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Abstract—In this paper we illustrate scalable parallel perfor-
mance for the Time Warp synchronization protocol on the L
and P variants of the IBM Blue Gene supercomputer. Scalable
Time Warp performance for models that communicate a large
percentage of the event population over the network has not
been shown on more than a handful of processors. We present
our design for a robust performing Time Warp simulator over a
variety of communication loads, and extremely large processor
counts — up to 131,072. For the PHOLD benchmark model
using 65,536 processors, our Time Warp simulator produces a
peak committed event-rate of 12.26 billion events per second at
10% remote events and 4 billion events per second at 100%
remote events, the largest ever reported. Additionally, for the
Tranmission Line Matrix (TLM) model which approximates
Maxwell’s equations for electromagnetic wave propagation, we
report a committed event-rate in excess of 100 million on
5,000 processors with 200 million grid-LPs. The TLM model
is particularly challenging given the bursty and cubic growth in
event generation. Overall, these performance results indicate that
scalable Time Warp performance is obtainable on high-processor
counts over a wide variety of event scheduling behaviors and
not limited to relatively low, non-bursty rates of off-processor
communications.

I. INTRODUCTION

Since its inception in 1985 [1], the Time Warp synchroniza-
tion protocol for parallel discrete event simulation has been
limited in its ability to scale to many processors and for models
that communication a large amount of data between them.
Known as optimistic simulation, the fundamental premise
behind Time Warp is to only “synchronize” when absolutely
necessary. A major feature of the Time Warp protocol is the
rollback mechanism which corrects erroneous event processing
by undoing the state of the model to correct for events that
arrive out-of-order. The rollback mechanism has widely been
viewed as the limiting factor in these systems because the
number and depth of rollbacks cannot be bounded [2].

Until ten years ago, the general implementation approach
for rollback mechanisms was to save the state of the model
such that the entities, or logical processes (LPs), could be
restored when errors in the causality constraint [3] occur,
and a great deal of research has been performed investigating
optimizations for state-saving[4], [5], [6], [7], [8], [9], [10],
[11], [12].

In 1999, a second technique was proposed called reverse
computation [13]. This technique restores the state of the
simulation entities by computing the inverse operations for
each event being rolled back. While this approach is not
without its limitations (e.g., the irreversibility of floating point
operations without loss of precision), it has allowed for much
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larger scale models because entity state is no longer preserved
by the simulator, conserving large amounts of memory. Fre-
quently these limitations can be overcome through high level
inspection of the model, and code can be generated to compute
the inverse operations less directly than at the instruction
level [14], [15]. In addition to memory savings, this approach
typically involves minimal overhead in the forward execution
of events, minimizing the costs for supporting rollback in the
common case — that is, events are processed in timestamp
order and no causal error occurs.

Our contribution is demonstrable, scalable parallel perfor-
mance of a Time Warp simulator employing reverse computa-
tion executing on the well-balanced hardware architecture of
the IBM Blue Gene supercomputer. In particular, our results
demonstrate strong-scaling up to 32,768 processors on a Blue
Gene/L and strong-scaling up to 65,536 processors on a Blue
Gene/P. This level of scaling is attributed to our core Time
Warp message/network management algorithms that leverage
the high-performance asynchronous message capabilities of
the Blue Gene architecture. In the remainder of this paper, rele-
vant data structures and algorithms used in our implementation
are described in Section III. Our performance study using both
the PHOLD benchmark and the Transmission Line Matrix
application is described in Section IV. Previous research is
reviewed in Section V and concluding remarks can be found
in Section VI. We begin with an overview of the Blue Gene
architecture.

II. THE BLUE GENE ARCHITECTURE

The Blue Gene philosophy holds that more powerful pro-
cessors are not the answer when it comes to winning the
massively parallel scaling war [16]. Instead, the Blue Gene/L
architecture balances the computing power of the processor
against the data delivery speed of the network. This philosophy
led designers to create smaller, lower power compute nodes
comprising two 32-bit IBM PowerPCs running at only 700
MHz with a peak memory per node of 1.0 GB. Each Blue
Gene rack is composed into 1,024 nodes consisting of 32
drawers with 32 nodes in each drawer. Additionally, there are
specialized I/O nodes that perform all file [/O. Nominally there
is one 1/0O node for every 32 compute nodes.

