
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

On the Scalability and Dynamic Load-Balancing of
Time Warp

Sina Meraji, Wei Zhang, Member, IEEE, and Carl Tropper, Member, IEEE

Abstract—As a consequence of Moore’s law, the size of in-
tegrated circuits has grown extensively, resulting in simulation
becoming the major bottleneck in the circuit design process. On
the other hand, parallel or distributed simulations can be applied
as fast, feasible and cost effective approaches for correctness
analysis of current VLSI circuits. In this paper, we developed
the first Time Warp simulator which can simulate in parallel all
synthesizable Verilog circuits. We observed 4,000,000 events per
second on 32 processors for the Viterbi decoder with 800k gates.
We also observed that the load of different processors differ
by up to 12M events during the course of the simulation. As a
result, we first develop two new dynamic load balancing approach
which balance the load during the simulation. Afterward, we
utilize reinforcement learning to create an algorithm which is
a combination of the first two algorithms. We investigate the
algorithms on gate level simulations of several open source VLSI
circuits. Our results show up to a 25% improvement in the
simulation time using the reinforcement learning algorithm. To
the best of our knowledge, this is the first time that reinforcement
learning has been used for the dynamic load-balancing of Time
Warp.

Index Terms—Parallel Circuit Simulation, Verilog, Dynamic
Load-balancing, Reinforcement Learning, Time Warp.

I. INTRODUCTION
According to Moore’s law [23] the complexity of Integrated

Circuits (IC) will double every 18 months. Hardware Descrip-
tion Languages (HDL) such as Verilog [25] and VHDL [8] are
commonly employed to design circuits. The use of an HDL
speeds up the design process and the time-to-market of these
circuits.
A major part of the design process is verification. Verifica-

tion engineers check the correctness and performance of the
circuits using hardware and software simulation. In hardware
simulation, it is hard to probe the values of internal signals and
expensive to build complex simulators. As a consequence, the
verification process relies on software simulation.
Sequential simulation can be utilized as an accurate and

inexpensive approach for the verification of digital circuits.
However, as a consequence of increasing circuit size the exe-
cution time for sequential simulation is becoming prohibitive
for large circuits. Current digital circuits have millions of
gates and it is difficult to fit the simulation models of these
circuits into a single processors’ memory. In addition to the
demand for memory, the need for decreased simulation time

S. Meraji and Carl Tropper are with the School of Computer Sci-
ence, McGill University, Montreal, QC., Canada, Their e-mails are:
smeraj@cs.mcgill.ca and carl@cs.mcgill.ca
W. Zhang is with School of Computer Science, National University of

Defense Technology, Changsha, China, His e-mail is: weizhang@nudt.edu.cn

is a major challenge for the verification process. As a result,
the sequential simulation of digital circuits has become a
bottleneck in the design process. At the same time, parallel
discrete event simulation has emerged as a viable alternative
to provide a fast, cost effective approach for the performance
analysis of complex systems.
Processing the events of a sequential simulation is ac-

complished by using a centralized priority queue of events.
However, this approach cannot be extended in a straightfor-
ward manner to parallel simulation. Instead, a parallel (or
distributed) simulation is composed of a set of processes
which are executed on different processors and which model
different parts of the physical system. Each of these processes
is referred as a Logical Process (LP) and they communicate
with each other via time stamped messages.
It is necessary to make sure that the events in a parallel

simulation are executed in the same order as they would be in
a sequential simulation [12], i.e. causality must be maintained.
In order to do so, the LPs must be synchronized. There are
two main approaches to this synchronization: conservative [6]
and optimistic synchronization [14]. Conservative simulations
rely on process blocking, which by definition takes more time
and results in deadlocks. At the other extreme, optimistic
simulations process events in the order in which they arrive at
an LP. No attempt is made to assure that events do not vio-
late causality. Among the optimistic synchronization schemes
Jefferson’s Time Warp [14] is the most widely employed.
Time Warp simulators for digital logic circuits were used

in [4], [17], [22], [33], [21]. While some effort on distributed
VHDL simulation had been made in [16], [18], [19], this was
not the case for Verilog. DVS [17] was the first environment
for parallel Verilog simulation. Performance analysis of XTW
[33] has shown that it outperforms both Time Warp and
Clustered Time Warp [4], which lay at the heart of DVS.
However, XTW could not parse Verilog files. Hence we built
a front-end for XTW rendering it capable of simulating any
synthesizable Verilog design. We called the new simulator
VXTW (Verilog XTW) [VXTW].
It is important to note that to date only small benchmark cir-

cuits and synthetic circuits were available for experimentation;
our use of real designs in this paper provides more realistic
benchmarks. It is also well known that in order to achieve
good performance using a parallel or distributed program, it
is necessary to equalize the load on the processors and to
minimize the communication between the processors. As it
is not possible to measure the load before a program starts,
dynamic load-balancing during run-time has been employed
for some time [1], [2], [31], [35]. The dynamic load-balancing



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

of parallel digital simulation is examined in [5], [28] for small
circuits (up to 25k gates). [5] selects clusters of LPs and
moves them between processors in order to balance the load. A
variation of this algorithm also minimizes the communication
between processors. A central node is responsible for selecting
the LPs which are transferred, a reasonable choice because the
circuit sizes were no larger then 25 K gates. The algorithm was
implemented on a shared memory multi-processor, resulting
in a negligible communication cost for the load transferring.
This is not the case for current multi-computers which have
distributed memory. In this paper, we introduce two new dy-
namic load-balancing algorithms which utilize a combination
of a centralized and a distributed approach to select the LPs
which are to be transferred.
Dynamic load-balancing is an adaptive protocol [9] for Time

Warp. According to [9], an adaptive protocol is a protocol
which dynamically changes its behaviour according to changes
in simulation. Adaptive protocols are discussed in [10], [11],
[29]. Some of these protocols control a time window in Time
Warp by blocking overly optimistic execution. [5] introduced
an adaptive dynamic load-balancing algorithm which improves
the simulation time. While adaptive techniques improve the
performance of pure Time Warp they have two main draw-
backs: the usage of analytic models and the lack of evaluation
of the effectiveness of the control mechanism. The quality of
the protocol is highly dependent to the model and the control
function is supposed to be optimal.
In this paper, we present a protocol which selects a load-

balancing algorithm and its associated parameters using rein-
forcement learning [15]. Reinforcement learning is an area
of machine learning [7]. In contrast to adaptive methods,
reinforcement learning does not depend upon an analytical
model of the system being simulated. Instead, it learns directly
from experience with the system for which it is employed. In
our case, the system is the parallel simulation. An attractive
feature of reinforcement learning algorithms is that the runtime
and implementation overhead are low. To the best of our
knowledge, this is the first time that reinforcement learning
has been used for the dynamic load-balancing of Time Warp.
The rest of the paper is organized as follows. In section

2, we briefly discuss Avril’s [5] dynamic load-balancing algo-
rithm and XTW. In Section 3 we detail our efforts in adding the
front end parser to XTW. In Section 4 we introduce two new
dynamic load-balancing algorithms for Time Warp. Section 5
introduces our learning algorithm. The performance analysis
of the VXTW, dynamic load-balancing algorithms and the
learning algorithm is addressed in section 6. Finally, the last
section contains our conclusion and our thoughts for future
work.

