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Summary. This paper focuses upon  a particular conserva- 
tive algori thm for parallel simulation, the Time of Next 
Event  (TNE) suite of algorithms [,13]. T N E  relies upon  
a shortest path algori thm which is independently executed 
on each processor  in order  to unblock LPs  in the proces- 
sor and to increase the parallelism of  the simulation. T N E  
differs fundamental ly from other conservative approaches  
in that  it takes advantage of having several LPs assigned 
to each processor, and does not  rely upon  message passing 
to provide lookahead.  Instead, it relies upon  a shortest 
path algori thm executed independently in each processor. 
A deadlock resolution algori thm is employed for inter- 
processor deadlocks. We describe an empirical investi- 
gat ion of the performance of  T N E  on the iPSC/i860 
hypercube multiprocessor.  Several factors which play an 
impor tan t  role in T N E ' s  behavior  are identified, and the 
speedup relative to a fast uniprocessor-based event list 
a lgori thm is reported. Our  results indicate that T N E  yields 
good speedups and out-performs an optimized version of 
the Chandy&Misra -nu l l  message (CMB) algorithm. T N E  
was 2 5 times as fast as the CM approach  for less than 10 
processors (and 1.5-3 times as fast when more  than 10 
processors were used for the same population of processes.) 

Key words: Conservative approach  - Distributed dead- 
lock - F C F S  queueing network - Lookhead  - Multi- 
processor - Parallel simulation - Torus  

1 Introduction 

Two major  classes of algori thms have been developed for 
the synchronizat ion of parallel simulations - the optimistic 
approach  (aka Time Warp) due to Jefferson [17] and the 
conservative algori thms inspired by Chandy  and Misra 
[-4] and Bryant  [-3]. Both approaches  are based on a dis- 
tr ibuted model  of computa t ion  in which processes com- 
municate only via message passing. They differ, however, in 
the way they deal with causality errors. Excellent surveys 
of  the area may  be found in [9] and [,27]. 

The algori thms which we examine in this paper  are 
conservative. In this model  a network of  logical processes 
(LPs) is used to simulate the objects of a system, e.g., 
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a computer network. Explicit links connect the LPs and 
messages are forwarded between LPs over the links. In the 
conservative paradigm an event cannot be simulated at an 
LP before it is certain that an event with a smaller time 
stamp cannot arrive. As a consequence of this blocking 
behavior, deadlocks can arise. Several solutions to this 
problem exist, each requiring a certain amount of over- 
head. A substantial amount of work has been done to 
evaluate the performance of these strategies [8, 19, 28, 29]. 

The objective of this paper is to assess the performance 
of a particular conservative algorithm, the Time of Next 
Event algorithm [13] and to compare its performance to 
an "optimized" version of the Chandy-Misra null message 
algorithm I-4]. We also attempt to understand the factors 
which are basic to its performance. TNE (our abbrevi- 
ation) employs a shortest path algorithm which computes 
the greatest lower bound on the arrival times of messages 
on all of the empty input links to an LP. This has the effect 
of speeding up a simulation by providing a "lookahead" 
ability to LPs. The algorithm can also be shown to break 
all intraprocessor deadlocks. When used on a distributed 
memory machine such as the Intel i860, inter-processor 
deadlocks can occur since TNE does not have access to 
global data structures. Deadlock breaking algorithms are 
described in [13] which deal with this eventuality. We note 
in passing that TNE is also described in PADS conference 
proceedings - in [10], [11] and  [12]. 

The remaining sections of the paper are organized 
along the following lines. Section 2 compares TNE to 
other conservatives algorithms. Section 3 contains a de- 
scription of the TNE algorithm, based upon its description 
in [13]. Section 4 contains a description of the parallel 
simulation which was built making use of TNE. Section 
5 reports on the experiments which were carried out to 
assess TNE's performance relative to a fast uniprocessor 
simulator (i.e., the speedup) and to determine the factors 
which strongly influence its p:erformance. The sources of 
overhead for TNE are also discussed. In Sect. 6, we de- 
scribe the comparison of TNE with an optimized Chandy- 
Misra algorithm. Section 7 contains the conclusion. 

2 Previous work 

A number of conservative algorithms are related in spirit 
to TNE in that they attempt to nnbtock LPs by providing 
some form of estimate on the arrival time of a message to 
an empty queue. We describe several of these algorithms 
and then draw attention to the differences between these 
approaches and TNE. 