Interconnecting both drawers of nodes and racks are five
specialized primary networks. The most relevant for Time
Warp implementations are the point-to-point and the global
collective networks. The point-to-point network is a 3-D torus
consisting of 12 bi-directional links with a bandwidth of 175
MB/s each in the X, Y and Z directions. The global collective
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network enables data collection, reduction and redistribution
to all nodes (or a subset) with a latency of 5 us. As we will see
in Section III, this collective network is critical to Time Warp’s
ability to efficiently compute Global Virtual Time (GVT) and
re-claim memory. The interface for sending data over the Blue
Gene network is MPI [16]

The Blue Gene/P is the successor system to the Blue Gene/L
which can scale to 884,736 processors. Each compute node
consists of four, 850 MHz PowerPC processors. The network
design is very similar to the Blue Gene/L however, the point-
to-point network has a 2.4x increase in bandwidth.

For this experimental study both a 32,768 processor Blue
Gene/L and a 163,840 processor Blue Gene/P are used. The
Blue Gene/L, named fen is located at the Rensselaer Compu-
tational Center for Nanotechnology Innovations (CCNI). The
Blue Gene/P, named Intrepid is located at Argonne Leadership
Computing Facility at Argonne National Laboratory.

Finally, we note that the IBM XLC C compiler was used for
all the results in this paper. We were able to take full advantage
of the compiler’s peak optimization level as well as architec-
ture specific settings. Our specific compiler options where:
-05 -garch=440d -gtune=440 for Blue Gene/L and
-05 -garch=450d -gtune=450 for Blue Gene/P.

III. DATA STRUCTURES & ALGORITHMS

The Time Warp protocol is inherently distributed in the
construction of data structures, and the application of algo-
rithms. The single exception to this statement is the global
virtual time (GVT) algorithm that must compute the lowest
timestamp among all unprocessed events in the system. In
this section we outline our choices for data structures and
algorithms that implement the Time Warp protocol in a stable
and robust system for execution on high processor count
supercomputers. The code for this implementation is based on
ROSS: Rensselaer’s Optimistic Simulation System [17], [18].

A. Events & Hashtables

Two types of events are possible in a Time Warp system:
positive and canceled. For the sending processor, both types
are represented in memory as a single event with a bit that
signifies positive when set to zero, and canceled if one. When
the sending processor sends a positive event, it creates a
unique event id and sends the event using MPI_Isend. For
cancelation events, the cancel bit is set to one, or true, and the
event is re-sent without modifying the original unique id.

For the receiving processor, local event memory must be
used to read events in from the network and the event bitfield
must be inspected to determine if the event is positive or
canceled. Upon receipt of a positive event, a pointer to the
event is also stored into a hashtable. If a cancelation event
arrives at a later time, the local copy of the event can then be
retrieved from the hashtable using the unique id stored in the
event.

Each processor maintains an array of hashtables [19], one
for each processor in the system, and with a starting size
of seven (7) to minimize memory requirements. The hash
implementation is a straightforward array-based hashtable with
quadratic probing (default load factor: A = 0.50). Upon
insertion of events, when the load average is exceeded (e.g.,
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50% of 7 would be the fourth insertion) the next prime
number above the current size is identified and the elements
are rehashed into the new hashtable. Please note that only the
hashtable for the sending processor is resized, rather than all,
and the sizes become model-dependent.

The average runtimes for searching a hashtable with
quadratic probing are:

1
a—n 9]
for an unsuccessful search, and
1 log # )
A (1-=X)

for a successful search. Using A = 0.5, the average number
of probes is then 2.0 for an unsuccessful search, and 1.4 for a
successful search. The timings for unsuccessful searching cor-
respond to inserting positive events, and successful searching
correspond to deleting canceled or fossil collected events.

B. Flow Control

For any model that generates even a small amount of
network traffic, flow control quickly becomes a necessity.
In our implementation, flow control was performed on the
sender’s side by maintaining a FIFO queue for events that
exceeded the capacity of the network hardware. Flow control
on the receiver’s side is performed to control the amount of
time spent receiving events in the simulator. In particular,
if too much time is spent receiving events, we may either
exhaust the free pool of events available, or the processor may
unnecessarily fall behind other processors in the system and
create rollbacks.

The simulator defines input parameters for the size of the
send and receive buffers and these values are used to initialize
the size of the MPI_Request and MPI_Status arrays. We
found that static sizes are sufficient and that a adaptive flow
control mechanism as described in [20] was not necessary for
a message-passing implementation of Time Warp.

During the call to MPI_Testsome these arrays are popu-
lated with event data, and the status of the network operation
performed. When complete, the total number of events ready
for processing is returned. After the events are processed, we
iterate through the arrays, collapsing them so that fragmenta-
tion does not occur.