II. BACKGROUND
A. Time Warp
Among the optimistic synchronization schemes Jefferson’

Time Warp [14] is the first and the most well known one. Time
Warp consists of two control mechanisms to guarantee the cor-
rectness of the simulation: Local Control and Global Control.
While local controls are implemented within processors, global

controls rely on a distributed computation performed by all of
the processors in the system.

1) Local Control Mechanism: Each LP in Time Warp has
an event list which includes all of the events which are
processed or scheduled but not processed yet. This event list
is referred as input queue. The events of input queue may be
a result of the messages that are sent to the LP by other LPs.
Each LP repeatedly removes the event with the smallest time
stamp from its event list and executes it without verifying the
safety of the event (optimistically). The LP may later receive
a message with a time stamp smaller than the current time
of the LP. This message is referred as straggler message. If a
straggler message arrives, a rollback to the time stamp of the
straggler is performed and all of the processed events with a
greater time stamp than that of the straggler are re-executed.

The local control techniques try to retain the status of the
system by rolling back all modified state variables and also
messages sent to the other LPs. Two approaches for rolling
back the state variables are copy state saving and incremental
state saving [12]. Among these two, copy state saving is easier-
it saves all state variables in a state queue before executing an
event. The messages which were sent to other LPs are rolled
back via the use of anti-messages. An anti-message is the
exact copy of the original message with a flag which indicates
it is an anti-message. Each LP saves the anti-messages in its
output queue. Whenever a straggler message arrives at an LP,
an anti-message for all the messages in output queue which
have a time stamp larger than that of the straggler message is
sent. The Anti-message annihilates its corresponding message
in the input queue of the receiver LP. This is continued until
all incorrect processes are rolled back.

2) Global Control Mechanism: The above discussion was
an illustration of local control mechanisms. As the simulation
progresses under Time Warp, more memory is consumed by
the creation of new messages and also saving the status of the
LPs in the state queues. As a result, we need a mechanism to
reclaim the memory storage. This mechanism is referred as
fossil collection [34]. By finding a lower bound on the time
stamp of future rollbacks, we can delete the memory dedicated
to events which have a smaller timestamp then this lower
bound. This lower bound is called Global Virtual Time (GVT):

Global Virtual Time (GVT): GV T (T ) is defined as
the minimum timestamp of any unprocessed message or
anti-message in the system at real time T [12].

In order to compute the GVT each processor must calculate
its local minimum time stamp among all its unprocessed
messages and anti messages, which is referred as Local Virtual
Time (LVT), and send it to a controller. The controller then
computes the global minimum (GVT) among these values and
broadcasts it to all the processors. It is clear that if one could
take a snapshot of all unprocessed events and anti-messages
in the system at simulation time T , computing GV T (T ) is
trivial.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

B. Clustered Time Warp and Dynamic Load-balancing
Avril et al. [4] designed an optimistic synchronization

scheme for distributed simulation called Clustered Time Warp
(CTW). In this approach LPs are grouped together to form a
cluster. The main idea behind this is that in large scale digital
circuits and network systems, LPs belonging to the same
functional units can be grouped together. These LP groups are
referred as a cluster. We can have any number of clusters in the
model. The only restriction is that each cluster must be mapped
onto one processor - it cannot be divided between processors.
In CTW Time Warp is used between different processors while
a sequential algorithm is employed within each cluster.
The goal of dynamic load-balancing algorithm is to evenly

distribute the load between processors subject to a constraint
on the communications between clusters. The load of a cluster
is defined as the number of events processed by the LPs of the
cluster since the last load balance. Extending this definition,
the load of a processor is defined as the sum of the loads of
the clusters in the processor. Load balancing is accomplished
by transferring clusters from over-loaded processors to under-
loaded ones. The algorithm iteratively chooses the processors
with the largest and smallest loads and transfers half of the
load difference from the most heavily loaded processor to the
most lightly loaded processor. Clusters with approximately the
same load as (δload/2) are chosen for transfer. When the
difference between the loads of the two clusters is less than a
certain value, their load is assumed to be the same. For each of
these clusters the change in the inter-processor communication
caused by the transfer is estimated and the cluster with
the lowest inter-processor communication is selected for this
transfer. This algorithm is repeated iteratively until all of the
processors have approximately the same load. The algorithm
resulted in an improvement in processor throughput of 40%
and 100% respectively on the two largest circuits from the
ISCAS89 benchmark circuits.
As previously mentioned, a special node is responsible

for selection of the LPs. This becomes impractical when the
circuit has millions of gates. The algorithm was implemented
on a shared memory multi-processor resulting in a negligible
communications cost for transferring clusters between pro-
cessors. Not surprisingly, the authors noted that taking inter-
processor communications into account did not substantially
improve the performance of the algorithm. In a distributed
memory machine such as a large cluster the communications
cost plays a much larger role in the performance of this
algorithm, and different results should be expected.

C. XTW
In [33], Xu and Tropper developed a new event scheduling

and rollback mechanism, XEQ and rb-message respectively,
which improve the performance of the optimistic logic simu-
lation. XEQ has an O(1) cost, while rb-message eliminates the
computing cost of anti-messages and also reduces the memory
cost by eliminating the output queue in each LP. These two
techniques are incorporated in a new simulator, referred to
as XTW. XTW is an object oriented simulation environment
which makes it an extendable environment for Time Warp.

XTW utilizes the characteristics of digital circuits and makes
the following simplifying assumptions:

• Events are generated in chronological order.
• An LP receives message in chronological order.
• LPs are sparsely connected.
• The topology of LPs is static during the simulation.

The first two assumptions lead to a zero cost for sorting events
while the latter two assumptions make it feasible to implement
XEQ and rb-messages in large scale simulations [33].
XTW employs clusters of LPs and the LRLC [3] technique

from CTW [4]. Each cluster has a multi-level event queue
which is composed of three parts:
1) Input channel (InCh) which models a unique input of a
circuit with the following rule:
Rule 1: Each InCh can only have one unique incoming
source. Each InCh itself contains one input event queue
(ICEQ) and one processed event queue (ICPQ).

2) At the LP level, the event queue is referred as LPEQ,
where events are sorted in increasing time stamp order.

3) At the cluster level, the event queue is referred as CLEQ
where time-buckets are sorted in increasing time stamp
order. A time-bucket is a set of events with equal time
stamps.

There is a pointer at each input channel (referred as CIE)
which points to the event which is de-queued from its ICEQ
and is stored in the LPEQ or CLEQ. There is also a pointer at
each LP (referred as CLE) which points to the event which is
de-queued from its LPEQ and is stored in the CLEQ. These
two pointers are used when rollback happens. According to
[33] XEQ has the following rules:

Rule 2: An InCh can submit one event to its corresponding
LP’s LPEQ if and only if ICEQ is not empty. The pointer
value of the event is assigned to CIE.

Rule 3: An LP can submit only one event to its corresponding
cluster’s CLEQ if and only if LPEQ is not empty. The pointer
value of the event is assigned to CLE.
The steps for processing an event in XTW are as follows:
1) After an event is generated it will be sent to the
corresponding InCh and appended to its ICEQ.

2) If ICEQ is not empty, the smallest time stamp event is
submitted to LPEQ according to rule 2 at a cost of 1.

