
Towards A Practical Snapshot Algorithm
Yaron Riany, Nir Shavit, Dan Touitou

Tel Aviv University

Abrtraci- An a t o m i c r n a p r h o i m e m o r y is an implementation
of a multiple location shared memory that can be atom-
i d l y read in its entirety without having t o prevent con-
current writing. The design of wait-free implementations
of a t o m i c r u a p r h t m e m o n e r has been the subject of exten-
sive theoretical research in recent years. This paper in-
troducem the coordinated-colleci algorithm, a novel wait-free
atomic 8napshot construction which we believe b a flrst
step in taking snapshots from theory to practice. Unlike
former algorithms, it uses currently available multiprocea-
sor syncbronuation operations t o provide an algorithm that
has only 0(1) update complexity and O(n) scan complexity,
with very small constants. Empirical evidence collected on a
simulated dmtributed shared-memory multiprocessor shows
that coordinated-collect outperforms all known wait-free, lock-
free, and locking algorithms in terms of overall throughput
and latency.

1. INTRODUCTION
An atomic snapshot memory [l], [3] is an implementation

of a multiple location shared memory that can be atomi-
cally read in its entirety. The ability to collect such an
instantaneous view is a powerful tool for designing concur-
rent datastructures, as it greatly reduces the need to argue
about inconsistent views of memory. Snapshots are useful
for applications such as checkpointing, generating concur-
rent backups, debugging of multiprocessor programs, and
even in a multiprocessor server of a radar tracking system,
where multiple sensors generate updates concurrently with
multiple requests for consistent system states. The design
of wait-free implementations of an atomic snapshot mem-
ory has been the subject of extensive research in recent

An atomic snapshot memory is an abstract data type
equivalent to a memory partitioned into n segments, one
for each processor. There are two types of operations on
the object, a scan and an updafe. In an update operation,
a processor writes the contents of its associated segment,
while in a scan, each obtains an instantaneous “global pic-
ture” of all n segments. Snapshots should be fault-tolerant
and non-interfering, that is, applications (for example, pro-
grams being checkpointed) on the system should have min-
imal disruption or loss of performance as a result of ongo-
ing snapshots, and in the extreme should continue to run
even in the face of severe timing anomalies. Fault-tolerance
and non-interference are the major advantages of wait-free
methods over standard lock-based implementations.

This paper takes a practical look at the question of pro-
viding wait-free implementations of atomic snapshots on
multiprocessor architectures. A snapshot implementation
that is to be practical should have the following properties:

years [l], PI, (51, [TI, [SI, [121, (151, [W .

Contact author tmail: shanir@math.tau.ac.il
Tbis work WLU mpportedby a Digitial Equipment Corporation ERP

Equipment Grant

The complexity of performing an update operation
should be within a small constant of that of a simple
“write” to memory, since the typical user will not want
to sacrifice the speed of updating memory to support
efficient snapshots.
Register sizes and hardware synchronization primitives
should conform with ones available on multiprocessor
architectures.
Memory contention should be minimized by distribut-
ing and load-balancing work, otherwise good asymp-
totic complexity will not result in good performance.

A . Atomic Snapshots

The main contribution of this paper is in introducing
the coordinaied-colleci algorithm, a novel atomic snapshot
construction which we believe is a first step in taking snap-
shots from theory to practice. It uses Load linked/Store
condifional and FetchtYIncrement operations [13], [20], [25]
to provide a multi-scanner algorithm’ that uses real-world
registers, each containing at most O(1) values, having only
O(1) update complexity (in fact, a t most four operations),
O(n) scan complexity, and O(n2) space complexity.

Though one might think that the use of strong primitives
like Load linked/Store conditional would allow to readily
modify the elegant snapshot algorithms in the literature
[l], [3], [5], [7], [9], [12], [15] to achieve similar complexity,
it turns out that this is not the case (See table in Fig-
ure 1). These multi-scanner snapshot protocols have an
algorithmic structure in which each updater and/or scan-
ner collects a view of memory in its register, and then have
processors try to agree which of the views to return. This
leads to a situation where, even with the added power of
a Load iinked/Siore conditional operation to speed up the
view-agreement process, the complexity of an update re-
mains an unacceptable Q(n), and the registers used in the
algorithms are required to hold Q(n) values.