C. Asynchronous Message Passing

In our implementation, we instantiate a single MPI pro-
cess on each processor. Events are communicated between
processors using the asynchronous message passing portion
of the MPI library through the routines MPI Isend and
MPI Irecv. The algorithm for both sending and receiving
events is then a straightforward two stage process for asyn-
chronous message passing. The open question is, how do we
implement this process efficiently in a Time Warp system?

When sending an event, the event is initially sent by calling
MPI Isend and the simulator returns to processing. At a
later time we test that the send has completed and check that
the event has not been canceled. Upon completion, if the event
has not been canceled, it can later be reclaimed when the



event that caused this event to be sent is reclaimed. Otherwise,
the event is marked as canceled and resent to the destination
processor.

When receiving an event, the event is initially received by
calling MPI_Irecv and the simulator returns to processing.
At a later time we test that the receive has completed, and if the
event has not been canceled, the event is stored in the local
processors inbound event queue. Otherwise, a local copy of
the event is retrieved from the hashtable and placed into the
local processors canceled event queue. Finally, the received
cancelation event is returned to the free event queue.

Algorithm 1 Implementation the Time Warp event scheduler
& processing loop. The key parameters are GVT_interval
and batch size.

1: while true do

2:  process network queues

3:  if IGVT _interval- - then

4: start GVT computation?

50 end if

6:  process inbound event queue

7:  process canceled event queue

8: if GVT computation started then
9: compute GVT

10: reset GVT_interval

11:  end if

12:  if simulation end time reached then
13: break

14:  end if

15:  process batch size events

16: end while

Algorithm 1 illustrates our implementation of asynchronous
message passing for the main Time Warp scheduler and event
processing loop. The first action in the scheduler is to process
network event sends and receives. The frequency at which
this polling is done is directly affected by the number of
events processed during the batch execution. In order to poll
frequently, a small batch_size can be selected.

Algorithm 2 Processing of network queues.

I: changed <1
2: while changed do

3:  changed | = test_g(posted_recvs,recv_finish)
4 changed | = test_q(posted_sends, send_finish)
5. changed | = recv_begin(...)

6: changed | = send_begin(...)

7: end while

Algorithm 2 expands line 2 of Algorithm 1. The function
test g takes as a parameter a pointer to an array of out-
standing events for either sending or receiving, and determines
if any events have completed. For each completed event,
the appropriate function is called, either recv_finish or
send finish. After attempting to complete outstanding
sends / receives, the algorithm then attempts to start addi-
tional event sends and receives that have been queued by
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the flow control mechanism. Completing outstanding network
operations takes precedence over new operations, and reading
events takes precedence over sending events. The order of
operations is important because the event pool is statically
allocated during initialization of the simulation, and the desired
bias is to drain the network as quickly as possible.

Algorithm 3 Processing network send buffers during batch
execution.

1: changed <1

2: while changed do

3. changed | = test_q(posted_sends, send_finish)
4:  changed | = send_begin(...)
5: end while

The second time the network library is invoked is during
batch execution when an event is sent remotely over the
network to another processor. Algorithm 3 illustrates the
process for sending events over the network. Initially, we tried
using Algorithm 2 for this purpose, but found that polling
the network this frequently was too expensive. While we
initially wanted to be as aggressive as possible in pulling data
from the network in an effort to minimize straggler events,
we determined through experimentation that the overhead of
the MPI Testsome function was too high and leads to a
decrease in the simulation performance.

D. Global Virtual Time

Efficient GVT computation is critical to the performance
of Time Warp because it allows for the reclamation of events
with a timestamp less than the computed GVT value. Our
implementation is a variation of Mattern’s GVT algorithm
where events are ‘colored’ so that they can be accounted for
during GVT computation [21]. Mattern describes an algorithm
that accounts for all unprocessed events in a system by
coloring events white that are sent over the network prior
to a GVT computation, red during a GVT computation, and
back to white after a GVT computation has concluded. These
stages are synchronized across multiple processors through the
construction of a ‘consistent cut’, usually relying on one or
more rounds of token passing between processors.

A GVT computation is initiated each time the main event
scheduler loop (see Algorithm 1) executes GVT_interval
iterations. Typically values for GVT_interval range from
512 to 2048 and GVT interval * batch size number of
events are processed between successive GVT computations.
These two parameters can have a significant impact on model
performance as they help to indirectly “throttle” overly op-
timistic execution by either increasing GVT frequency or
increased polling frequency for off-processing messages.