3) The ICEQ event is inserted to LPEQ. The cost of finding
the correct position is n where n, in the worst case, is
the number of InChs at an LP.

4) If LPEQ is not empty, the smallest time stamp event will
be submitted to the CLEQ according to rule 3. The cost
of finding the correct position is m where m is equal to
the number of LPs in the cluster in the worst case.

The consequence of the above four steps is that the cost
of event scheduling is constant. Using rb-messages instead of
anti-messages in XTW removes the need to employ an output
queue. Whenever a straggler arrives, an rb-message is send to
other LPs. This message will cancel all the messages which
have a time stamp larger than the time stamp of itself.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

III. VERILOG XTW (VXTW)

Digital systems are now described by Hardware Descrip-
tion Languages (HDL) because it is easier to design, read
and synthesize HDL files (making use of Electronic Design
Automation (EDA) tools). In [33] the authors show that XTW
has the best performance of the Time Warp based simulators
which are employed for digital logic simulation. Unfortunately,
XTW can only read bench files. In order to benefit from the
performance of XTW, a front-end was added to it. This front-
end changes the data format and generates the bench input data
from the HDL descriptions. The Synopsys Design Compiler
(DC) was used and a Verilog Parser was developed for the
front-end. we called the new simulator Verilog XTW (VXTW)
[22].

A. Synopsis Design Compiler
The Synopsis Design Compiler (DC) can synthesize struc-

tural descriptions and behavioral descriptions of digital circuits
into technology-dependent, gate-level designs and also do
some optimizations for both combinational and sequential
logics. A wide range of design formats including Verilog
description, VHDL description and EDIF netlist files are
supported by DC. Here we use DC to read the Verilog
source files and to generate the corresponding gate level
Verilog descriptions based on the generic technology library
(GTECH).
The GTECH library is a standard cell library which contains

over 100 basic modules. DC utilizes these basic modules in
the GTECH library in order to describe the functionality of
the original design. When these GTECH modules are created,
a Verilog parser is utilized to convert them to a flat bench file
which is readable by XTW.

B. Verilog Parser
The process of parsing consists of three steps: lexical

analysis, syntax analysis and code generation. In the first step,
we use LEX [20] as a lexical analyser. LEX uses a table of
regular expressions to recognize all of the words in the input
file and to generate an output stream to save these words and
their types. As an example, the word ”wire” would be assumed
as the beginning of a wire-type variable statement and the
word ”GTECH AO21” would be assumed as the beginning
of a basic GTECH AO21’s instantiation gate.
After the lexical analysis, the words in the input file and

their types are sent to a syntax analyzer and placed into dif-
ferent sentences. Finally, in the code generation step the corre-
sponding code is produced from these GTECH gates according
to the transformation rules. For example, a GTECH AO21
gate would be replaced with an AND and OR gate.

C. Architecture
The main architecture of the current simulator is illustrated

in Figure 2. It takes Verilog source file as the input and utilizes
Synopsis DC to create GTECH modules. These modules are
created using GTECH library. In the next step, the Verilog

Parser parses these modules and creates the bench files. Verilog
has a database of rules to create the bench files.
These bench files can be input to a distributed simulator

(XTW in this paper). The simulator itself has 5 steps. In
the first step LPs (gates) are distributed between different
processors. Load-balancing, concurrency and communication
cost are the most important factors for partitioning. Here we
use a Depth First Search (DFS) partitioning scheme which
assigns the same number of LPs to different processors.
In the next step, we initialize the primary inputs with a set of

random input vectors. These events generate other events. The
three remaining steps perform the simulation. The functions
of different digital gates are implemented in the simulation
executive. XTW is used as the Time Warp engine. Finally,
the bottom layer is a communication layer which provides
a communication interface for the processors involved in the
simulation. We use Message Passing Interface (MPI) [24] for
communication between different processors.

IV. DYNAMIC LOAD-BALANCING

It has been widely observed that one of the most important
factors affecting the performance of parallel programs is the
distribution of load on the different processors executing a
program. In order to achieve the best speed up, different
processors should have approximately the same load. As in [5],
we define the load of a processor to be the number of events
which are processed by its LPs since the last load-balance.
During the course of our experiments we observed that the
load on different processors in the simulation can differ by
up to 12M events during the simulation. Hence a dynamic
load-balancing approach which can equalize the loads during
a simulation is attractive.
As mentioned in the previous section, the communications

time for transferring the load in [5] was negligible because a
shared memory multi-processor was used as the experimental
platform. As a result, we developed two new dynamic load-
balancing approaches for distributed memory multiprocessor
structures which we describe in the next section.

A. General Structure of the Algorithms

In our algorithms each gate is represented by an LP. We
make use of a DFS algorithm to initially distribute the LPs
to processors for both the computation and communication
algorithms.
The algorithms which we introduce in this section try to

balance the communications and computational load of the
system. Appropriately enough, we call them computation and
the communication algorithms.
We start our description by introducing four parameters

which are made use of by the algorithms:
LP Computation Load (LpLoad): The computational load
of each LP is defined as the number of processed events since
the last load-balance of the simulation.
Processor Computation Load (PLoad): The computational
load of each processor is defined as the sum of the computa-
tional loads of the LPs within that processor.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Design Compiler 

GTECH based Verilog 

file

GTECH

Verilog Source File 

Verilog Parser 

Bench file 

Circuit Simulator 

Parsing Rules 

Simulation Results 

Practitioner 

Input Vector Creator 

Simulation Executive 

XTW Engine 

MPI 

Fig. 1. The main structure of the simulator

LP Communications Load (LpComm[]): The communica-
tions load of each LP is represented by an array of length
n − 1 where n is the number of processors in the system.
Each element of this array is the number of messages that the
LP sent to the other processors since the last load-balance of
the simulation.
Processor Communication Load (PComm[]): The commu-
nications load of a processor is represented by an array of
length n−1 where n is the number of processors. The elements
of the array are the number of messages that the corresponding
processor sent to other processors since the last load balance.

The load-balancing algorithm is initiated every C GVT
cycles. The type of the load-balancing algorithm (computation
or communications) and the value of C are defined by the user
at the beginning of the simulation. We use a combination of
centralized and distributed control in the algorithms. The main
structure of the algorithms is as follows: each processor sends
the value of PLoad and PComm to a central node. This node
matches the top P % of the over and under-loaded processors,
where P is a user defined input parameter.

In the next step, for each pair of nodes which are matched

together, the over-loaded node is informed about its cor-
responding under-loaded node. When an over-loaded node
receives a notice, it selects up to L (an input parameter) of
its LPs and sends them to the corresponding under-loaded
processor. The next two subsections describe the details of the
computation and communications load-balancing algorithms.

