
Distributed Termination Detection in a Mobile Wireless Network

Jeff Matocha
jmatocha@ks.ua.edu

The University of Alabama
Tuscaloosa, AL 35487-0290

Abstract- In a mobile wireless network, restrictions exist
which demand creative solutions to classical distributed prob-
lems. Distributed termination detection, the problem of de-
ciding when the whole of a distributed computation has com-
pleted, is one such distributed problem. In this paper, an
existing message optimal distributed termination detection
algorithm is selected and modified to enhance its behavior
in a mobile wireless network; the modifications entail reduc-
ing the number of messages received and transmitted by the
mobile nodes involved in the distributed computation.

1 Introduction

A large percentage of the population today utilizes
pagers and cellular telephones on a daily basis. Laptop
computers have also seen a recent boom in sales. The
union of these two technologies creates the need for pro-
tocols to maintain Internet connections while roaming.
This new paradigm of networking presents many unique
challenges.

As the surge in popularity of this new technology
increases, “many experts are convinced that tomorrow’s
computers will all be mobile [13]!” Since a large number
of computers will be mobile, researchers must examine
all existing algorithms to meet the challenges which ap-
pear in the face of mobility. The research in this pa-
per presents an approach to solving the problem of dis-
tributed termination detection (DTD) in a mobile wire-
less network. We begin in Section 2 with a presentation
of the DTD problem as well as the Dijkstra and Scholten
algorithm which achieves DTD [7].

Section 3 presents mobile computing and network-
ing with an emphasis on the challenges which must be
faced in order to create a mobile aware distributed al-
gorithm. Our enhancements for making the algorithm
by Dijkstra and Scholten mobile aware are presented in
Section 4. Finally, Section 5 contains our conclusions
and future work.
Permission to make digitavhard copy of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copying is by permission of ACM, Inc. TO copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
0 1998 ACM l-581 13-030-9/98/0004 $3.50

2 Distributed Termination
Detection

Distributed termination detection is one of the classic
problems in distributed systems research. Dijkstra and
Scholten [7] and Francez [9
and solved DTD in 1980. Jr

independently introduced
hroughout the 198Os, so-

lutions to DTD frequently appeared in the literature

bv
1, 4, 6, 10, 11, 12, 14, 15, 19, 20, 21, 23, 24, 25, 26, 281.

ith proofs on the optimal bounds of the number of mes-
sages and concern over fault tolerance,, DTD research has
continued throughout the 1990s [3, 16, 17, 22, 27, 291.

Section 2.1 describes DTD and defines terms used
in the remainder of thii paper. We present the algo-
rithm for Dijkstra and Scholten’s solution to DTD in
Section 2.2.

2.1 Problem Description

Termination is detected in a distributed system when a
process determines that the distributed computation has
completed. We define several terms in order to describe
distributed systems and distributed computations in this
section.

A distributed computation executes on a set of n
processes, P = {po,p~,... ,p,,}, which are distributed
throughout a network. These processes are considered
as nodes in a graph which are connected by a set of
communication channels, E. We refer to the channels
as edges due to their function in the definition of a dis-
tributed system as a graph.

The following three general assumptions hold for all
distributed systems:

l There is no shared memory. Information must be
transmitted between nodes via some channel in E.

l There is no common clock. Thus, there is no way
to schedule a set of processes to perform an action
at precisely the same moment.

l Communication takes arbitrary, but finite time.
Since message transmission times are unpredictable,
a process can not determine when a message is re-
ceived by the recipient.

The above three assumptions complicate DTD. In fact, if
any of the above assumptions did not hold, DTD would
1)~ trivial.

