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Abstract

Computer simulation of many important complex physical systems has reached a plateau because most conven-

tional techniques are ill equipped to deal with the multi-scale nature of such systems. The traditional technique to

simulate physical systems modeled by partial differential equations consists of breaking the simulation domain into

a spatial grid and then advancing the state of the system synchronously at regular discrete time intervals. This so-

called time-driven (or time-stepped) simulation (TDS) has inherent inefficiencies such as the time step restriction

imposed by a global CFL (Courant–Friedrichs–Levy) condition. There is ongoing research on introducing local time

refinement (local versus global CFL) within the time-stepped methodology. Here, we propose an entirely different

(asynchronous) simulation methodology which uses the spatial grid but the time advance is based on a discrete

event-driven (as opposed to time-driven) approach. This new technique immediately offers several major advantages

over TDS. First, it allows each part of the simulation, that is the individual cells in case of fluid simulations and

individual particles within a cell in case of particle simulations, to evolve based on their own physically determined

time scales. Second, unlike in the TDS where the system is updated faithfully in time based on a pre-selected user

specified time step, here the role of time step is replaced by a threshold for local state change. In our technique, indi-

vidual parts of the global simulation state are updated on a ‘‘need-to-be-done-only’’ basis. Individual parts of the

simulation domain set their own time scales for change, which may vary in space as well as during the run. In a

particle-in-cell (PIC) simulation, DES enables a self-adjusting temporal mesh for each simulation entity down to

assigning an individual time step to each particle. In this paper, we illustrate this new technique via the example

of a spacecraft charging in a neutral plasma due to injection of a charged beam particle from its surface and compare

its performance with the traditional techniques. We find that even in one-dimension, the new DES technology can be

more than 300 times faster than the traditional TDS. Aside from sheer performance advantages, the real power of

this technique is in its inherent ability to adapt to the spatial inhomogeneity of the problem. This enables building

intelligent algorithms where interaction of simulation entities (e.g., cells, particles) follow elementary rules set by the
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underlying physics laws. Finally, our extensions of this technique to other problems such as the solution of diffusion

equation and electromagnetic codes are briefly discussed.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

The traditional time advance of spatially discretized physical systems is based on the time-stepped (or

time-driven) approach [1]. In its simplest form, the method involves updating discrete physical quantities

on a uniform spatial mesh at regular (spatially uniform) time intervals derived from an explicit time discret-
ization of the underlying model equations. Such methods require that the time step satisfy a Courant–

Friedrichs–Levy (CFL) condition Dt < Dx/V, where V is the fastest physical speed in the problem and

Dx is the mesh spacing. Simulation codes using a uniform mesh are quite prevalent even today and have

been adequate for modeling simple systems. On the other hand, with gains in computer speed there has

been a growing interest in modeling complex systems. Such systems are often highly inhomogeneous and

may even require different physical/numerical models in different parts (regions) of the simulation domain.

To address multi-scale, multi-physics systems new techniques have had to be devised. Much of the work to

date has concerned the development of sophisticated spatial mesh techniques where local spatial refinement
is introduced to resolve certain features in more detail. However, this local refinement reduces the allowable

time step and can significantly degrade the performance advantage a non-uniform mesh provides. There-

fore, much effort has gone into developing schemes within the time-stepped methodology to allow the time

step to vary spatially so as to satisfy a local, rather than a global, CFL condition (e.g. [2] and references

therein). In case of particle-in-cell (PIC) simulations, one is faced with the additional problem that individ-

ual particles evolve on different time scales than the fields. In order to decouple the evolution of particles

and fields, Friedman et al. [3] proposed an implicit technique where grid quantities are interpolated in time

to obtain the source contributions from groups of particles not advanced during the current step. The par-
ticles are put into different groups and advanced based on some multiple of the smallest time step. Aside

from issues related to implicit nature of this technique (e.g., damped equations of motion that have to

be used rather than the time reversible equations in explicit codes, extra complexity of the implicit particle

and field calculations, etc.), fields are still updated based on the traditional TDS.

The most developed of the TDS techniques is the so-called adaptive mesh refinement (AMR) where local

time stepping is done by automatically taking smaller time steps in regions where the mesh is refined. Exam-

ples of computational software based on the AMR technology include Chombo (developed at Lawrence

Berkeley National Lab) and SAMRAI (developed at Lawrence Livermore National Lab). The AMR mesh
is a hierarchy of nested meshes of varying spatial and temporal resolutions. Computational cells on each

level of refinement are clustered into logically rectangular mesh regions, called patches. The time step taken

in each patch is related to the patch cell size via a Courant condition local to the patch. Therefore, one has

different temporal resolutions in different patches.

All traditional methods face the following common problems:

� Excessive computation – even in AMR codes the time step is still uniform within each patch and cell

quantities are unnecessarily updated regardless of how fast they are changing in time.
� CFL constraint – the time step is constrained by the global CFL condition at the worst (in non-uniform

mesh schemes) and local (to the patch) CFL at the best (in AMR schemes).

In short, the time-stepped methodology may not be an ideal foundation for development of multi-scale,

multi-physics simulation codes. This is because the basic premise of the technique, system update at
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spatially uniform time intervals, is at odds with the need to introduce a temporal mesh in the simulation.

Here, we present an entirely new approach which resolves the above mentioned issues.
2. New multi-timescale methodology

Our innovation is to combine some of the machinery of time-stepped simulations, i.e., the finite differ-

encing of equations and their solution on a spatial grid, with the time advance method of event-driven

simulations. Discrete event simulation has the advantage of modeling system time advance through the

use of irregularly time-stamped ‘‘events’’ that only update what needs to be updated when that needs to

be updated. Historically, the fields of continuous and discrete event simulation have been largely distinct,

with limited cross-disciplinary interaction (simulations mixing continuous and discrete models, e.g., to

model circuits, is a notable exception). Time-stepped simulations have traditionally been used in continuous
simulation to model physical systems described by partial differential equations and particles. On the other

hand, event-stepped simulations have their origins in operations research and management science, and

more recently have found application in war games and telecommunications [4]. Our goal is to combine

state-of-the-art strategies and techniques of these two fields of simulations in order to achieve a break-

through in technology that enables use of both spatial and temporal meshes and eliminate unnecessary

computations. Here, we report on the first set of results obtained from this endeavor. In order to demon-

strate the feasibility and advantages of this new approach, we chose a PIC model from plasma physics.