B. Computation Load-balancing Algorithm
The computation load-balancing algorithm utilizes

PLoad, LpLoad, PComm[] and LpComm[] to balance
the load. Each processor sends its PLoad and PComm
values to a central node every C GVT cycles. The central
node selects the top P % of the processors which have the
maximum PLoad and puts them in O. The lowest P % of
the processors which have the minimum Pload are put in
U . The processors of the sets U and O create a bipartite
graph in which the weights of the edges are the values
of PComm[]. This means that if P1 sent 1000 messages
to P2 since last execution of the dynamic load-balancing
algorithm, there will be a link from P1 to P2 with a weight of
1000. Basically, this graph shows the communication history



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

of the top P % over-loaded and bottom P % under-loaded
processors. We utilize the FM [13] graph bipartite matching
algorithm to match the processors of these two sets. After
this matching, the central node informs the over-loaded
processors about their corresponding under-loaded processors
with a Dynamic Destination message. Whenever a processor
Pi receives a dynamic destination message, it selects up to L
LPs which have the most communication with the destination
processor, packs them into messages and sends them to the
destination processor. It is possible that Pi later receives
messages intended for LPs which were already transferred. In
this case, Pi forwards the messages to their new processors.
ALgorithm 1 summarizes the computation algorithm.

Algorithm 1 The computation load-balancing algorithm
Each Processor Pi:
{Each C GVT cycle}
for each LP j which Pi hosts do

Ploadi = Ploadi + LpLoadj

Send the Ploadi and PCommi[] to the master node
end for
{Dynamic Destination message}
Find the top L LPs which have the maximum value of
LpComm[Destination]
Send the LPs to the destination processor

The Master Node:
while number of elements in O < P % do

maxLoad = j, where Pj has the Max {PLoad} and Pj

is not in O
O = O ∪ maxLoad

end while
while number of elements in U < P % do

minLoad = j, where Pj has the Min {PLoad} and Pj

is not in U
U = U ∪ PminLoad

end while
while O! = Null do

maxLoad = j, where Pj has the Max {PLoadi}O
for all the elements e in U do
if PcommmaxLoad[e] > MaxCommiunication
then

MaxCommunication = PcommmaxLoad[e]
MaxCommNode = e

end if
end for
match PmaxLoad and Pe

O = O − PmaxLoad

U = U − Pe

send the Dynamic Destination message to PmaxLoad

end while

C. Communication Load-balancing Algorithm
The communication load-balancing algorithm has the same

structure as the computation load-balancing algorithm. The
main difference is that it attempts to first balance the
communication and then computation. The algorithm uses

PLoad, LpLoad, Pcomm[] and LpComm[] to balance the
load. Every C GVT cycles, Each processor Pi sends its
PLoadi and PCommi[] values to a central node. Pcommi[j]
contains the communication load between nodes i and j.
The central node finds the maximum value of PComm i[j]
among all of the values of Pcommi[] that it received from
different processors. If processors Pi and Pj had the most
communication during last C cycles the algorithm attempts to
transfer LPs between these two processors. In order to take into
account the effect of the computation, the processor with the
highest value of the PLoad is chosen as the sender processor
and a Dynamic Destination message is sent to it. This process
is continued until 2P % (P % over-communicating and P % as
under-communicating) of the processors are matched together.

Upon receipt of a dynamic destination message at processor
Pi, it selects up to L LPs which have the most communication
with the destination processor. These LPs are sent to the
destination processor. As in the computation algorithm, if P i

later receives a message which belongs to LPs which were
already transferred, it forwards the message to their processor.
Algorithm 2 summarizes the communication algorithm.

Algorithm 2 The communication load-balancing algorithm
Each Processor Pi:
{Each C GVT cycle}
for each LP j which Pi hosts do

Ploadi = Ploadi + LpLoadj

Send the Ploadi and PCommi[] to the master node
end for
{Dynamic Destination message}
Find the top L LPs which have the maximum value of
LpComm[Destination]
Send the LPs to the destination processor

The Master Node:
while Selected < 2P % do
for i = 1 to n − 1 do do
for j = 1 to n − 1 do do
if (MaxComm < PCommi[j]) and (Pi and Pj

were not matched) then
Selected1 = i
Selected2 = j
MaxComm = PCommi[j]

end if
end for

end for
if PLoadselected1 < Ploadselected2 then

Sender = Pselected1

else
Sender = Pselected2

end if
send the Dynamic Destination message to the Sender
selected + = 2

end while



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

V. REINFORCEMENT LEARNING FOR OPTIMIZING
DYNAMIC LOAD-BALANCING

A. Introduction

Reinforcement learning is an area of the artificial intelli-
gence which is concerned with the interaction of an agent with
its environment. The agent takes actions which cause changes
in the environment and the environment, in its turn, sends
numerical responses to the agent indicating the effectiveness
of its actions. The agent’s objective is to maximize the long
term sum of the numerical responses-it wants to become more
competent than its initial knowledge might allow [27] it to be.
The agent and its environment can be represented by a finite-

state Markov Decision Process (MDP) with state transition and
reward probabilities. The MDP consists of:
1) S: a set of states of the environment.
2) A: a discrete set of actions that agent can take.
3) π: a policy which is a mapping from the environment to
the action that agent takes.
4) RF: A Reward Function which maps the state (or state-
action pair) of the environment to a set of scalar rewards R.
5) VF: A Value Function which defines the expected return an
RL agent can receive for a given policy.
At time t, the agent chooses an action a ∈ (Ast) depending

on its current state st ∈ S and the set of possible actions for
that state, A(st). The main aim of the agent is to develop an
optimal policy π which maximizes the long-term reward. The
reward function indicates the desirability of different states or
state-action pairs. It is important for the reward function to
reflect the main goal of the system and not a sub-goal. For
example, in the dynamic load-balancing algorithm for Time
Warp, if we give a reward for balancing the communication
load instead of decreasing the simulation time, the simulation
might wind up with a balanced communication load between
processors and a bigger simulation time.
The concepts of return and reward are very close

to each other. If the rewards received after step t are
rt+1, rt+2, rt+3, · · · then we can define Rt to be the long-term
reward i from step t onwards to be:

Rt = rt+1 + γrt+2 + γ2rt+3, (1)

where γ, 0 ≤ γ ≤ 1, is called the discount rate. The purpose
of the discount rate is to give more weight to recent rewards
instead of future rewards.
After defining the return function, we try to find an opti-

mal policy which maximizes the reward. The straightforward
approach is to do a brute force search which examines the
returns of all possible policies and to choose the one with the
maximal return value. The problem with this approach is that
it becomes too costly if we have a large number of policies.
The other problem is that the returns may be stochastic and, as
a result, we may need a large number of samples to accurately
estimate the return value of different policies.
The main two value functions are the state-value function

and action-value function. The state-value function of a state
s under a policy π indicates the expected return of policy π
starting from state s as follows:

V π (s) = Eπ {Rt|st = s} =

= Eπ

{ ∞∑

k=0

γkrt+k+1|st = s

}
. (2)

The action-value function of taking an action a in a state
s indicates the expected return under policy π, after taking
action a in state s as follows:

Qk+1 =
1

k + 1

k+1∑

i=1

ri = Qk +
1

k + 1
(rk+1 − Qk). (3)

The RL problem can be solved by dynamic programming
and the optimal policy determined if the probability of rewards
and state transitions are known. However, this is not often the
case, and more pragmatic methods were developed.