Our presentation begins with the introduction of a new
single scanner protocol - a greatly simplified version of
the innovative single scanner protocol of Kirousis, Spirakis,
and Tsigas [23]. We build the coordinated-collect multi-
scanner algorithm based upon our single scanner protocol.
The algorithm has updaters perform the same O(1) se-
quence of operations as in our single scanner algorithm,
but uses a novel collection methodology to allow multi-
ple scanners to return coherent scans of memory. Instead
of deciding on one of many collected views as in former
algorithms, coordinated-collect has all the active scanners

A multi-scanner algorithm is one in which concurrent scan opera-

2The version we present is unbounded but can be easily made
tions by different processors are allowed.

bounded using a sequential timestamp system [ZI].

121
0-8186-6915-2/95 $04.00 0 1995 IEEE

distribute the work and ‘help’ each other to collect values
from the n registers into a pre-agreed shared view area.
This allows us to achieve an O(n) scan complexity with-
out increasing the update complexity. The helping process
is tailored t o maintain low contention by load-balancing
processors over the shared view locations. We effectively
reduce the problem of designing a practical snapshot algo-
rithm to that of maintaining a reusable pool of view-areas.

To solve the latter task, we introduce a novel pool ab-
stract data type to trace and recycle outdated shared-view
areas in the face of multiple concurrent view requests by
scanners. We provide two pool implementations, of O(n2)
and O(n3) space, and compare their performance. The
overall efficiency of our implementations is in minimizing
concurrent access to shared pointers 80 as to eliminate pos-
sible memory “hot-spots” [19] (which would have left us
with good asymptotic behavior but bad performance).

B. A Comparison of Atomic Snapshot Algorithms

The second contribution of our paper is a comparison of
the performance of several single and multi-scanner algo-
rithm snapshot techniques, including our own, on a simu-
lated distributed shared-memory multiprocessor using the
well accepted Proteus Parallel Hardware Simulator [lo],
[ll]. Our choice of algorithms was driven not only by their
asymptotic complexity, but also by the feasibility of actu-
ally implementing them on multiprocessor machines.

The first two compared methods are an algorithm that
blocks updates during a scan and a lock-free algorithm that
never blocks updates but does not guarantee scan termi-
nation in the face of repeated updating. Of the known
wait-free methods, we chose to implement the unbounded-
register versions of the algorithms of [l] and [9], and the
consensus based algorithm of [12]. The first two algo-
rithms use n-valued read/write registers to have processors
agree among collected views, and the last uses n-valued
registers and an agreement mechanism which we imple-
mented using the powerful Load linked/Store conditional
operation. We did not implement the test&set based algo-
rithms of [7] which achieve agreement among views using
an unbounded number of test&set registers. Transforming
them into bounded algorithms would introduce a substan-
tial overhead in space and in memory contention, making
them inferior to the Load linked/Store conditional based
agreement scheme which we tested. Given that the above
algorithms assume the availability of atomic n-value regis-
ters, we tested them both under the (unrealistic) assump-
tion that such operations are available in hardware, and
under the (more realistic) one that each n-valued read op-
eration takes at least n local operations. We found that
their performance was only slightly improved by assuming
n-valued registers were available in hardware.

We found that our single-scanner and multi-scanner
coordinaled-collect algorithms outperform all known a lge
rithms both in throughput and latency. Surprisingly, their
update throughput is as good as that of the lock free
method which lets updates succeed at the price of very low

scan throughput. The scan throughput of our algorithms
remains consistently high as the number of processors in-
creases, even though the size of the collected views grows
linearly. However, it has an associated overhead and gen-
erates a certain level of contention which prevent it from
reaching the throughput of the blocking algorithm (which
blocks all updates during a scan).

In summary, we believe our algorithm is an example of
using current multiprocessor synchronization operations to
develop snapshot algorithms that are more “realistic” in
terms of register size and the complexity of update opera-
tions. Our hope is that it will lead to the development of a
wait-free algorithm that has superior latency and through-
put for both scans and updates.

Section V presents benchmark results of some of the im-
plementable snapshot algorithms and compares them to
our algorithms.

Our computation model follows [8], [9], [16]. An atomic
snapshot memory is an object partitioned into n segments
Mem[l], .., Mem[n) each of type Data. There are two types
of allowable actions for any process i: Update(?-), and
Scani (r l , . . . , rn) for any i E { 1. . n}. Updatei (r) changes
the value of Mem[i] to r and ScaQ(view[l..n]) returns a
view of memory, a collection view[l..n] = Mem[I..n] of val-
ues. Scan and update operations are atomic, that is, be-
have as if they were executed instantaneously within their
associated execution interval. This is captured by requiring
that the implementation of any atomic snapshot memory
be linearizable [16].