Plasmas have a large number of states and highly optimized time-stepped codes have been developed to
simulate them. As such it provides an excellent test bed for our new methodology.
3. Problem description

We consider the well-known problem of charging a spacecraft immersed in a neutral plasma by emitting

a charged beam from its surface [5]. This problem is sufficiently complex to make a good subject for a fea-

sibility study. We used a 1D (gradients only in one direction) simulation model in spherical coordinates in
order to obtain the correct radial dependence of the electric field. We assume spherical symmetry so the

only variations are with respect to radial distance from the spacecraft. Fig. 1 illustrates the simulation

geometry. The spacecraft is taken to be a spherical conductor immersed in the charge-neutral plasma of

the solar wind. The solar wind is taken to be stationary here. A charged beam is injected from the surface

of the spacecraft at regular time intervals InjectPeriod with a density, BeamFrac (normalized to the electron

density in the solar wind). The spacecraft is initially assumed to be charge neutral. However, each time the

beam is injected, the spacecraft accumulates a charge equal in magnitude but with an opposite sign to that

of the injected beam. As the beam injection proceeds, the spacecraft charges up negatively in case of a
positron beam or positively in case of an electron beam. If the spacecraft is charged negatively, it repels
Fig. 1. Schematic of the 1D simulation model used in benchmarking our new code.
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the solar wind electrons from the vicinity of the spacecraft and starts to pull in the beam and solar wind

ions. Since solar wind ions are more massive than positrons the beam particles respond to the charged

spacecraft earlier than the background ions.

All simulations are one-dimensional in configuration space [1]. In order to correctly account for the drop

off of the electric field in 1D, we utilize the spherically symmetric Poisson equation:
1=r2d=drðr2ErÞ ¼ 4pq ð1Þ
The solar wind plasma has a uniform density. We load the solar wind plasma with a uniform distribution.
Therefore, charge particles in shell j are taken to have a charge given by Qj ¼ 4pr2jDrjqj in order to be

consistent with a uniform density. We will use normalized units throughout, where time is normalized to

electron plasma frequency xpe, r is normalized to electron debye length, and velocity is normalized to elec-

tron thermal velocity. The simulation parameters are Te-sw/Ti-sw = 2.4, Te-beam = 0, beam energy of 10 kev,

mi/me = 1836 and a beam density so that at injection period of xpesinj = 0.004, Nbeam/ Nsw = 0.025. Here,

Te-sw and Ti-sw are the solar wind electron and proton temperatures, Te-beam is the beam temperature,

and Nbeam and Nsw are the density of the beam and solar wind, respectively. We have considered both elec-

tron and positron beam injections. In the case of the electron beam, the solar wind ions are mostly unaf-
fected whereas with a positron injection, the ions close to the spacecraft get pulled in towards the

spacecraft. In the latter case all three species contribute to the evolution of the system, making it more com-

plex. Therefore, we show results only for the positron beam injection although we have also done detailed

benchmarking with electron beams with similar success. The parameters used here are not meant to corre-

spond to actual experiments performed in space and are simply used as a way to test the viability of our new

methodology.
4. Computational model

At any given time the global state of the electrostatic plasma system described above is fully character-

ized by the states (positions and velocities) of all simulation particles and a set of predefined beam injection

rules. There are at least two ways of solving for the electric field. In TDS, the electric field is found by col-

lecting the grid charge from particles and solving the Poisson equation with appropriate boundary condi-

tions. In DES, the field is solved only locally and the electric field is found by keeping track of the charge

that crosses a boundary, and updated using the differential form of Gauss�s law dE � dQ/r2. The progress of
time can be modeled either by advancing particles with a global time step (‘‘time-driven’’ simulation) or by

executing particle ‘‘events’’ (instantaneous state changes) at irregular time intervals determined through lo-

cal physics considerations (‘‘event-driven’’ simulation). The former represents the conventional approach to

modeling natural systems, the latter serves as an example of our new multi-time scale methodology. Both

types of simulation are grid-based and use the concept of a global time clock that controls the progress of

simulation time. For simplicity, we deposit particle charges on the grid via the nearest grid point (NGP)

interpolation scheme [1]. The NGP scheme is not commonly used in particle simulations because it is noisier

than first or higher order weighting schemes [1]. In 3D simulations, however, the extra computations
needed for the higher order weighting schemes can become significant and in such cases NGP becomes a

good alternative. In the present case, we have run our TDS code both with NGP and linear weighting

and have found no significant difference in the results. So we only consider the NGP scheme in our

DES code. Higher order schemes can also be implemented in DES but would leave to additional overhead

as they do in TDS.

Below we describe the most essential features of both methodologies.
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4.1. Time-driven simulation (TDS)

The algorithmic flow of a typical time-stepped electrostatic simulation cycle is shown in Fig. 2(a). The

time-driven execution model is characterized by an iterative loop where all the future particle states (coor-

dinates and velocities) are calculated from the present states simultaneously following the evaluation of sta-
tic electric field in all shells (in our model this is done via the Gauss�s law). All particles are pushed in time

with the time step small enough to capture correctly both the beam and background plasma dynamics.