B. N-armed Bandit Method
In the simplest RL problem, the environment has just one

state. A classic example of this problem is the N-armed bandit
problem [27] in which we have a slot machine with more than
one lever. The agent chooses one of the n levers of the slot
machine at each step. Pulling a lever results in reward drawn
from a distribution associated with that lever. The agent is
assumed to have no initial knowledge about the levers. Its
objective is to maximize the long-term reward.
One simple solution is to use the running average of the

rewards for each action as the estimated value of that action.
This is called the updating rule. The general form of the
updating rule is as follows:

NewEstimate = OldEstimate +
Stepsize(Target− OldEstimate), (4)

where Stepsize is inverse of the number of steps and target
is the reward value of last step. If we use the action value
function, when a state-action pair is selected for the (k + 1)st
time, the value is updated as:

Qπ (s, a) = Eπ{Rt|st = s, at = a}

= Eπ{
∞∑

i=1

γk(rt+k+1|st = s, at = a}. (5)

The RL method which uses (5) as its updating rule is
referred to as the bandit method. A greedy approach always
chooses the best action at each step. This is the action which
has the best estimated value and is known as an exploitation
method. On the other hand, the exploration method chooses
an action other than the greedy action with the aim of finding
a better long-term reward then the one produced by a greedy
policy.
One such approach is the ε-greedy approach which attempts

to balance exploration and exploitation. The ε-greedy approach
chooses a greedy action with probability 1 − ε, where ε
is a small number. It has been shown that the ε-greedy
approach outperforms the greedy approach for the n-armed
bandit problem [30].



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

C. Reinforcement Learning in dynamic load-balancing of
Time Warp

There are a number of advantages of using RL for this prob-
lem, foremost of which are that it does not need knowledge of
the environment and does not need an analytical or statistical
model for the environment. Instead, it develops a control policy
based on a history of feedback from the environment. In
addition, it does this with a low runtime overhead as well
as a low implementation cost.
1) Single Agent vs. Multi-agent: RL can formulate the

dynamic load-balancing of TimeWarp as single agent or multi-
agent [26] problem. In a multi-agent problem, different nodes
can have different values of the control parameters of the
problem. In this approach the learning of one agent affects the
learning of other agents-the agents have to cooperate with each
other in order to find optimal values for the control parameters.
In a single agent approach we have one agent and all of the
nodes share the values of the control parameters. Basically,
there is a central node which gathers the data from all of the
nodes, runs the RL algorithm and informs the other nodes
about the values of the control parameters. In this paper, we
utilize the single agent approach for our RL algorithm. We
leave the multi-agent approach to future work.
2) Control Parameters: We make use of three control

parameters for our algorithm:

• A: The choice of dynamic load-balancing algorithm.
• P : The percentage of nodes which participate in the load-
balancing algorithm.

• L: The number of LPs which are transferred from one
node to another one in each cycle of the dynamic load-
balancing algorithm.

As described in section 3, we implemented two dynamic
load-balancing algorithms, the computation and communica-
tion algorithms. While the main aim of the computation algo-
rithm is to balance the computational load, the communication
algorithm tries to balance the communication load between
the nodes. From our experimental results, the computation
and communication algorithms produce different results for a
different number of processors. In addition, different circuits
require different algorithms. As a result, one of the control
parameters that the RL decides upon is the type of load-
balancing algorithm.
In both the computation and communication algorithms,

we make use of a parameter P , the percentage of nodes
which participate in the algorithm. For example, when we
have a small number of processors (e.g. 2-6) and we use the
computation algorithm we cannot have a large value for P .
Having a large P results in more nodes participating in load-
balancing algorithm and more LPs being transferred in each
load-balancing cycle thereby increasing the communication
overhead in a small network. If this increase is more than the
speed-up that we can achieve because of load-balancing, the
total simulation time will increase. Different values of L also
have a significant impact on the simulation-we cannot simply
make L a constant.

The above discussion indicates that the RL algorithm needs
to decide about the values of these control parameters. These
parameters should be connected to agent’s actions. A already
has two values; it could be either communication or compu-
tation. If P and L have m and n different values respectively,
then there are 2mn combinations for the control parameters
and we define 2mn different actions.
The RL algorithm is executed in each of the C cycles (C is

a user input parameter). After C cycles all of the nodes send
their data to a central node which executes the RL algorithm.
After computing new values for the control parameters, it
broadcasts them to all of the nodes. C is not included in the
learning algorithm because its value does not vary a great deal.
3) The N-armed Bandit Method: The reward function is

of fundamental importance to an RL algorithm. If the reward
function does not reflect the main goal of the system, the RL
algorithm may fail to find the optimal policy. In Time Warp,
the long-term goal is to reduce the simulation time. Hence
the reward should be related to the wall-clock time of the
simulation.
If ti is the wall clock time at the ith GV T , GV Ti, the Event

Commit Rate (ECR) of the ith GV T interval (the interval from
GV Ti−1 to GV Ti) defined as:

ECRi = NCi/(ti − ti−1), (6)

whereNCi denotes the number of committed events at GV T i.
In order to define a reward, we use a reference point. As

in [32], We define ECRref as the average event commit rate
since the beginning of the simulation:

ECRref = (
D∑

i=1

ECi)/(tD − t0). (7)

In the above formula, D is a small number between 10 and
20. The reward of the i-th GVT interval is then defined as:

Ri = ECRi − ECRref . (8)

From this definition, the reward is positive if the simulation
is faster than the reference rate during the last GVT interval,
otherwise a punishment (negative reward) is awarded. The
event commit rate represents the speed of the simulation.
We have modeled the dynamic load-balancing of Time Warp

as the n-armed bandit problem. As previously discussed we
have 2mn different combinations for the control parameters,
each of which represents an action in the learning algorithm.
After calculating ECRref , the reward is calculated every C
GVT intervals. The running average of the action which is
selected is updated with this reward and is saved. We utilize
two arrays in our implementation:

• R[N ]: The average reward for each action
• C[N ]: The number of times that an action has been
selected.

If an action a is selected and the resultant reward is r, then
the value of R[a] is updated as follows:



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

R[a] = (R[a] × C[a] + r)/(C[a] + 1)

= R[a] +
1

C[a] + 1
(r − R[a]). (9)

At each cycle of dynamic load-balancing algorithm, we
either pick an action with the largest average reward or with
a probability of epsilon we randomly pick a value from the
N actions. Algorithm 3 presents the general structure of the
N-armed Bandit learning algorithm.

Algorithm 3 The N-armed Bandit learning method
Master Node (P0):
{After each C GVT cycles the N-armed Bandit learning
method is run to select the following parameters:}
1) A)The load balancing Algorithm: load or communica-
tion.

2) P) Percentage of processors which participate in load
balancing algorithm.

