
Distrib Comput (1995) 8:i81-190

�9 Springer-Verlag 1995

Parallel simulation on the hypercube multiprocessor
Azzedine Boukerche*, Carl Tropper**

School of Computer Science, McGill University, 3480 University Street, Montreal, Quebec H3A-2A7, Canada

Received: December 1990/Accepted: December 1994

Azzedine Boukerche received the
State Engineer degree in Software
Engineering from Oran University,
Oran, Algeria, and the M.Sc. degree
in Computer Science from McGiI1
University, Montreal, Canada. He is
a Ph.D. candidate at the School of
Computer Science, McGill Univer-
sity. During 1991-1992, he was
a visiting doctoral student at the
California Institute of Technology.
He is employed as a Faculty Lec-
turer of Computer Science at McGill
University since 1993. His research
interests include parallel simulation,
distributed algorithms, and system
performance analysis. He is a student
member of the IEEE and ACM.

Carl Tropper is an Associate
Professor of Computer Science at
McGill University. His primary area
of research is parallel discrete event
simulation. His general area of inter-
est is in parallel comp~ting and dis-
tributed algorithms in particular.
Previously, he has done research in
the performance modeling of com-
puter networks, having written
a book, Local Computer Network
Technologies, while active in the
area. Before coming to university life,
he worked for the BBN Corporation
and the Mitre Corporation, both
located in the Boston area. He spent

the 1991-92 academic year on a sabbatical leave at the Jet Propul-
sion Laboratories of the California Institute of Technology where
he contributed to a project centered about the verification of
flight control software. As part of this project he developed algo-
rithms for the parallel simulation of communicating finite state
machines. During winters he may be found hurtling down mountains
on skis.

*This work has been completed while the author was a visiting
doctoral student at the California Institute of Technology
**Was on sabbatical leave at the Jet Propulsion laboratories,
California Institute of Technology

Correspondence to: C. Tropper

Summary. This paper focuses upon a particular conserva-
tive algori thm for parallel simulation, the Time of Next
Event (TNE) suite of algorithms [,13]. T N E relies upon
a shortest path algori thm which is independently executed
on each processor in order to unblock LPs in the proces-
sor and to increase the parallelism of the simulation. T N E
differs fundamental ly from other conservative approaches
in that it takes advantage of having several LPs assigned
to each processor, and does not rely upon message passing
to provide lookahead. Instead, it relies upon a shortest
path algori thm executed independently in each processor.
A deadlock resolution algori thm is employed for inter-
processor deadlocks. We describe an empirical investi-
gat ion of the performance of T N E on the iPSC/i860
hypercube multiprocessor. Several factors which play an
impor tan t role in T N E ' s behavior are identified, and the
speedup relative to a fast uniprocessor-based event list
a lgori thm is reported. Our results indicate that T N E yields
good speedups and out-performs an optimized version of
the Chandy&Misra -nu l l message (CMB) algorithm. T N E
was 2 5 times as fast as the CM approach for less than 10
processors (and 1.5-3 times as fast when more than 10
processors were used for the same population of processes.)

Key words: Conservative approach - Distributed dead-
lock - F C F S queueing network - Lookhead - Multi-
processor - Parallel simulation - Torus

1 Introduction

Two major classes of algori thms have been developed for
the synchronizat ion of parallel simulations - the optimistic
approach (aka Time Warp) due to Jefferson [17] and the
conservative algori thms inspired by Chandy and Misra
[-4] and Bryant [-3]. Both approaches are based on a dis-
tr ibuted model of computa t ion in which processes com-
municate only via message passing. They differ, however, in
the way they deal with causality errors. Excellent surveys
of the area may be found in [9] and [,27].

The algori thms which we examine in this paper are
conservative. In this model a network of logical processes
(LPs) is used to simulate the objects of a system, e.g.,

182

a computer network. Explicit links connect the LPs and
messages are forwarded between LPs over the links. In the
conservative paradigm an event cannot be simulated at an
LP before it is certain that an event with a smaller time
stamp cannot arrive. As a consequence of this blocking
behavior, deadlocks can arise. Several solutions to this
problem exist, each requiring a certain amount of over-
head. A substantial amount of work has been done to
evaluate the performance of these strategies [8, 19, 28, 29].

The objective of this paper is to assess the performance
of a particular conservative algorithm, the Time of Next
Event algorithm [13] and to compare its performance to
an "optimized" version of the Chandy-Misra null message
algorithm I-4]. We also attempt to understand the factors
which are basic to its performance. TNE (our abbrevi-
ation) employs a shortest path algorithm which computes
the greatest lower bound on the arrival times of messages
on all of the empty input links to an LP. This has the effect
of speeding up a simulation by providing a "lookahead"
ability to LPs. The algorithm can also be shown to break
all intraprocessor deadlocks. When used on a distributed
memory machine such as the Intel i860, inter-processor
deadlocks can occur since TNE does not have access to
global data structures. Deadlock breaking algorithms are
described in [13] which deal with this eventuality. We note
in passing that TNE is also described in PADS conference
proceedings - in [10], [11] and [12].

The remaining sections of the paper are organized
along the following lines. Section 2 compares TNE to
other conservatives algorithms. Section 3 contains a de-
scription of the TNE algorithm, based upon its description
in [13]. Section 4 contains a description of the parallel
simulation which was built making use of TNE. Section
5 reports on the experiments which were carried out to
assess TNE's performance relative to a fast uniprocessor
simulator (i.e., the speedup) and to determine the factors
which strongly influence its p:erformance. The sources of
overhead for TNE are also discussed. In Sect. 6, we de-
scribe the comparison of TNE with an optimized Chandy-
Misra algorithm. Section 7 contains the conclusion.

