Internetworking Assignment 1

There are two programs following, one client and one server that are example
programs that use the Internet addressing scheme for interprocess
communication. This addressing method allows communication between
processes running on different machines. For the present, you will

have to settle for running your client and server on the same machine,

but that will change.

Copy the programs to your accounts and get them running.

The first thing you should do is make sure that the machine

addressin clientin.c is correct for your machine. In the example, the
addressis 153.90.192.3, but the correct internet address for your host can
be found in the file /etc/hosts. Look and see what it is. Also, you

may want to choose a port number other than 32351. Y ou can choose any
value between 1023 and 65535, but something larger than 8000 is

safest. If you don't choose a different number, you could potentially

have a conflict with someone else using the same port, although that
should be unlikely.

The application is executed by running the server in the background with
something of the form ““server_in &". Then execute the client.
Once the program is running, modify it to asimple client--server
protocol, where the server waits for a message and then sends a response,
which the client processes. For example, this could be any simple exchange
of information -- ““how areyou", ~"I'm fine", ““what's new", etc.
When the client is done, it sends a message indicating that thisis
the case and quits. In this particular situation, your server should
also quit or bekilled. The client and server should print out any
received messages to stdout in aform such as

"Server received: "
or

"Client recieved:

Whatever you do, DON'T LEAVE YOUR SERVER PROCESSES RUNNING.

If run ajob in the background, it will not be terminated when you log
out. Use the ps command to list your processes. |If

you have any unnecessary processes running, use ~kill -KILL pid" to get
rid of them. If you fail to do this, you will be subjected to scorn and
ridicule by the System Manager. Worse than that, |

will be subjected to scorn and ridicule by the System Manager. This
cannot be emphasized enough. If you have a hard time remembering this,
alias logout to a script that runs ps or reminds you to kill jobs.

If you are using X-windows, you can run each processin a different
window instead of using background execution.

* >dient_inc
* Simple client model for Internet communication using stream sockets.

* This program simply accesses a server socket and writes afew messages.
* Then it closes the socket and terminates.

*

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>

void main()

{
int sock, addrsize;
struct sockaddr_in addr;
char buf [80];

sock = socket(AF_INET, SOCK_STREAM,0); /* open asocket */
if (sock ==-1)
{ perror("opening socket");
exit(-1);
}

/*
* Bind an Internet address to the socket.
*/

addr.sin_family = AF_INET;
addr.sin_port = htons (32351);
addr.sin_addr.s addr = inet_network ("153.90.192.3");
if (connect(sock, & addr, sizeof (struct sockaddr_in)) ==-1)
{
perror("on connect");
exit(-1);
}

/*

* Write anull terminated message and receive the reply. Note that

* asingle receive may not work perfectly, but it is OK for asimple
* case.

*/

send (sock, "client calling server, do you read me", 38, 0);
recv (sock, buf, 80, 0);

/*

* Do a shutdown to gracefully terminate by saying - "no more data"
* and then close the socket -- the shutdown is optional

*/

if (shutdown(sock, 1) ==-1)
{
perror("on shutdown");
exit(-1);
}

printf ("Client is done\n");
close(sock);
}

* >gver inc
* Generic sort of server process the Internet.

*

* Thisis an extremely simple use of sockets for communication.
* The server opens a socket and then reads messages and prints them out
* without further ado until the client closes the socket.

*

*/
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>

void main()

{

int sock, clientsock, mlen, addrsize, msgct, che, chct;
struct sockaddr_in addr;
char ch, buf[80];

sock = socket(AF_INET, SOCK_STREAM,0); /* create a socket */

if (sock ==-1)

{
perror(*opening socket");
exit(-1);

}

/*

* Bind a name to the socket. Since the server will bind with
* any client, the machine addressis zero or INADDR_ANY.
*/

addr.sin_family = AF_INET;
addr.sin_port = htons (32351);
addr.sin_addr.s addr = htonl INADDR_ANY);

if (bind(sock, & addr, sizeof (struct sockaddr_in)) == -1)
{

perror ("on bind");

exit (-1);
}

if (listen(sock,1) == -1) /* make socket available */
{

perror(“on listen");

exit(-1);
}

/*
* Wait for a client to connect. When this happens, print out a

* message.
*/

addrsize = sizeof (struct sockaddr_in);
clientsock = accept(sock, & addr, & addrsize);
if (clientsock == -1)
{

perror(*on accept");

exit(-1);
}

printf("connection made with client %s", inet_ntoa (addr . sin_addr));

/*

* Receive and print a client message where a null character terminates.
* Note that a single receive may not work in some cases, but is OK for
* asimple example.

*/

mlen = recv (clientsock, buf, 80, 0);
send (clientsock, "Got your message”, 17, 0);

printf(" Server - all messagesread - connection being closed\n');

/*
* Close the client socket and also the server socket
*/

close(clientsock);
close(sock);
}

Lab#2

For thislab, you need to build avery simple client-server operation
using the Unix stream capabilities. Thisisdescribed in the early part

of the handout. That is, you are going to communicate between two
programs, but they are going to reside on the same host. Thisis
afairly easy thing to do, but small mistakes can be inordinately difficult
to find in communication software. Be careful!

You are to build a client and server pair, to implement your own little
directory service. Suppose that the server has the following database

0 Bob

3 Anne

5 Barb

7 Ray

9 Denbigh
10 Terri

104 John

Thiscan bein afilethat isread, or it can be astatic array in your
program - | really don't care about the niceties at this point.

The client isto read arequest, which is a numeric address to be sent to the
server. The server looks up the matching name and send it back to the
client to be printed out. If the addressisn't found, the server should

send back an error message. For example, "Address not found".

Y ou need to submit the source code for the server, the source code for
the client, and a sample run looking up five addresses, one of which
must be false, so that the server returns an error message.

Use the script command to capture the run session to turniin.

In order to test aprogram like this, you will either have to use an

X-terminal (or facsimile thereof) and run the client and server in

separate windows. Or, run the server in the background and then run the

client. CAUTION: DO NOT LEAVE PROCESSES RUNNING THAT ARE UNNECESSARY!!
Use the kill command to kill processes. If you don't know the pid, use

the ps command to get alist of currently running processes.