3) L) Number of LPs that each overloaded processor
should send to its corresponding under-loaded proces-
sor

if the learning algorithm set A=Computation then
Run the computation load-balancing algorithm (Algo-
rithm 1)

else
Run the communication load-balancing algorithm (Algo-
rithm 2)

end if

VI. EXPERIMENTAL RESULTS

In this section, we present performance results for the
dynamic load-balancing algorithms. We study the performance
of VXTW, which can parse all synthesizable Verilog files.
The Verilog source files utilized in this simulation are the
OpenSparc T2, the LEON processor and two Viterbi decoders
designed at the Rennsalaer Polytechnic Institute (RPI). The
OpenSparc and LEON designs are open source designs. LEON
is a 32-bit microprocessor which is based on the SPARC-
V8 RISC architecture and instruction set. It was originally
designed by the European Space Research and Technology
Center, part of the European Space Agency. One of the
specifications of the LEON processor is its configurable core,
making it suitable for System-on-Chip (SOC) designs. The
LEON processor has around 200k gates. We used one core of
the OpenSPARC T2 which is synthesizable by Synopsis DC
and has 400k gates. The other circuits which were used in
our simulations are two Viterbi decoders with 100k and 800k
gates from Rensselaer Polytechnic Institute (RPI).
Our experimental platform consists of 32 dual core, 64 bit

Intel processors. Each of these processors has 8 Gigabytes of
internal memory. Load distribution between the two cores of a
processor is automatically performed by the operating system.
The processors are connected to each other by means of a 1
Gigabyte per second Ethernet. We utilized Message Passing

Interface (MPI) as the communication platform between pro-
cessors. MPI provides a reliable mechanism for sending and
receiving messages between different processors.
In our simulations we assume a unit delay for gates and zero

transmission time for the wires. We employ DFS partitioning
with load balancing constraint for distributing the LPs (gates)
between different processors. In each simulation 50 or 100
random vectors are input to the circuit. Each point in our
graphs is the average of 10 simulation runs.
Figure 2 shows the speedup vs. the number of processors

for 10 and 50 random input vectors. As we can see, the
speedup increases when the circuit is larger since more events
are generated. When the number of processors is increased to
10 the speedup of the LEON Processor starts to flatten out.
The reason for this lies both in the structure of the LEON
processor and in its size. To begin with the Leon processor
is more complicated than the flat RPI designs. resulting in
a larger number of rollbacks. In addition, when the number
of processors increases the communication cost increases and
the speed of message cancellation during a rollback decreases.
The results for the RPI circuits and the OpenSparc T2 show
that the speedup increases when the number of processors and
the size of the circuit increases. We note that the smaller RPI
circuit has the same speedup as the larger one. The reason for
this is that the RPI circuits are simple flat circuits which do not
exhibit much feedback. Hence there is a lower probability of
receiving out of order messages, resulting in fewer rollbacks
and ultimately a better speedup. A comparison between the
graphs of Figure 2 (a,b) also reveals that increasing the number
of vectors results in better speedup. The reason for this is
that the processors are kept busy and the processor idle time
decreases. The maximum speed up for the larger RPI circuit
with 10 and 50 input vectors were 5.9 and 7.16, respectively.
The total number of processed events per processor is shown

in Figure 3 (a,b) for 10 and 50 input vectors, respectively. The
total number of processed events was 500M for the larger
RPI circuit when we have 50 input vectors. If all of the 32
processors are used, the event processing rates are 1.1M, 2.1M,
2.8M and 4M events per second for the LEON, OpenSparc
T2, RPI (smaller) and RPI (larger) circuits respectively when
the number of input vectors is 10. For 50 input vectors, the
event processing rates are 1.2M, 3M, 3.8M and 4M events
per second for LEON, OpenSparc T2, RPI (smaller) and RPI
(larger) circuits respectively. Increasing the number of vectors
results in bigger event rates because the CPUs have a larger
processing load. For the larger RPI circuit we achieve the
same event processing rate when we use 10 or 50 vectors.
The reason for this is that we have large number of LPs and
even with fewer input vectors the processors are already busy.
Figure 4(a, b) depicts the commit rate vs the number of

processors for 10 and 50 input vectors. We note that the
number of rollback messages increases with the number of
processors. The reason for this is that the LPs are more spread
out among the processors and as a result event cancellation
takes longer. We can see that the LEON processor has the
smallest commit rate among the circuits. Once again, this is
because of the structure and size of the circuit. More feedback
results in a higher probability of receiving out of order events



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

0

1

2

3

4

5

6

7

0 10 20 30

Number of Processors

S
p

e
e

d
 u

p

LEON Processor

RPI Circuit

RPI Circuit II

Sparc T2

(a)

0

1

2

3

4

5

6

7

0 10 20 30

Number of Processors

S
p

e
e

d
 u

p

LEON Circuit

RPI Circuit

RPI Circuit II

Sparc T2

(b)

Fig. 2. Speedup vs. the number of processors (a) 10 input vectors, (b) 50
input vectors

and, as a result the number of rollback messages increases
and we need to send more anti-messages to cancel incorrect
messages. The obvious effect of these rollback messages is
the reduction of speedup as depicted in figure 2. Increasing
the number of vectors also results in smaller commit rates
because more events are created resulting in a larger number
of out of order events.

A. Dynamic Load Balancing
In this section we present performance results for the dy-

namic load-balancing algorithms. In all of the graphs,A=1 and
2 indicate whether the type of the load-balancing algorithm is
computation or communication respectively. A =3 refers to
the learning algorithm(Bndit method). P is the percentage of
nodes which participate in the load-balancing algorithm and
L indicates the number of LPs transferred in each cycle of
algorithm. In the bandit algorithm, the value of ε is 0.1. We
have 8 actions, a, in each execution of the learning algorithm.
Each experiment result is the average of 5 simulation runs.
Figure 5-a shows the performance of the computation dy-

namic load-balancing algorithm (A = 1) for different values
of L when P =20% on the large RPI circuit. We balanced the
load up to 50% and achieved up to a 15% improvement in the

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30

M
il

li
o

n
s

Number of Processors

E
v

e
n

t 
P

ro
c

e
s

s
in

g
 R

a
te

LEON Processor

RPI Circuit

RPI Circuit II

Sparc T2

(a)

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30

M
il

li
o

n
s

Number of Processors

E
v

e
n

t 
P

ro
c

e
s

s
in

g
 R

a
te

LEON Processor

RPI Circuit

RPI Circuit II

Sparc T2

(b)

Fig. 3. Average number of processed events per processor (a) 10 input
vectors, (b) 50 input vectors

simulation time with L =200. As can be seen, increasing the
number of LPs from 150 to 200 results in better performance
of the algorithm. On the other hand, increasing the number of
LPs to 500 worsens the situation. The reason for this is that
when we transfer many LPs in each round, the communication
time of transferring the LPs increases and overwhelms the
performance gain which we achieved from balancing the load.
Figure 5-b shows the same result when P is changed to 10%.
The simulation time of the large RPI circuit is up to 4% better
with P =20% than with P =10%. Increasing P to more than
20% results in a worsened situation. The reason is that when
we select more nodes to send LPs the communication time for
transferring the LPs increases.
Figure 6-a shows the same result for the communication

load-balancing (A = 2) algorithm with P =20% and different
values of L on the small RPI circuit. We get better results by
changing the value of L from 50 to 150, but if we increase
L to 400 the result worsens. We can improve the simulation
time by up to 17% with L =150. Figure 6-b shows the same
result for P =10% and for different values of L. We improve
the simulation time up to 20% with P =10% and L =150.
The effect of changing A (type of the load-balancing



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30

Number of Processors

C
o

m
m

it
 R

a
te

 o
f 

th
e

 E
v

e
n

ts

LEON Processor

RPI Circuit

RPI Circuit II

Sparc T2

(a)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30

Number of Processors

C
o

m
m

it
 R

a
te

LEON Processor

RPI Circuit

RPI Circuit II

Sparc T2

(b)