2 Previous work

A number of conservative algorithms are related in spirit
to TNE in that they attempt to nnbtock LPs by providing
some form of estimate on the arrival time of a message to
an empty queue. We describe several of these algorithms
and then draw attention to the differences between these
approaches and TNE.

We turn first to the original Chandy-Misra null-mess-
age algorithm [4]. In this algorithm, when an event mess-
age is sent on an output link, a null message bearing the
same time-stamp is sent on all of the other out-bound links
of the LP. This enables the recipient to simulate all events
bearing a time-stamp less than or equal to the minimum
timestamp of all of the null-messages. However, the
arrival of a null-message at an LP can cause the recipient
to generate yet another null-message, resulting in the po-
tential generation of an overwhelming number of null

messages. As a result, a number of attempts to optimize
this basic scheme have appeared in the literature. For
example, in [30] the authors refrain from sending nul!
messages until such time as the LP becomes blocked. They
refer to this approach as eager events, lazy null messages.

The use of demand-driven null messages is described in
[22]. In this algorithm, an LP ~an query a predecessor (via
reques~ messayesl in an attempt to obtain a new lower
bound on the time stamps of messages which it can con-
sume. One possible choice for when to make these queries
is the time at which the LP becomes blocked. Another
possibility is to wait until the processor becomes idle.
However, no analysis of the performance of their algo-
rithm is given. In the event that the predecessor canno~
increase this lower bound, then it can query its own prede-
cessors via request messages. This, however, can lead to
deadlock [6, 22]. Consequently, a deadlock detection and
breaking algorithm must atso be employed [6].

Wagner et al. [30] describe a shared-memory version of
this technique, which is called lazy blocking avoidance, since
the algorithm waits until a processor is idle before it attempts
to provide a new lower bound for blocked LPs. We note in
passing that in a shared memory environment messages need
not be sent within a processor it suffices to queue or to
de-queue events at the queues maintained by the individual
LPs. When. for example, a message containing an event is to
be "sent" to a neighboring LP, we need only attach the evem
to the queue associated with the LP. However. their algo-
rithms are limited to a shared memory environment.

Nicol describes an appointment protocol [24] in which
he makes use of a future events queue, containing pre-
computed service times of jobs which are to arrive in an
LPs' future. Making use of these service times, as well as
pro-computed routing probabilities, the algorithm com-
putes a lower bound on the arrival time of the next job at
a successor LP. An LP requests an appointment (in the
form of this lower bound) from a predecessor when it finds
itself blocked.

Lubachevsky, in [20] describes the bounded lag algo-
rithm. The bounded lag restriction with the parameter
B allows events to be simulated concurrently if their time
stamps lie in the small interval [#, # + B], where ,uis the
current smallest timestamp in the simulated system and
B is a known positive and finite constant. The eff• of
Lubachevsky's method depends upon the broadcasting
algorithm and the values of B. If B is small, there might be
little parallelism available in the interval I/z,/~ + B]. On
the other hand if B is larger the overhead of detecting an
enabled event is larger as well.

All of the algorithms which we have described provide
information about the future arrival of messages to an LP
by making use of information obtained from neighboring
LPs. In order to obtain this information, either actual
messages have to be sent (between processors)or events
have to be placed in queues. TNE differs fundamentally
from this approach in that it relies upon the periodic
execution of a shortest path algorithm, making use of
information about all of the LPs in a processor. It calcu-
lates a greatest lower bound on.the arrival time of mess-
ages to all empty input queues in a processor in one

execution of the algorithm. The input to the algorithm
consists of the minimum time stamps at all non-empty
input queues, the local simulation times at each LP, and
the LP graph. TNE is executed when the processor is idle,
i.e. when no useful computation is being performed.

The algorithms described above rely on the propaga-
tion of successive lower bounds between actual LPs,
whereas TNE makes use of the information obtained from
a snapshot of the state of all LPs within a processor. As we
have indicated above, this lack of state information results
in the possibility of interprocessor deadlocks.

As the complexity of a shortest path algorithm is
O(n log n), the overhead of TNE when executed within the
confines of one processor is modest. By making use of an
heuristic (described in Sect. 4) which avoids calling a dead-
lock detection algorithm to detect inter-processor dead-
locks unnecessarily, we create a global algorithm which
has a low overhead. This is borne out by experimental
results described later in the paper (Sect. 5.)

In order to examine the performance of TNE, we
carried out two sets of experiments. One was aimed at
determining the important factors affecting TNE's perfor-
mance. The second set of experiments compared TNE's
performance to that of an "optimized" version of the
Chandy-Misra null message algorithm. In our version of
the null message algorithna, a newly arrived null message
at a queue will over-write any pre-existing message in the
queue. This simple optimization saves both buffer space
and execution time.

3 Overview of time next event (TNE) algorithm

In this section, we describe the intuition behind the TNE
algorithm and present pseudo code for TNE. As a conse-
quence of space limitations we do not provide a complete
and detailed description. The reader should consult [13]
for a detailed description.

We employ the example presented in Fig. 1 to infor-
mally described TNE.