Formally, assume that each processor is sequential, that
is, does not start a scan or update operation until it has
finished the previous one. We define a partial real-time
order on scan and update operations and denote it as “+”

[24], where A + B means that the execution of operation
A was completed before that of B was started. Operations
are concurrent if neither A + B nor B + A.

An atomic snapshot memory implementation is correct if
for every execution there is a sequence containing all scan
and update events, each completely preceding the other,
such that:

1. It extends the real-time order of operations as defined
by +, and

2. Maintains the sequential semantics of scan and update
operations; that is, if view is returned by some scan
operation, then each view[i] is the value written by
the last update, operation which precedes the scan in
the sequence.

We will be interested in getting an implementation that
is wait-free, that is, the execution of any implemented scan
or update operation completes within a bounded number
of machine operations [17].

31n the lock free algorithm, the scanner repeatedly collects the con-
tents of the registers. If it has read twice the content of the registers
and no register has been changed, it returns the collected values as a
result.

122

Fig. 1 . A Comparison of Atomic Snapshot Algorithms

11. THE SINGLE-COLLECT ALGORITHM

We begin by presenting a greatly simplified variant of
the Kirousis, Spirakis and Tsigas one scanner snapshot al-
gorithm [23]. This algorithm uses only atomic read/write
register operations, and achieves optimal time and space
complexity: O(n) for a scan operation and O(1) for an
update operation. The algorithm uses a sequential time-
stamp scheme (a register of 64 bits will suffice, though one
can replace it by a bounded sequential timestamp system
[14], [21]). The code for scan and update operations appears
in Figure 2.

scan0
{

curr-saq = curr-seq+l;
for j=i t o n {

high-r=rCj] .high;
if (high-r.saq < curr-seq)

v i e s [J] Zhigh-r ;
else

viewCjl=rCjl .low;
1
return(view) ;

>
Update(ra1)
{

seq=curr-saq;
h igh-rr [i] .high;

if (saq=high-r.ssq)
rCi] .high=[val,aaql ;

r[i] .low=hhigh-r;
rCil .high=[val.seql ;

alae {

3
>

Fig. 2. The Single-Collect algorithm - code for P,

The algorithm uses a shared array rC1.. m] of records,
each record having two components high and low, and
a shared variable currseq which holds a current time-
stamp (sequence number) of the latest scan operation, in-
cremented at the start of each scan operation. Each update
operation first reads this number, and the idea is to make

‘The code is presented in C-style programming

sure that the scanner returns only values that were writ-
ten by update operations that did not read its time-stamp.
This means that these updates started before the scan, and
so all their associated values could have ezisted in memory
at the point in time when the increment of the timestamp
was performed. To guarantee that such a value is found for
each updater, we must keep in memory its latest update
value having a timestamp preceding that of the current
scan. For this purpose we use the low field of each update
location.

111. THE COORDINATED-COLLECT ALGORITHM

The key idea behind our new multi-scanner algorithm
is to have updaters perform the same sequence of oper-
ations as in the single-collect algorithm (Figure 2), and
have concurrent scanners work together in collecting a
view. The difficulty is that this coordinated collecting
must be performed efficiently and in a wait-free manner
on real architectures using only bounded space. We do
so using a combination of Load-linked/Store-Conditional,
FetchtYIncrement, and FetchtYDecrement operations.

The crux of our algorithm lies in replacing the commonly
used idea of collecting separate views and agreeing, us-
ing an n-process consensus protocol or primitive, on one of
them, with the idea of agreeing on a memory location, and
coordinating the collecting of a view into it without using
n-consensus. The high level description of the algorithm
appears in Figure 3.

On a high level, a process wishing to perform a scan
proposes its own-view as a space in which all scanners will
perform a coordinated-collect. Each scanner first invokes a
get-view operation, which returns as result a “free” view,
that is, a view which no other scanner needed its use. An
initialization operation is performed on this returned view,
and it is becomes the scanner’s suggested view. We use a
pool of view spaces, from which groups of concurrent scan-
ners pick “free” view spaces. The pool behaves as if it
contains a n unbounded number of free views, though in
reality we will use a view recycling mechanism.

