f i l l  once before) or 

(own-view i s  f u l l ) )  { 
if (own-vies is not curr-view) then 

release(curr-view) ; 
return(curr-vies); 

reha.e(oun-view) ; 

1 
release (curr-vies 1 ; 

1 

~ ~~ 

Fig. 3. High-level code of Coordinated-Collect algorithm 

1. After Pi performs an ini t (V)  or a success- 
ful-acquire(V) it performs no other init(V) or ac- 
quire(V) until it performs release(V) . 

2. P; never performs a release(V) without a preceding 
tnit(V) or successjuLacquire(V) . 

Definition IV.2: An pool implementationis correct if for 
every execution there is a sequence containing the above de- 
fined pool operations, each completely preceding the other, 
such that: 

1. It extends the real-time order of operations as de- 

2. When accessed only by correct scanners, the follow- 
fined by +. 

ing invariants are kept: 
The get-view operation always returns a view 
V, for which the number of release(V) oper- 
ations ever performed, is equal to the sum of 
the init( V) and successfuLacquire(V) opera- 
tions ever performed. 
If some scanner P; performs get-view oper- 
ation and receives a returned view V,  then 
until it performs an :nit(V) , there can be no 
successful-acquire( V )  occurrences. 

The is-empty( V,  j )  operation returns True iff 
it occurs after the completion of an init(V) , 
and before the first write to the j-th register 
of v. 
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(d) Upon completion of an ini t (V)  and before 
any other operation, the view V in its initial 
state. 

We implemented two versions of the pool object. Both 
versions yield the same asymptotic time complexity for the 
multi scanner algorithm: O(n) for scan and 0(1)  for up- 
date. 

The first version , which is much simpler to prove and im- 
plement, has minimized time complexity in practice, hav- 
ing smaller constants, but has space complexity of O(n3), 
i.e. array of nz view objects. The main idea behind 
the construction is that each scanner has its own separate 
part of the pool object. Each time a scanner performs a 
get-view, it searches for a view in its own pool containing 
n view objects. The acquire and release operations use 
FetchOIncnmeni and FetchODecrement operations appro- 
priately, in order to maintain for each view object, the cur- 
rent number of scanners which have performed a successful 
acquire on it. The i n i t  operation just initializes the view 
object. 

In the second version, which has better space complexity 
but inferior performance, the pool object contains only 2n 
view objects, due to a major change in the get-view opera- 
tion implementation. All view objects are shared by all the 
scanners, and within the get-view operation each scanner 
coordinates its search using the “helping” methodology. 

v. PERFORMANCE EVALUATION OF SNAPSHOT 
ALGORITHMS 

We compared a collection of snapshot algorithms on a 
64 processor simulated Alewife cache-coherent distributed- 
memory machine [2] using the Proteus simulator developed 
by Brewer, Dellarocas, Colbrook and Weihl(1Ol. Each pro- 
ce88or had a cache with 2048 lines of 8 bytes and a mem- 
ory access cost of 4 cycles. The cost of switching or wiring 
in the Alewife architecture was 1 cycle/packet. The cur- 
rent version of Proteus does not support Load-linked/Store- 
Conditional instructions. Instead we used a slightly modi- 
fied version that supports a 64bit  Compare-and-Swap op- 
eration where 32 bits serve as a time stamp. Naturally 
this operation is less efficient than the theoretical Load- 
lznked/Store-Conditional [18] (which we could have built 
directly into Proteus), since a failing Compare-and-Swap 
will cost a memory access while a failing Store-Conditional 
wont. However, we believe the 64-bit Compare-and-Swap 
is closer to the real world then the theoretical Load- 
linted/Sfore-Conditional since existing implementations of 
Load-linked/Store-Conditional as on Alpha 113) or Pow- 
erPC [20] do not allow access to the shared memory be- 
tween the Load-Linked and the Store-Conditional opera- 
tions. On existing machines, the 64 bits compare-and-swap 
may be implemented by using a 64 bits Load-linked/Store- 
Conditional as on the Alpha. 

We measured for each scan and update implementation: 
Throughput The total number of completed operations 

by all the processors in the system running for IO6 
cycles. 

Latency The average amount of time between the start 

and the end of an operation for all the processors in 
the system. 