Lab#3

In this lab, you will convert your previous program to work with the
Internet protocol family. Use theinet stream services and build

aclient and server to perform the same functions that you did before.
Determine the Internet address of the machine your server uses and put it
in the connect structure. Y ou can use any port that you want, between
13000 and 65535 safely. Note that if you happen to pick the same port
as someone el se, you could have a conflict and a server may fail when

it tries to open the port, but the likelihood is small.

The only logical change you need to make is to implement your
exchange of messages as a protocol. The protocol will be structured
as follows (note, a string of digits followed by ab means a binary
number):

Requests:
byte content
0 reguest code, 0000001b = name, 00001001b = number
1-n request data
n+1 end-of-request, 00000011b (ETX)

Replies:
byte content
0-n reply data
n+1 end-of-reply, 00000011b (ETX)

Note that the requests allow for both name and number matching, so you need
to also be able to match aname. Nothing fancy, an exact match is required.

Also note that the character string can contain any type of byte oriented
data, including binary representations of numbers. For example,

short val;
char *message;
message = &val;

send (sock, message, 2, 0);

Lab#4

The next thing that you should add to your repetoire of network
programming skills is the use of the utility functions that make it
easier to write robust general purpose programs. Two of these are:

gethostbyname
getservbyname

Convert your previous program to aform so that the server accepts
a service name as an argument, and the client accepts both the
service name and the host name as an argument. For example,

servername cs440-01
clientname c¢s440-01 host.subdomain.edu

The possible services are listed in /etc/services, and are essentially
amapping of names to port numbers. If you look in /etc/services, you
will see that there are 8 services reserved for thisclass. You can

use any of them.

Theideaisthat you could run the server anywhere, and by giving the
correct name in the arguments, the client will connect to the server

on that host. Since we only have on hogt, that isn't very useful at
this point, but it will be later. gethostbyname will convert a name
into a structure that contains the | P address of the host. Similarly,
getservbyname will convert a service name to a structure that contains
the port number. Take alook at the man pages for these system calls
to learn more about them. It's good practice.

Functionally, the only thing you should change is that the server should print
out amessage for each connection with the following general form:

Request received from host_name

where host_name is the name of the host making the request. To get the
request from the address, use the gethostbyaddr system call.

Lab #5

The next thing you should do to your server, is modify it to handle
more than one client at atime. This could be quite difficult if you
try to multiplex several clients by keeping track of the state of

each client in arrays and global variables. Y ou have no control over
which client is going to send a request next, so you need to be ready
to handle any one of them.

Itis easier to create a copy of the server to handle each client.

The server itself stays simple, because it can be written to handle

just oneclient, and al that is needed is a mechanism to create

the copies. The Unix fork command does just this. An example of
using the fork command shown below. This example has been stripped
down to not do much, but it is aworking example of a server that can
support multiple clients.

The fork command can be quite dangerous. If you make a mistake and the
child process for the client also does afork, you could cascade alot of
processes and make both yourself and others unhappy. Y our fork code should
always follow the general form of:

pid = fork ();
if (pid <0)

fprintf (stderr, "Error in fork call\n");
close (client_sock);
}
if (pid==0)
{
/* Do the child stuff - and NO FORK CALLS*/

close (client_sock);
exit (0); /* THISMUST BE HERE */

}

/*

* Do the parent stuff, including a non-blocking wait. If you

* don't do this, you create zombies and that is BAD, BAD, BAD.
*/

wait3 (NULL, WNOHANG, NULL);
When the child process finishes doing its stuff, it must exit. The parent
process never exits, and in fact, you probably want the server to be

an infinite loop, but don't forget to kill it.

Hint: Build asmall version of the server that does the fork and then the

child process outputs a message and exits, and a client that does a connect
and then exits. Make sure that you get all of the right sockets handled.

DO NOT experiment to see what will happen if you do this or that with
fork. If you don't know, ask first. Thisis one place where you can
create alot of problems for the system if you make a mistake, and we
don't need any more problems.

TEEEEEEEERE R e e e e e e e e e e

The protocol you have been using is a classic stop and wait protocol,
because the clients send each request as a separate message and get the
results. Thisiswhat is called a stateless protocol, because the server
doesn't have to keep any state information around about what the clients
have done before. Thisis acommon paradigm in client-server computing,
but it isinteresting to consider protocols where that is not the case.

An example would be server that handles remote cash registers. A

cash register opens a session with the server and then supplies

a sequence of codes for products. The server returns the price of

each one, and also keeps a running total of purchases. When the client
(cash register) closes the session, the server returns the total cost.

Thisis how point-of-sale terminals work, especially those with scanners.
Thisway, the database only has to be kept one place

This needs to be kept relatively simple, so ignore things like sale prices,
returns and the like. The client can send only the following commands:

Open
Close
Item

The format of the protocol is:

byte content
0 type (0 =open, 1=close, 2 = item)
1-n other

The Open and Close commands have no parameters, but the Item command has
the following format

byte content
1-10 UPC code
11-12 number of items

The server returns a0 if the open command works. For the Close command,
the server returns a4 byte integer in network byte order, which isthe
total, multiplied by 100.

For the ltem command, the server returns:
byte content

0 code- 0=0K, 1 =error
1-n null terminated string containing the error or

1-4 the cost of the item(s) multplied by 100
5-n the text description of the item

For example, given the following database,

5010040268Healthy Choice Split Pea and Ham Soup 1.30
7615020219Act 11 Light Microwave Popcorn 0.50
4460000628Formula 409 All Purpose Cleaner 2.29

the result of sending UPC code 5010040268 with a number of items of 3
would result in a code of 0, an amount of 390 (3 times 1.30 multiplied by
100) and a description of Healthy Choice Split Pea and Ham Soup.

The only possible errors are a protocol error, or a UPC that's not in the
database.

Build your program to handle multiple cash registers simultaneously, and
use the database stored in ~harkin/public/inst/cs440/asgn/scanner.db.