We turn first to the original Chandy-Misra null-mess- 
age algorithm [4]. In this algorithm, when an event mess- 
age is sent on an output link, a null message bearing the 
same time-stamp is sent on all of the other out-bound links 
of the LP. This enables the recipient to simulate all events 
bearing a time-stamp less than or equal to the minimum 
timestamp of all of the null-messages. However, the 
arrival of a null-message at an LP can cause the recipient 
to generate yet another null-message, resulting in the po- 
tential generation of an overwhelming number of null 

messages. As a result, a number of attempts to optimize 
this basic scheme have appeared in the literature. For  
example, in [30] the authors refrain from sending nul! 
messages until such time as the LP becomes blocked. They 
refer to this approach as eager events, lazy null messages. 

The use of demand-driven null messages is described in 
[22]. In this algorithm, an LP ~an query a predecessor (via 
reques~ messayesl in an attempt to obtain a new lower 
bound on the time stamps of messages which it can con- 
sume. One possible choice for when to make these queries 
is the time at which the LP becomes blocked. Another 
possibility is to wait until the processor becomes idle. 
However, no analysis of the performance of their algo- 
rithm is given. In the event that the predecessor canno~ 
increase this lower bound, then it can query its own prede- 
cessors via request messages. This, however, can lead to 
deadlock [6, 22]. Consequently, a deadlock detection and 
breaking algorithm must atso be employed [6]. 

Wagner et al. [30] describe a shared-memory version of 
this technique, which is called lazy blocking avoidance, since 
the algorithm waits until a processor is idle before it attempts 
to provide a new lower bound for blocked LPs. We note in 
passing that in a shared memory environment messages need 
not be sent within a processor it suffices to queue or to 
de-queue events at the queues maintained by the individual 
LPs. When. for example, a message containing an event is to 
be "sent" to a neighboring LP, we need only attach the evem 
to the queue associated with the LP. However. their algo- 
rithms are limited to a shared memory environment. 

Nicol describes an appointment protocol [24] in which 
he makes use of a future events queue, containing pre- 
computed service times of jobs which are to arrive in an 
LPs' future. Making use of these service times, as well as 
pro-computed routing probabilities, the algorithm com- 
putes a lower bound on the arrival time of the next job at 
a successor LP. An LP requests an appointment (in the 
form of this lower bound) from a predecessor when it finds 
itself blocked. 

Lubachevsky, in [20] describes the bounded lag algo- 
rithm. The bounded lag restriction with the parameter 
B allows events to be simulated concurrently if their time 
stamps lie in the small interval [#, # + B], where ,uis the 
current smallest timestamp in the simulated system and 
B is a known positive and finite constant. The eff• of 
Lubachevsky's method depends upon the broadcasting 
algorithm and the values of B. If B is small, there might be 
little parallelism available in the interval I/z,/~ + B]. On 
the other hand if B is larger the overhead of detecting an 
enabled event is larger as well. 

All of the algorithms which we have described provide 
information about the future arrival of messages to an LP 
by making use of information obtained from neighboring 
LPs. In order to obtain this information, either actual 
messages have to be sent (between processors)or events 
have to be placed in queues. TNE differs fundamentally 
from this approach in that it relies upon the periodic 
execution of a shortest path algorithm, making use of 
information about all of the LPs in a processor. It calcu- 
lates a greatest lower bound on.the arrival time of mess- 
ages to all empty input queues in a processor in one  



execution of the algorithm. The input to the algorithm 
consists of the minimum time stamps at all non-empty 
input queues, the local simulation times at each LP, and 
the LP graph. TNE is executed when the processor is idle, 
i.e. when no useful computation is being performed. 

The algorithms described above rely on the propaga- 
tion of successive lower bounds between actual LPs, 
whereas TNE makes use of the information obtained from 
a snapshot of the state of all LPs within a processor. As we 
have indicated above, this lack of state information results 
in the possibility of interprocessor deadlocks. 

As the complexity of a shortest path algorithm is 
O(n log n), the overhead of TNE when executed within the 
confines of one processor is modest. By making use of an 
heuristic (described in Sect. 4) which avoids calling a dead- 
lock detection algorithm to detect inter-processor dead- 
locks unnecessarily, we create a global algorithm which 
has a low overhead. This is borne out by experimental 
results described later in the paper (Sect. 5.) 

In order to examine the performance of TNE, we 
carried out two sets of experiments. One was aimed at 
determining the important  factors affecting TNE's perfor- 
mance. The second set of experiments compared TNE's 
performance to that of an "optimized" version of the 
Chandy-Misra null message algorithm. In our version of 
the null message algorithna, a newly arrived null message 
at a queue will over-write any pre-existing message in the 
queue. This simple optimization saves both buffer space 
and execution time. 