We evaluated the algorithms by having each scan- 
ner/updater processor execute scan/update operations re- 
peatedly as in Figure 4. Between each two operations, a 
processor waits for an amount of time chosen uniformly at 
random in the interval 0 to scan-wait for a scanner, and 
0 to updatesait  for an updater. We used the following 
benchmarks: 

Checkpoint The system has only one processor which ex- 
ecutes scan operations (scanner) and the other pro- 
cessors execute update operations (updaters). This 
benchmark models the behavior of a “checkpoint” 
mechanism for collecting consistent backups of a mul- 
tiprocessor system or for concurrent debugging. The 
algorithms were tested with HAX-TIHE equal to lo6 cy- 
cles, and scan-wait and updateaait  equal to lo3 
cycles. 

Concurrent data structure The system has half of the 
processors execute scans and the other execute up- 
dates. This benchmark models the the use of snap- 
shots for concurrent-data-structure design, where mul- 
tiple processors update or request an atomic view 
of the state of the shared object. The algorithms 
were tested with HAX-TIHE equal to lo6 cycles, and 
scan-vait and updateaait equal to lo3 cycles. We 
added a second set of tests with update-aait equal to 
100 cycles. 

SCAIIEB : 
ohile (current-time < MAX-TIME) { 

repeat random(scan-uait) times 

s c a n 0  ; 
/* do nothing */ ; 

1 

UPDATER : 
ohile (current-time < IIAX-TIME) { 

repeat random(update-oait) times 

update(va1); 
Val. seq = Val. seq + 1 ; 

/* do nothing */ ; 

1 

Fig. 4. Benchmarks 

A .  The Algorithms 

In the concurrent data structure benchmark, we tested 
two versions of the coordinated-collect multi scanner algo- 
rithm, using the the two pool object implementations, In 
the checkpoint benchmark, we tested the single-collect al- 
gorithm, as described in section 11. 

We compared our algorithms, with the following previ- 
ously known snapshot algorithms: 

A +  The unbounded version of the single-writer algo- 
rithm in [l], which has O(n2) scan and update com- 
plexity, and uses O(n) values registers. Each register. 
in this version, has a data,seq and n-value view compo- 
nent. Since we could not implement O(n) value regis- 
ters, and by observing that this algorithm control flow 
is not dependent on the contents of the n-value mew 
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component of each register, we excluded that compe 
nent. 

A R  The unbounded version of the algorithm in [9], 
which has O(n1ogn) scan and update complexity and 
uses O(n2) values registers, was simulated. Each regis- 
ter, which participates in the lattice agreement proce- 
dure, contains n vectors, where each vector represents 
a view of O(n) values. The implementation of the al- 
gorithm had to deal with the manipulation of the con- 
tents of those registers, i.e. unionizing the views vec- 
tors. However, since each view vector contents is not 
referenced, we implemented a bit value as a reference 
of this view vector, and thus enabling the unionizing 
of the views vectors. 

C D  The unbounded algorithm in [12], which has a scan 
complexity of O(n) and update complexity of O(n  + 
C ( n ) ) ,  where C(n) is the consensus complexity. We 
used the strong Load linked/Store conditional primi- 
tive, to implement the consensus, thus theoretically 
achieving O(n) scan and update complexity. Yet, this 
algorithm uses O(n) value registers, and also, atomic 
multi-write operation of these registers. The algorithm 
u8e8 for each scanner, two structures a new one and 
an old one, where each has an O(n) value view register 
and an appropriate O(1) value t ime-damp.  However, 
the control flow of the algorithm is dependent only on 
the values of the new and old iime-stamp components. 
We included only these components in our implemen- 
tation’s registers, without making the algorithm pay 
for the added O(n) values that must be stored in other 
registers. 

Lock-be  The simple algorithm in which a scanner re- 
peatedly tries to perform a successful double collect, 
during which no change to memory occured, and an 
updater which writes to its register in a straightfor- 
ward manner. 

Block-update The scanner uses a multi-valued 
semaphore to “block” any updaters from performing 
a write to  any of the registers, while it collects their 
values. The updater uses a random backoff method, 
while “waiting” for the semaphore to be cleared. 

The first three algorithms (A+,AR,CD) has unbounded 
space complexity (in the strong sense of unbounded num- 
ber of new locations), and therefore its time complexity is 
much less than any of its appropriate bounded implemen- 
tation. Thus, our test results give an advantage for these 
algorithms with respect to our practical bounded algorithm 
implementation. 

In our benchmarks we make the realistic assumption that 
the implementation of registers containing n(n) values re- 
quires at least n local steps for each read operation (we 
avoid making this assumption on write operations). How- 
ever, we performed tests under the unrealistic assumption 
of availability of atomic O(n)-value registers and hardware 
operations, with no significant changes in our conclusions 
(appears in the full paper). 