Y ou will have to be able to run the server and at least three clients

at onetime. The server should print out enough information to be able to
show that all of thisis happening at once. More on this later.

I

This simple example demonstrates a server that processes accepts
but creates a child process to handle all of the communication
with the client. Y ou have to remember that the child

inherits an environment that is virtually identical to the

parent, including all file descriptors. So the child process

has access to the sockets created by the parent.

The function of this server isto alow the client to have

access to certain operating system functions that might not
otherwise be available. Thisisthe sort of thing a distributed
operating system or database might do, although, hopefully, in a
more robust and complete way.

This server also function differently in that the main program starts
and spawns a child process that is the server. That way, the
server does not have to be run in the background.

Syntax:
fork_server port

*/

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/wait.h>

#define NAMELEN 64
#define CMDLEN 32

typedef int BOOLEAN;
void client_wait ();

void client_server ();
BOOLEAN lega _name ();

main
(.
int argc,
char *argv []
)
{
int child_id;
int status; /* the returned child status */
int |_sock, chct, addrlen;
char ch, buf[80];
char hostname [NAMELEN];
struct hostent *hostp;

struct sockaddr_in addr;

/*
* Check the args - client_server port
*/

if (argc<2)

{
fprintf (stderr, "Syntax: fork_server portnum\n");
exit (0);

}

/*

* Open a stream socket for public access and listen on it
* for new clients.

*/

if ((I_sock = socket (AF_INET, SOCK_STREAM, 0)) < 0)
{

fprintf (stderr, "Could not open the socket\n");

exit (0);
}

bzero (addr, sizeof (addr));
addr . sin_family = AF_INET;
addr . sin_port = htons (atoi (argv[1]));
addr . sin_addr . s addr = htonl INADDR_ANY);
if (bind (I_sock, & addr, sizeof (addr)) < 0)
{
fprintf (stderr, "Could not bind the address\n");

exit (0);
}

if ((listen (I_sock, 1)) < 0)

{
fprintf (stderr, "Unable to listen\n");
close (I_sock);
exit (0);

}

/*
* client_wait does the work.
*/

client_wait (I_sock);
fprintf (stderr, "cmd_server terminating\n™);

close (I_sock);

}

* dient_wait
Function: Accept client_wait requests and spawn client servers.
Usage: client_wait (I_sock)

Arguments: int|_sock - the advertised socket
Return: None.

Notes:

void client_wait (I_sock)

int |_sock;
{

int child _id, client_sock;

struct sockaddr addr;

int addrlen;

/*

* Wait for connections. If thereisafailure, smply go on.
* When aconnection is made, fork a child process to do the work.
*/

do

{

/*

* When a child process dies, it must be recognized by the parent, or
* the child hangs around as a zombie. Thisis handled with a wait.
* |n this case a plain wait () won't work, because we don't want to

*/

* wait forever. Instead, use wait3, which clears the child

* termination signal, but if there isn't anything, will return if
* the WNOHANG flag is set.
*/

wait3 (NULL, WNOHANG, NULL);

if ((client_sock = accept (I_sock, &addr, & addrlen)) < 0)
{

fprintf (stderr, "Failed connection with client\n");
continue;

}

/*
* Create the child process to do the actual client communications.

* Again, the child sees areturn of zero and the parent sees the
* child id being returned.
*/

if ((child_id = fork ()) < 0)
{

fprintf (stderr, "Failure in creating child process\n™);
close (client_sock);

}

else
if (child_id==0) /* Do the client stuff */
client_server (client_sock);
/*
* The server (parent) has no more use for the client
* socket and can close it. Remember that the child

* client server still has it open.
*/

close (client_sock);
} while (1);
/*
* The server never terminates, so don't worry about anything here.
*/

return;

}

I

client_server

Function: Handle client communications. The task of the server
is to execute ssmple commands over the protected
directory, which would normally be prohibited.

Usage: client_server (client_sock)

Arguments. int client_sock - the advertised socket
Return: None.

Notes:

void client_server (client_sock)
int client_sock;
{
char buf [CMDLEN];
int buflen;
static char *ack = "\06",;
static char *logout_msg = "Pleased to be of service - Goodbyée\n";

/*

* First, make sure that the client address is acceptable. When the
* connection is successful, the client should send it's name.

*/

buflen = recv (client_sock, buf, CMDLEN, 0);
buf [buflen] = "\0";
if (! legalname (buf))

fprintf (stderr, "Attempt to access by an illegal client named ");
buf [buflen] ="\0';
fprintf (stderr, "%s\n", buf);
exit (0);
}

if (send (client_sock, ack, 1, 0) < 0)

{
perror ("On connection acknowledgement™);
close (client_sock);
exit (0);

}

/*

* Set it up so that standard output for this client server

* will be the client socket. Then whatever output would

* normally go to standard output will go back to the client.
* dup2 does this by closing stdout (descriptor 1) and making
* it aduplicate of the client socket.

*/

dup2 (client_sock, 1);
/*

* Aslong asthe client is interested, accept communications,
* and execute the desired commands. At the end of each

* command, return an end-of-command character to the client.
* A command of "logout” indicates a desire to terminate the connection.
*/

do

{
buflen = recv (client_sock, buf, CMDLEN, 0);
if (strncmp (buf, "logout”, 6) == Q)

/*
* Send a nice goodbye and send an ack just in case.
*/

send (client_sock, logout_msg, strlen (logout_msg), 0);
send (client_sock, ack, 1, 0);

break;
}
buf [buflen] ="\0"; /* Supply aterminator */
system (buf);
send (client_sock, ack, 1, 0);
} while (1);
/*
* Terminate the client socket and the process
*/
close (client_sock);
exit (0);
}
* legd_name

Function: Check the legality of aclient address/name.
Usage: if (legal_name (client))

Arguments. char *client - the client name

Return: TRUE if legal, FALSE otherwise.