Therefore, the time-driven simulation follows many clock ‘‘ticks’’ in which no significant physical changes

in some parts of the system occur. From the programming viewpoint (here and below we use the terminol-

ogy used by C/C++ and Fortran 90), the electric field is represented by an array of floating point numbers

in TDS and shell objects in DES, and particle information is stored in an array of Particle structures. Each

Particle structure (from now on simply a particle) holds in memory all the attributes of a single simulation
Event Queue

push the one particle with
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calculate fields in 
affected shells

call wake-ups, if
necessary

reschedule particle "push",
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Fig. 2. Flow diagram for the time-driven and discrete event simulations.
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macroparticle. Updating the system information at each time level is done by separately looping through

the field and particle arrays. The system update is usually accompanied by collecting appropriate diagnos-

tics. A well known constraint of TDS is the CFL condition. Any advance of the system using a time step

larger than the CFL condition leads to numerical instability [1]. As we will demonstrate shortly, this is a

very stringent condition and is at the root of the inefficiencies in time-driven simulations.
The field equation in Fig. 2(a) is solved by finite differencing equation (1):
4pr2jDrjqj ¼ r2jþ1=2Ejþ1=2 � r2j�1=2Ej�1=2; ð2Þ
where rj�1=2 ¼ 1
2
ðrj þ rj�1Þ and rjþ1=2 ¼ 1

2
ðrj þ rjþ1Þ.

4.2. Discrete event-driven simulation (DES)

In an event-driven simulation, the temporal dynamic behavior of the system is modeled by the occur-

rence of ‘‘events’’. An event is modeled as a structure that contains a time stamp (event execution time)
and a process function associated with a change scheduled to take place in the system being simulated.

In mesh-based physical systems most events are shell based, i.e., a typical event reproduces a certain aspect

of the complex physical behavior of the system on a shell scale (in order to underline the spherical symmetry

of the problem we will be using the term ‘‘shell’’ instead of the more general ‘‘cell’’ concept).

The present time is the time stamp of the current event being processed. The simulation time jumps from

the present time to the time stamp of the next event. Each event can schedule new events for future execu-

tion or retract pending events (ones that have been scheduled but not yet executed) based on the currently

available information. Therefore, parts of the system can evolve on their own time scales. Obviously, this
complicates the programming logic of an event-driven simulation, making it ‘‘fuzzy’’ as opposed to the

‘‘transparent’’ logic of a time-driven simulation. The discrete event algorithm implemented in our electro-

static model is as follows (Fig. 2(b)).

1. Initialize the simulation with given fields and particle distribution.

2. Using the known field values, compute particle future move times (the move time is the next time at

which the particle will be moved, either across the shell boundary, or some projected distance in space).

The simulation uses a structure of nested particle queues (see below).
3. The global event queue will choose which shell to process next, and the local queue will choose which

particle within that shell to process.

4. Track the ‘‘source’’ term (e.g., charge enclosed by a boundary) for the fields as the particles pass from

shell to shell. In this (electrostatic) case, it suffices to track the particle density but in electromagnetic

simulations, there exist waves that are noncompressional and thus other (field) variables are needed in

addition to density.

5. If the field changes above a certain threshold in a given shell, it is woken up. Advance the local particles

in that shell up to the present time, calculate their new move times and update the affected shell queues
accordingly. Note that the field updates are limited to the active shells (ones that have been allowed to

schedule events) and their immediate neighbors. There are two options when dealing with a particle that

enters a new shell when it does not trigger a wakeup. First, we can calculate the field in that shell and use

that value to compute the exit time for that particle. Second, we can use the existing value of the field in

the shell and use that for the computation of the exit time. In the present case, the local field computation

is trivial and does not take much computational power. However, for more complicated field equations,

the first option would be more CPU intensive. We have verified that both options yield identical results

as long as the wakeup threshold is set appropriately. The second option is computationally more efficient
and is being used in electromagnetic codes that we are developing.
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6. Repeat 3–5 until the end of the simulation is reached. In most cases, the end time stamp is specified at the

beginning of the simulation. Termination condition is either end time (the next event to be processed has

a time stamp greater than the end time), or when any beam particles reach the end of the allocated shells.

Causality is assured by requiring that (i) the time stamp of any new event be at least as large as the
current time of the simulations and (ii) the simulation executive always processes the events in time stamp

order [4]. Also note that unlike implicit schemes which by necessity introduce artificial damping [3], the

equations of motion here are time-reversible as they are in standard explicit codes. Comparing the algo-

rithm for DES and time-stepped simulations, several advantages of DES methodology become immediately

evident:

� Local field computation – In time-stepped simulations, the field is updated in the entire simulation

domain at each time step. In DES, however, field is only updated in shells where a wakeup has been trig-
gered. This is a major advantage in large three-dimensional simulations [6] where the number of cells can

be tens or even hundreds of millions.

� Natural temporal decoupling of particle species and fields – In time-stepped simulations all particle species

(e.g., electrons and ions) as well as fields are generally advanced based on the same time step. Techniques

to decouple field and particles such as subcycling have been introduced but such techniques are usually

cumbersome and do not always produce reliable results. In DES, however, the temporal advance of each

particle species and the fields are naturally decoupled. Furthermore, even within each species, each par-

ticle is advanced based on its own exit time (time step). One can think of the DES simulation as having a
complex temporal mesh consisting of an arbitrarily large number of layers and with each mesh having

the capability to adjust its width.

� Breaking the curse of CFL condition – In a time-stepped code, the time step is limited by several factors:

(i) frequency of underlying modes such as plasma frequency, and (ii) two types of CFL conditions, one

on the fields and one on the particle. The time step has to be small enough so that the fastest mode/par-

ticle in the system cannot cross a shell in one time step. In an inhomogeneous system, the CFL condition

can vary significantly across the simulation domain but in the time-stepped methodology, the local CFL

condition with the smallest time step sets the global time step. This is clearly very inefficient. In DES, as
we will show shortly, the CFL restriction is removed.