Processes agree which view to collectively work on using
a “helping” methodology in the style of Herlihy’s announce

123

array (171: every process proposes its ovn-viev and posts
it in its announce entry. The agreed view, on which the
“filling up’’ takes place, is determined by a shared pointer,
which is advanced in an agreement upon completion of fill-
ing up a view. At any point in time, only one view is being
filled up, that is, filling up operations are totally ordered.
In order to help filling up a view, each scanner has to suc-
cessfully acquire it, and after filling it up, the scanner
releases it. A scanner helps filling up at most two views,
since the second filled up view can be returned as a result.

The acquire of a view fails only when all scanners which
participated in its filling up, have already released it, and
the view is being recycled by a scanner for a new scan o p
eration. Any failed acquire operation, is followed by an
advance of the shared counter. Therefore, after a t most n
failed acquire operations, the scanner is assured that its
om-viev has been filled up.

The filling up of a view is done in the same style of the
single-collect scan operation. The main difference is that
there might be many processors concurrently participating
in the filling process. In order to achieve better perfor-
mance, we distribute the the work onto many locations in
a coordinated way using a shared counter from which pro-
cesses get the next address to update. s

Theorem III . l : Given a watt-free implementation of a
pool object with operations get-view ,init ,acquire and re-
lease having time complexity O(g(n)), O(i (n)) , O(a(n))
and O(r(n)) respectively, and with O(s(n)) space complex-
ity in terms of O(1) value registers then:

1. The coordinated-collect multi scanner algorithm is
correct and wait-free .

2. The scan complexity is O(g(n) + i (n) + n * a(.) +
r (n) + n) steps, the update complexity is O(1) steps
and the space complexity is O(s(n)) .

Using the pool constructions we provide, we conclude:
Corolla y Ill.,?: The coordinated-collect multi scanner

algorithm achieves O(n) scan complexity and O(1) update
complexity.

IV. POOL OBJECTS
We define a pool object as an abstract datd type whose

elements are objects of type view each consisting n register
fields. The pool object allows the following operations on
its view elements:

get-view returns a view V from the pool .
init(V) initializes view V of the pool .
acqurre(V) marks view V as acquired and returns

release(V) marks view V as released.
is-empiy(V,j) checks the j-th register field of vtew V of

We denote a successful acquire operation (i.e. returns
True), as successful-acquire.

Definition I V . l : A correct scanner is a processor P,
which satisfies the following conditions:

boolean (True/False).

the pool, and returns boolean (True/False).

We could have replaced that single location shared counter by a
fsster and lower contention counting network or diffracting tree, but
this goes beyond the scope of this paper.

s can0
{

own-view = get-viewO;
init(own-view);
aasign own-view to my announce entry;
while (own-view is not f u l l) {

curr-vies = view pointed by

if (curr-view ia f u l l)

e l s e

the current entry in the announce array;

advance on the announce array;

help-f ill(curr-view) ;
1
rel*aae(own,view) ;
return<om-view);

1

help,fill(curr,view)

if (aucceaaful-acquire(curr-view)) {

increued carr-seq in cum-view;

“.ingle-collect” sty10 ;

f i r s t = successful usignment of

f i l l curr-view’. registera i n a

mark curr-view 15 f u l l ;
advance on the announce array;
if ((f i ra t) or (help-f i l l once before) or

(own-view i s f u l l)) {
if (own-vies is not curr-view) then

release(curr-view) ;
return(curr-vies);

reha.e(oun-view) ;

1
release (curr-vies 1 ;

1

~ ~~

Fig. 3. High-level code of Coordinated-Collect algorithm

1. After Pi performs an ini t (V) or a success-
ful-acquire(V) it performs no other init(V) or ac-
quire(V) until it performs release(V) .

2. P; never performs a release(V) without a preceding
tnit(V) or successjuLacquire(V) .

Definition IV.2: An pool implementationis correct if for
every execution there is a sequence containing the above de-
fined pool operations, each completely preceding the other,
such that:

1. It extends the real-time order of operations as de-

2. When accessed only by correct scanners, the follow-
fined by +.

ing invariants are kept:
The get-view operation always returns a view
V, for which the number of release(V) oper-
ations ever performed, is equal to the sum of
the init(V) and successfuLacquire(V) opera-
tions ever performed.
If some scanner P; performs get-view oper-
ation and receives a returned view V, then
until it performs an :nit(V) , there can be no
successful-acquire(V) occurrences.

The is-empty(V, j) operation returns True iff
it occurs after the completion of an init(V) ,
and before the first write to the j-th register
of v.