Once a GVT computation is instantiated, the first step is to
account for all white events in the system. Our algorithm for
the Blue Gene accounts for all white events in the system by
computing a reduction on the number of white events sent and
received by each processor, and calls the MPI _Allreduce
function for this computation, similar to [18].

Algorithm 4 illustrates our GVT implementation using
MPICH. The loop invariant must eventually become zero,



Algorithm 4 Variation of Mattern’s GVT algorithm for Blue
Gene.
1: total_white < 1
2: while total_white do
3 read events from network
4:  local_white <= nwhite_sent — nwhite_recv
5 MPI_Allreduce(&local_white, &total_white,
1, MPI_LONG_LONG, MPI_SUM,
MPI_COMM_WORLD)
: count + +
7: end while
8: MPI_Allreduce(&lvt, &guvt, 1, MPI_DOUBLE,
MPI_MIN, MPI_COMM_WORLD)

as the reduction of the variable 1local white across all
processors should yield a result of total white = 0. Once
all white events have been accounted for in the system, the
GVT computation can proceed by reducing the minimum
timestamp among all unprocessed events in the system.

Because the point-to-point and global collective networks
are separate, nearly independent “data channels” on the Blue
Gene and other architectures, it is possible for a point-to-point
message to be sent before a reduction operation starts yet
have the reduction complete first. Thus, a number of “round”
through the GVT computation loop maybe necessary. As a
network performance metric, the count variable is used to
compute the average number of times through the loop per
GVT computation. We have observed that the average number
of read attempts required per GVT computation is 1 on Blue
Gene/L, and 2 on the Blue Gene/P. On commodity clusters
consisting of thousands of compute nodes, we have observed
significantly higher averages (e.g., > 1000 on clusters con-
taining 1,000s of processors). While the network architecture
of the Blue Gene significantly improves the performance of
this GVT algorithm in Time Warp, we have been unable to
ascertain why the Blue Gene/P machine requires a second
reduction attempt. Our hypothesis is that the shared memory
bus of the Blue Gene/P may be less efficient in our imple-
mentation than directly using the Blue Gene network however
more experimentation is needed.

E. Floating Point Timestamps and Memory Alignment

The importance of proper memory alignment of floating
point timestamp values has been well documented for good
performance on the Blue Gene [22]. In order to obtain good
floating point performance all double floating point variables
must be aligned on an 8 byte boundary. We discovered that
while the Blue Gene/L is very tolerant of unaligned double
timestamp variables, the Blue Gene/P is not. If an application
encounters a single misaligned double, the Blue Gene/P
generates a segmentation fault resulting in a core dump file
for each processor.

To solve this alignment problem, we constructed our own
dynamic memory subsystem to ensures each and every data
structure starts on an 8 byte boundary address. Additionally,
we manually re-ordered all data structure variables such that
any double typed structure element occurred on an § byte
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offset within the defined structure type.

IV. PERFORMANCE STUDY

We begin our performance investigation with a tuning study
for best parameter settings of the simulator on the smaller,
32,768 processor Blue Gene/L. We then use those settings
to perform measurements on the larger 131,072 processor
Blue Gene/P. Because of the low noise of the Blue Gene
architecture as show in [23], run-time variations are typically
less than 1% and so replicated experiments are not required.
Additionally, because of the limited processor allocation on
these rare resources, we did not vary the random number seeds
used because the long period and high quality of L’Ecuyer’s
Combined Linear Congruential Random number generator
incurs little variance when different seeds are used (e.g., <
0.1%) [14].

For the performance study we use the de-facto standard
PDES benchmark, PHOLD, a derivative of the HOLD model
[24], extended for parallel discrete event simulation in [25]
and reverse computation in [13]. The PHOLD model generates
a synthetic workload over a range of parameters that allow
performance assessments based on application characteristics,
rather than an intuitive understanding of a specific application.
For this study we have chosen what are considered to be
the most difficult settings: fine granularity event processing
(e.g., none), and an inter-event offset based on an exponential
distribution with a mean of 1.0, and destination LPs chosen
randomly over the entire set of LPs. Configured in this way,
the PHOLD benchmark rapidly generates a large number of
remote events, close together in the simulation timeline with
no built-in lookahead.