207

We view the processes in a distributed system as
daemons that each perform a particular job. Thus, ac-
tive processes are those currently working on a compu-
tation; passive processes are waiting. We will denote
the set of messages as m; therefore, there are]m] mes-
sages necessary for the computation and DTD. The mes-
sages for computation are called basic mesaages (mn);
the messages used for DTD are called control messages
(mc). Basic messages contain requests to the daemon at
the intended process. The following restrictions, based
on these process states and message types, describe the
general action of a distributed system:

1. Initially, each process in the system is either active
or pasave.

2. An active process may become passive at any time.

3. Only an active process may send a basic message to
another process.

4. A passive process becomes active only after receiv-
ing a basic message.

We can derive the necessary and sufficient condi-
tions for DTD from these restrictions: termination has
occurred when all processes in the system are passive
and there are no basic messages in transit. DTD algo-
rithms focus on the detection of such a state in which
these necessary and sufficient conditions have been met.

Chandy and Misra proved that any DTD algorithm
must use 0(]mg 1) control messages in its worst case exe-
cution in order to determine termination [5]. In choosing
an algorithm for a mobile wireless network, a minimal
number of messages necessary for DTD was preferred.
For a taxonomy of DTD algorithms categorized by sev-
eral features, see [18].

2.2 Dijkstra and Scholten’s Solution
In 1980, Dijkstra and Scholten introduced the problem
of DTD and proposed an elegant solution [7]. The algo-
rithm of Dijkstra and Scholten (hereafter called the DS
algorithm) performs similarly to the execution of a con-
current program; it is a call/reply or parental respon-
sibility algorithm. In a concurrent program, the main
procedure exits when it completes its main body and all
of the procedures which it has called have exited. Fur-
thermore, each called procedure may exit when it fin-
ishes the execution of its body and all of the procedures
which it has called have exited. Similarly, a node in the
DS algorithm exits when it has completed its computa-
tion and all the nodes to which it sent basic messages
have completed. The DS algorithm is restricted to com-
putations which begin at a single node, thus forming a
computation tree.

In the DS algorithm, basic messages travel down
the computation tree. Control messages are replies to
basic messages and thus travel up the computation tree.
Each node in the DS algorithm ret,ains the total num-
ber of basic messages it has sent to its successors and
the number of basic messages it has received from each
of its predecessors. A basic message is wareplied if the
receiver of the basic message has not returned a control
message. The receiver returns a control message after it

has completed the requcstad job and has no unreplied
basic messages which were a result, of the job. When the
root node has no unreplied basic messages and is passive,
termination is detected.

Pseudocode for the DS algorithm follows. Each
node keeps parent, passive, and pending for each job.

Root node

Upon becoming passive or pending becoming 0:

if ((passive=True) and (pending=O))
distributed termination has been detected;

Non-root nodes

Upon finishing job m or pending becoming 0:

if ((passive=True) and (pending=O))
send control message to parent;

All nodes

Upon the arrival of a basic message m from p-j :

parent := p-j;
passive := False;
do job in m;

Upon sending a basic message to a child:

pending := pending+l;

Upon receiving a control message from a child:

pending := pending-l;

The DS algorithm requires exactly one control mes-
sage for each basic message in the system. As stated
in Section 2.1, optimality in terms of message complex-
ity for a DTD algorithm is o(]me]). The DS algorithm,
which introduced the problem, is message optimal. Mes-
sage complexity is important in choosing an algorithm
for a mobile wireless network due to the expense of re-
ceiving and transmitting messages.

3 Mobile Computing and
Networking

In a mobile wireless network, a computer capable of re-
taining attachment to a network while changing location
is called a mobile node (MN). MNs wander throughout
a set of cells, each of which is governed by a radio trans-
mitter called a Base. Each Base is physically connected
to the wired network and provides each MN within its
cell a link-level point of attachment to the wired network.
An example network illustrating these items is shown in
Figure 1.

Forman and Zahorjan list three major challenges
that must be considered before mobile computing and

208

Figure 1: An example mobile network

networking become commonplace [8]. The three chal-
lenges are wireless issues (lower bandwidths, higher er-
ror rates, more frequent disconnections, and lower se-
curity than normal transmission media), portability is-
sues (lower power and smaller storage capacity than non-
mobile computers), and mobility issues (location man-
agement for the MNs). In a solution to DTD for a mobile
wireless network, we consider the wireless and portabil-
ity issues.