� Efficient diagnostics and data storage – In DES, one can easily generate a global knowledge of the

simulation by advancing all events to a specified time for diagnostic purposes. One of the challenges with

large three-dimensional simulations is the handling of large data files that are generated. This problem

becomes even more acute with particle simulations as the number of particles can exceed the number of

cells by a factor of 10 or more. DES offers a natural way to save only the part of the data that has chan-

ged rather than the whole dataset as is done in TDS. In 3D, this can lead to significant improvements in

I/O as well as reduction in data storage requirements.

The complete discrete event simulation program is built of several software components as we now

describe.
5. Building blocks of our DES code

5.1. System state

The global system state is represented by a collection of DES shells, with particles sorted by the shell

location. Each particle contains an individual time stamp that determines its next move time. Inside each
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shell the particles (or pointers to particles) are stored, sorted by exit time, in a local container in the time

stamp order using either the priority queue or multiset data structures (see the detailed explanation of these

constructs in Appendix A).
5.2. Events

The temporal evolution of the simulation system is accomplished by processing a sequence of events.

Pending events (events that have been scheduled but not executed yet) are pushed onto a global priority

queue, implemented as either a heap-sorted dynamic array or a multiset. The simulation loop (engine) runs

by continuously removing the smallest time-stamped event from the global queue and processing it by exe-

cuting an event handling function that causes appropriate change to the system parameters and may sche-

dule or retract (cancel) previously scheduled but still unprocessed events.

All event classes inherit from (i.e. share the functionality of) the Event base class, which defines a two
member interface: (i) a virtual function, ‘‘Process(),’’ and (ii) a floating point ‘‘ProcessTime’’. The engine

treats all events identically regardless of the fact that different events in general contain different member

data and different implementations of Process() (polymorphism in object-oriented terminology). ‘‘Process-

Time’’ sets the simulation time at which Process() will be called (i.e. the event will be processed). In our

code, all events are implemented as C++ objects and characterized by the common Process() virtual

function, which can be implemented differently for each event. Below we use the C++ class notation when

discussing the functionality of this event handling procedure for different events defined in this simulation.

Shell::Process() executes in response an event associated with a shell update. A Shell object contains a
local data structure (either a custom version of a priority queue, or a standard library (STL) multiset) which

holds all the particles within that shell, sorted according to the particles� move time. In the present electro-

static code, the force experienced by a particle is constant within a shell and the motion of the particle can

be predicted all the way across the shell, without sacrificing accuracy. Its ‘‘exit’’ time is calculated by finding

the roots of the quadratic equations:

Right exit equation:
0 ¼ 1

2
� Acc � dt2 þ Vel � dt þ Pos� RightBoundaryCoordinate: ð3Þ
Left exit equation:
0 ¼ 1

2
� Acc � dt2 þ Vel � dt þ Pos� LeftBoundaryCoordinate; ð4Þ
which gives:
dt ¼
�vel�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vel2 � 2 � acc � ðpos� leftbcÞ

q

acc
;

�vel�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vel2 � 2 � acc � ðpos� rightbcÞ

q

acc
: ð5Þ
Notice that it is possible that the equation roots become imaginary, which means the particle does not exit

the shell in that direction. The smallest real value for dt determines the exit direction and exit time of the

particle. Alternatively, each particle can be assigned an arbitrary dt small enough for the particle not to

cross more than one shell at a time. In this sense, the DES code can be thought of as selecting the most

appropriate time scale for each particle at each step, transparently allowing for multiple time resolutions

within the same simulation. For each physical shell, a Shell event is always scheduled for the earliest move

time of all particles in that shell. Shell::Process() then moves the particle next in line to the top of the local

priority queue.
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Because of the spherical symmetry in the simulation, the electric field at every shell boundary can be

found by keeping track of the charge enclosed by that boundary, and applying Gauss�s law, which in nor-

malized units becomes:
E ¼ Qenc

Factor � r2 ; Factor � 4 � PI � BackDens � Debye3: ð6Þ
Thus, each shell keeps track of the field at its left and right boundaries by keeping a running sum of all the

charges which have passed through that boundary. If the field within a shell changes by some user-defined

tolerance, the shell will call a ‘‘wake-up’’ on all the particles which it contains. In a wake-up, the particles
are pushed in time so that their positions and velocities are changed to current positions and velocities,

using the old value of the field. Then, new move times are computed for all the particles using the new field

value, the local particle queue is re-sorted, and a new event is scheduled based on the new earliest move

time. This automatically retracts the old event.

A UML diagram for the Event Class Hierarchy is shown in Fig. 3. A brief description of each event

follows.

InjectBeam::Process() injects particles periodically from the spacecraft into the plasma, updating the

charge on the spacecraft and the field in the closest shell to reflect the change.
WriteBeamPhaseEvent::Process() periodically writes the phase of all of the beam particles to a file at a

user specified interval.

WritePlasmaPhaseEvent::Process() periodically writes the phase of all of the plasma proton and electron

particles to a file at a user specified interval.

WriteCpuInfoEvent::Process() is used to track the amount of CPU time used by the simulation, along

with the current number of active shells and the number of events which have been processed.

WriteFieldEvent::Process() periodically writes the electric field vs. radius to a file.

5.3. Discrete event simulation environment (DESE)

The efficiency and causal correctness of a discrete-event simulation depend on how one schedules,

processes and retracts events [4]. Here, we discuss our object-oriented programming implementation and

provide a detailed account of the Event and EventQueue classes and their relationship.

All event classes inherit from (i.e. share the functionality of) the Event base class, which defines a two

member interface: (i) a virtual function, ‘‘Process(),’’ and (ii) a ‘‘ProcessTime’’. The engine DESE treats
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all events identically regardless of the fact that different events in general contain different member data and

different code for Process() (polymorphism). ‘‘ProcessTime’’ sets the simulation time at which Process() will

be called (i.e. the event will be processed).