Figure 1 shows three logical processes LPx, LPy and
LP2 connected by directed empty links. Let LST~, LSTy
and LST~ be the local simulation times, and Tminx ,
rrnin~ and Train= be the smallest timestamp at LP~, LPy and
LPz respectively. Tsmin~.j denotes the smallest time-stamp
increment an event sent from LPi to its neighbor LPa. We
define Ti to be the smallest timestamp which can be sent
by LP~ and Ti,j the TNE of the link (i,j).

Consider the empty link from LPx to LPs. LP~ cannot
send an event message with a smaller timestamp than T~,
where T~ = max(LST~, Tmin~). On its way ~, the message
has to pass through LPy as well. A service time has to be
added to each output sent by LP~. Therefore LPy cannot
expect a message with smaller timestamp than T~,y, where
T~,y = T~ + Tsm~n~.,- Thus a new T~. is computed as:
Ty = min(Ty, T~,y). LP~ cannot expect a message with

0 |
Fig. 1. LPs connected by empty links

183

a smaller timestamp than Ty,~ from LPy for the same
reason.

Based on these observations, a shortest path algorithm
[5] may be employed to compute the TNE. The TNE
algorithm explores the directed graph of LPs connected by
empty links. It finds estimates for the next timestamps on
all empty links that belong to the same processor. If the
estimate(s) of the future timestamp at all of an LP's empty
links are higher than the LP's smallest timestamps, then
the event with the smallest timestamp can be processed, i.e.
the LP is unblocked.

Pseudo code of the TNE is contained in Fig, 2 below.
We could improve the lower bound produced by the

TNE by precomputing a portion of the computation for
future events [24]. The priority queue (PQ) might be
implemented as a heap or a splay tree. The TNE algorithm
is not computationally very expensive. In [13], the authors
demonstrated that TNE can be mapped to the shortest
path problem, and therefore has the same complexity, i.e.
O(nlog(n)) where n is the number of nodes in the graph.
The TNE algorithm helps to unblock LPs and breaks all
local deadlocks - see [13], p. 114 for an example. However,
it doesnot have access to any global information, and this
unfortunately makes inter-processor deadlocks possible.
Thus another algorithm is needed to take care of this kind
of deadlock.

3.1 Distributed deadlock detection and recovet;v

A necessary and sufficient condition for a deadlock is given
in the following theorem.

Theorem 3.1. A deadlock exists if and only if there is
a cycle of empty links which all have the same time-of-next
event, and LPs which all are blocked because of these links
and only these links, i.e. there exists a knot.

This theorem generalizes the theorem proved by Pea-
cock et al. [25] which proved the same result for a cycle, as
opposed to a knot.

Figure 3 shows LPx, LPy, LP~ and LP~ connected
by directed empty links. The local simulation times are
shown in parentheses. Suppose that the old TNEs are
equal to 5. Since the TNE is executed in each processor,
it does not have global information. Thus the TNE com-
puted by the TNE algorithm would be equal to 11, which
is in fact the highest LST 2 in the cycle. The propagation
of the TNEs does not help to break the deadlock, since
the smallest timestamp in the cycle is larger than the
largest LST. As a consequence we have an inter-processor
deadlock.

l We assume that it is safe for LPx to process the event with the
smallest time stamp Tx 2LST is the time when the last event was processed by an LP

184

Input: graph G(V, E) and its subgraph Gp(Vp, E,) where V arc LPs
E are empty links, Vp is the set of LPs assigned to processor p,
and Ep is the set of empty links belonging to processor p,
LST., Tmin~, Tsmi T,~,, such that u c Vp, v c V
and w ~ E(V - Vp).

Output: time-of-next-event T,,~ for all empty kinks (u, v), such that
us Vpand ve V.

Temporary data structure: priority queue PQ.

begin
PQ = empty;

for all (u,w) s.t. u e Fp and w ~ (V - Vv) do
T,, = 0;

endfor;
for all v e Vp do

Temp = min~.~v v~(T,nin,,, T~,,);
T~ = max (Temp, LS T~),
insert (v, PQ);

endfor;
while not empty (PQ) do

select u ~ PQ s.t. T,, = min~ro(T~);
delete(u, PQ);
for all (u, v) s.t. v ~ g z, do

T~,~, = T~ + Tsmj~,,.;
if (T~ > max(T.,~,, LST~,) then

T~ = max(T~,~, LST,,);
endfor;

endwhile;
end.

Fig. 2. TNE algorithm

{ * Initialization Step * 3

{* Compute the smallest time stamp which can be sent by ~,J D~ .~
* r { ~i~,. is the smallest time stamp at EP~*~

{* Compute TNEs from the smallest T in PQ * }

{ * Compute TNEs for links (u, v) * }
{* Re-compute Tv if necessary * }

Fig. 3. Inter-processor deadlock

We now present a brief description of the inter-proces-
sor deadlock breaking algorithm, namely the Distr ibuted
Limited version of the T N E algori thm (D L T N E in short)
[13]. D L T N E is able to break deadlocks between several
processors while the remaining processors continue to
process their part of the simulation. It is based on a distrib-
uted shortest pa th algori thm [5].

Its main idea is to follow empty input links in the
opposite direction of the message flow. When the algo-
ri thm moves from one blocked LP~ to another blocked

LPj, it computes a quanti ty B called the bias, [13J, defined
below. When the algori thm reaches an unblocked LP, it
stops. This is because that L P cannot send a message with
a t imestamp smaller than m a x (L S T , T~min). L S T is the
local simulation time of the L P while Tsmin is the smallest
t imestamp at the LP.