We observe that strong scaling the PHOLD model is more
difficult than weak scaling, and choose the total number of
LPs to be 1,048,576 (1024%1024). For the majority of cases
the number of kernel processes (KPs) was chosen to be 32
per processor. KPs were first introduced as a construct for
aggregating rollbacks and fossil collection across multiple LPs
mapped to a single processor [17]. Each LP initially schedules
10 events into the simulator for a total event population at any
time of approximately 10 million events. This configuration
is identical to the previously published experimental study
detailed in [18]. The model computes over 50 billion events
with an end time of 5000.0.

As a second model, performance results are reported for the
Tranmission Line Matrix (TLM) model [26] and [27] which
approximates Maxwell’s equations for electromagnetic wave
propagation. The configuration and details of this model is
described in Section IV-D.

A. Metrics

For the performance results we use three primary metrics:
committed event-rate, remote events percentage and rollback
efficiency. The committed event-rate measures the number of
events processed per second in the simulator excluding rolled
back events. These are the same events that would occur in
a sequential execution of the simulation. The remote events
percentage measures the number of events transmitted over the
network over of the entire runtime of the model as a percentage
of the total number of events processed, not including rollback



Algorithm 5 Algorithm for selecting a destination LP in the
PHOLD model according to a user supplied remote event
percentage.

1: NLP <« total LPs in simulation
offset_lpid = my rank * nlp_per_pe
dest_lp < -1
if RANDOM_DOUBLE(0..1) < remote event percentage
then

Eoli o

5. dest_lp <« RANDOM_INT(0, NLP)
6:  dest_lp 4+ = offset_lpid

7. if dest_lp > NLP then

8: dest_Ip — = NLP

9:  end if

10: else

11:  dest_lp = cur_lp

12: end if

events. In addition, the model is constructed such that the
remote events percentage can be prescribed, as shown in
Algorithm 5. Lines 6-9 serve to ensure the destination LP
was not randomly chosen to be an LP mapped to the current
processor.

Finally, we redefine the rollback efficiency of the simulator
by the equation:

Erp
ENet

where Erp is the total number of events rolled back and En ¢
refers to the number of events processed in the sequential case.
This calculation yields a more intuitive representation of the
rollback efficiency by constructing a ratio based on the number
of events rolled back compared to the total events processed in
a sequential computation. For example, if Erp = Enet, then
this formula computes an efficiency of zero, rather than 50%,
which misleads us into believing that the simulator had some
real efficiency. Our equation also allows for the efficiency to be
negative when more events are rolled back than are executed
sequentially. For example, if twice the number of net events
are rolled back, then the efficiency is —100.0%. Finally, we
find that this revised measure of efficiency better correlates to
actual speedup performance.

1.0 —

3)

B. Performance: Blue Gene/L

We start our performance analysis on the Blue Gene/L
using 8,192 processors and by testing the effects of vari-
ous remote events percentages on the simulator parameters:
batch size, GVT_interval, number of KPs, and the
size of the send and receive buffers in the flow control
mechanism. The goal is to experimentally determine the best
settings for the simulator before moving to the larger Blue
Gene/P. For these examinations, default simulator settings
were abatch size of 4 events,a GVT_interval of 2048
loop iterations, 16 kernel processes [17], optimistic memory
of 32,768 events, and send / receive buffer sizes of 150,000
events.

The batch size parameter varies the number of events
processed during the main Time Warp scheduler loop. Figure
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Fig. 1. PHOLD event-rate on 8192 processors: Varying batch_size. For

large remote event percentages, the best batch_size setting is 2. Event-rate
is measured interms of committed events per second and does not include any
rolled back events.

1 varies the batch size from 1 to 8 before performance
begins to flatten out. For the 25, 50, 75 and 100% remote
events, the best batch size setting is clearly 2. For the
10% remote events case, the batch_size is commonly used
to reduce the amount of network traffic, the frequency of
polling the network becomes significant and performance is
better with larger batch size values. Larger values allow
more events to be sent through the network and the polling
overhead is reduced.

The GVT interval parameter varies the number of
times the main scheduler loop is executed between GVT
computations. Figure 2 varies the GVT interval values
from 64 upto 3K. Again, the best setting for the 25% to
100% remote events cases is the same, 512. And again, the
10% remote events is better when larger GVT_ interval
values are used. The frequency of fossil collection is tied
to the GVT_interval. When fossil collection is delayed
and the remote event percentage is high, the size of the
hashtables grow and rehash more frequently, adding a great
deal of overhead to the simulation. When the remote event
percentage is low, this overhead is reduced, allowing for less
frequent GVT computation and fossil collection. Conversely,
computing GVT frequently for high remote event percentage
minimizes the overhead of the hashtables, and for low event-
rates unnecessarily increases the overhead associated with
computing GVT yielding little to no overall performance
benefit.