3 Overview of time next event (TNE) algorithm 

In this section, we describe the intuition behind the TNE 
algorithm and present pseudo code for TNE. As a conse- 
quence of space limitations we do not provide a complete 
and detailed description. The reader should consult [13] 
for a detailed description. 

We employ the example presented in Fig. 1 to infor- 
mally described TNE. 

Figure 1 shows three logical processes LPx, LPy and 
LP2 connected by directed empty links. Let LST~, LSTy 
and LST~ be the local simulation times, and Tminx , 
rrnin~ and Train= be the smallest timestamp at LP~, LPy and 
LPz respectively. Tsmin~.j denotes the smallest time-stamp 
increment an event sent from LPi to its neighbor LPa. We 
define Ti to be the smallest timestamp which can be sent 
by LP~ and Ti,j the TNE of the link (i,j). 

Consider the empty link from LPx to LPs. LP~ cannot 
send an event message with a smaller timestamp than T~, 
where T~ = max(LST~, Tmin~). On its way ~, the message 
has to pass through LPy as well. A service time has to be 
added to each output sent by LP~. Therefore LPy cannot 
expect a message with smaller timestamp than T~,y, where 
T~,y = T~ + Tsm~n~.,- Thus a new T~. is computed as: 
Ty = min(Ty, T~,y). LP~ cannot expect a message with 

0 | 
Fig. 1. LPs connected by empty links 
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a smaller timestamp than Ty,~ from LPy for the same 
reason. 

Based on these observations, a shortest path algorithm 
[5] may be employed to compute the TNE. The TNE 
algorithm explores the directed graph of LPs connected by 
empty links. It finds estimates for the next timestamps on 
all empty links that belong to the same processor. If the 
estimate(s) of the future timestamp at all of an LP's empty 
links are higher than the LP's smallest timestamps, then 
the event with the smallest timestamp can be processed, i.e. 
the LP is unblocked. 

Pseudo code of the TNE is contained in Fig, 2 below. 
We could improve the lower bound produced by the 

TNE by precomputing a portion of the computation for 
future events [24]. The priority queue (PQ) might be 
implemented as a heap or a splay tree. The TNE algorithm 
is not computationally very expensive. In [13], the authors 
demonstrated that TNE can be mapped to the shortest 
path problem, and therefore has the same complexity, i.e. 
O(nlog(n)) where n is the number of nodes in the graph. 
The TNE algorithm helps to unblock LPs and breaks all 
local deadlocks - see [13], p. 114 for an example. However, 
it doesnot have access to any global information, and this 
unfortunately makes inter-processor deadlocks possible. 
Thus another algorithm is needed to take care of this kind 
of deadlock. 

3.1 Distributed deadlock detection and recovet;v 

A necessary and sufficient condition for a deadlock is given 
in the following theorem. 

Theorem 3.1. A deadlock exists if and only if there is 
a cycle of empty links which all have the same time-of-next 
event, and LPs which all are blocked because of these links 
and only these links, i.e. there exists a knot. 

This theorem generalizes the theorem proved by Pea- 
cock et al. [25] which proved the same result for a cycle, as 
opposed to a knot. 

Figure 3 shows LPx, LPy, LP~ and LP~ connected 
by directed empty links. The local simulation times are 
shown in parentheses. Suppose that the old TNEs are 
equal to 5. Since the TNE is executed in each processor, 
it does not have global information. Thus the TNE com- 
puted by the TNE algorithm would be equal to 11, which 
is in fact the highest LST 2 in the cycle. The propagation 
of the TNEs does not help to break the deadlock, since 
the smallest timestamp in the cycle is larger than the 
largest LST. As a consequence we have an inter-processor 
deadlock. 

l We assume that it is safe for LPx to process the event with the 
smallest time stamp Tx 2LST is the time when the last event was processed by an LP 
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Input: graph G(V, E) and its subgraph Gp( Vp, E,) where V arc LPs 
E are empty links, Vp is the set of LPs assigned to processor p, 
and Ep is the set of empty links belonging to processor p, 
LST., Tmin~, Tsmi ...... T,~,, such that u c Vp, v c V 
and w ~ E(V - Vp). 

Output: time-of-next-event T,,~ for all empty kinks (u, v), such that 
us  Vpand ve V. 