Let us assume that we want to compute the T N E for
the link from LPb to LPa. For simplicity, we will assume
that the service time is zero, (Non 'ze ro service times can be
used in the algorithm.) Groselj and Tropper define the bias
for the LP~ as:

B~ = maxj~e,,b(LSTi);

where Pi,b is a sequence o f L P s (i , b,a) such that there
is an empty directed link between each L P and its
successors. The bias is computed for each path of LPs
reaching LP~.

With this definition, (see [13] for further details) one
can easily see that LP~ cannot expect a message with
a smaller time stamp than B~ from LPi along the path
Pi,a = (i, . . . , b, a). Once the bias is found at each LP~, i t is
also clear that LP~ can not send a message with a time
s tamp smaller than max(Bi, Ts,,~in,) from LPi along the
path P~,~. Consequently, the TNE, Tb,a, is computed as
follows:

Tb, a = mini~ v(max(Bi, T~,~i.~));

where V is a set of LPs attached to each other by empty
links and Tsm;n, the smallest time stamp at LP,. A priority
queue Q is used to temporari ly store the computed biases,
At each step, the smallest bias is removed from the queue
Q and used to compute the TNE.

Table 1. iPSC/i860 basic communication primitives

type Primitives Description

csend send a message and wait
for completion

Blocking crecy receive a message and wait
for completion

isend send a message
Non-blocking irecv receive a message

msgwait wait until completion
for communication

185

Table 2. Service time distribution used in experiments

Expression to
Distribution compute random value # Lookahead s LAR

Deterministic 1.0 1.0 1.0
Shifted Uniform 0.1 + uni() 0.1 6
Shifted Exponential 0.1 - log(uni()) 0.1 11.0
Bimodal 0.95238 uni() +

if uni() < 0.1 0.1 10
then 9.5238 else 0

A formal description of the DLTNE, a proof of its
correctness and its complexity may be found in [13].

4 The parallel simulation

A parallel simulator testbed (PARADIS) [1] has been
designed and implemented on the iPCS/i860 hypercube
multiprocessor to evaluate the T N E / D L T N E suite of al-
gorithms. The Intel iPSC3/i860 is a distributed memory
multiprocessor, in which the processing elements are inter-
connected in a hypercube topology [16]. The host and
node processors are 32 bit RISC processors running at
40 MHz, and each node has 8 MBytes of main memory.
The node operating system supports asynchronous com-
munication. In Table 1 we show the basic communication
primitives provided by the communication system of the
i860.

The scheduler program is executed on each processor.
The events in each processor are processed in the order of
increasing time stamps. The smallest time stamp in the
processor is taken from the event list and code from the
appropriate logical process is executed to simulate the
event.

Several heuristics for the scheduling of T N E were
investigated in the course of our experiments. We settled
on the so-called lazy approach. (See [1-1 for details of
the algorithms). In the lazy approach, T N E is called
when a processor becomes idle, i.e. when it has no
events to process. In the event that it does not unblock
the processor a heuristic, the purpose of which is to
avoid unnecessary calls to the deadlock detection algo-
rithm, is called. Known also as an artificial deadlock
avoidance algorithm [1], it examines empty links issuing
from a neighboring processor through the simple expedi-
ent of back-tracking. Upon finding three successive
empty links, a knot detection algorithm is called. In the
event that a knot is discovered, D L T N E is called to break
the knot. The algorithm, is an extension of [21-1 in
that it permits transitions between blocked and un-
blocked processes. The artificial deadlock heuristic is
quite successful at avoiding unnecessary calls to D LTNE,
as we shall see.

3 iPCS is a trademark of [ntel Corporation

5 Simulation experiments

In our experiments we selected a queueing network model
with an FCFS service discipline as a benchmark. Earlier
simulation studies [9,19,26,30] showed that the per-
formance of a simulation strategy is sensitive to the topol-
ogy of the simulated network. Several network topologies
for inter-processor networks have been proposed in the
literature [-7]. We have selected the toroid network topol-
ogy primarily because it provides a stress test for the
algorithms. This is a result of the large number of cycles
present in the torus, thereby increasing the number of
possible deadlocks. Other justifications for the use of the
torus queueing network topology is that it doesnot con-
tain any inherent bottlenecks and is used in multiprocessor
systems such as PACS [15-1 and M O P A C [31].

In our model, each network node is a server with
infinite capacity input queues. A server, modeled by an LP,
removes an event from one to the queues and starts ser-
vice. The service time distribution has been selected from
one of the following distributions (see Table 2): determinis-
tic, shifted uniform, shifted exponential, and bimodal. The
choice of these distributions is predicted upon their use in
evaluating serial simulations and are the same ones as used
in [8]. When service completes, the event is forwarded to
one of its neighbors, selected with equal probability. As
opposed to the previous studies [-9, 13,27, 30] in our ex-
periments, the message population is not constant during
the simulation. In our model, messages are deleted at the
destination (determined randomly). We selected an arbit-
rary number of messages (three on each queue) with which
to start the simulation in order to control the amount of
available parallelism. The message population as well as
the number of LPs determines the amount of parallel
activity that can occur in the simulation.