Notes:

BOOLEAN legalname (client_name)
char *client_name;

{
char client [NAMELEN], *cp;
FILE *clientfile;

BOOLEAN found;

if ((clientfile = fopen ("client_file", "r")) == NULL)
{

perror ("Opening the client file");

exit (0);
}

found = FALSE;
while (! feof (clientfile))
{
/*
* Get aline from the file, replace the newline, if any, with a
* null and then match it to the client name.
*/

fgets (client, NAMELEN, clientfile);
cp = index (client, \n");
if (cp!=NULL)
*cp ="\0;
if (strcmp (client, client_name) != 0)
continue;

/*
* Name islocated. Close the file and return.
*/

fclose (clientfile);
return (TRUE);

}

return (FALSE); /* No where to be found. */
}

Lab #6

One thing that's interesting to do, is talk to some existing server.

For example, the NFS server, the ftp server or the telnet server. This
would be a cruel thing to do. Onethat is easier to talk to isthe

Post Office Protocol (POP) server. Some of you are probably familiar
with the POP server. If you start amail client from a PC and tell it

that your mail is stored on somehost, it will contact to the POP server on
somehost and it will download your mail to the PC.

It's basic function is just that. If you connect to the POP server, it
expects to download the contents of amail file to you. Rather than
repeat alot of stuff about the POP protocol, | am going to run off
acopy of an article that contains lots of useful stuff about POP and
IMAP, which is another protocol.

Y our assignment isto create a client that will use the POP server

to manage your mail file. This doesn't have to be anything fancy, unless
you want to put in the extraeffort. A simple command line interface that
lets a person list their messages and look at or del ete selected messages
would be great. You could of course, just open the mail file and do this,
but what fun would that be.

For this assignment, use port 110, since that's where the POP server is
running. You might notice in /etc/services that port 109 is reserved for
something called "pop2". Thisisactualy an IMAP server.

Y ou might think about how you would do this from aremote system. That is,
if the client you wrote would connect over the network to somehost and get the
data and display it at the remote host. This really wouldn't be too hard

to do from a PC or another host, since the network programming calls will
work just as well from any other host that supports them.

Y ou may have to do some experimenting here to figure out exactly what the
POP server returns in its messages. Welcome to the real world.

Y ou should turn in a couple of test runs showing lists of messages, and
the interaction that displays and/or deletes messages.

One problem here is that you need to send a password to the pop server.
If you type the password on the terminal, it will be plainly visible to
everyone, and it is equally dangerousto hard code it in aprogram. The
following is a short program that turns off the echo in order to read
apassword.

I

> noecho.c

*

* Example of a program that turns off the echo on stdin to read
* apassword and then turns it back on.

*

*

*/

#include <stdio.h>
#include <stdlib.h>
#include <termios.h>

void main ()
{
char name [32], pass [32];
struct termios tios;
/*
* Get the name with echoing
*/

printf ("Enter your name: ");
scanf ("%s", name);
printf ("The name is %s\n", name);

/*
* Qutput the prompt and then toggle echoing.
*/

printf ("Enter your password: ");

/*
* Get the terminal characteristics
*/

if (tcgetattr (0, &tios) < 0)

printf ("Could not get terminal attributes\n");
exit (-1);
}

/*
* Change echo to off and reset.
*/
tios. c_Iflag "= ECHO; /* echo off */
tesetattr (0, TCSAFLUSH, &tios);

scanf ("%s", pass);

/*

* Reset the property and reset the terminal line.
*/

tios. c_Iflag » ECHO; /* echo on */

tesetattr (0, TCSAFLUSH, &tios);

printf ("\nThe password is %s\n", pass);

Lab7

Thisisthefirst part of atwo part assignment that uses other machines
to do work for you. In this part, you are going to use the UDP protocol
instead of TCP, and you are going to try out a new system call.

When using UDP, you specify that the socket is of type SOCK_DGRAM, and you
must use sendto and recvfrom instead of send and receive. Look at the man
pages on these calls, and you can look at the programs following.

The important thing to remember is that UDP communications are completely
connectionless, so the only clue that the receiver has as to the identity

of the sender isin the address portion of thereceive call. If amessage

isto be returned, the receiver must get and use that address.

In this program, instead of choosing your own port, use one of the
ports established for this class. Each port has both atcp and audp

version, so they can be used for either protocol. Thisiswhat is meant by
the protocol-port addressing pair.

So what is this program going to do. Again, we will stick with a client
server model. The client side will be executed with:

execute host command

where host is the name of the host where the server must reside, and command
is acommand to be executed at the host. The remote client will send the
command to the server on host and then print anything that is returned

at stdout.

The server will receive the string containing the command, which could
be any legal Unix shell command and use the "system™ call to perform the
execution, redirecting the command output to go back to the client.

For example, if
execute somehost.thisdomain.edu Is

is entered, the server would execute the s command, and send the result
back to the client, where it would be output to stdout. Therearea
number of issues here.

How does the "system"” call work? Check the man pages, its easy.

If the server were running on the machine as aroot process, how would it
know what directory to "Is'?

The solution is to to make the server handle alogin for the user on the
other machine. This also provides security so that all sorts of riffraff
don't use your machine for executing things. We will ignore this problem,

How does the child process redirect the command output to the client?
WEell, this does present problems. Basically, you need to change the
default assignment for stdout for the commmand, but this could go badly.
If you attempt to store all of the output in memory, or even afile,

you could run into resource availability problems. What is preferable
isto direct the output to the network so that it is sent directly to

the client process. While thisisn't directly possible, you can play

some games to make it work.

First, you need to create a pipe with a pipe call.

int pd[2];
if (pipe (pd) <0)

fprintf (stderr, "Error opening pipe\n");

exit (-1);
}

A pipeisabuffer with aread descriptor (pd[0]) and awrite descriptor

(pd[1]). After the pipeisopened, you can read and write the pipe, and
the processes doing so are synchronized so that if the pipeisfull, the
reader is blocked on aread and if the pipeis empty, the writer is blocked
on awrite. The two descriptors cannot be switched.

read (pd[0], buf, n); write (pd[1], buf, n);

Pipes can be thought of a being like a socket, except that if two processes
are using a pipe, they must be related in the parent-child sense.

The dup call can be used to create a duplicate of any file descriptor, and it
will get the lowest numbered file number available.

If the process being created has any output to stdout, you can redirect it
to the pipe by doing the following.