Temporary data structure: priority queue PQ. 

begin 
PQ = empty; 

for all (u,w) s.t. u e  Fp and w ~ ( V  - Vv) do 
T,, = 0; 

endfor; 
for all v e Vp do 

Temp = min~.~v v~(T,nin,,, T~,,); 
T~ = max ( Temp, LS T~), 
insert (v, PQ); 

endfor; 
while not empty (PQ) do 

select u ~ PQ s.t. T,, = min~ro(T~); 
delete(u, PQ); 
for all (u, v) s.t. v ~ g z, do 

T~,~, = T~ + Tsmj~,,.; 
if (T~ > max(T.,~,, LST~,) then 

T~ = max(T~,~, LST,,); 
endfor; 

endwhile; 
end. 

Fig. 2. TNE algorithm 

{ * Initialization Step * 3 

{* Compute the smallest time stamp which can be sent by ~,J D~ .~ 
* r  { ~i~,. is the smallest time stamp at EP~*~ 

{* Compute TNEs from the smallest T in PQ * } 

{ * Compute TNEs for links (u, v) * } 
{* Re-compute Tv if necessary * } 

Fig. 3. Inter-processor deadlock 

We now present a brief description of the inter-proces- 
sor deadlock breaking algorithm, namely the Distr ibuted 
Limited version of the T N E  algori thm ( D L T N E  in short) 
[13]. D L T N E  is able to break deadlocks between several 
processors while the remaining processors continue to 
process their part  of  the simulation. It is based on a distrib- 
uted shortest pa th  algori thm [5]. 

Its main idea is to follow empty input links in the 
opposite direction of the message flow. When  the algo- 
ri thm moves from one blocked LP~ to another  blocked 

LPj,  it computes  a quanti ty B called the bias, [13J, defined 
below. When  the algori thm reaches an unblocked LP,  it 
stops. This is because that L P  cannot  send a message with 
a t imestamp smaller than m a x ( L S T ,  T~min). L S T  is the 
local simulation time of the L P  while Tsmin is the smallest 
t imestamp at the LP. 

Let us assume that  we want to compute  the T N E  for 
the link from LPb to LPa. For  simplicity, we will assume 
that the service time is zero, (Non 'ze ro  service times can be 
used in the algorithm.) Groselj and Tropper  define the bias 
for the LP~ as: 

B~ = maxj~e,,b(LSTi); 

where Pi,b is a sequence o f L P s  (i . . . .  , b,a) such that there 
is an empty directed link between each L P  and its 
successors. The bias is computed  for each path of LPs  
reaching LP~. 

With this definition, (see [13] for further details) one 
can easily see that  LP~ cannot  expect a message with 
a smaller time stamp than B~ from LPi along the path 
Pi,a = (i, . . . ,  b, a). Once the bias is found at each LP~, i t is  
also clear that  LP~ can not  send a message with a time 
s tamp smaller than max(Bi, Ts,,~in,) from LPi along the 
path P~,~. Consequently,  the TNE,  Tb,a, is computed  as 
follows: 

Tb, a = mini~ v( max(  Bi, T~,~i.~)); 

where V is a set of LPs  attached to each other by empty 
links and Tsm;n, the smallest time stamp at LP,. A priority 
queue Q is used to temporari ly  store the computed  biases, 
At each step, the smallest bias is removed from the queue 
Q and used to compute  the TNE.  



Table 1. iPSC/i860 basic communication primitives 

type Primitives Description 

csend send a message and wait 
for completion 

Blocking crecy receive a message and wait 
for completion 

isend send a message 
Non-blocking irecv receive a message 

msgwait wait until completion 
for communication 
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Table 2. Service time distribution used in experiments 

Expression to 
Distribution compute random value # Lookahead s LAR 

Deterministic 1.0 1.0 1.0 
Shifted Uniform 0.1 + uni() 0.1 6 
Shifted Exponential 0.1 - log(uni()) 0.1 11.0 
Bimodal 0.95238 uni( ) + 

if uni() < 0.1 0.1 10 
then 9.5238 else 0 

A formal description of the DLTNE,  a proof  of its 
correctness and its complexity may be found in [13]. 

4 The parallel simulation 

A parallel simulator testbed (PARADIS) [1] has been 
designed and implemented on the iPCS/i860 hypercube 
multiprocessor to evaluate the T N E / D L T N E  suite of al- 
gorithms. The Intel iPSC3/i860 is a distributed memory  
multiprocessor, in which the processing elements are inter- 
connected in a hypercube topology [16]. The host and 
node processors are 32 bit RISC processors running at 
40 MHz, and each node has 8 MBytes of main memory.  
The node operating system supports asynchronous com- 
munication. In Table 1 we show the basic communication 
primitives provided by the communication system of the 
i860. 