In any computation which includes MNs, there are
three types of messages, each with a different cost. First,
consider messages on the wired network (m,,,); we con-
sider wired network messages inexpensive since they
travel on a physical medium. Next, consider messages
which are sent to (received by) MNs (m,); from an MN
point of view, the power consumed by the receipt of a
message is several times the power consumed by exe-
cuting instructions. Last, consider messages which are
transmitted by MNs (mt); a MN transmission consumes
several times the power consumed by receiving a mes-
sage. In this paper we present modifications to the DS
algorithm in order to reduce the number of rnt and m,
messages.

4 Mobile Enhancements to the
DS Algorithm

Consider a distributed computation where all processes
reside on MNs. A non-mobile aware implementation
of Dijkst,ra and Scholtc~n’s DTD algorithm [7] rrquires

[m,l = lrntj = 2 x IrnBj. Each control message sent to
an MN incurs one m,; each control message sent by an
MN incurs one mt . Figure 2 depicts a simple distributed
computation, the DTD of the simple distributed compu-
tation using the DS algorithm, and a timing diagram;
solid arrows denote basic messages, dotted arrows de-
note control messages, the grey vertical line denotes a
state of the system (such as DTD), and, with time pro-
gressing from left to right, a heavy line denotes activity
and a thin line denotes passivity.

DTD

Figure 2: A graph and timing diagram for a simple dis-
tributed computation

In the DS algorithm, when node D completes node
C’s computation, node D immediately replies to node
C. Since C has completed its job when it receives this
control message from D, C immediately replies to A (its
caller). Termination, howeve!, can not be detected un-
til D completes B’s computation and a control message
is sent to B and then to A. Since node A can not de-
tect termination until D is completed, D could cache C’s
control message until it has completed all pending jobs.
Therefore, our first improvement for converting the DS
algorithm to a mobile wireless network allows MNs to
cache control messages until completiig -their compu-
tations. Figure 3 illustrates the time diagram for our
enhanced DS algorithm. Notice that the reply from D
to node C and node B are combined into a single mes-
sage. This message is sent to the Base for D where it is
split into two m,s. This improvement allows the MN to
combine control messagesi to its .Baae which, in this ex-
ample, reduces lmtl by one. In the best case,

1 be reduced to n - 1, where n is the number o
mtl could
processes

involved in the distributed computation.
Our first enhancement functions correctly when pro-

cesses do not make recursive or mutually recursive calls.
Consider, for instance, the computation and timing di-
agram in Figure 4. Node C is waiting on a reply from
B, but B has cached its control messages until it is pas-
sivc and has received rrplics from its children. Unfor-

209

_ - _“_

DTD

A

Figure 3: The enhanced time diagram for Figure 2

tunately, B is waiting on a reply from C; therefore, B
is waiting (transitively) on its own reply. In the scheme
developed thus far, if cycles exist, deadlock occurs. To
prevent deadlock, we introduce a bitmap of size n which
is added to each basic message (i.e., a small control mes-
sage is piggybacked on each basic message). When node
i sends a basic message, the node sets the ith bit in the
bitmap it received for the current job and appends the
bitmap to the message. At initialization, the root node
creates a bitmap of size n with all zero entries. If node
i receives a basic message with bit i set, it knows that
a recursive (or mutually recursive) call has been made.
When a node realizes it has received a recursive call,
the job contained within the message is stored and the
node immediately replies with a control message. The
immediate reply does not remove the node from the com-
putation tree, the immediate reply merely removes the
cycle in the computation tree. Figure 5 exhibits the im-
mediate reply to the example computation in Figure 4.

A P
B

G C

deadlock

B

C

Figure 4: The effect of caching and recursive calls

Pseudocode for our first enhancement to the DS al-
gorithm follows. E&h node keeps parent and replied
for each job as well as a single copy of number-active
and pending.