1. create a pipe (pipe (pd))
2. close file descriptor 1, which is stdout (close (1))
3. dup pd [1], the output side (newfd = dup (pd[1]))

Because stdout was closed and stdin is till open, the newfd will be 1,
and it will be assigned to the same i/o structure as pd[1], which isthe
write side of the pipe. Any attempt to output to stdout, will actually
write to the pipe. If the server process reads the pipe, it reads what
would normally go to stdout and it can send it back to the receiver.

When the process is started to run with the system call, anything it writes
will go to the pipe. The server child can read the pipe and forward the
data to the client for output. There is one problem, the pipe has a limited
size, s0 if the system command generates alot of output, it will block

on the pipe, and the server child is blocked waiting for the system call

to end. Thiscan all be avoided by using asynchronous I/O which isthe
Unix version of interrupt driven /0.

Unix will let you capture signals, which are interrupts that have been
handled by Unix, but then passed to aprocess. The best descriptionis
probably an example, which follows.

*
* Example of using a pipe to handle stdout. Under OSF/1, this must
* be compiled in the following way:

cc prog.c -Isys5 -0 prog

* X *

* with the System V library loaded. Y ou need the SystemV library
* as it defines the semantics for the signal handling. For some reason,
* the BSD library doesn't work right.

*

*

*/

#include <stdio.h>
#include <signal .h>

#include <fentl.h>
#include <sys/types.h>
#include <unistd.h>

void piperead ();

int dd, pd[2];
void (*oldsigio) ();

void main (int argc, char *argv([])
{

int flags, ct;

char buf [80], ch;

/*

* Open a pipe, then close stdout and using dup, set up pd[1] to
* be the same file descriptor.

*/

if (pipe (pd) < 0)
{

fprintf (stderr, "Couldn't open pipe");
exit (0);
}

close (1);
dd = dup (pd[1]);

/*

* Make /O on pd[1] asynchronous, which means this program can get
* the signals from the OS.

*/

flags = fentl (pd[0], F_GETFL, 0);
fentl (pd[0], F_SETFL, flags| FASYNC | O_NDELAY);

/*

* Tell the system to catch the SIGIO signal. Technically, we could get
* in trouble, since it will catch all asynchronous 1/0, but that shouldn't
* be a problem here.

*/

oldsigio = signal (SIGIO, piperead, -1);

/*

* Do the system command, which if it writes to stdout (file 1), it

* will come back to the process viathe signal handler. Note that the

* "system” call will not return until the created child process completes
* and terminates.

*/

system ("Is");

/*

* Reset signal to be safe and clean up.
*/

signal (SIGIO, oldsigio, -1);

close (pd[0]);
close (pd [1]);
close (dd);

}

/*

* Asynchronous signal handler. Reads anything waiting at pd[1] and

* printsit out. It only executes when the system knows that something
* is waiting.

*/

void piperead ()
{
char buf [80];

/*

* Read the pipe and output to the terminal. Stderr has to be used
* because stdout has been closed. Note, this may output a strange
* line at the end because it doesn't check for aline containing

* anew line aone.

*/

if (read (pd[0], buf, 80) > 3)
fprintf (stderr, "%s\n", buf);

return;

}

Asynchronous I/0O has two parts. The first part is specifying that a
specific 1/0 descriptor is to be handled asynchronously by using the

fentl call. You aretelling the operating system that you want to take
more control of the I/O for this descriptor by not waiting for the OSto
decide when it istime for you to do something with the data. Instead, you
want to be informed when input is ready or output is done, so that you can
act accordingly. In this case, that means that you want to know when there
isinput ready in the pipe, so that it doesn't fill up and block before the
"system" call returns.

Next, the system has to be told what to do when /O is ready, and that is
done by indicating that you have a handler for the signal called SIGIO.

Unix does not have a special signal for each 1/0 device. Instead, al 1/0
interrupts for your program that are set up to be asynchronous cause the
same signal, and so they all have the same signal handler. There are calls

to allow your handler to decide what has happened. In this case, thereis

only one asynchronous file, so that isn't a problem. Other signals are

for pressing the control-C key (SIGINT), bus errors (SIGBUS), floating
point errors (SIGFPE) and so on (up to 64 signals on modern Unix systems).

Thisis, in large part, the code for the child process, except that you
need to get the data coming in from the pipe sent off to the client.

This assignment has quite afew new thingsin it for most people - pipes,
signal handling, datagrams and asynchronous I/O. But the applications are
simple. Implement things as shown and read the man pages. In future labs,
you will do some things that are more complicated.

* > dg_dlient.c
* Simple Unix domain datagram type peer process. It comes up and

* sends messages to another process.

*/
#include <stdio.h>
#include <sys/types.h>
#include <fentl.h>
#include <sys/socket.h>
#include <sys/un.h>

void main(argc, argv)
int argc;
char argv[];
{
int flag, sock, addrsize, saddrsize, response;
struct sockaddr_un addr, saddr;
int getmsg(), done, len, rlen;
char socketname[20], buf[80];

sock = socket(AF_UNIX, SOCK_DGRAM,0); /* create a socket for input */
if (sock ==-1)
{ perror("opening socket");
exit(-1);
}

addr.sun_family = AF_UNIX;
strepy(addr.sun_path, "dgclient"); [* create and bind a name */

addrsize = strlen ("dgclient") + 2;
if (bind(sock, & addr, addrsize) ==-1)
{ perror("on bind");
exit(-1);
}

/* Send messages to the server to be processed and returned.
* Note that the null message is sent to kill the server.
*/

strepy(addr.sun_path, "dgserver™);
addrsize = 10;

done =0;

do

{

printf ("Enter a short message to be sent, return to halt\n");
gets (buf);
len = strlen (buf);
if len<2)
done=1;
if(sendto(sock, buf, len, 0, & addr, addrsize) < 0)
perror("on client write");
saddrsize = 32;
rlen = recvfrom (sock, buf, len, 0, & saddr, & saddrsize);
printf ("client: %s <s returned from %s>\n", buf, saddr.sun_path);
} while (! done);

/* Close the socket and unlink the socket name
* which means delete the file representing the socket
*/

shutdown(sock, 2); /* not receiving or sending anymore */
close(sock);
unlink("dgclient");

}

* >dg saverc
* Simple datagram server for the Unix domain sockets. It opens
* a sockets and then performs a simple transposition on
* incoming messages before sending them back.