Central to the simulation engine is the EventQueue class. Only one EventQueue object is initialized per

simulation. The EventQueue object is responsible for keeping track of all the pending (scheduled) events,
sorted in such a way that the Event object scheduled with the earliest ProcessTime can be easily found

and accessed. To accomplish this, the EventQueue contains a Standard Template Library (STL) priority

queue of EventWrapper objects.

EventWrapper is a simple class, containing only a pointer to the Event object it is wrapping, and its own

copy of that event�s ProcessTime. The EventWrapper class also defines the operators < (less than) and ==

(equal to), which allows the wrappers to be sorted according to the EventWrapper �s value of ProcessTime.

The EventWrapper objects thus ‘‘wrap’’ pointers to events, allowing them to be sorted according their

scheduled execution times.
The simulation begins when the ‘‘Run()’’ member function is called on the global EventQueue object.

The event processing loop proceeds as follows:

1. Pop the next item off of the EventQueue �s priority queue. This gives a pointer to the Event with the ear-

liest time stamp.

2. If the EventWrapper object�s ProcessTime is different from the Event�s ProcessTime, discard the wrapper

and go back to the start of the loop (1). This simple rule enables a simple and efficient event retraction

mechanism. If the ProcessTime stamp of an event changed between the moment that event was sched-
uled and the moment when it is being processed (i.e. the event has in fact been rescheduled during this

time interval), the engine will ignore the ‘‘invalid’’ wrapper after popping it off the queue.

3. Update the global clock to the time of the pending Event.

4. Call Process() on the Event contained in the EventWrapper.

5. Repeat (1)–(4) as long as the EventQueue is not empty (i.e. contains unprocessed EventWrapper objects)

and the end time of the simulation has not been reached.

The relationship between EventQueue and EventWrapper data structures is presented diagrammatically in
Fig. 10.
6. Simulation results

6.1. Comparison of results

The time step in TDS is based on the CFL condition Dt < DtCFL � ShellWidth/Vfastest. The waves travel
at ion acoustic speed whereas the beam is supersonic so Vfastest is the beam speed at injection which is

�20.41. Using the shell width of 0.24, we then have DtCFL = 0.01175. Since particles can get accelerated

in time, one typically uses a smaller fraction of DtCFL in the simulation. Here, we use Dt = 0.004. Spacecraft

has a radius of 500 and is located at the edge of the first shell, the simulation box spans the range X = 500–

2180 and consists of 7000 shells. The solar wind plasma is loaded uniformly but with different weights, and

there are 30 particles/shell/species initially and the simulation is run up to xpet = 60. The beam is injected

every xpesinj = 0.004. However, it is possible to inject less frequently but a larger beam so that the total flux

of beam particles will be the same. As we will show, the results are insensitive to the injection period as long
as the total flux of beam particles injected is the same.

Fig. 4(a) shows the charge accumulated on the spacecraft as a function of time based on TDS (black) and

DES (red). The agreement between the two simulations is excellent and is within noise levels. Initially the
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spacecraft charge increases monotonically until the charge is large enough to pull in the electrons from the

solar wind and repel the solar wind protons. At that point, the charge reaches a turning point and starts to

decrease. Fig. 4(b) is similar to Fig. 4(a) except that now we have increased the beam injection period by a

factor of 80 to xpesinj = 0.32. The agreement between the TDS and DES remains very good and the results

are similar to that in Fig. 4(a) except that now the spacecraft charge appears to increase in a step-like fash-
ion. This step-like behavior is also present in Fig. 4(a) but it is on a much finer scale. The reason for this

behavior is simple. Initially, and before the charge on the spacecraft is large enough to pull in particles from

its surroundings, the spacecraft charge can only change when a beam particle is injected from its surface.

Thus, the spacecraft charge remains the same between the injections, giving rise to a step-like evolution.

In order to compare the results from TDS and DES simulations in more detail, we next show in Figs. 5

and 6 the phase space from the two simulations for the solar wind electrons, beam particles, and the solar

wind proton at the end of the run. The phase space data from the discrete event simulation was generated

by bringing the global state of the system to the same time level as in the time-driven case. In order to show
the dynamics close to the spacecraft, we have plotted in Fig. 5 the phase space as a function of log of radial

distance. The behavior of the phase space further from the spacecraft is seen well in a linear plot of radial



Fig. 5. Comparison of phase space structure at the end of the run for TDS and DES (run 1).

Fig. 6. Same as Fig. 5 except the x-axis (shell number) is in linear scale.
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distance as in Fig. 6. Some of the beam particles reach the stagnation point (Fig. 5(b)) and then get pulled

back to the spacecraft. Beam particles that can get past the stagnation point escape. The phase space of the

electron beam (Fig. 5(a)) is empty in the vicinity of the spacecraft. This is because the spacecraft has devel-

oped a large negative charge at this time which in turn repels the solar wind electrons. Protons in the solar

wind, on the other hand, are accelerated and pulled toward the spacecraft (Fig. 5(c)).

Comparing the phase space structure from the TDS and DES simulations in Figs. 5 and 6 reveal a

number of points: (i) DES provides a very fine scale resolution in phase space. Looking at the beam fronts

in this Figs. 6(b) and (e), we see that the beam has propagated to the same distance and has the same shape
in both cases. (ii) Other main features of phase space (e.g., returning beam structure) for all species seem to
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be in close agreement with the TDS simulation. (iii) However, the oscillations in electron phase space, due

to the generated electrostatic waves, are more regular and better resolved (Figs. 5(d) and (e)) in DES as

compared to the TDS (Figs. 5(a) and (b)). Similarly, the trapping vortices in the beam phase space are more

coherent in DES (Fig. 6(e)) as compared to TDS (Fig. 6(b)). We have verified that this is due to two factors:

(i) DES refines the time steps locally based on the underlying physical process and hence can have a higher
temporal resolution than in the TDS. We will demonstrate this point in the next section. (ii) DES simula-

tions are less noisy than the TDS. If we increase the number of particles in our TDS simulation and use a

smaller time step, we would then get a phase space more closely matching that of DES shown in Fig. 5.