Fig. 4. Commit rate vs. different number of processors (a) 10 input vectors,
(b) 50 input vectors

algorithm), L and P on the other circuits is not shown here.
However, we did many experiments on all of the circuits
with different values of A, P and L. We found that for a
different number of processors and for different circuits, we
needed to utilize different load-balancing algorithms and their
corresponding parameters to get the best performance. Hence,
our major objective for the Bandit algorithm was to learn
the type of the dynamic load-balancing algorithm (A) for
a specific configuration (different number of processors that
participate in the load-balancing algorithm) and circuit and
then to learn the corresponding parameters (P and L) of that
algorithm.
Figure 7-(a to d) shows the performance of different load-

balancing algorithms and the Bandit method on the large
RPI circuit, the small RPI circuit, the OpenSparc T2 and
LEON processors respectively. A =1, 2, 3 correspond to
computation load-balancing algorithm, communication load-
balancing algorithm and the N-armed Bandit learning method
respectively. In all of the graphs, we depict the best results
which could be achieved by setting A (1 or 2), P and
L. As can be seen, in almost all of the cases the Bandit
method (A =3) improves the simulation time more than other

700

1700

2700

3700

4700

5700

0 5 10 15 20 25 30

Number of Processors

A
v

e
ra

g
e

 S
im

u
la

ti
o

n
 T

im
e

Static

L=150

L=200

L=500

(a)

700

1700

2700

3700

4700

5700

0 5 10 15 20 25 30

Number of Processors

A
v

e
ra

g
e

 S
im

u
la

ti
o

n
 T

im
e

Static

L=150

L=200

L=500

(b)

Fig. 5. The average simulation time of the computation load balancing
algorithm for different values of L and P : a)P =20%, b)P =10%

methods. If the Bandit method does not find a better result, its
simulation time is at least as good as the best result of the other
algorithms. An interesting point is the simulation time of the
algorithms with two nodes. As can be seen, with two nodes the
dynamic load-balancing algorithms not only cannot improve
the simulation time but actually worsens the situation in some
cases. The reason for this is that when we have two nodes,
the communication overhead of transferring LPs is larger than
the benefit we achieve from load-balancing. When we have
more than four processors, the problem disappears in most
of the cases and we can improve the simulation time. Using
the Bandit method, we can improve the simulation time up
to 25%, 21.5%, 24% and 21% for large RPI, OpenSparc T2,
LEON and small RPI circuits respectively.

VII. CONCLUSION
In this paper, we developed the first parallel time warp

simulator which can simulate all synthsizable Verilog circuits.
We made use of XTW as the simulation engine because it has
exhibited the best performance among the Time Warp based
circuit simulators. We used the Synopsis Design Compiler



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

Number of Processors

A
v

e
ra

g
e

 S
im

u
la

ti
o

n
 T

im
e

static

L=150

L=200

L=400

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

Number of Processors

A
v

e
ra

g
e

 S
im

u
la

ti
o

n
 T

im
e

static

L=150

L=200

L=400

(b)

Fig. 6. The average simulation time of the computation load balancing
algorithm for different values of L and P : a)P =20%, b)P =10%

to generate GTECH modules from Verilog source files and
developed a Verilog parser to convert the GTECH modules
into a flattened bench file. The performance of the simulator
was evaluated with the LEON processor, the Open Sparc
processor and with two Viterbi decoders designed at RPI. It
is important to note that while previous work utilized small
benchmark circuits and synthetic circuits, these circuits are
real. We obtained an event rate of 4M events per second
for the Viterbi decoder circuit on 32 processors. We noted
that the speedup depended not just on the size of the circuit,
but on its complexity as well-the flat RPI designs exhibited
a better speedup then the more complicated open source
designs. This observation may be put to use in the design
of load balancing algorithms. In parallel circuit simulation
the processor load changes its location throughout the course
of the simulation. While some static partitioners have been
shown to take effective advantage of circuit structure they do
not have the ability to adjust to a change in processor load.
We developed two new dynamic load balancing algorithm for
parallel logic simulation. The algorithms utilize a combination
of centralized and distributed approach for selecting the LPs
which should be transferred.

The results of the dynamic load balancing algorithms
showed that for different circuits and different topologies
(different number of processors) we needed to utilize different
algorithms with different parameter values in order to obtain
the best possible performance. As a result, we developed
a reinforcement learning algorithm which learns to select
the algorithm (communication or computation) and which
adjusted the parameters of the algorithm. We utilized the N-
armed Bandit method in our implementation. The simulation
results indicate that simulation time is reduced up to 25%
using this approach. To the best of our knowledge, this is the
first time reinforcement learning was applied to dynamic load
balancing for Time Warp.
As for our future work, we plan to study the effect of another

reinforcement learning method for dynamic load balancing
known as Q-learning. Applying the multi-agent technique in
which we have more than one learning agent and in which
the agents communicate with each other to learn the control
parameters will be another focus of our research.

REFERENCES

[1] Elie El Ajaltouni, Azzedine Boukerche, and Ming Zhang. An efficient
dynamic load balancing scheme for distributed simulations on a grid
infrastructure. In DS-RT ’08: Proceedings of the 2008 12th IEEE/ACM
International Symposium on Distributed Simulation and Real-Time Ap-
plications, pages 61–68, Washington, DC, USA, 2008. IEEE Computer
Society.

[2] Shailendra S. Aote and M. U. Kharat. A game-theoretic model
for dynamic load balancing in distributed systems. In ICAC3 ’09:
Proceedings of the International Conference on Advances in Computing,
Communication and Control, pages 235–238, New York, NY, USA,
2009. ACM.

[3] H. Avril and C. Tropper. on rolling back and checkpointing in time warp.
IEEE Transactions on Parallel and Distributed Systems, 12(11):1105–
1121, 2001.

[4] Hervé Avril and Carl Tropper. Clustered time warp and logic simulation.
SIGSIM Simul. Dig., 25(1):112–119, 1995.

[5] Hervé Avril and Carl Tropper. The dynamic load balancing of clustered
time warp for logic simulation. SIGSIM Simul. Dig., 26(1):20–27, 1996.

[6] Yi bing Lin, Paul A. Fishwick, and Senior Member. Asynchronous
parallel discrete event simulation. IEEE Transactions on Systems, Man
and Cybernetics, 26, 1996.

[7] J. G. Carbonell, editor. Machine learning: paradigms and methods.
Elsevier North-Holland, Inc., New York, NY, USA, 1990.

[8] Ben Cohen. VHDL Coding Styles and Methodologies. Kluwer Academic
Publishers, Norwell, MA, USA, 1995.

[9] Samir R. Das. Adaptive protocols for parallel discrete event simulation.
In WSC ’96: Proceedings of the 28th conference on Winter simulation,
pages 186–193, Washington, DC, USA, 1996. IEEE Computer Society.

[10] Samir R. Das. Adaptive protocols for parallel discrete event simulation.
In WSC ’96: Proceedings of the 28th conference on Winter simulation,
pages 186–193, Washington, DC, USA, 1996. IEEE Computer Society.

[11] Samir R. Das and Richard M. Fujimoto. An adaptive memory manage-
ment protocol for time warp parallel simulation. In SIGMETRICS ’94:
Proceedings of the 1994 ACM SIGMETRICS conference on Measure-
ment and modeling of computer systems, pages 201–210, New York,
NY, USA, 1994. ACM.