Kernel processes were introduced to improve the scaling
of Time Warp by aggregating rollback and fossil collection
for large-scale simulations. Varying the number of kernel
processes in the simulator directly impacts the rollback mech-
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Fig. 2. PHOLD event-rate on 8192 processors: Varying the GVT_interval.
The best settings for large remote event percentages is 512, and 2048 for
smaller rates. Event-rate is measured interms of committed events per second
and does not include any rolled back events.
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Fig. 3.  PHOLD event-rate on 8192 processors: Variable number of ker-

nel processes (KPs). The best setting is 16 KPs per processor. Increasing
KPs/processors beyond 16 does not improve performance. Event-rate is
measured interms of committed events per second and does not include any
rolled back events.

anisms, as all processed events are preserved within the KPs
until fossil collected. When too few KPs are used, rollbacks
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Fig. 4. PHOLD event-rate on 8192 processors: Varying the send/read buffer
size from small sizes (10-50K at an interval of 10K) and large sizes from 50K
to 300K, any of these settings work well on the Blue Gene. This indicates
extremely robust performance of the network module. Event-rate is measured
interms of committed events per second and does not include any rolled back
events.

may occur unnecessarily as a consequence of rolling back the
entire KP, rather than individual LPs. When the number of
KPs is too large, the overhead associated with fossil collection
becomes large. Typically a small number of KPs are required
for large-scale simulations containing millions of LPs. Figure 3
illustrates the best KP configurations for various remote event
percentage.

When the send and receive buffers were measured initially
for large sizes (50-300K), the event-rate remained relatively
unchanged, as shown in Figure 4. Subsequent testing in lower
ranges (10-50K at an interval of 10K) revealed similar perfor-
mance. These results indicate that the simulation network mod-
ule is extremely robust. In addition, the well-balanced “low-
noise” hardware architecture of the Blue Gene/L contributed
to the stable performance.

Finally, we illustrate the scalability of our Time Warp
implementation on the Blue Gene/L for a variety of processor
configurations. Figure 5 shows super-linear performance for
each remote event percentage tested on the Blue Gene/L. The
linear scalability is due to the efficient implementation of the
Time Warp protocol, while the super-linear performance is due
to the model fitting more and more into the L3 cache as the
number of processors is increased.

C. Performance: Blue Gene/P

Figures 6 and 7 show the scalability and efficiency for
PHOLD on the Blue Gene/P. Because of our limited allocation,
very few experiments at processor counts less than 65,536
were run. We believe that prior Blue Gene/L experiments



Blue Gene/L: Time Warp Scalability
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Fig. 5.  Scalability of the Time Warp protocol for a variety of remote

event percentages on multiple processor configurations. Event-rate is measured
interms of committed events per second and does not include any rolled back
events.

Blue Gene/P: Time Warp Scalability
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Fig. 6. Time Warp scalability on Blue Gene/P for PHOLD ranging from

2,048 (2K) to 131,072 (128K) processors. Event-rate is measured interms of
committed events per second and does not include any rolled back events.

adequately covers those processor count ranges. Instead, we
focused a majority of our runs on 65,536 and 131,072 pro-
cessor configurations and compare that with results generated
using only 2048 processors.
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Blue Gene/P: Time Warp Rollback Efficiency
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Fig. 7. Time Warp efficiency as a percentage on Blue Gene/P for PHOLD

ranging from 2,048 (2K) to 131,072 (128K) processors.

The first phenomenon we encountered is that the Blue
Gene/L’s event-rate for 2,048 processors was significantly
higher than Blue Gene/P’s (410 million vs. 356 million) for the
10% remote events case. This is very odd given that the Blue
Gene/P has a faster processor and higher bandwidth network.
However, with additional experimentation, it was determined
if Blue Gene/P was configured in dual mode to use only 2 of
the 4 processors and increase the number of nodes from 512 to
1,024, our performance improved to 404 million. We believe
there could be some memory bandwidth limitations on the
Blue Gene/P that does not occur on the Blue Gene/L because
of fewer processors per node, however more experimentation
will be necessary to confirm this hypothesis.