124

(d) Upon completion of an ini t (V) and before
any other operation, the view V in its initial
state.

We implemented two versions of the pool object. Both
versions yield the same asymptotic time complexity for the
multi scanner algorithm: O(n) for scan and 0(1) for up-
date.

The first version , which is much simpler to prove and im-
plement, has minimized time complexity in practice, hav-
ing smaller constants, but has space complexity of O(n3),
i.e. array of nz view objects. The main idea behind
the construction is that each scanner has its own separate
part of the pool object. Each time a scanner performs a
get-view, it searches for a view in its own pool containing
n view objects. The acquire and release operations use
FetchOIncnmeni and FetchODecrement operations appro-
priately, in order to maintain for each view object, the cur-
rent number of scanners which have performed a successful
acquire on it. The i n i t operation just initializes the view
object.

In the second version, which has better space complexity
but inferior performance, the pool object contains only 2n
view objects, due to a major change in the get-view opera-
tion implementation. All view objects are shared by all the
scanners, and within the get-view operation each scanner
coordinates its search using the “helping” methodology.

v. PERFORMANCE EVALUATION OF SNAPSHOT
ALGORITHMS

We compared a collection of snapshot algorithms on a
64 processor simulated Alewife cache-coherent distributed-
memory machine [2] using the Proteus simulator developed
by Brewer, Dellarocas, Colbrook and Weihl(1Ol. Each pro-
ce88or had a cache with 2048 lines of 8 bytes and a mem-
ory access cost of 4 cycles. The cost of switching or wiring
in the Alewife architecture was 1 cycle/packet. The cur-
rent version of Proteus does not support Load-linked/Store-
Conditional instructions. Instead we used a slightly modi-
fied version that supports a 64bit Compare-and-Swap op-
eration where 32 bits serve as a time stamp. Naturally
this operation is less efficient than the theoretical Load-
lznked/Store-Conditional [18] (which we could have built
directly into Proteus), since a failing Compare-and-Swap
will cost a memory access while a failing Store-Conditional
wont. However, we believe the 64-bit Compare-and-Swap
is closer to the real world then the theoretical Load-
linted/Sfore-Conditional since existing implementations of
Load-linked/Store-Conditional as on Alpha 113) or Pow-
erPC [20] do not allow access to the shared memory be-
tween the Load-Linked and the Store-Conditional opera-
tions. On existing machines, the 64 bits compare-and-swap
may be implemented by using a 64 bits Load-linked/Store-
Conditional as on the Alpha.

We measured for each scan and update implementation:
Throughput The total number of completed operations

by all the processors in the system running for IO6
cycles.

Latency The average amount of time between the start

and the end of an operation for all the processors in
the system.

We evaluated the algorithms by having each scan-
ner/updater processor execute scan/update operations re-
peatedly as in Figure 4. Between each two operations, a
processor waits for an amount of time chosen uniformly at
random in the interval 0 to scan-wait for a scanner, and
0 to updatesait for an updater. We used the following
benchmarks:

Checkpoint The system has only one processor which ex-
ecutes scan operations (scanner) and the other pro-
cessors execute update operations (updaters). This
benchmark models the behavior of a “checkpoint”
mechanism for collecting consistent backups of a mul-
tiprocessor system or for concurrent debugging. The
algorithms were tested with HAX-TIHE equal to lo6 cy-
cles, and scan-wait and updateaait equal to lo3
cycles.

Concurrent data structure The system has half of the
processors execute scans and the other execute up-
dates. This benchmark models the the use of snap-
shots for concurrent-data-structure design, where mul-
tiple processors update or request an atomic view
of the state of the shared object. The algorithms
were tested with HAX-TIHE equal to lo6 cycles, and
scan-vait and updateaait equal to lo3 cycles. We
added a second set of tests with update-aait equal to
100 cycles.

SCAIIEB :
ohile (current-time < MAX-TIME) {

repeat random(scan-uait) times

s c a n 0 ;
/* do nothing */ ;

1

UPDATER :
ohile (current-time < IIAX-TIME) {

repeat random(update-oait) times

update(va1);
Val. seq = Val. seq + 1 ;

/* do nothing */ ;

1

Fig. 4. Benchmarks

A . The Algorithms

In the concurrent data structure benchmark, we tested
two versions of the coordinated-collect multi scanner algo-
rithm, using the the two pool object implementations, In
the checkpoint benchmark, we tested the single-collect al-
gorithm, as described in section 11.