6.2. Breaking the CFL condition: Physics driven vs. numerically driven timestep

In the previous section we validated our methodology by comparing the results with the TDS. Although

the two codes produced similar results, the computation that went into each code is quite different. In this
section, we describe the differences in the temporal updates between DES and TDS. As we mentioned ear-

lier, in TDS the time step is set by the global CFL condition. Strictly speaking, CFL condition is usually

reserved for the field condition and requires that the time step be small enough so that no waves travel more

than a shell width in one time step. In a particle simulation, there is also a condition that no particle should

travel more than a shell width in one time step. Here, we use the term CFL condition interchangeable for

both particles and fields. We emphasize that the CFL condition is not a limit based on the propagation

speed of any real information in the system but rather it is based on the fastest speed that any information

can theoretically propagate in such a system. For example, let us consider an initial configuration that is
free of any disturbances and assume that the fastest allowable speed in the system is the speed of light.

CFL condition requires that we take time steps small enough that the speed of light does not cross a shell

in one time step. This restriction applies even if there are no light waves present in the system and violation

of this condition leads to an exponentially growing numerical instability. The simple fact that light waves

can exist in the system would require the system to be updated based on a speed of light CFL condition.

In DES, however, the system evolves only when a change has occurred and the time scale is highly indi-

vidualized and is determined by a change in the system rather than the numerically driven time step in TDS.

In TDS, the user must choose a time step a priori based on the numerical stability condition,
Dt < DtCFL � ShellWidth/Vfastest. In DES, the user does not assign a Dt but rather chooses a threshold con-

dition which is used to signal a change in a particular location in the system. In this way the system sets its

own time scale for change, which will vary both from shell to shell as well as during the run and can be

much larger than the CFL condition, rather than a user imposed time step.

To illustrate this point, we note that in our present simulation, there are four physical entities of interest:

the electric field, solar wind electrons, beam particles, and solar wind ions. These entities have their own

temporal scales. In case of the electric field, the CFL condition is that the wave does not propagate more

than one shell in one time step. Similarly, no particle can cross a shell in one time step. Thus each particle
within a given species will have a different CFL condition. In TDS, all these timescales are merged together,

and updated based on the smallest CFL. However, in DES, all timescales are naturally decoupled down to

the single particle level, as we now demonstrate.

6.2.1. Field update

The field in a given shell is updated locally only when its value exceeds a pre-specified threshold. This

causes a wakeup where the exit time of particles in that shell are recomputed based on the new field value.

The time between each subsequent wakeup in a given shell can be thought of as the temporal resolution for
the field. Figs. 7(a)–(c) show the minimum, maximum, and the average wakeup time as a function of shell

number over the course of the simulation run of Fig. 4(a). The wakeup times are normalized to the CFL

condition for the TDS where DtCFL = 0.01175. Wakeup time is seen to have a complex dependence on the



Fig. 7. Maximum, minimum and average of field wakeup and beam particle time step vs log of shell number for run 1.
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distance from the spacecraft with the highest resolution varying between �0.1 and 1000. DES allows the

shells to update the fields only when necessary, instead of always updating at at a time that will be guar-
anteed fast enough (the CFL). Note that the fields in the DES simulation, in general, are updated less
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frequently than in the time-driven code. This results in speed-up by removing unnecessary computation.

Note also that sometimes the fields are updated more frequently than in the time-driven simulation, which

results in greater accuracy in those shells. This intelligence is accomplished using only one parameter, a

Wake-up tolerance (maximum allowed field error in that shell).
6.2.2. Particle update

Since in our algorithm a particle is moved, based on its exit time, one shell at a time, each particle sat-

isfies its own individual CFL condition. This naturally decouples the temporal update of particles based on

their velocity, mass, etc. For example, a proton is updated much less frequently than an electron. Similarly,

a high energy beam particle is updated more frequently than a beam particle in the vicinity of the stagnation

point. This is illustrated in Figs. 7(d)–(f), where we have plotted the minimum, maximum and the average

time step for update of the beam particles versus the shell number over the course of the simulation. The

minimum timestep is seen to dip below unity far from the spacecraft. This is because beam particles near the
beam front (Fig. 7(c)) are the most energetic (largest Vb) and thus have a shorter exit time. Near the stag-

nation point, however, beam particles have a nearly zero velocity. As a result, the maximum timestep for

such particles is really large (Fig. 7(d)).

In summary, the concept of timestep, which is central to TDS, is replaced by events. When an event is

triggered in a given shell, that shell wakes up and an update is triggered. As we demonstrated, DES evolves

each entity, down to an individual particle level, based on its own temporal scales and in the process

eliminates the numerical stability issues related to the global CFL condition.
6.3. Performance comparison

In this section, we compare the performance of TDS versus DES. The timing of TDS is dominated by

particles. In higher dimensions, the field solve can take up a significant portion of the total run time but in

the present one-dimensional simulation it takes a small fraction of the CPU time. The execution time in case

of DES, however, is mainly a function of the number of events that are triggered and processed. One of the

advantages of DES is that is allows for relatively easy implementation of simulation features that would

otherwise be difficult in TDS. For example, we have built in two features in our DES code that we can turn
on and off as needed: (a) Expanding box which further avoids unnecessary computations by simulating only

the relevant portion of the simulation domain. Rather than initializing the whole simulation box with solar

wind plasma, it tracks the beam front and increases the simulation box in time as the beam propagates out

and away from the spacecraft. (b) Two distinct spatial zones. It allows the user to break the simulation

domain into two regions, each with its own grid spacing and threshold. The longer shells allow events to

be further spaced and reduce the number of events.