DTD

A 3
*.:

B

Figure 5: Immediate response of recursive calls illustrat-
ing bitmaps

Root node

y numberactive becoming 0 or pending becoming

if ((number-active-O) and (pending-011
distributed termination has been detected;

Non-root nodes

Upon finishing job m:

number-active := number-active-l;

~$IOII number-active becoming 0 or pending becoming

if ((number-active=01 and (pending-011
send control message to all parents not

already replied;

All nodes

Upon arrival of a basic message m with bitmap b for p-j
from p_k:

replied := False;
parent := p-k;
number-active := number-active+l;
if (b has bit j set) (

send control message to parent;
replied := True;

1
do job in m;

Upon sending a basic message to a child:

pending := pending+l;

Upon receiving a control message from a child:

pending := pending-l;

Our first enhancement to the DS algorithm for a
mobile wireless network never adds messages to the sys-
tem. In the worst case, however, there is no reduction
in the number of control messages transmitted. In other
words, our first enhancement aids in practical matters
only, not in theoretical bounds.

Althou h our first enhancement to the DS algorithm
may reduce ‘i mt 1, a penalty for this reduction is possible.
Specifically, the caching of control messages may cause a

210

delay in the detection of termination by the root of the
computation tree. Consider the computation graph and
timing diagram in Figure 6. As in Figure 3, D caches its
reply to C while D completes B’s computation. Since B
is a direct successor of A, a path of length two between
D and A exists; since there are numerous intermediate
nodes between A and C, the control message from D to
C, which could have been sent while D was completing
B’s computation, traverse a path of length n - 2 before
reaching A. The issue at hand is the number of control
messages which must be propagated between the time
of actual termination and its detection. We call this
distributed termination detection delay or DTD delay.

The original DS algorithm has a DTD delay between
zero and [maI. In the best case, the last node to finish
its computation is the root; in the worst case, the com-
putation tree takes the form of a chain with cycles as
in Figure 4. In this case, the calling chain must be un-
raveled, much like activation records are popped off the
stack in the run-time memory of a typical procedural
program. If recursive calls are not allowed, the maxi-
mum depth of a calling chain would be n - 1, but since
processes are allowed to recursively call one another, a
chain with cycles may have a length of 1~~1.

D-I-D

A

Figure 6: An example of a computation suffering from
DTD delay

Although our first enhancement to the DS algorithm
can cause a DTD delay greater than the original DS al-
gorithm when the same distributed computation is run
with both versions of the algorithm, the worst case DTD
dela for the enhanced version of the DS algorithm is
O(nr. Figure 6 depicts an example of a computation in
which the difference in DTD delay between our enhanced
algorithm and the original DS algorithm is O(n). In our
enhanced algorithm, D caches the reply to C while com-
pleting B’s request. If D had not cached this control
message (as in the original DS algorithm), the message
may have reached the root (A) before D completed B’S
computation; in other words, the original algorithm may

have DTD delay of two in this example. Our first en-
hancement to the DS algorithm has a DTD delay of n - 2
in this example.

(a)

Figure 7: An execution example of the original DS algo-
rithm
(a) basic messages
(b) control messages

The second enhancement to the DS algorithm re-
duces Im,. 1. Figure 7 depicts an example of message
transmissions at an MN which, upon receiving a basic
message, sends basic messages to two other MNs; a heavy
line denotes an m,, a dashed lines denotes an m,, and
a dotted line denotes an mt. If we assume the MNs in-
volved in this distributed computation are in different
cells, this scenario produces six ws (messages 1, 4, 6,
7, 9, and 12) which induce three m,s (m

“5”
2, 8,

and 10) and three mts (messages 3, 5, and 11 . A re-
duction in the number of control mrs can be realized in
an enhancement similar to that proposed by Badrinath,
Acharya, and Imieimski [2]. These authors propose that
as much of the work as possible is delegated to the Base.
This delegation involves the Base retaining data struc-
tures for each MN under its care. In the DS algorithm,
an MN can use its Base to retain the list of unreplied ba-
sic messages. The basic messages are still transmitted as
mws, n+s, and mts since the MN must obtain the infor-
mation contained within the message. The Base peeks
at the messages in order to retain the number of nodes
from which the MN expects replies, as well as a lit of
nodes which are expecting a reply from the MN. When
the MN becomes passive, it tells the Base. Figure 8 illus-
trates this enhancement with the simple example from
Figure 7. Message 7 communicates to the Base that the
MN has completed its computations; thus, after the re-
sponses arrive for the basic messages transmitted by the

211

MN, the Base transmits a control message to the MN’s
caller. In this example, two m, messages are saved. Leaf
nodes benefit from this enhancement only when they are
called by more than one node, intermediate nodes benefit
only when they are either called by more than one node
or call more than one node, and the root node benefits
only when it calls more than one node.