*

*/

#include <stdio.h>
#include <sys/types.h>
#include <fentl.h>
#include <sys/socket.h>
#include <sys/un.h>

void main()

{
int s, addrsize, nbyte, ct;
struct sockaddr_un addr;
char buf[80], tc;

/*
* Make sure that the socket file is gone and then create a socket.
*/

unlink ("dgserver");
s = socket(AF_UNIX, SOCK_DGRAM, 0);
if (s<0)
{ perror("opening socket");
exit(-1);

strcpy(addr . sun_path, "dgserver"); [* create and bind a name */

addr . sun_family = AF_UNIX;

addrsize = strlen ("dg_server") + 2;
if (bind(s, & addr, addrsize) == -1)
{ perror("on bind");

exit(-1);
}

/* Wait for a message to come in through the socket. The

* address of the sender is contained in the addr structure

* 5o that areturn can be sent. Note that thisis an infinite loop
*/

do
{ addrsize = 32; /* maximum length of address name */
nbyte = recvfrom(s, buf, 80, 0, & addr, & addrsize);
if (nbyte > 0)
printf("server: %s <is received from %s>\n", buf, addr . sun_path);
else
break;

/*
* Encode the string by exchanging odd and even pairs.
*/

for (ct = 0; ct < nbyte-1; ct +=2)
{ tc=buf[ct];
buf[ct] = buf[ct+1];
buf[ct+1] = tc;
}
nbyte = sendto (s, buf, nbyte, 0, & addr, addrsize);
}while (1);

/* close the socket and unlink the socket name
* which means delete the file representing the socket
*/

printf ("Datagram server terminating\n");
shutdown(s, 2); /* not receiving or sending anymore */
close(s);

}

Lab8
Remote Execution, Part 2.

Remote execution can be avery valuable serviceindeed. For example, if
you consider all the computers on this campus alone and the amount of
time each day that the CPU isidle, it adds up to probably more computing
power than was cumulatively available in the entire world before most of
you were born. The problem is how to take advantage of all of that
computing power, and its not easy.

First, you have to be able to separate problems into pieces that can be
run independently of each other - thiscalled parallelization. Itis

difficult to do this, because most problems have lots of sequential
character - things that have to be done in some order and this can't

be parallelized. Then you have the problem of getting software servers
running on al of the machines so that you can send them work to do. Some
narrow-minded folks aren't to happy with the idea that someone else may
have access to their computer, even when they're not using it. Also,

you need to make it reasonably easy for people to distribute their
problem parts out to remote machines or they won't do it. None of these
problems have been completely solved yet, but people are working on it

What does all of this mean to you, you ask cautiously. As an example of
this sort of problem, we know that sorts of various kinds are parall€elizable,
For example, amerge sort could easily be distributed across N machines,
where each server sorts /N'th part of the list, and then one machine
performs the merge. Other examples of parallelizable problems are matrix
multiplication, numerical integration and differentiation and lots of
database problems.

For this assignment, you are going to use sort servers that sort a

list of values on demand, and then return the sorted list to the caler.
The number of items to be sorted will always be unknown until the list
arrives. The sort method the server uses doesn't matter.

The organization of the clients and serversin this problem is that there
will be one client and several servers, which is different than what you
have donein the past. That means that there has to be awell-defined

way of interacting with the servers if your program is going to work. The
preferred strategy isto have the clients make a call like this:

sort_rpc (list, num)

wherelist is the list of values and num is the number of itemsin the
list. The name sort_rpc includes rpc to represent remote procedure call,
which iswhat this type of activity iscalled. In essence, you are going
to create a distributed sorting mechanism that is transparent to the
function that makes the call. Asfar asit knows, the sort is done
locally.

sort_rpc has to perform the following tasks:

find sort serversto use

divide the data and send to the sort servers

wait for the serversto finish

merge the sorted sublists into the complete list
return the sorted list

Broadcasting

How do you find all of the sort serversthat are available. In the past,
there has always been just one, waiting patiently at a particular port on
aparticular host. If you don't happen to know the host location of the
servers, the easiest way isto broadcast a message that all local hosts

can see, but directed to a particular port on each host. If the servers

use the same port on every host, they will get the broadcast message and
they can send a message indicating that they are available and including
their | P address.

In order to send broadcast messages, you need to tell the operating system
that thisis what you want to do. Thisis done by setting the socket
options:

/*
* Set the socket to handle broadcast messages.
*/

int sockopt;
sockopt = 1;
if (setsockopt(socket, SOL_SOCKET, SO_BROADCAST,
(char *) &sockopt, sizeof(int)) < 0)
{
perror ("on set socket options'");
exit(-1);
}

and then use a broadcast address. For the cs domain, the address
153.90.192.0 is the appropriate address to broadcast to all hosts on
the local network. Zero in the host portion means that all hosts are
to receive and process. For example,

addr.sin_port = htons (PORT);
addr.sin_addr.s addr = inet_addr ("153.90.192.0");
sendto (mysock, buf, strlen (buf) + 1, 0, & addr, sizeof (addr));

will send buf to the server at <udp, PORT> on every host on the local
network. Note that broadcasts are always datagrams, because you need
a specific IP address to make the connection for a stream.

When you do something like a broadcast for servers, the responses are
asynchronous - not specifically organized in time. That means that some
servers might respond very quickly, while other take longer, either

because the host is busy or because they are simply slower. In any case,
when the broadcast is sent, your program needs to give a reasonable amount
of time for the servers to respond, and then not wait any longer. If some
server takes 5 minutes to respond, you probably don't want it doing any
sorts for you anyway. Therefore, you need to set up atimer that will

let you terminate the query-for-server process at areasonable time.

A timer isasimple signa handling process such as this.