[12] Richard M. Fujimoto. Parallel and Distribution Simulation Systems.
John Wiley & Sons, Inc., New York, NY, USA, 1999.

[13] Harold Gabow and Robert Tarjan. Almost-optimum speed-ups of
algorithms for bipartite matching and related problems. In STOC ’88:
Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 514–527, New York, NY, USA, 1988. ACM.

[14] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst.,
7(3):404–425, 1985.

[15] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.
Reinforcement learning: A survey. Journal of Artificial Intelligence
Research, 4:237–285, 1996.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

[16] V. Krishnaswamy and P. Banerjee. Design and implementation of an
actor based parallel vhdl simulator. In In 9th Workshop on parallel and
distributed simulation(PADS95, pages 135–143, 1995.

[17] Lijun Li, Hai Huang, and Carl Tropper. Dvs: An object-oriented
framework for distributed verilog simulation. In PADS ’03: Proceedings
of the seventeenth workshop on Parallel and distributed simulation, page
173, Washington, DC, USA, 2003. IEEE Computer Society.

[18] Dragos Lungeanu and C. J. Richard Shi. Parallel and distributed vhdl
simulation. In IEEE Design, Automation and Test in Europe (DATE 00,
page 658, 2000.

[19] Dale E. Martin, Radharamanan Radhakrishnan, Dhananjai M. Rao,
Malolan Chetlur, Krishnan Subramani, and Philip A. Wilsey. Analysis
and simulation of mixedtechnology vlsi systems. Journal of Parallel
and Distributed Computing, 2002:468–493.

[20] Tony Mason and Doug Brown. Lex & yacc. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 1990.

[21] Sina Meraji, Wei Zhang, and Carl Tropper. On the scalability and
dynamic load-balancing of parallel verilog simulations. In Winter
Simulation COnference (WSC09), 2009.

[22] Sina Meraji, Wei Zhang, and Carl Tropper. On the scalability of parallel
verilog simulation. In THE 38th INTERNATIONAL CONFERENCE ON
PARALLEL PROCESSING (ICPP-2009), 2009.

[23] Gordon E. Moore. Cramming more components onto integrated circuits.
pages 56–59, 2000.

[24] mpi. Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/,
Accessed on January 2009.

[25] Samir Palnitkar. Verilog R©hdl: a guide to digital design and synthesis,
second edition. Prentice Hall Press, Upper Saddle River, NJ, USA, 2003.

[26] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state
of the art. Autonomous Agents and Multi-Agent Systems, 11(3):387–434,
2005.

[27] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

[28] Rolf Schlagenhaft, Martin Ruhwandl, Christian Sporrer, and Herbert
Bauer. Dynamic load balancing of a multi-cluster simulator on a network
of workstations. SIGSIM Simul. Dig., 25(1):175–180, 1995.

[29] Sudhir Srinivasan, Sudhir Srinivasan, Jr., Paul F. Reynolds, and Paul F.
Reynolds. Npsi adaptive synchronization algorithms for pdes. In In
1995 Winter Simulation Proceedings, pages 658–665, 1995.

[30] R. Sutton and A. G. Barto. Reinforcement Learning: an introduction.
The MIT Press, 2003.

[31] Xiaonian Tong and Wanneng Shu. An efficient dynamic load balancing
scheme for heterogenous processing system. Computational Intelligence
and Natural Computing, International Conference on, 2:319–322, 2009.

[32] Jun Wang and Carl Tropper. Optimizing time warp simulation with
reinforcement learning techniques. In WSC ’07: Proceedings of the
39th conference on Winter simulation, pages 577–584, Piscataway, NJ,
USA, 2007. IEEE Press.

[33] Qing XU and Carl Tropper. Xtw, a parallel and distributed logic
simulator. In ASP-DAC ’05: Proceedings of the 2005 conference on
Asia South Pacific design automation, pages 1064–1069, New York,
NY, USA, 2005. ACM.

[34] Christopher H. Young and Philip A. Wilsey. Optimistic fossil collection
for time warp simulation. In Proceedings of the 29th Hawaii Interna-
tional Conference on System Sciences, page 364, Washington, DC, USA,
1996. IEEE Computer Society.

[35] BaoYin Zhang, ZeYao Mo, GuangWen Yang, and WeiMin Zheng.
Dynamic load balancing efficiently in a large scale cluster. Int. J. High
Perform. Comput. Netw., 6(2):100–105, 2009.

Sina Meraji is a PhD student in School of Computer Science of McGill
University. His major research interest is parallel and distributed event
simulation of Integrated circuits. He received his B.Sc. from computer
engineering department of Amirkabir University, Iran. He also received his
M.Sc. from computer engineering department of Sharif University, Iran. His
email address is <smeraj@cs.mcgill.ca>.

Wei Zhang is currently visiting student in school of computer science
of McGill University. he is also a Ph.D student in Computer Science,
School of Computer Science, National University of Defense Technology,
P.R. China. He received his B.Eng and M.Eng in Computer Science from
School of Computer Science, National University of Defense Technology,
P.R. China. His current research interests include Distributed Virtual
Environments and Distributed Circuit Simulation. His email address is
<weizhang@cs.mcgill.ca>.

Carl Tropper is a Professor in the Department of Computer Science at
McGill University. His major research interest is in parallel and distributed
computing.He has worked in the area of distributed discrete event simulation
since the inception of the field. His focus over the past several years
has been parallel VLSI simulation. His group has developed a distributed
VLSI simulation environment which is being used for research in both the
synchronization and performance issues associated with VLSI simulation.
Another research direction is the integration of parallel continuous and discrete
event simulation models. His email address is <carl@cs.mcgill.ca>.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

0

1000

2000

3000

4000

5000

6000

1 2 4 8 12 16 20 24 31

Number of Processors

A
v
e
ra

g
e
 S

im
u

la
ti

o
n

 T
im

e

Normal Simulation

A=2,P=10,L=50

A=1,P=10,L=50

A=1,P=20,L=100

A=2,P=20,L=100

A=3,P=10-20,L=50-150

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 12 16 20 24 31

Number of Processors

A
v
e
ra

g
e
 S

im
u

la
ti

o
n

 T
im

e

"Normal SImulation"

A=1,P=10,L=50

A=2,P=10,L=50

A=1,P=20,L=100

A=2,P=20,L=100

A=3,L=10-20,P=50-150

(b)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 12 16 20 24 31

Number of Processors

S
im

u
la

ti
o

n
 T

im
e

Normal Simulation

A=1,P=10,L=50

A=2,P=10,L=50

A=1,P=20,L=100

A=2,P=20,L=100

A=3,L=10-20,P=50-150

(c)

0

500

1000

1500

2000

2500

3000

1 2 4 8 12 16 20 24 31

Number of Processors

A
v
e
ra

g
e
 S

im
u

la
ti

o
n

 T
im

e

"Normal Simulation"

A=1,P=10,L=50

A=2,P=10,L=50

A=1,P=20,L=100

A=2,P=20,L=100

A=3,L=10-20,P=50-150

(d)

Fig. 7. The average simulation time of computation and communication load-balancing algorithms and the N-armed Bandit learning method a) large RPI
circuit, b) small RPI circuit, c) OpenSparc T2 and d)LEON