The efficiency of a parallel simulation depends a great
deal upon its ability to predict the next service time at each
LP. TNE looks ahead into simulated future to compute
the lower bound on the next event time for all empty links
within a processor. This results in the scheduling of new
events by unblocking some of the LPs. This notion is
captured in the idea of the lookahead of a service distribu-
tion. Lookahead is defined to be the minimum service time

4 uni() returns a random real number uniformly distributed between
0 and 1
s Lookahead is defined as the minimum value for the distribution

186

10

S

8
P

E 6

E

4
D

u 2

P

0

i0

4$4LPs.

gr "x',..~ i

2 4 6 8 I0 12 14 16
P R O C E S S O R S

S

8
P

~ 6

E

4
D

u 2

P

\ \ '.x~.

2 4 6 8 i0 12 14 16
P R O C E S S O R S

Fig. 4a, b. Speedup versus number of processors, a Deterministic distribution; b shifted uniform distribution

of the distribution, while the lookahead ratio (LAR) is the
ratio of the mean of the service time of the distribution to
the minimum service time [8]. Table 2 describes the distri-
butions we use, in particular their lookahead and their
lookahead ratio. As pointed by [8], the LAR plays a signif-
icant role in performance of conservative algorithms.

Nicol [24] proposed improving the lookahead ability
of a process by precomputing service times of future
events. In our model, for each process we precompute the
next service time for each link subsequent to sending
a message on that link.

A variety of work-loads were simulated, as character-
ized by service distributions, the number of processors and
the lazy approach discussed earlier. In all cases, we varied
the number of processors from 2 to 16 and the dimension
of the torus from 12 • 12 to 22 x 22 (i.e., from 144 nodes to
484 nodes). The experimental data which follows was
obtained by averaging several trial runs on the parallel
simulation testbed PARADIS [1].

We divide our discussion of the experimental results
into two sections. In the first section we assess the speedup
obtained by TNE relative to a fast sequential simulator.
The sequential simulator makes use of a splay tree, be-
cause it is among the fastest methods for implementing an
event list [18]. (Implementation details are described in
[1]). In the course of our discussion we point out signifi-
cant factors affecting TNE's performance. Following this,
we discuss the overhead implicit in the use of TNE, point-
ing out the importance of inter-processor deadlocks.

5.1 Speedup

We define the speedup SP(n) to be the time ET1 required
for a the sequential simulator to perform the simulation on
one processor divided by the time ET, required for the
parallel simulation to perform the same simulation on
n processors, i.e. SP(n) = ET1/ET,.

Figure 4 portrays the speedups obtained for the deter-
ministic and shifted uniform distributions, for 7 popula-
tion levels ranging from 64 LPs to 484 LPs. As we can see,
T N E yields good speedup curves for both distributions.

This is largely due to the TNE's efficiency in unblocking
LPs and breaking deadlocks, as will be demonstrated in
Sect. 5.2. We also note that lookahead plays an important
role in TNE's success as does the total number of LPs in
the model. (The deterministic distribution has an LAR of
1 while the shifted uniform has an LAR of 6D.

We observe significant speedups up to 10 processors
for all population levels followed by a gradual flattening of
the curves, the result of a decreasing number of LPs per
processor. TNE is executed in each processor, without
knowledge of the state of LPs in other processors. Hence it
does not have knowledge of event t imestamps or Of local
simulation times of LPs in other processors. Consequently,
when the number of [Ps per processor decreases. T N E can
unblock fewer processes. The situation becomes more dra-
matic at a population level of 196 LPs. when we see
a decreasing speedup after J0 processors. The number of
LPs per processor becomes so low that T N E is no longer
able to increase the parallelism of the simulation by un-
blocking LPs, coupled with the fact that the number of
deadlock detection/breaking messages has increased.

Communication/execution nme percentages are re-
ported in Table 3. We compute this percentage by dividing
the average time which an LP spends in sending messages
to or receiving messages from neighboring processors
divided by the execution time of the simulation. As can
be seen from Table 3, the inter-processor communication
plays an important role [14] in determining the speed
of the simulation when we employ a large number of
processors.

Table 3. Communication/Execution time percentage (deterministic
distribution)

Number of 144 lps 256 lps 400 Ips 484 lps
processors % % % %

2 5,13 5.1 5.9 5.7
4 6.32 6.2 72 7.3
8 7.1 7.4 7:51 7.63

16 15.9 18.7 20.5 22.1

Recall that we make use of a simple static mapping
strategy of LPs to processors, as in [8], in which the torus
is subdivided into grids, and in which the LPs in the same
grids are allocated to the same processor. This grid like
structure does not exploit the positive characteristics of the
hypercube machine, i.e. rich interconnectivity and power-
ful message passing with transparent routing. More soph-
isticated mapping strategies can yield better performance
[2, 24]. Several load balancing strategies as well as the
relationship between the execution time and the inter-
processor communication time are under investigation
[23.

When the lookahead properties of the distributions
become worse, as is the case of the shifted exponential
distribution or the bimodal distribution, speedups were
not as dramatic. (Graphs may be found in[1]). This sort of
behavior for conservative simulations has been pointed
out in [8]. More generally, the ability of TNE to exploit
the inherent parallelism of a model is constrained by the
same factors which apply to any conservative simulation

the lookahead of the service time distribution, the num-
ber of LPs in the model, and the number of processors
employed in the simulation.

Recall that we are subjecting TNE to a stress test in
these experiments - the topology contained a large num-
ber of cycles and the message population LPs was low (3
per link). In this light, we can conclude that TNE per-
formed quite well. The comparisons of TNE with an opti-
mized Chandy-Misra algorithm in the next section further
underscore this conclusion.