Next, we observe scalable event-rate performance and >
90% rollback efficiency for PHOLD across all remote event
percentages upto 65,536 processors. At 65,536 processors, the
lowest reported event-rate was 4 billion for the 100% remote
events case and the highest reported event-rate was 12.26
billion for the 10% remote events case. However, when the
131,072 processor configuration was executed an avalanche of
rollbacks occurred. We tried a number of Time Warp parameter
changes, but the rollback-rate could not be improved. We
believe here, that with only 8 LPs processors and 80 initial
events per processor, that there is not enough local work per
processor to sustain good optimistic event scheduling.

D. Performance: TLM on Blue Gene/L

The Transmission Line Matrix (TLM) model as described
in [26] and [27] simulates microwave frequencies of light as a
wave, based Christian Huygen’s model of light. TLM approxi-
mates Maxwell’s equations for electromagnetic wave propaga-
tion, with applications in radio wave communication networks.



This modeling approach is a mesh refinement technique that
requires two main components: a discrete representation of the
spatial environment modeled as a structured grid, and an algo-
rithm for scattering and gathering of the electromagnetic field
energies through the grid. The model is capable of capturing
the primary effects of wave propagation, namely, diffraction,
reflection, and scattering, each of which contributes to the
multipath effect. An example wave transmission in shown
in Figure 8. This model has the potential to provide highly
accurate signal strengths for mobile ad-hoc networks and other
wireless networking technologies as compared to traditional
line-of-sight models.

Development of the TLM model first began in 2005 when
the method was converted from a continuous description based
on ordinary differential equations to the event-based paradigm
[28]. In 2007, the performance of this model for the parallel
discrete event paradigm was tested for a 100km? environment
at a resolution of 100m and 754 radio transmitters [29] were
used. Scalability was limited to 25 processors for this model,
and speedups reported were about 50%. The limited scalability
was primarily due to the fact that a large portion of the
environment contained little or no work due to the large
environment relative to the number of radios. This behavior
is very different from the PHOLD workload. In PHOLD,
the event population remains the same throughout the entire
simulation run, making TLM a challenging model on which
to yield good parallel performance.

Scaling TLM on the Blue Gene was complicated by the
mapping of the grid cells (modeled by LPs) to physical
processors (PEs). In our model, the terrain layer determines
the bottom-most XY plane in the grid, and the model is
decomposed in the X-axis. For an environment of size 100km?
at a resolution of 100m, this yields 1,000 X-axis rows, limiting
the number of processors used to 1,000. Increasing the size
of the environment is unrealistic, as the mobility of the
radios determines the size of the environment. Increasing the
resolution of the environment allows us to scale up the size
of the model and the benefit is more accuracy in the results
generated. At a resolution of 10m, the same environment
yields 10,000 X-axis rows, allowing us to utilize up to 10,000
processors. Scaling the model by increasing the resolution
generates 100 million LPs for each Z-layer modeled, and for
experiments we used two layers yielding a total of 200 million
LPs.

We were able to collect results for 2,500, 5,000 and 10,000
processors. For our experiments, we selected the number of
radio transmitters as 1, 10 or 100 per processor used in
the simulation. That is, at 10,000 processors, the model has
1,000,000 radios. We consider the model to be an example
of strong scaling, as the number of overall LPs in the model
is largely determined by the grid size and resolution. Weak
scaling the number of radios acts more to generate larger event
populations, as more radio waves are being propagated at each
timestep. Please note that a single wave starts as a single
event in the spatial grid of LPs, and rapidly expanding out
in all three dimensions simultaneously. Therefore, the event
population grows according to the cubic volume of a sphere,
deformed by the complex environment. A single transmission
has the potential to generate millions of events, many with
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Fig. 8. Image of a single wave transmission in the TLM model. As the Z-axis
is truncated, the wave becomes donut-shaped as it continues to propagate in
the XY directions.
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Fig. 9. The GVT interval and batch size surface plot.
GVT_interval had the largest effect on the performance of the TLM model.

equal timestamps for a given instant in the simulation. The
TLM model generates almost a worst case scenario for PDES
in the growth of the event population and the high number of
tied event timestamps. The remote event percentage for the 1
radio per processor cases was generally 17%, and 25-30% for
the 10 and 100 radio per processor cases.

In order to determine the best settings for the TLM
model, we measured a variety of batch size and
GVT_interval settings. For the TLM model, we deter-
mined our best settings were at 1,000 KPs per processor.
Figure 9 illustrates the performance of the TLM model on the
Blue Gene/L computing a full factorial over the batch_size
and GVT_interval parameters. The batch size had
almost no effect on the performance, while larger GVT inter-
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of committed events per second and does not include any rolled back events.

vals improved the performance of the model from the worst
case of 29 million events per second to over 100 million.
Additionally, Figure 10 shows how the combination of GVT
interval, number of processors and number of radios impacts
the overall event-rate of the TLM model.