We compared our algorithms, with the following previ-
ously known snapshot algorithms:

A + The unbounded version of the single-writer algo-
rithm in [l], which has O(n2) scan and update com-
plexity, and uses O(n) values registers. Each register.
in this version, has a data,seq and n-value view compo-
nent. Since we could not implement O(n) value regis-
ters, and by observing that this algorithm control flow
is not dependent on the contents of the n-value mew

125

component of each register, we excluded that compe
nent.

A R The unbounded version of the algorithm in [9],
which has O(n1ogn) scan and update complexity and
uses O(n2) values registers, was simulated. Each regis-
ter, which participates in the lattice agreement proce-
dure, contains n vectors, where each vector represents
a view of O(n) values. The implementation of the al-
gorithm had to deal with the manipulation of the con-
tents of those registers, i.e. unionizing the views vec-
tors. However, since each view vector contents is not
referenced, we implemented a bit value as a reference
of this view vector, and thus enabling the unionizing
of the views vectors.

C D The unbounded algorithm in [12], which has a scan
complexity of O(n) and update complexity of O(n +
C (n)) , where C(n) is the consensus complexity. We
used the strong Load linked/Store conditional primi-
tive, to implement the consensus, thus theoretically
achieving O(n) scan and update complexity. Yet, this
algorithm uses O(n) value registers, and also, atomic
multi-write operation of these registers. The algorithm
u8e8 for each scanner, two structures a new one and
an old one, where each has an O(n) value view register
and an appropriate O(1) value t ime-damp. However,
the control flow of the algorithm is dependent only on
the values of the new and old iime-stamp components.
We included only these components in our implemen-
tation’s registers, without making the algorithm pay
for the added O(n) values that must be stored in other
registers.

Lock-be The simple algorithm in which a scanner re-
peatedly tries to perform a successful double collect,
during which no change to memory occured, and an
updater which writes to its register in a straightfor-
ward manner.

Block-update The scanner uses a multi-valued
semaphore to “block” any updaters from performing
a write to any of the registers, while it collects their
values. The updater uses a random backoff method,
while “waiting” for the semaphore to be cleared.

The first three algorithms (A+,AR,CD) has unbounded
space complexity (in the strong sense of unbounded num-
ber of new locations), and therefore its time complexity is
much less than any of its appropriate bounded implemen-
tation. Thus, our test results give an advantage for these
algorithms with respect to our practical bounded algorithm
implementation.

In our benchmarks we make the realistic assumption that
the implementation of registers containing n(n) values re-
quires at least n local steps for each read operation (we
avoid making this assumption on write operations). How-
ever, we performed tests under the unrealistic assumption
of availability of atomic O(n)-value registers and hardware
operations, with no significant changes in our conclusions
(appears in the full paper).

B . Checkpoint Benchmark Results

The checkpoint benchmark results, as can be seen in Fig-
ure 5, show that the block-update and the lock-free alge
rithms are a t the extreme ends with respect to their scan
and update throughput 6 .

The block-update has the highest scan throughput since
its scan operations are performed without any ‘interference’
from the updaters (the interference is in terms of intercon-
nect contention and cache misses). However, it has very
low update throughput, since the updates can be executed
only between scan operations. Nevertheless, there is a per-
formance increase due to having more concurrent update
attempts.

The lock-free algorithm presents very poor scan through-
put because of repeated double collect failures that increase
with the number of updaters. Nevertheless, its update
throughput scales linearly with the number of updaters.
This is clearly due to the small number of operations exe-
cuted to complete an update.

The A+ algorithm has similar degradation in its scan
and update throughput. This is due to failures of its dou-
ble collects which increase with the number of updaters,
therefore, its scan latency increases, and that holds true for
its update which is essentially a scan. The AR algorithm,
because of the hidden constants involved in local work, is
much worst than the A+ algorithm and does not manage
to complete a single scan when n is larger than 20, and for
the same reasons mentioned for the A+ algorithm, its up-
date throughput degrades rapidly. The CD algorithm has
low update throughput which degrades moderately as the
number of updaters grow, due to the high contention and
the intense local work executed in each update operation.
Its scan throughput has good throughput for small number
of updaters which degrades rapidly for larger numbers, due
to an appropriate increase in the updaters ’interference’.

The single-collect algorithm update throughput is nearly
the same as the lock-free’s due to the small number (four)
of update operations, and also has high scan throughput,
which is close to the non-interference scan of the block-
update’s algorithm, since its scan collects the updaters val-
ues in a straightforward manner.