5.2 Overhead

Our first way of assessing the overhead engendered by
TNE is by measuring the overhead of inter-processor
deadlocks. We follow this with a description of a heuristic
for avoiding calling the distributed knot detection algo-
rithm too frequently. Our second measure of overhead is
directed towards the fraction of time spent executing TNE.

187

Finally, we examine the extent to which TNE is actually
successful in unblocking LPs.

We define the inter-processor deadlock ratio (IPDR) as
the number of messages involved in deadlock detection
and breaking divided by the number of event messages. As
we can see from Fig. 5, the behavior of the IPDR mirrors
that of the speedup curves. We see a maximum IPDR of
10% for 4 processors for both distributions, followed by
a gradual increase to maxima of 15% and 20% respect-
ively at 10 processors, followed by a sharper ascent to
maxima of 20% and 35% at 16 processors.

Recall that a heuristic algorithm was employed to
avoid calling the deadlock detection algorithm unnecess-
arily. The heuristic examines empty links issuing from
a neighboring processor. Upon finding 3 successive empty
links, the deadlock detection algorithm is called. Other-
wise, the simulation continues. Table 4 shows the success
this heuristic had in avoiding unnecessary overhead. In
fact, the heuristic (known as the artificial deadlock avoid-
ance algorithm) is absolutely critical to the performance of
TNE. Without it, the overhead generated by frequent calls
to the deadlock detection algorithm would simply over-
whelm TNE.

The second measure of the TNE overhead is the frac-
tion of time spent executing the TNE algorithm, which we
call the TNE time ratio. In the course of our experiments,
we observe that the TNE time ratio tends to increase with
an increasing number of processors. The TNE time ratio
varied between 10% and 25% for the deterministic and the
shifted uniform distributions. The interested reader might
wish to consult [1] for further details and for the graphs.

We now turn to a discussion of the success TNE has in
unblocking LPs. We employ two measures of efficiency in
the course of our discussion, the TN E success ratio
(TNESR) and TNE efficiency (TNEF).

We define the TNE Success Ratio, TNESR(n), to be
the percentage of calls to TNE which are successful (i.e.,
which unblock a blocked LP) on n processors. TNE is
called successfully if it unblocks at least one LP when it is

C

40

m

30
P

o20

R
10

%

4O

m

p30

020

......... �9 .~,~L~ R 10

2 4 6 8 10 12 14 16' 0
P R O C E S S O R S

/ 4 o o L ~

.S

4 6 8 10 12 14 16
P R O C E S S O R S

Fig. 5a, b. IPDR versus number of processors, a Deterministic distribution; b shifted uniform distribution

188

Table 4, Number of artificial deadlock detection calls compared to a number of knot detection
calls. - Lazy approach

Service time Nbr of Nbr of Nbr of calls of the Nbr of calls of
Distribution processors processes artificial deadlock the knot detection

avoidance algorithm algorithm

Deterministic

Uniform

2 324 75 36
4 324 t15 43
8 324 185 60

16 324 215 73
2 196 76 28
4 196 96 48
8 196 112 65

16 196 169 79

T 80

N

6O
E

S 40

R

20

%
i00

, . : . 4 8 4 L I ~

N
@

E

* 1 .90 LPI R
,.,,.. '-.,., 20

""" t .44 LPs

2 4 6 8 i0 12 14 16
P R O C E S S O R S

/ "-,, ",,...~ 5e't~y,~-%:. v - "

2 4 6 8 i0 12 !4 !6
P R O C E S S O R S

Fig. 6a, b. TNE success ratio versus number of processors, a Deterministic distribution; b shifted uniform distribution

zoo % %
I00 I

60 ,. ""''-... 84u~ N 60
N "" ~t,~. ~,',~ - ~

%", ~'1~

. ~<,':~.,,. ~'"4 40
~",~ "~I".Q.~ IA~

" 20 :,,:::::~ 20

0 . L J , ,

2 4 6 8 I0 12 14 16
P R O C E S S O R S

Fig. 7a, b, TNE efficiency versus number of processors, a Deterministic

..... "-..,1,,44 ~ " '

2 4 6 8 i0 12 14 16
P R O C E S S O R S

distribution; b shifted uniform distribution

called. Hence TNESR(n)= ~ TNESR/n; where n the
number of processors and where TNESRz is defined as
follows TNESR~ = TNE /TNEtot, ; TNEsuo~ is the num-
ber of t imes T N E is called successfully on processor (Pi);
while TNEtot~ is the number of t imes T N E is called.

Closely re la ted to T N E S R is the T N E efficiency
(TNEF(n)), which measures the percentage of LPs that
have been unblocked by a successful T N E a lgor i thm

executed on each processor dur ing the s imulat ion. This
indicates how successful T N E was in inc reas ing the
paral le l ism, i.e. TNEF(n) -- ~,(TNEFi)/n; where n is t h e
number of processors , and TNEF~ is defined as the sum of
the percentage of LPs unb locked b y each successful T N E
divided by the number of t imes T N E is called successfully.

We see in Figs. 6 and 7 tha t bo th measures decrease
with an increase in the number of processors for all

189

CM-Execution Ume/TNE Execution time
6

5

4
J

3!