The scalability of the TLM model was measured for pro-
cessor configurations: 2,500, 5,000 and 10,000, using a variety
of radio transmitters. Figure 11 illustrates weak scaling of
the TLM model since there is little difference in performance
between 2,500 and 5000 processor cases, despite the doubling
of the total number of radios. Because of the near cubic
growth in event population as a radio wave propagates outward
from its source, the 5000 processor cases has nearly 8x the
event population that 2,500 processor case does. Consequently,
each processor in the 5,000 processor case has upwards of 4
times the amount of work and event population per unit time
which accounts for the loss of pure event-rate performance.
In the 2,500 and 5,000 processor cases, the event-rate is
above 100 million with a rollback efficiency of 2.6% for the
2,500 processor case and —4.32% for the 5,000 processor
case indicating that the number of rollback events and number
of net events processed (i.e., events that would occur in a
sequential simulation) are nearly the same. Because the large
number of radios, the 10,000 processor configuration yields a
significant amount of work and even higher event population
which explains why its overall event-rate is lower.

V. RELATED WORK

There have been two previous investigation into the per-
formance of discrete event simulation on Blue Gene su-
percomputers. The first study by Perumalla [22], presents
PHOLD performance results for conservative, optimistic and
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processor. Observe that the 5,000 processor configuration keeps up with the
event-rate performance 2,500 processor case suggesting that weak scaling of
the model is obtained.

mixed-mode PDES protocols on the Blue Gene/L. The peak
optimistic PHOLD performance was 214 million events events
per second on 8,192 processors for the 10% remote events
case with built-in lookahead. The best reported event-rate
was 530 million on 16,384 processors for purely conservative
synchronization protocol.

The second study by Holder and Carothers [18] improves
upon these results using their ROSS parallel simulator. Here,
for PHOLD configured with 10% remote events and without
lookahead, 853 million events per second on 16,384 Blue
Gene/L processors is reported. A key difference between this
implementation and that previous one is our use of non-
blocking, asynchronous message passing primitives and the
associated network data/buffer management layer that must be
employed in order support models with high remote processor
event sending rates. This resulted in a complete re-write of
the core networking and event scheduling routines within the
Time Warp/MPI implementation.

An additional PDES performance study on a 750 node
Alpha server has also been investigated [30]. They were able
to process an 228 million events per second on 1,024 Alpha
processors. Their PHOLD model schedules events at one of the
four nearest neighbors, which should exploit the quad proces-
sor SMP nodes while avoiding the Quadrics network switch.
DSIM’s GVT algorithm reserves processors as GVT managers.
Typically, one manager is needed for every 128 processors.
Because of the Blue Gene’s built-in global reduction network,
this software GVT approach is not required.

In the context of hardware acceleration of GVT algorithms,
[31] demonstrates that hardware assisted, target-specific global
reductions can dramatically improve parallel simulator per-



formance. More recently, [32] has shown the benefits of
offloading the GVT computation to network interface cards.

VI. CONCLUSION

This paper demonstrates the capabilities of a new Time
Warp system that leverages the high-performance asyn-
chronous message passing capabilities of the Blue Gene family
of supercomputers. We report peak PHOLD committed event-
rates of 2 billion for 8,192 processors, 3.9 billion for 16,384,
7.6 billion for 32,768 and 12.26 billion for 65,536 processors.
This represents a 14x improvement over previously published
results. It is also demonstrates that when PHOLD is configured
with very high remote processor sending percentages (e.g., >
25%), Time Warp is able to maintain very good performance
and scaling. On 65,536 Blue Gene/P processors, 4 billion
events per second is reported for 100% remote events (e.g.,
every event processed was sent between two LPs located on
different processors). This is only a 3x performance loss for
10x increase in remote events. Typically such high rates of
off-processor communications results in much steeper losses
in parallel simulator performance. Finally, it was demonstrated
that a bursty event application, the Tranmission Line Matrix
(TLM) model for electromagnetic wave propagation, was able
to demonstrate weak scaling interms of number of radios from
2,500 to 10,000 processors. The largest previous processor
configuration used for this model was limited to 25.

Overall, these performance results indicate that scalable
Time Warp performance is obtainable on high-processor
counts over a wide variety of event scheduling behaviors and
not limited to relatively low, non-bursty rates of off-processor
communications.
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