B .  Checkpoint Benchmark Results 

The checkpoint benchmark results, as can be seen in Fig- 
ure 5, show that the block-update and the lock-free alge 
rithms are a t  the extreme ends with respect to their scan 
and update throughput 6 .  

The block-update has the highest scan throughput since 
its scan operations are performed without any ‘interference’ 
from the updaters (the interference is in terms of intercon- 
nect contention and cache misses). However, it has very 
low update throughput, since the updates can be executed 
only between scan operations. Nevertheless, there is a per- 
formance increase due to having more concurrent update 
attempts. 

The lock-free algorithm presents very poor scan through- 
put because of repeated double collect failures that increase 
with the number of updaters. Nevertheless, its update 
throughput scales linearly with the number of updaters. 
This is clearly due to the small number of operations exe- 
cuted to complete an update. 

The A+ algorithm has similar degradation in its scan 
and update throughput. This is due to failures of its dou- 
ble collects which increase with the number of updaters, 
therefore, its scan latency increases, and that holds true for 
its update which is essentially a scan. The AR algorithm, 
because of the hidden constants involved in local work, is 
much worst than the A+ algorithm and does not manage 
to complete a single scan when n is larger than 20, and for 
the same reasons mentioned for the A+ algorithm, its up- 
date throughput degrades rapidly. The CD algorithm has 
low update throughput which degrades moderately as the 
number of updaters grow, due to the high contention and 
the intense local work executed in each update operation. 
Its scan throughput has good throughput for small number 
of updaters which degrades rapidly for larger numbers, due 
to an appropriate increase in the updaters ’interference’. 

The single-collect algorithm update throughput is nearly 
the same as the lock-free’s due to the small number (four) 
of update operations, and also has high scan throughput, 
which is close to the non-interference scan of the block- 
update’s algorithm, since its scan collects the updaters val- 
ues in a straightforward manner. 

C. Concurreni Data Structure Benchmark Results 

The results of the Concurrent data structure benchmark, 
appear in Figure 6, which includes both throughput and la- 
tency results for the first set of tests. For most algorithms 
these results have a lot in common with those of the check- 
point benchmark. We will therefore concentrate on the 
major differences. 

The block-update algorithm never seems to succeed in 
completing an update for any number of processors due 
to the increased number of scanners which disable the up- 
daters progress. The scan throughput of the lock-free alge 
rithm degrades rapidly due to the increased failure of the 
double collects as the number of updaters increases. The 

‘The scan and update latency results are not presented since they 
are appropriately inversed to the scan and update throughput. 
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CD algorithm starts with a very good scan throughput and 
some scaling but as the updaters ’interference’ grows it de- 
grades substantially. 

The coordinated-collecf algorithm maintains consistent 
high scan throughput and linear scaling of scan latency. 
Unlike in the case of the checkpoint benchmark, there is a 
better throughput since a single view can be the returned 
result of several scanners. One must remember that the 
size of the view that needs to be collected increases linearly 
with the number of processes. Furthermore, the method we 
used for collecting the view is a little more subtle than the 
straightforward way of iteration on the view entries, since 
the latter would cause major contention of the interconnect 
and would degrade the scan throughput. 

The performance results of the O(n3) version of the 
coordinated-collect algorithm, shows an improvement over 
the O(n2) ,  in terms of scan latency and throughput. This 
strengthens our intuition about the need to simplify the 
get-view procedure, in order to achieve better results. 
We measured the relative latency of the get-view proce- 
dure, which resulted in 80-90% of the scan latency, for the 
original coordinated-collect algorithm, and 60-70% for the 
O(n3) version. These results show that the space limit and 
the need to recycle views is a major factor in the overall 
performance. The coordination costs in the views filling 
up is minimized in our implementation, therefore, further 
space recycling simplification can still obtain performance 
enhancement. 

In the second set we repeated our experiments with 
update-wait equal to 100 cycles, in order to simulate a 
“heavy load” of updaters, noting no significant changes. 

VI. CONCLUSIONS 

Though the asymptotic complexity of our algorithms is 
optimal, there are various practical directions in which 
their performance can be enhanced. First and foremost 
would be a more efficient implementation of the pool ob- 
ject. Other enhancements would involve eliminating some 
of the constant overheads, and make the algorithm com- 
plexity more closely dependent on the actual number of 
scanners and updaters accessing it at a given time. Finally, 
the current trend towards running multiprocessors applica- 
tions in message passing architectures (farms of worksta- 
tions) raises the interesting question of an efficient wait-free 
message passing implementation of an atomic snapshot ob- 
ject. 
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