" 25eLP=
~~. 'o 64 LPI

0 ~ . . ' ' , , , i , , , , n ,

5 I0 15 20 25 30
P R O C E S S O R S

CM ExecuUon tlme/T'NE Execution time

5 i0 15 20 25 30
P R O C E S S O R S

Fig. 8a, b. TNE compared to the Chandy-Misra approach, a Deterministic distribution; b shifted uniform distribution

population levels, for both distributions. (This applies to
the bimodal and shifted exponential distributions as well
[1]). For the higher levels of population, both measures of
effectiveness are extremely high - e.g., a TNESR and
a TNEF of 85% and 80% respectively for a shifted uni-
form distribution for 4 processors and a large number of
processes. As TNE only makes use of information located
within the confines of one processor, making use of more
processors for a given population level simply decreases
the ability of TNE to unblock an LP, as the information
required to unblock the LP might be located in another
processor. It is therefore tempting to speculate that sched-
uling TNE over a cluster of processors would improve
TNE's efficiency when a large number of processors (and
processes) are used.

6 TNE and Chandy-Misra, a comparison

In this section, we compare the execution times of the TNE
algorithm to an optimized version of the Chandy-Misra
(CM) algorithm. In [4], the authors employ null messages
in order to avoid deadlocks and to increase the parallelism
of the simulation. When an event is sent on an output link,
a null message, bearing the same timestamp as the event
message is sent on all other output links. As is well known,
it is possible to generate an inordinate number of null
messages under this scheme, nullifying any performance
gain [9].

In order to increase the efficiency of this basic scheme,
we employ the following approach. In the event that a null
message is queued at an LP and a subsequent message
(either null or event) arrives on the same channel, we
overwrite the (old) null message with the new message. We
associate one buffer with each input channel at an LP to
store null messages, thereby saving space as well as the
time required to perform the queueing and de-queueing
operations associated with null messages.

Once again we make use of the torus queueing model
described in Sect. 5 as an experimental test-bed. In Fig. 8

we present graphs of the ratio of time required for the CM
algorithm to complete a simulation compared to the TNE
algorithm. The comparison is presented for 4 population
levels for the deterministic (Fig. 8a) and the shifted uniform
distribution (Fig. 8b). We employed 4, 8, 16 and 32 proces-
sors in making this comparison.

Figure 8 makes clear how large an improvement TNE
is over our optimized version of the CM algorithm. If we
confine ourselves to less than 10 processors we see that
TNE is from 2 to 5 times as fast as the CM algorithm, (with
the exception of the population of 64 LPs). As we employ
more processors, the ratio decreases to the 1.5-3 range.
The decrease in TNE's effectiveness is due to an increasing
number of processors for the same model. As we have
already seen, the shortest path algorithm at the heart of
TNE is executed in each individual processor and can
therefore only make use of the information in the proces-
sor itself. By decreasing the number of LPs in each proces-
sor we decrease the information available to the algorithm.
In addition to this, increasing the number of processors
increases the number of executions of the deadlock detec-
tion and breaking algorithms. When 64 LPs are employed,
TNE's advantage over the optimized version persists up to
8 processors.

7 Conclusion

This paper has centered about a performance study of the
TNE algorithm as described by Groselj and Tropper in
[13]. We computed the traditional speedup curves relative
to an efficient uniprocessor simulator and identified im-
portant factors which influence TNE's behavior. We also
compared its performance to an optimized version of the
venerable Chandy-Misra algorithm [4].

TNE relies upon a shortest path algorithm which is
independently executed in each processor in order to
unblock LPs. A deadlock resolution algorithm is em-
ployed for inter-processor deadlocks. The factors which
play a role in TNE's behavior influence any conservative

190

simulator. These include the lookahead of the service dis-
t r ibution, the n u m b e r of LPs in the model, and the n u m b e r
of processors used.

The results obta ined demonstra te conclusively that
T N E is successful in speeding up a parallel s imulat ion. In
our experiments we observed a good speedup up to 10
processors (see Fig. 4), followed by a gradual f lat tening of
the curve. We at t r ibute this to the smaller a m o u n t of
informat ion supplied T N E when the model is spread out
among more processors, as well as an increased n u m b e r of
calls to the deadlock resolut ion algorithm. Compar i sons
to the optimized version of the C M algori thm were very
much in favor of TNE. For less than 10 processors, T N E
was 2 -5 times as fast as the CM algori thm and 1.5-3 as
fast when more than 10 processors were employed for the
same popula t ion of LPs. The only exception to this was
when the LP popula t ion was too small (64) to supply
adequate informat ion to TNE.

We close the paper with the following observations.
(1) An implementa t ion on a shared memory machine
would not require the use of a separate deadlock resolu-
t ion scheme because T N E can break deadlocks within its
purview, leading to a simpler implementa t ion and better
performance. (2) In a distr ibuted memory mul t icomputer ,
it is possible to employ a shortest path algori thm [5]
over several nodes of the mul t icomputer instead of the
present approach of confining T N E to a single processor.
This would be of part icular interest when a large n u m b e r
of processors are employed. (3) Finally, inter-processor
communica t ion is a basic factor to contend with on any
distr ibuted memory machine [-14]. We are evaluat ing its
relationship with the execution time of the s imulat ion in
the quest for a load-balancing algori thm [2].

Acknowledgement, We would like to thank Richard Fagen, Director
of the Campus Computing Organization at the California Institute of
Technology, and his staff for providing us an encouraging and
comfortable computing environment and making our stay enjoyable.
Thanks are in order to Paul Messina, director of the CCSF at
CalTech for providing us with super-computer access.