The scheduler program is executed on each processor. 
The events in each processor are processed in the order of 
increasing time stamps. The smallest time stamp in the 
processor is taken from the event list and code from the 
appropriate logical process is executed to simulate the 
event. 

Several heuristics for the scheduling of T N E  were 
investigated in the course of our experiments. We settled 
on the so-called lazy approach.  (See [1-1 for details of 
the algorithms). In the lazy approach,  T N E  is called 
when a processor becomes idle, i.e. when it has no 
events to process. In the event that it does not unblock 
the processor a heuristic, the purpose of which is to 
avoid unnecessary calls to the deadlock detection algo- 
rithm, is called. Known also as an artificial deadlock 
avoidance algorithm [1], it examines empty links issuing 
from a neighboring processor through the simple expedi- 
ent of back-tracking. Upon  finding three successive 
empty links, a knot  detection algorithm is called. In the 
event that a knot  is discovered, D L T N E  is called to break 
the knot. The algorithm, is an extension of [21-1 in 
that it permits transitions between blocked and un- 
blocked processes. The artificial deadlock heuristic is 
quite successful at avoiding unnecessary calls to D LTNE,  
as we shall see. 

3 iPCS is a trademark of [ntel Corporation 

5 Simulation experiments 

In our experiments we selected a queueing network model 
with an FCFS service discipline as a benchmark. Earlier 
simulation studies [9,19,26,30] showed that the per- 
formance of a simulation strategy is sensitive to the topol- 
ogy of the simulated network. Several network topologies 
for inter-processor networks have been proposed in the 
literature [-7]. We have selected the toroid network topol- 
ogy primarily because it provides a stress test for the 
algorithms. This is a result of the large number of cycles 
present in the torus, thereby increasing the number of 
possible deadlocks. Other justifications for the use of the 
torus queueing network topology is that it doesnot con- 
tain any inherent bottlenecks and is used in multiprocessor 
systems such as PACS [15-1 and M O P A C  [31]. 

In our model, each network node is a server with 
infinite capacity input queues. A server, modeled by an LP, 
removes an event from one to the queues and starts ser- 
vice. The service time distribution has been selected from 
one of the following distributions (see Table 2): determinis- 
tic, shifted uniform, shifted exponential, and bimodal. The 
choice of these distributions is predicted upon their use in 
evaluating serial simulations and are the same ones as used 
in [8]. When service completes, the event is forwarded to 
one of its neighbors, selected with equal probability. As 
opposed to the previous studies [-9, 13,27, 30] in our ex- 
periments, the message population is not constant during 
the simulation. In our model, messages are deleted at the 
destination (determined randomly). We selected an arbit- 
rary number of messages (three on each queue) with which 
to start the simulation in order to control the amount  of 
available parallelism. The message population as well as 
the number  of LPs determines the amount  of parallel 
activity that can occur in the simulation. 

The efficiency of a parallel simulation depends a great 
deal upon its ability to predict the next service time at each 
LP.  TNE looks ahead into simulated future to compute 
the lower bound on the next event time for all empty links 
within a processor. This results in the scheduling of new 
events by unblocking some of the LPs. This notion is 
captured in the idea of the lookahead of a service distribu- 
tion. Lookahead is defined to be the minimum service time 

4 uni( ) returns a random real number uniformly distributed between 
0 and 1 
s Lookahead is defined as the minimum value for the distribution 
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Fig. 4a, b. Speedup versus number of processors, a Deterministic distribution; b shifted uniform distribution 

of the distribution, while the lookahead ratio (LAR) is the 
ratio of the mean of the service time of the distribution to 
the minimum service time [8]. Table 2 describes the distri- 
butions we use, in particular their lookahead and their 
lookahead ratio. As pointed by [8], the LAR plays a signif- 
icant role in performance of conservative algorithms. 

Nicol [24] proposed improving the lookahead ability 
of a process by precomputing service times of future 
events. In our model, for each process we precompute the 
next service time for each link subsequent to sending 
a message on that link. 

A variety of work-loads were simulated, as character- 
ized by service distributions, the number of processors and 
the lazy approach discussed earlier. In all cases, we varied 
the number of processors from 2 to 16 and the dimension 
of the torus from 12 • 12 to 22 x 22 (i.e., from 144 nodes to 
484 nodes). The experimental data which follows was 
obtained by averaging several trial runs on the parallel 
simulation testbed PARADIS [1]. 