(a)

Figure 8: An execution example of the Badrinath en-
hancement to the DS algorithm
(a) basic messages
(b) control messages

Pseudocode for our second enhancement to the
DS algorithm follows: Each node keeps parent and
replied for each job as well as a single copy of
number-active and pending. The variables pending
and numberactive are stored at the Base for each node
and parent and replied are stored at the Base for each
job.

Base of root node

Upon number-active becoming 0 or pending becoming
0:

if ((number-active-O) and (pending=011
distributed termination has been detected;

Base of non-root node

F numberactive becoming 0 or pending becoming

if ((number,active=O) and (pending=O))
send control message to all parents not

already replied;

Base of node pj

Upon receiving a basic message m for p-j from p&:

replied := False;
parent := p-k;
number-active := number-active+l;
if (b has bit k set) (

send control message to parent;
replied := True;

1
send job in m to p-j ;

Upon receiving a control message from a child of p-j:

pending := pending-l;

Upon receiving a done message from p-j:

number-active := number-active-l;

Any MN

Upon receipt of a job from the Base:

do job;

Upon end of a job:

send done message to Base;

Upon sending a message to a child:

// nothing special

This second enhancement to the DS algorithm, like
the first, does not change the message optimality of the
algorithm. As stated above, the Badrinath enhancement
does not always reduce the number of messages. There
fore, the bounds on the number of messages continues to
be O(lm~[). This enhancement, like our first enhance-
ment, is a practical enhancement for DTD in a mobile
wireless network.

5 Conclusions
As stated above, the Badrinath enhancement can be used
in conjunction with the caching enhancement. Contro-
versy exists, however, over whether Bases will provide
the required service. If Bases do make such a service
available, the use of the service may be based on a combi-
nation of the importance of the computation, the neces-
sity of savings, and the cost of the service. The caching
enhancement is available for use regardless of the ser-
vice provided by the Base and should be utiliid for a
reduction of 1~~1.

The enhancements in thii paper do not reduce the
bound on the number of messages, but they do reduce
the number of m,s and mts required for termination de-
tection in practice. Therefore, the bound on the number
of messages continues to be O(lm~); this bound has
been proven as message optimal for Ib TD.

An area of future work includes converting other
appropriate existing DTD algorithms to a mobile wire
less network. DTD delay should be considered strongly
since, in the mobile world, transmission delay due to er-
ror rates and disconnections expound DTD delay which
exists in the algorithm.

212

References

PI

PI

PI

PI

151

PI

PI

PI

PI

PO1

WI

PI

P31

WI

P51

R. K. Arora and N. K. Sharma. A methodology to
solve distributed termination problem. Information
Systems, 8(1):37-39, 1983.

B. R. Badrinath, A. Acharya, and T. Imielinski.
Structuring distributed algorithms for mobile hosts.
In Proceedings of the 14th International Conference
on Di&ributed Computing Systems, pages 21-28,
June 1994.

S. Chandrasekaran and S. Venkatesan. A message-
optimal algorithm for distributed termination de-
tection. Journal of Parallel and Distributed Com-
puting, 8~245-252, 1990.

K. M. Chandy and J. Misra. An example of stepwise
refinement of distributed programs: Quiescence de-
tection. ACM tinsactions on Programming Lan-
guages and Systems, 8(3):326-343, 1986.

K. M. Chandy and J. Misra. How processes learn.
Distributed Computing, 1(1):40-52, 1986.

E. W. Dijkstra, W. H. J. Feijen, and A. J. M. van
Gasteren. Derivation of a termination detection al-
gorithm for distributed computations. Information
Processing Letters, 16(5):217-219, 1983.