I

*

* Example of setting up a unix timer. The setitimer call starts a
* timer running and when it expires, it generatesasignal. The
* processisto set up asignal handler for the particular timer

* being used, which is the alarm timer in this case, and then
* use setitimer to get the alarm clock started. When it expires,
* the signal handler gets called.

*

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/time.h>
#include <signal .h>

void AlarmHandler ();

void main ()

{
struct itimerval itimer;
int interval;

/*
* Set up the timer mechanism for 5 seconds.
*/

signal (SIGALRM, AlarmHandler);
interval = 5;

/*
* Set the timer up to be non repeating, so that once it expires, it
* doesn't start another cycle. What you do depends on what you need
* in a particular application.
*/

itimer . it_interval . tv_sec = 0;
itimer . it_interval . tv_usec = 0;

/*

* Set the time to expiration to interval seconds.
* The timer resolution is milliseconds.

*/

itimer . it_value . tv_sec = interval;
itimer . it_value . tv_usec = 0;

if (setitimer (ITIMER_REAL, &itimer, NULL) < 0)
{

perror ("StartTimer could not setitimer");

exit (0);
}

/*
* Hang around and wait until something happens.
*/

printf ("The timer has started\n");
pause ();

/*
* Note that if conditions indicate that you don't want to wait for
* atimer to expire. For example, if in asliding window protocol
* you get the ACK for a message, you can kill the alarm by calling
* setitimer and setting the interval value to O.
*/
}

void AlarmHandler ()

{
printf ("The 5 seconds has expired\n”);

return;

}

So after sending out a broadcast, you can set atimer and you can receive
and process server responses for aperiod of time, such as 3 seconds, and
then you can simply ignore any other responses. Note that this means that
you will want to use asynchronous I/O on the datagram socket, since you
can't control the sequence of events very well.

The Assignment

I will write aserver for this assignment and run it on at least two machines
in the cs.montana.edu domain. Y ou need to write the client side that
implements the sort_rpc, as well as the test program that reads afile and
uses sort_rpc to do the sorting. Believe me, you are getting the easy part
of thisdedl.

Because you only want to have one client/server interface, we have to
be very specific about how the data is passed to the server and then
back to the client.

The server will listen on <UDP, cs440-06> for broadcasts from clients
asking for aresponse. The requests for server identification will

have the form:

CS440sorter?

Yes, there isa question mark at the end. You are asking, "Are there any
cs440 sorters out there?'. The strings must be null terminated.

The server will respond with:
CS440sorter-nnn-mmm

where nnn isthe ASCII representation of the integer port number that the
server isusing and mmm isthe ascii representation of the ip address

of the host it is running on. Again, they are not going to be three
characterslong in most cases. For example

"CS440sorter-12500-1722105853

where 12500 is the port and 153.90.192.3 isthe IP address. The integer
value returned is the | P address but not in dotted decimal form.

Note that the port number returned is the TCP port that the server is
listening on, and may not be the same for all servers, or even the same
for different renditions of the same server.

After the servers are known, the client will create a TCP connection
with each server. Thefirst thing that should be sent is a message of
the form:
CS440auth-nnn
Where nnn is an authentication key, in the form of a string which is
null-terminated. This more or less lets the server know that
everything is synchronized. In thisinstance, the authentication key will be
your first initial and last name. For example,
CS440auth-BK ool

The server will return amessage containing "OK".

After authentication, the server will be ready to receive data. The data
will be floating point and will be passed in the following form:

bytes data

0-3 number of items,n, following in network byte order
4-7 mantissa of value 0 in network byte order

8-9 exponent of value 0 in network byte order

10-13 mantissa of value 1 in network byte order

-n*6+3 exponent of nth value in network byte order

| chose floating point intentionally, because floating point values have
no network byte order. The problem being that there is no standard
internal format for floating point values that is universally accepted.
So floats are dways a big pain in the neck.

The server will return the data as follows:

bytes data
0 status as a one byte integer
0 = OK, 1 = communication error,
2 = memory error, 3 = data error

if statusis O
1-4 number of items

5-n (everything elseisidentical to
the format of the data sent)

if statusis not 0,
1-n error message in ASCII text form and null terminated

If an error occurs during the startup phase, you will get back atext
message with an error messagein it.

If you can't connect to at least two servers, some have probably died and
need to be restarted - let me know.

Use all of the serversthat are available, which should generally be
more than 2.

Usealist of at least 100 floating point values and divide them evenly
among the servers.

As servers respond, print out a message showing the IP addressin
dotted-decimal notation, the DNS name of the server and the port that the
server is accepting connections on. For example

153.90.192.1 esus.cs.montana.edu 6305

When the data comes back, print the |P address of the server and the
status of the result.

The main program should print the list in sorted order - try to minimize
the space, such as:

31 42 56 75 132 216 334 342 503 60.7
100.5 101.6 200.5

Data

The following program generates 100 floating point numbers between
-100.0 and +100.0. You can modify it to create your list of numbers.

Generate 100 random floating point numbers.

* % * % F

*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

void RandomSetSeed ();
int RandomGetlint (int, int);
float RandomGetFlt (float, float);

void main ()
{
int ct;
float val;

RandomSetSeed ();

for (ct = O; ct < 100; ct++)
{
va = RandomGetFlt (-100.0, 100.0);
printf ("%f\n", val);
}
}

/*
* |nitialize the random number seed to the time of day.
*/

void RandomSetSeed ()
{

struct timeval timeofday;
struct timezone tz;
long seed;

if (gettimeofday (&timeofday, &tz) < 0)
seed = 38498757;
else
seed = timeofday . tv_sec + timeofday . tv_usec;

srand48 (seed);
}

/*
* Generate arandom integer.
*/

int RandomGetint
(

int low,
int high
)
{

double rnd;
rnd = drand48 ();

return ((int) (rnd * (high - low) + low + 0.5));
}

/*
* Generate arandom float.
*/

float RandomGetFIt

float low,
float high
)
{
double rnd;

rnd = drand48 ();

return ((float) (rnd * (high - low) + low));

Last Lab Assignment

Let's play BlackJack

| think everyone may know how to play BlackJack. What? Y ou have never
played BlackJack? That's much better. | don't want to always lose money.
Anyway I'll explain the rules of our BlackJack later.