We divide our discussion of the experimental results 
into two sections. In the first section we assess the speedup 
obtained by TNE relative to a fast sequential simulator. 
The sequential simulator makes use of a splay tree, be- 
cause it is among the fastest methods for implementing an 
event list [18]. (Implementation details are described in 
[1]). In the course of our discussion we point out signifi- 
cant factors affecting TNE's  performance. Following this, 
we discuss the overhead implicit in the use of TNE, point- 
ing out the importance of inter-processor deadlocks. 

5.1 Speedup 

We define the speedup SP(n) to be the time ET1 required 
for a the sequential simulator to perform the simulation on 
one processor divided by the time ET, required for the 
parallel simulation to perform the same simulation on 
n processors, i.e. SP(n) = ET1/ET,. 

Figure 4 portrays the speedups obtained for the deter- 
ministic and shifted uniform distributions, for 7 popula- 
tion levels ranging from 64 LPs to 484 LPs. As we can see, 
T N E  yields good speedup curves for both distributions. 

This is largely due to the TNE's  efficiency in unblocking 
LPs and breaking deadlocks, as will be demonstrated in 
Sect. 5.2. We also note that lookahead plays an important 
role in TNE's  success as does the total number of LPs in 
the model. (The deterministic distribution has an LAR of 
1 while the shifted uniform has an LAR of 6D. 

We observe significant speedups up to 10 processors 
for all population levels followed by a gradual flattening of 
the curves, the result of a decreasing number of LPs per 
processor. TNE is executed in each processor, without 
knowledge of the state of LPs in other processors. Hence it 
does not have knowledge of event t imestamps or Of local 
simulation times of LPs in other processors. Consequently, 
when the number of [ Ps per processor decreases. T N E  can 
unblock fewer processes. The situation becomes more dra- 
matic at a population level of 196 LPs. when we see 
a decreasing speedup after J0 processors. The number of 
LPs per processor becomes so low that T N E  is no longer 
able to increase the parallelism of the simulation by un- 
blocking LPs, coupled with the fact that the number of 
deadlock detection/breaking messages has increased. 

Communication/execution nme percentages are re- 
ported in Table 3. We compute this percentage by dividing 
the average time which an LP spends in sending messages 
to or receiving messages from neighboring processors 
divided by the execution time of the simulation. As can 
be seen from Table 3, the inter-processor communication 
plays an important  role [14] in determining the speed 
of the simulation when we employ a large number of 
processors. 

Table 3. Communication/Execution time percentage (deterministic 
distribution) 

Number of 144 lps 256 lps 400 Ips 484 lps 
processors % % % % 

2 5,13 5.1 5.9 5.7 
4 6.32 6.2 72 7.3 
8 7.1 7.4 7:51 7.63 

16 15.9 18.7 20.5 22.1 



Recall that we make use of a simple static mapping 
strategy of LPs to processors, as in [8], in which the torus 
is subdivided into grids, and in which the LPs in the same 
grids are allocated to the same processor. This grid like 
structure does not exploit the positive characteristics of the 
hypercube machine, i.e. rich interconnectivity and power- 
ful message passing with transparent routing. More soph- 
isticated mapping strategies can yield better performance 
[2, 24]. Several load balancing strategies as well as the 
relationship between the execution time and the inter- 
processor communication time are under investigation 
[23. 

When the lookahead properties of the distributions 
become worse, as is the case of the shifted exponential 
distribution or the bimodal distribution, speedups were 
not as dramatic. (Graphs may be found in[1]).  This sort of 
behavior for conservative simulations has been pointed 
out in [8]. More generally, the ability of TNE to exploit 
the inherent parallelism of a model is constrained by the 
same factors which apply to any conservative simulation 

the lookahead of the service time distribution, the num- 
ber of LPs in the model, and the number of processors 
employed in the simulation. 

Recall that we are subjecting TNE to a stress test in 
these experiments - the topology contained a large num- 
ber of cycles and the message population LPs was low (3 
per link). In this light, we can conclude that TNE per- 
formed quite well. The comparisons of TNE with an opti- 
mized Chandy-Misra algorithm in the next section further 
underscore this conclusion. 

5.2 Overhead 

Our first way of assessing the overhead engendered by 
TNE is by measuring the overhead of inter-processor 
deadlocks. We follow this with a description of a heuristic 
for avoiding calling the distributed knot detection algo- 
rithm too frequently. Our second measure of overhead is 
directed towards the fraction of time spent executing TNE. 
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Finally, we examine the extent to which TNE is actually 
successful in unblocking LPs. 