E. W. Dijkstra and C. S. Scholten. Termination
detection ,for diffusing computations. Information
Pmcessing Letters, 11(1):14, August 1980.

G. Forman and J. Zahorjan. The challenges of mo-
bile computing. IEEE Computer, pages 38-46, April
1994.

N. Francez. Distributed termination. ACM Tkans-
actions on Progmmming Languages and Systems,
2(1):42-55, January 1980.

N. Francez and M. Rodeh. Achieving distributed
termination without freezing. IEEE lkmsactions
on Software Engineering, 8(3):287-292,1982.

N. Francez, M. Rodeh, and M. Sintzoff. Distributed
termination with interval assertions. In Formaliza-
tion of Prugmmming Concepts: Lecture Notes in
Computer Science 107, pages 280-291, Pensicola,
Spain, 1981. Springer-Verlag.

S. Huang. A fully distributed termination detection
scheme. Information Processing Letters, (28):13-18,
September 1988.

C. Huitema. Routing in the Internet. Prentice-Hall,
1995.

D. Kumar. A class of termination detection algo-
rithms for distributed computations. In 5th Con-
ference on Foundations of Software Technology and
Theoretical Computer Science, volume LNCS 206,
pages 73-100, New Delhi, 1985. Springer-Verlag.

T. Lai. Termination detection for dynamically dis-
tributed systems with non-first-in-first-out commu-
nication. .h?r.rria~ af Parallel and Distributed Corn--
puting, 3:577 599, 1986.

WI

I171

WI

P91

WI

WI

1221

1231

PI

P51

WI

WI

P-4

WI

T. Lai, Y. Tseng, and X. Dong. A more efficient
message-optimal algorithm for distributed termi-
nation detection. In Proceedings of the 4th IEEE
Symposium on Parallel and Distributed Processing,
pages 274-281, Arlington, Texas, December 1992.

T. Lai and L. Wu. An (n - 1)-resilient algorithm for
distributed termination detection. IEEE tinsac-
tions on Parallel and Distributed Systems, 6(1):63-
78, January 1995.

J. Matocha and T. Camp. A taxonomy of dis-
tributed termination detection algorithms. Journal
of Systems and Software, 1998. to appear.

F. Mattern. Algorithms for distributed termina-
tion detection. Distributed Computing, 2:161-175,
November 1987.

F. Mattern. Experience with a new distributed ter-
mination detection algorithm. In Pmedings of the
2nd International Workshop on Distributed Algo-
rithms, pages 127-143, Amsterdam, 1987.

F. Mattern. Global quiescence detection based on
credit distribution and recovery. Information Pro-
cessing Letters, 30:195-200, 1989.

3: Mayo and P. Kearns. Distributed termination
detection with roughly synchronized clocks. Infor-
mation Processing Letters, 52~105-108, 1994.

J. Misra. Distributed termination of distributed
computations using markers. In Pwxeedings of the
2nd Annual ACM Synposium on Principles of Dis-
tributed Computing, pages 290-194, Montreal, Au-
gust 1983.

J. Misra and K. M. Chandy. Termination detection
of diffusing computations in communicating sequen-
tial processes. ACM Zhsactiona on Programming
Languages and Systems, 4(1):3743, 1982.

S. P. Rana. A distributed solution to the distributed
termination problem. Information Processing Let-
ters, 17:43-46, July 1983.

R. W. Topor. Termination detection for dis-
tributed computations. Information P-sing Let-
ters, 18:3336, January 1984.

Y. Tseng. Detecting termination by weight-
throwing in a faulty distributed system. Journal of
Pare&l and Distributed Computing, 25:7-15,1995.

S. Venkatesan. Reliable protocols for distributed
termination detection. IEEE tinsactions on Reli-
ability, 38(1):103-110, April 1989.

X. Ye and J. A. Keane. A distributed termination
detection scheme. Technical Report UMCS-91-3-1,
University of Manchester Department of Computer
Science, Manchester, Ml3 9PL, England, 1991.

213