Since thisis the last ¢s440 lab assignment, it's relatively easier,
especially compared to the previous one. In thislab you are required
to just write a BlackJack client program which includes:

-- find the BlackJack server using UDP broadcast;

-- connect to the BlackJack server using TCP,

-- use SELECT to read data from server and to control writes; and
-- construct a Finite State Machine(FSM) to process data.

Y ou can directly borrow the UDP broadcast and the TCP connection stuff
from last lab assignment. What you need to change is the port number.
The BlackJack server will be listening on port 12003.

The SELECT system call is very flexible. It can do your job in either
sync or async mode. Use "man 2 select” to read its man page and refer
to the pop_client.c example posted in cs440 newsgroup.

If you read documents on protocol specification you will find that many
protocols are specified not only in plain English but also in some kind

of formal or semi-formal language. A State Transition Diagram is one of
those things used to specify a protocol. In our daily life we can also find a
lot of cases where the State Transition Diagram can be applied.

One way to implement a State Transition Diagram is to use a Finite State
Machine(FSM) or finite automata. In FSM, what we usually have are

(1) acurrent state;

(2) an input event;

(3) an action taken based on (1) and (2); and
(4) anext state.

Ok, now, let'srecall the rules of the BlackJack game and then go to see
how it can be specified with a State Transition Diagram. Because there may
be different variations (or versionsin our terminology) of BlackJack,

we use only the essential part of itsrules.

When you want to play BlackJack in a casino, you first can choose
to play one or two decks of cards. Then a dealer gives you two cards
and takes two for him/herself. Based on the total points of your cards
you may want more cards. If and only if you don't want more cards,
does the dealer start to get more cards according to his/her total card
points on hand.

After the dealer stops, your cards and the cards of the dedler are

compared. The one who has more points but less than 21 points will win
this game. If the player exceeds 21 he/she loses. If the user is under

21 and the dedler is over, the dealer loses. The dealer must exceed

17 points. The cards and their points are listed below.

Cards are: S=Spade, H=Heart, D=Diamond, C=Club.
Thepointsfor 23456789 T J Q K A
ae 2345678910 10 10 10 11

State Transition Diagram
To simulate BlackJack our state definition for a BlackJack client is:

-- S INIT :Initia state before a TCP connection is established.

--S READY : Ready state after a TCP connection is established.
FSM can receive server's welcome message(E_MSG event)
and user's choosing request(E_choose event).

--S CHOOSE : Choosing state after getting user's choice and before
receiving the first 2 cards(E_2CARDS event).

--S MY_TURN : My turn state after client getsthe first 2 cards and
before make any decision.

--S WAITING : Waiting for card state. After getting E_ wantCard event
and before get E_GOT event.

-- S YOUR _TURN : After get user's E_noMoreCard event and before deal er
stops(E_STOP event). In this state FSM can only receive

E_INFO event.
-- S GAME_OVER: A dtate after FSM get an E_STOP event.

In the diagram below, an event name with all capital lettersis caused

by a corresding PDU (Protocol Data Unit) from server, otherwise is caused

be user input. The state on the right side of /' is either a PDU sent out

due to auser command or an indication(Ind) to the user due to areceived event
from server.

v
S —— +
| S CHOOSE |
S —— +
I
| E_2CARDS/Ind
I
v E_wantCard/P_WANT
R + S +
|S MY_TURN [---------- >| S WAITING |
R + S +
E_noMoreCard/P_NWANT | \ |
S + L —
| E_GOT/Ind
v
B R — + -t
| S YOUR_TURN | |E_INFO/Ind
F + <---+
I
| E_STOP/Ind
S +

e + S +
| S GAME_OVER |-------- >| S READY |
e + S +

| E_disconnect/Shutdown

V
- - -+
[SINIT|
+---+

If you want to see the layered model of this machine, it looks like:

output to user(Indication)
A event from user(Request)

I I "

% event from server(incoming PDU)
output to server(outgoing PDU)

In your client programming you are supposed to use the following definitions
to write a subprogram called

int Automata(int state, int event, char * par)

which will perform the functions described before. Below you will find the
definitions of PDU, states, events and example code.

/* definitions of PDU type -- each PDU type takes up one byte followed
by zero or more bytes depending on that
type */

#defineP_MSG 1 // Message from server, like "Welcome to BlackJack\0"
/I e.g. "\1Welcome to BlackJack\0"
/[Thisis the only one having \0' as terminator.
#define P_CHOQOSE 2 // Choose to play # of decks (one deck=52 cards)
I 1st byte=2, 2nd byte=1 or 2
#define P_ 2CARDS 3 // Dealer gave me my initial 2 cards
/I 1st byte=3, the rest are, e.g., "H2SJ"
#define P WANT 4 // Want one more card
// one byte PDU
#defineP_GOT 5 // Got one card from server
Il 1st byte=5, the rest are, e.g., "CT"
#define P NWANT 6 // Don't want more card
// one byte PDU
#define P_INFO 7 // Dealer'scard
/I 1st byte=7, the rest are, e.g., "DA"
#define P_STOP 9 // Deder stops to take cards
/I 1st byte=9, the rest are dealer's cards, e.g., "DADK"
#define P_AGAIN 10 // User wantsto play again
// one byte PDU

/* definitions of states*/

#defineS_INIT O
#defineS_READY 1
#defineS_CHOOSE 2
#defineS MY_TURN 3
#defineS_ WAITING 4
#defineS_YOUR_TURN 5
#defineS_GAME_OVER 6
#define max_state 7

/* definitions of events */

#define E_connected 0
#define E_ MSG 1
#defineE_choose 2
#defineE_ 2CARDS 3

#defineE_ wantCard 4
#define E_GOT 5
#define E_noMoreCard 6
#define E_INFO 7
#define E_STOP 8
#define E_disconnect 9
#define E_playAgain 10
#define max_event 11

*

/*
In the following examples, code piece 1 isamain loop which takes all
in put data using select and then call Automata. How to pass the third
parameter to the Automata is your local business.

*/

*/