Table 1 shows the performance of DES as a function of various parameters. All runs produce similar

results. As is evident in Table 1, the two factors that significantly affect the performance of our DES sim-
ulation are the beam injection period and the use of larger shells farther out as they result in a reduction in

the number of events processed. The expanding box in this case results only in a roughly a factor of 2 speed-

up (run 9). Comparing runs 1 and 7 in Table 1, we see that the TDS performance is not affected much by

reducing the injection period whereas DES CPU usage goes from 2425 to 114 s. This is because by sched-

uling a beam injection at every 0.004 timesteps, we are creating new events so frequently that it takes away

from the performance advantage of DES. Since each particle uses as much CPU time as needed, and the

beam particles move the fastest, they use by far the most CPU time. Thus, reducing the number of com-

putationally intensive particles significantly improves the overall speed. As we mentioned earlier, this is
unnecessary and a beam injection with sinj = 0.32 produces same results (Fig. 4(b)) and it runs over 30 times

faster than the TDS.



Table 1

Run # sinj FracBeam #Near-shells #Far-shells Far-width Threshold CPU-DES (s) CPU-TDS

Effect of threshold

1 0.004 0.025 7000 0 0.24 0.08 2425 5395

2 0.004 0.025 7000 0 0.24 0.12 2317

3 0.004 0.025 7000 0 0.24 0.3 2320

Effect of sinj
4 0.012 0.075 7000 0 0.24 0.12 793

5 0.064 0.4 7000 0 0.24 0.12 242

6 0.32 2 7000 0 0.24 0.12 140

7 1.024 6.4 7000 0 0.24 0.12 114 4718

8 2.048 12.8 7000 0 0.24 0.12 112

Effect of no expanding box

9 0.32 2 7000 0 0.24 0.12 294 4726

Effect of two spatial zones

10 1.024 6.4 100 1656 1 0.12 13

11 0.32 2 100 1656 1 0.12 19

12 0.064 0.4 100 1656 1 0.12 47
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Fig. 8(a) shows the cumulative CPU usage as a function of time for runs 1, 6 and 11 normalized to the

equivalent CPU usage of TDS runs. The number of events processed as a function of time for these three

runs is also shown in Fig. 8(b). In all cases, the speedup of DES over TDS is very large at early times where

most of the activity is limited close to the spacecraft and the number of active shells is small. As the beam

propagates further out, more shells become active, and the number of events increase. By the end of the

simulation the beam has filled out almost the entire length of the simulation domain. However, in all three

cases, DES is faster than TDS. In case of run 11, DES remains faster by more than two orders of magnitude

over TDS. The number of events between runs 6 and 11 is initially identical but as the beam propagates to
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the outer shells, the number of events becomes larger in run 6. This is because we are employing larger shells

for shells beyond 100 in run 11. In general, the performance advantage of DES over TDS is problem depen-

dent. DES is suited for problems where the activity is localized and occurs on different temporal scales in

different regions of the simulation. TDS is advantageous in problems where all regions are active and evolve

on the same time scales.
7. Conclusions and future work

We have introduced a new simulation methodology which combines the spatial grid techniques of time

driven simulations with the time advance scheme of discrete event simulations (DES). DES has the advan-

tage that it decouples system element processing through the use of irregularly time-stamped events that

only update what needs to be updated when it needs to be updated. Further, DES decouples parts of
complex models by allowing them to evolve on their own simulated time scales. Discrete event simulation

therefore supports a diverse model behavior in a more realistic and natural manner than time driven sim-

ulation. A key question was whether discrete event simulation can be used to model systems such as plas-

mas that have a large number of states. For simplicity, we limited our feasibility study to sequential

execution of the so-called one-dimensional limit [1]. We were able to confirm that this was not only possi-

ble, but that DES plasma codes can be much faster (more than two orders of magnitude) than their existing

time driven counterparts. However, the real power of DES is not just in performance but in the fact that it

provides a natural infrastructure for developing intelligent algorithms that are ideally suited for modeling
of multi-scale physical systems. For example, a major research topic within the TDS community is to get

around the global CFL condition and allow for local time refinement. DES, on the other hand, naturally

decouples spatial scales in time. Given the promise of this new technology, we are extending our work in

several important areas: (i) We are developing a general parallel infrastructure for development of DES

codes for modeling grid-based systems. (ii) In the electrostatic case, the field equation is elliptical and

has no explicit time dependence. We have extended our technique to the parabolic field equation and have

developed a code that solves the diffusion equation with inhomogeneous diffusion coefficient. We have also

developed a parallel, electromagnetic hybrid (fluid electron, kinetic ions) code where the field equations
have explicit time dependence. The details of these two codes (e.g., the flux conserving algorithm, treatment

of ‘‘steady state’’ regions, etc.) will be presented elsewhere. (iii) We are developing a DES based multi-phys-

ics code. One of our main applications will be to global simulation of the Earth�s magnetosphere. One final

note is in regards to the accuracy and numerical stability of results obtained from discrete event simula-

tions. We have calibrated our DES codes by comparing the results with analytical solutions in cases where

a solution is known (e.g., in case of the diffusion equation) and comparison with results obtained from

equivalent TDS. However, it is desirable to establish, for our grid-based DES technique, numerical stability

conditions, effects of number of particles per cell, etc. as are done in traditional time-driven codes [1]. These
questions are yet to be addressed and present an interesting research topic.
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Appendix A

The speed of the simulation is sensitive to the data structures used to implement the code. We looked at a

number of different data structures to assess the impact cpu and memory usage.

Particles within each shell must be sorted according to their next MoveTime, the time at which the par-

ticle is to be pushed. This is usually the time at which the particle will exit the Shell, although the MoveTime

may be set a number of different ways.

The C++ Standard Template Library (STL) contains a number of general purpose containers and algo-

rithms. One of the simplest approaches is the use of the multiset container to create a sorted binary tree of
particles. The nodes of the tree, which contain the particle data, are kept in a sorted order and linked via

pointers. The particle with the earliest move time will always be stored in the left most node of the tree. An

inorder traversal of the tree provides an ordering of the particles by increasing values of MoveTime.