C. Concurreni Data Structure Benchmark Results

The results of the Concurrent data structure benchmark,
appear in Figure 6, which includes both throughput and la-
tency results for the first set of tests. For most algorithms
these results have a lot in common with those of the check-
point benchmark. We will therefore concentrate on the
major differences.

The block-update algorithm never seems to succeed in
completing an update for any number of processors due
to the increased number of scanners which disable the up-
daters progress. The scan throughput of the lock-free alge
rithm degrades rapidly due to the increased failure of the
double collects as the number of updaters increases. The

‘The scan and update latency results are not presented since they
are appropriately inversed to the scan and update throughput.

126

10000

1000

100

100

10

1 -

Update throughput

:

;

10 15 20 25 30 35 40 45 5 0
Processors

-
01 4

n
a

5
a
U n

u 0

CI

4
4

U

c

a

Scan throughput

.i 4
j j 1 sgng

10 15 20 25 30 35 40 4 5 50
Processors

Fig. 5. One scanner throughput (Log scde)

CD algorithm starts with a very good scan throughput and
some scaling but as the updaters ’interference’ grows it de-
grades substantially.

The coordinated-collecf algorithm maintains consistent
high scan throughput and linear scaling of scan latency.
Unlike in the case of the checkpoint benchmark, there is a
better throughput since a single view can be the returned
result of several scanners. One must remember that the
size of the view that needs to be collected increases linearly
with the number of processes. Furthermore, the method we
used for collecting the view is a little more subtle than the
straightforward way of iteration on the view entries, since
the latter would cause major contention of the interconnect
and would degrade the scan throughput.

The performance results of the O(n3) version of the
coordinated-collect algorithm, shows an improvement over
the O(n2) , in terms of scan latency and throughput. This
strengthens our intuition about the need to simplify the
get-view procedure, in order to achieve better results.
We measured the relative latency of the get-view proce-
dure, which resulted in 80-90% of the scan latency, for the
original coordinated-collect algorithm, and 60-70% for the
O(n3) version. These results show that the space limit and
the need to recycle views is a major factor in the overall
performance. The coordination costs in the views filling
up is minimized in our implementation, therefore, further
space recycling simplification can still obtain performance
enhancement.

In the second set we repeated our experiments with
update-wait equal to 100 cycles, in order to simulate a
“heavy load” of updaters, noting no significant changes.

VI. CONCLUSIONS

Though the asymptotic complexity of our algorithms is
optimal, there are various practical directions in which
their performance can be enhanced. First and foremost
would be a more efficient implementation of the pool ob-
ject. Other enhancements would involve eliminating some
of the constant overheads, and make the algorithm com-
plexity more closely dependent on the actual number of
scanners and updaters accessing it at a given time. Finally,
the current trend towards running multiprocessors applica-
tions in message passing architectures (farms of worksta-
tions) raises the interesting question of an efficient wait-free
message passing implementation of an atomic snapshot ob-
ject.

VII. ACKNOWLEDGMENTS

We wish to thank the anonymous PODC and ISTCS
referees for their helpful comments.

REFERENCES
Afek, Y., Attiya, H . , Dolev, D., Gafni, E., Memtt, M., and
Shavit, N. Atomic snapshots of shared memory. Journal of the
ACM 40(4) (Sept. 1993) 879890.
Agrswal, A. et al. The MIT Alewife machine: A large scale
distributed memory multiprocarsor. Proceedings of Workshop
on Scalable Shared Memory Multiprocessors. Kluwer Academic
Publishers, 1991. An extended version of this paper has been
submitted for publication, and appears as MIT/LCS Memo TM-
454,1991.
Anderson, J. H. Composite registers. Proceedings of the 9th An-
nual ACM Symposium o n Principles of Distributed Computing

Anderson, J. H . , Singh, A. k., and Gouda, M. G . The elusive
atomic register revisited. Proceedings of the 6ih ACM Sympo-
sium on Principled of Distribufed Computing, (Aug. 1987) 206-
221.

(Aug. 1990) 15-29.

127

~~

Update throughput Scan throughput

a 3

0 9

8 -
9

U

!
w

i
m
U

c

10000

1000

100

10

. :

. . , . . , . ,

10 1 5 20 25 3 0 3 5 4 0 45 5 0
Processors

Update latency

100000

10000

.