References

1. Boukerche A, Tropper C: Per[brmance analysis of distributed
simulation with clustered processes. Proc 1991, SCS Multicon-
ference on Advances in Distributed Simulation, Anaheim, Calif.
Jan. 1991, pp 112 120

2. Boukerche A, Tropper C: A static partitioning and mapping
algorithm for conservative parallel simulations. In: Proc of the
1994 Parallel and Distributed Simulation, vo124, no 1, July 1994,
pp 164 172

3. Bryant RE: Simulation of packet communications architecture
computer systems. MIT/LCS/TR-188, Masachusetts Institute of
Technology, Cambridge, Mass, Nov 1977

4. Chandy KM, Misra J: Distributed simulation: a case study in
design and verification of distributed programs. IEEE Trans
Softw Eng (SE-5) 440-452 (1979)

5. Chandy KM, Misra J: Distributed computation on graphs: shor-
test path algorithms. Commun ACM 25111): 198-206 (1982)

6. Cote C, Tropper C: On distributed and pseudosimulation. Proc
of the SCS Multiconf on Parallel and Distributed Simulation,
SCS Simulation Serie, vol 24, no 3, Jan 1992, pp 97 106

7. Feng TY: A survey of interconnection networks. Computers.
Special Issue on lnterconnection Networks. Dec 1981, pp 12--27

8. Fujimoto RM: Performance measurements of distributed strat-
egies. In: Proc 1988, SCS Multiconference on Distributed Simu-
lation, vol 19. no 3, Feb I988. pp 14-20

9. Fujimoto RM: Parallel discrete event simulation. In: Proc of the
1989 Winter Simulation Conference. 1989, pp 19 28

t0. Groselj B, Tropper C: The time-of-next-event algorithm. In: Proc
of the 1988 Distributed Simulation Conference, SCS Simulation
Series. vol 19. No 3. 1988. pp 25-29

11. Groselj B. Tropper C: A deadlock resolution scheme for distrib-
uted simulation. Proc of the SCS Eastern Multiconf. SCS Simu-
lation Series. vol 21. No 2. 1988. pp 108-112

12. Groselj B: CSP cocktail party and its performance on a network
of workstations. In: Proc of the 1990 Distributed Simulation
Conference. vol 22. no 1, 1990, pp 70-73

13. Groselj B. Tropper C: The distributed simulation of clustered
processes. Distrib Comput 4:111 121 11991)

14. Gustafson JL. Monty GR. Benner RE: Development of parallel
methods for 1024-processor hypercube. SIAM J Sci Stat Comput
9~41:609-638 (1988)

15. Hoshino et al.: PACS: a parallel microprocessors array for sci-
entific calculation. ACM Trans Comput Syst 1131:195-221
(19831

16. Intel: iPSC/860 Users Guide Intel Scientific Computers.
Beaverton. 1990

17. Jefferson DR: Virtual time. ACM Trans Prog Lang Syst 77t3):
405-425 1i985)

18. Jones DW: An empirical comparison of priority-queue and
event-set implementations. Commun ACM 29(4): 300 311 (1986/

i9. Lin YB. Lazowska ED: Conservative parallel simulation fbr
systems with no lookahead prediction. TR 89-07-07. Department
of Comput Science and Engineering, University of Washington,
1989

20. Lubachevsky BD: Efficient distributed event-driven simulations
of multiple loop networks. Commun ACM 32:111-123 ~1989)

21. Misra J. Chandy KM: Distributed graph algorithm: knot detec-
tion. ACM Trans Prog Lang Syst 4:678-686 11982)

22. Misra J: Distributed discrete-event simulation. ACM Compm
Surv 18(D: 39-65 {1986

23. Nandy B. Loucks WM: An algorithm for partitioning and map-
ping conservative parallel simulation onto multicomputer. Proc
of the SCS Multiconf on Parallel and Distributed Simulation.
SCS Simulation Serie. 1992. pp 139 146

24. Nicol DM Parallel discrete-event simulation of FCFS stochastic
queuing networks. In: Proc of the ACM SIGPLAN Symposium
on Parallel Programming, Environments. Applications, and
Languages, Yale University, July 1988

25. Peacock JK, Wong JW. Manning EG: Distributed simulation
using a network of processors. Comput Networks 3(1): 44--56
11979)

26. Reed DA. Malony A: Parallel discrete event simulation: the
Chandy-Misra approach. In: Proc 1988 SCS Multiconf on Dis-
tributed Simulation. 1988. pp 8-- 13

27. Righter R. Watrand JC: Distributed simulation of event systems.
Proc of the IEEE, vol 77. no 1. Jan 1989, pp 99-113

28. Seethalakshmi M: Performance analysis of distributed simula-
tion. MSc Report, Computer Science Department. University of
Texas. Austin. Texas. 1978

29. Su WK. Seitz CL: Variants of the Chandy-Misra-Bryant distrib-
uted discrete event simulation algorithm. In: Proc of the SCS
Multiconference on Distributed Simulation. vol 21. no 2. March
1989

30. Wagner DB. Lazowska ED. Bershad B: Techniques for efficient
shared memory parallel simulation. Proc 1989 SCS Multiconf on
Distributed Simulation. 1989, pp 29 37

31. Wong-Hua L. Miroslaw M: MOPAC: A partitionable and re-
configurable multicompmer array. Proc of the 1983 Interna-
tional Conference on ParalleI Processing, 1983, pp 506-510