Fig. 9(a) shows the diagram of a collection of Particles is a multiset (binary tree), sorted according to their

MoveTime.

While this approach does work, the multiset is not the fastest possible data structure for keeping items in

sorted order. This problem becomes worse when a WakeUp is called on a Shell, at which point all of the

particles will generally change their MoveTimes. When using a multiset, this means that all of the particles
must be taken out of the tree, modified, and inserted one at a time into a new tree. If the MoveTimes were

modified without first removing the particles, the tree would become unsorted and the data structure would
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Fig. 9. (a) Particles in a multiset sorted according to their MoveTime. The multiset is the C++ standard template library version of a

binary tree. (b) Schematic of the Particle PriorityQueue. The PrioriyQueue is implemented as a heap sorted array of Particles, which are

sorted by their earliest exit time. Each Shell contains exactly one Particle PriorityQueue. This allows each Shell to schedule its next

process for the earliest time a particle must be moved (usually from one shell to the next).
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be corrupted. It may be possible to write an algorithm to re-sort the tree, but this cannot be done with the
STL multiset.

Instead, we created a custom data structure, the PriorityQueue, based closely on the STL priority_queue.

The PriorityQueue is based on a heap-sorted dynamically resizable array, and contains all the typical pri-

ority queue functions. Heap sort performs with a worst case complexity of O(N logN). For large N, the

complexity is equivalent to O(N) as logN becomes nearly constant. Its performance in the average and

worst cases are not very different and it requires fixed storage capacity. The Binary Tree approach described

above requires a worst case sorting time of O(N2) and hence heap sort was preferred. Particles are pushed

onto the queue by calling Push(), and the member with the highest priority (earliest MoveTime) can be
looked at using Top() and removed using Pop().

The PriorityQueue differs from the STL priority_queuein two key respects:

1. The array in which the PriorityQueue stores its members is can grow and shrink dynamically. The stl

priority_queue,for instance, can only grow. The ability to reduce the array size when many elements

become unused is crucial for obtaining reasonable memory performance.

2. The members of the PriorityQueue can be accessed and modified directly using the bracket [] operators.

This feature is used whenever WakeUp() is called on the shell. Modifying MoveTime of a particle while it
is stored in the PriorityQueue will in general cause the PriorityQueue to become unsorted. For this rea-

son, the PriorityQueue contains a Reset() function which resorts the members.

Fig. 9(b) shows a diagram of a PriorityQueue of particles, arranged in the same order in which they are

sorted in memory. Notice that lower numbers have a higher priority. This is the desired behavior because

we want particles with an earlier MoveTime to pop off the queue first. However, this is opposite from the

behavior of a from a typical priority, which gives higher values a higher priority. The behavior was

obtained by overloading the less than operator (operator<) to behave like the greater than operator
(>operator) instead.

Fig. 10 shows a snapshot of the simulation in memory. Central to the simulation is the one global Event-

Queue, which stores pointers to EventWrapper objects in a priority queue, implemented with a dynamically
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resizable array. An EventWrapper contains a pointer to an Event object and a data member EventTime

which is the simulation time at which the event is processed.

Central to the simulation engine is the EventQueue class, which keeps a heap-sorted array of ‘‘Event-

Wrappers’’, which are pointers to events sorted by earliest ProcessTime. The building block of the simula-

tion are the Shell events, which are held in an array. Each shell holds a number of particles, which are again
sorted by the exit time of the particle. Alternatively, the shells can hold sortable pointers to the particles,

which reside elsehere in memory (such as a global particle array). Some events, such as InjectBeam and the

diagnostic events (WriteCpuInfo, WriteBeamPhase, etc.) are only instantiated once in memory. The Shell

Events are instantiated many times, and form the bulk of the simulation. Note, however, that not all of the

Shells are active. Before a beam particle reaches a shell, it does not interact with other particles, and there-

fore does not scheduled events.

Each shell stores the particles it contains in a custom PriorityQueue class. The PriorityQueue is sorted so

that the particle with the earliest move time has the highest priority. Again, the PriorityQueue is imple-
mented as a dynamically resizable array. As an alternate implementation (not shown), the Shells keep track

of pointers to the particles, rather than particles themselves. Using pointers to particles did not result in a

significant performance benefit, so given the added code complexity required its use is not warranted in this

implementation.

A.1. Scaling with various data structures

The data structures discussed above do not scale linearly with size. Updating and re-sorting them take up
a non-trivial amount of CPU cycles and memory Similarly with the PriorityQueue – the larger the queue,

the more operations it will take to sort it (which occurs whenever a particle is added or removed from the

queue).

We studied scaling with particle density – the number of particles per cell – to show that the scaling,

though not linear, is still acceptable for large projects. This is shown in Fig. 11.

We examined three possible codes:

1. Local PriorityQueue (discussed above) – the particles are kept in sorted order within a shell, using a
custom PriorityQueue class. Events affect the entire shell.
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2. Local multiset (discussed above) – particles are kept in sorted order within a shell, using a binary tree

implemented as an STL multiset.

3. Events affecting individual particles– because the algorithm scales poorly with size, this discussion was

not included in this paper. Briefly, the algorithm considers events as affecting individual particles, rather
than each shell. For this reason, the number of events scheduled at any given time is equivalent to the

number of particles in the simulation at any given time, rather than the number of active shells. This

places excessive strain on the EventQueue, which must sort a much larger number of events. Further,

when the field within a cell changes by enough to trigger a wake-up, all of the particles in that shell must

be retracted and rescheduled, rather than just the one event associated with the shell itself.

A.2. Pointers to particles and particle size

Fig. 12 shows the scaling properties of a local PriorityQueue and multiset as a function of particle size.

We ran the code up to 10 simulation times for this test. The multiset performance is unaffected whether

pointers are used or not. The local PrirorityQueue, however, takes a performance hit for larger particle sizes

when no pointers are used. But when pointers are used, it performs independently of particle size.
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