We define the inter-processor deadlock ratio (IPDR) as 
the number of messages involved in deadlock detection 
and breaking divided by the number of event messages. As 
we can see from Fig. 5, the behavior of the IPDR mirrors 
that of the speedup curves. We see a maximum IPDR of 
10% for 4 processors for both distributions, followed by 
a gradual increase to maxima of 15% and 20% respect- 
ively at 10 processors, followed by a sharper ascent to 
maxima of 20% and 35% at 16 processors. 

Recall that a heuristic algorithm was employed to 
avoid calling the deadlock detection algorithm unnecess- 
arily. The heuristic examines empty links issuing from 
a neighboring processor. Upon finding 3 successive empty 
links, the deadlock detection algorithm is called. Other- 
wise, the simulation continues. Table 4 shows the success 
this heuristic had in avoiding unnecessary overhead. In 
fact, the heuristic (known as the artificial deadlock avoid- 
ance algorithm) is absolutely critical to the performance of 
TNE. Without it, the overhead generated by frequent calls 
to the deadlock detection algorithm would simply over- 
whelm TNE. 

The second measure of the TNE overhead is the frac- 
tion of time spent executing the TNE algorithm, which we 
call the TNE time ratio. In the course of our experiments, 
we observe that the TNE time ratio tends to increase with 
an increasing number of processors. The TNE time ratio 
varied between 10% and 25% for the deterministic and the 
shifted uniform distributions. The interested reader might 
wish to consult [1] for further details and for the graphs. 

We now turn to a discussion of the success TNE has in 
unblocking LPs. We employ two measures of efficiency in 
the course of our discussion, the TN E success ratio 
(TNESR) and TNE efficiency (TNEF). 

We define the TNE Success Ratio, TNESR(n), to be 
the percentage of calls to TNE which are successful (i.e., 
which unblock a blocked LP) on n processors. TNE is 
called successfully if it unblocks at least one LP when it is 
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Table 4, Number of artificial deadlock detection calls compared to a number of knot detection 
calls. - Lazy approach 

Service time Nbr of Nbr of Nbr of calls of the Nbr of calls of 
Distribution processors processes artificial deadlock the knot detection 

avoidance algorithm algorithm 

Deterministic 

Uniform 

2 324 75 36 
4 324 t15 43 
8 324 185 60 

16 324 215 73 
2 196 76 28 
4 196 96 48 
8 196 112 65 

16 196 169 79 
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distribution; b shifted uniform distribution 

called. Hence TNESR(n)= ~ TNESR/n; where n the 
number  of processors  and  where TNESRz is defined as 
follows TNESR~ = TNE . . . .  /TNEtot, ;  TNEsuo~ is the num- 
ber of t imes T N E  is called successfully on processor  (Pi); 
while TNEtot~ is the number  of t imes T N E  is called. 

Closely re la ted to T N E S R  is the T N E  efficiency 
(TNEF(n)), which measures  the percentage of  LPs that  
have been unblocked  by a successful T N E  a lgor i thm 

executed on each processor  dur ing  the s imulat ion.  This 
indicates  how successful T N E  was in inc reas ing  the 
paral le l ism,  i.e. TNEF(n) -- ~,(TNEFi)/n; where n is t h e  
number  of processors ,  and  TNEF~ is defined as the sum of 
the percentage  of LPs unb locked  b y  each successful T N E  
divided by the number  of t imes T N E  is called successfully. 

We see in Figs. 6 and  7 tha t  bo th  measures  decrease  
with an increase in the number  of  processors  for all 
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Fig. 8a, b. TNE compared to the Chandy-Misra approach, a Deterministic distribution; b shifted uniform distribution 

population levels, for both distributions. (This applies to 
the bimodal and shifted exponential distributions as well 
[1]). For  the higher levels of population, both measures of 
effectiveness are extremely high - e.g., a TNESR and 
a TNEF  of 85% and 80% respectively for a shifted uni- 
form distribution for 4 processors and a large number of 
processes. As TNE only makes use of information located 
within the confines of one processor, making use of more 
processors for a given population level simply decreases 
the ability of TNE to unblock an LP, as the information 
required to unblock the LP might be located in another 
processor. It is therefore tempting to speculate that sched- 
uling TNE over a cluster of processors would improve 
TNE's efficiency when a large number of processors (and 
processes) are used. 