.......... j j j ; ; i i __ i j
....... s * a.." -.... 4 i c i.

10 15 20 25 30 3 5 40 45 5 0
Processors

a 3

U

8 -
VI

m
9

w

I4

i
4

Y

c

1000

100

.

10 -~
10 15 20 25 30 3 5 4 0 4 5 5 0

Processors

100000

10000

1000

Scan latency

. _._."

10 1 5 20 25 30 3 5 4 0 4 5 50
Processors

Fig. 6. Multi-scanner throughput and latency results (Log scale)

Aspnes, J., and Herlihy, M. Wait-free data structures in
the asynchronous PRAM model. Proceedings of the 2nd An-
nual Symporium on Parallel Algorithms and Architectures (July

Attiya, H., Dolev, D., and Shavit, N. Bounded polynomial ran-
domized consensus. Proceedings of ihe 8th ACM Symposium on
Principles of Distributed Computing, (Aug. 1989) 281-293.
Attiya, H., Herlihy, M., and Rachman, 0. Efficient
atomic snapshots using lattice agreement. Proceedings of
the 6th Intemational Workshop on Distributed Algorithms.
Haifa,Israel,November 1992(Segd A. and Zaks S. e&.) 35-53.
H. Attiya, N. Lynch and N. Shavit, "Are Wait-Free Algorithms
Fast?" Journal of the ACM, Vol. 41, No. 4 (July 1994), 725-763.
Attiya, H., and Rachman. 0. Atomic snapshots in O(nlogn) o p
erations. Proceedings of the 12th AGM Symposrum on Principles

1990) 340-349.

of Distributed Computing, (Aug. 1993) 29-40.
[lo] Brewer, E. A., Dellarocas, C. N., Colbrook, A., and Weihl, W.

E. Proteus: A High performance parallel architecturesimulator.
MIT Technical report /MIT/LCS/TR-561, September 1992.

[ll] Brewer, E. A. and Dellarocas, C. N. Proteus User Documen-
tation, Version 4.0, march 1992.

[12] Chandra T. D. and Dwork, C. Using Consensus to solve Atomic
Snapshots. Manuscript, 1993.

[13] Digital Equipment Corporation. ALPHA system reference man-
ual.

1141 Dolev. D., and Shavit, N. Bounded concurrent time-stampsys-
tems are constructible! Proceedings of the Zlst Annual ACM
Symposium on the Theory of Computing, (May 1989) 454-465.

1151 Dwork, C., Herlihy, M., Plotkin, S. A., and Waarts, 0.
Time lapse snapshots. Proceedings of the I m a e l Symposium

128

on the Theory of Computing and Systems. Haifa, Israel, May
1992(Dolev D., G a l Z., and Rodeh M. eds.) 154-1710,

Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Pro-
gramming Languages ond Systems, 12, 3 (July 1990) 463-492.
PdimiMly version appeared ~LS Axioms for concurrent objects.
in Proc. 14th AGM Simp. on Principles of Programming Lan-
groger, (Jan. 1987) 13-25.

(171 Herilhy, M. Wait free synchronization. ACM Transactions on
Progromming Longuages ond Systems, 13, 1 (January 1991)

[la] Herlihy, M. A Methodology For Implementing Highly Concur-
rent Data Objects. A C M Tronsoctions on Progromming Lon-
grages and Systems 15(5): 745-770, November 1993.

[19] D.Gawlik. Processing ‘hot spots’ in high performance systems.
In Proceedings COMPCON’BS, 1985.

[20] IBM Corporation. POWER PC reference manual.
[21] Israeli, A., and Li, M. Bounded time stamps. Proceedings of the

28th IEEE Symposium on Foundations o f Computet Science,
1987.

Linear time snapshot
protocols for unbalanced systems. Proceedings of the 7th Inter-
national Workshop on Disiributed Algorithms..

[23] Kirousis, L. M., Spirakis, P., and Teigas, Ph. Reading many
variables in one atomic operation: Solutions with linear or sub-
linear complexity. Proceedings of the 5th International Work-
shop o n Distributed Algoriihms. October 1991 229-241.

[24] L. Lamport. On Interprocess Communication, Parts I and 11.
Distributed Compuiing, Volume 1, 77-101, 1986.

(251 MIPS Computer Company. The MIPS RISC Architecture.

[16] Herlihy, M., and Wing, J. M.

124-149.

[22] Israeli A., Shaham A., and Shirazi A.

129