6 TNE and Chandy-Misra, a comparison 

In this section, we compare the execution times of the TNE 
algorithm to an optimized version of the Chandy-Misra 
(CM) algorithm. In [4], the authors employ null messages 
in order to avoid deadlocks and to increase the parallelism 
of the simulation. When an event is sent on an output link, 
a null message, bearing the same timestamp as the event 
message is sent on all other output links. As is well known, 
it is possible to generate an inordinate number of null 
messages under this scheme, nullifying any performance 
gain [9]. 

In order to increase the efficiency of this basic scheme, 
we employ the following approach. In the event that a null 
message is queued at an LP and a subsequent message 
(either null or event) arrives on the same channel, we 
overwrite the (old) null message with the new message. We 
associate one buffer with each input channel at an LP to 
store null messages, thereby saving space as well as the 
time required to perform the queueing and de-queueing 
operations associated with null messages. 

Once again we make use of the torus queueing model 
described in Sect. 5 as an experimental test-bed. In Fig. 8 

we present graphs of the ratio of time required for the CM 
algorithm to complete a simulation compared to the TNE 
algorithm. The comparison is presented for 4 population 
levels for the deterministic (Fig. 8a) and the shifted uniform 
distribution (Fig. 8b). We employed 4, 8, 16 and 32 proces- 
sors in making this comparison. 

Figure 8 makes clear how large an improvement TNE 
is over our optimized version of the CM algorithm. If we 
confine ourselves to less than 10 processors we see that 
TNE is from 2 to 5 times as fast as the CM algorithm, (with 
the exception of the population of 64 LPs). As we employ 
more processors, the ratio decreases to the 1.5-3 range. 
The decrease in TNE's effectiveness is due to an increasing 
number of processors for the same model. As we have 
already seen, the shortest path algorithm at the heart of 
TNE is executed in each individual processor and can 
therefore only make use of the information in the proces- 
sor itself. By decreasing the number of LPs in each proces- 
sor we decrease the information available to the algorithm. 
In addition to this, increasing the number of processors 
increases the number of executions of the deadlock detec- 
tion and breaking algorithms. When 64 LPs are employed, 
TNE's advantage over the optimized version persists up to 
8 processors. 

7 Conclusion 

This paper has centered about a performance study of the 
TNE algorithm as described by Groselj and Tropper in 
[13]. We computed the traditional speedup curves relative 
to an efficient uniprocessor simulator and identified im- 
portant factors which influence TNE's behavior. We also 
compared its performance to an optimized version of the 
venerable Chandy-Misra algorithm [4]. 

TNE relies upon a shortest path algorithm which is 
independently executed in each processor in order to 
unblock LPs. A deadlock resolution algorithm is em- 
ployed for inter-processor deadlocks. The factors which 
play a role in TNE's behavior influence any conservative 
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simulator.  These include the lookahead of the service dis- 
t r ibution,  the n u m b e r  of LPs in the model, and  the n u m b e r  
of processors used. 

The results obta ined demonstra te  conclusively that 
T N E  is successful in speeding up a parallel s imulat ion.  In 
our  experiments we observed a good speedup up to 10 
processors (see Fig. 4), followed by a gradual  f lat tening of 
the curve. We at t r ibute this to the smaller a m o u n t  of 
informat ion  supplied T N E  when the model  is spread out 
among  more processors, as well as an increased n u m b e r  of 
calls to the deadlock resolut ion algorithm. Compar i sons  
to the optimized version of the C M  algori thm were very 
much in favor of TNE. For  less than 10 processors, T N E  
was 2 -5  times as fast as the CM algori thm and 1.5-3 as 
fast when more than 10 processors were employed for the 
same popula t ion  of LPs. The only exception to this was 
when the LP popula t ion  was too small (64) to supply 
adequate informat ion to TNE.  

We close the paper  with the following observations.  
(1) An implementa t ion  on a shared memory  machine  
would not  require the use of a separate deadlock resolu- 
t ion scheme because T N E  can break deadlocks within its 
purview, leading to a simpler implementa t ion  and better 
performance. (2) In  a distr ibuted memory  mul t icomputer ,  
it is possible to employ a shortest path algori thm [5] 
over several nodes of the mul t icomputer  instead of the 
present approach of confining T N E  to a single processor. 
This would be of part icular  interest when a large n u m b e r  
of processors are employed. (3) Finally,  inter-processor 
communica t ion  is a basic factor to contend with on any 
distr ibuted memory  machine  [-14]. We are evaluat ing its 
relationship with the execution time of the s imulat ion in 
the quest for a load-balancing  algori thm [2]. 
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