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Abstract- In a mobile wireless network, restrictions exist 
which demand creative solutions to classical distributed prob- 
lems. Distributed termination detection, the problem of de- 
ciding when the whole of a distributed computation has com- 
pleted, is one such distributed problem. In this paper, an 
existing message optimal distributed termination detection 
algorithm is selected and modified to enhance its behavior 
in a mobile wireless network; the modifications entail reduc- 
ing the number of messages received and transmitted by the 
mobile nodes involved in the distributed computation. 

1 Introduction 

A large percentage of the population today utilizes 
pagers and cellular telephones on a daily basis. Laptop 
computers have also seen a recent boom in sales. The 
union of these two technologies creates the need for pro- 
tocols to maintain Internet connections while roaming. 
This new paradigm of networking presents many unique 
challenges. 

As the surge in popularity of this new technology 
increases, “many experts are convinced that tomorrow’s 
computers will all be mobile [13]!” Since a large number 
of computers will be mobile, researchers must examine 
all existing algorithms to meet the challenges which ap- 
pear in the face of mobility. The research in this pa- 
per presents an approach to solving the problem of dis- 
tributed termination detection (DTD) in a mobile wire- 
less network. We begin in Section 2 with a presentation 
of the DTD problem as well as the Dijkstra and Scholten 
algorithm which achieves DTD [7]. 

Section 3 presents mobile computing and network- 
ing with an emphasis on the challenges which must be 
faced in order to create a mobile aware distributed al- 
gorithm. Our enhancements for making the algorithm 
by Dijkstra and Scholten mobile aware are presented in 
Section 4. Finally, Section 5 contains our conclusions 
and future work. 
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2 Distributed Termination 
Detection 

Distributed termination detection is one of the classic 
problems in distributed systems research. Dijkstra and 
Scholten [7] and Francez [9 
and solved DTD in 1980. Jr 

independently introduced 
hroughout the 198Os, so- 

lutions to DTD frequently appeared in the literature 

bv 
1, 4, 6, 10, 11, 12, 14, 15, 19, 20, 21, 23, 24, 25, 26, 281. 

ith proofs on the optimal bounds of the number of mes- 
sages and concern over fault tolerance,, DTD research has 
continued throughout the 1990s [3, 16, 17, 22, 27, 291. 

Section 2.1 describes DTD and defines terms used 
in the remainder of thii paper. We present the algo- 
rithm for Dijkstra and Scholten’s solution to DTD in 
Section 2.2. 

2.1 Problem Description 

Termination is detected in a distributed system when a 
process determines that the distributed computation has 
completed. We define several terms in order to describe 
distributed systems and distributed computations in this 
section. 

A distributed computation executes on a set of n 
processes, P = {po,p~,... ,p,,}, which are distributed 
throughout a network. These processes are considered 
as nodes in a graph which are connected by a set of 
communication channels, E. We refer to the channels 
as edges due to their function in the definition of a dis- 
tributed system as a graph. 

The following three general assumptions hold for all 
distributed systems: 

l There is no shared memory. Information must be 
transmitted between nodes via some channel in E. 

l There is no common clock. Thus, there is no way 
to schedule a set of processes to perform an action 
at precisely the same moment. 

l Communication takes arbitrary, but finite time. 
Since message transmission times are unpredictable, 
a process can not determine when a message is re- 
ceived by the recipient. 

The above three assumptions complicate DTD. In fact, if 
any of the above assumptions did not hold, DTD would 
1)~ trivial. 
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We view the processes in a distributed system as 
daemons that each perform a particular job. Thus, ac- 
tive processes are those currently working on a compu- 
tation; passive processes are waiting. We will denote 
the set of messages as m; therefore, there are ]m] mes- 
sages necessary for the computation and DTD. The mes- 
sages for computation are called basic mesaages (mn); 
the messages used for DTD are called control messages 
(mc). Basic messages contain requests to the daemon at 
the intended process. The following restrictions, based 
on these process states and message types, describe the 
general action of a distributed system: 

1. Initially, each process in the system is either active 
or pasave. 

2. An active process may become passive at any time. 

3. Only an active process may send a basic message to 
another process. 

4. A passive process becomes active only after receiv- 
ing a basic message. 

We can derive the necessary and sufficient condi- 
tions for DTD from these restrictions: termination has 
occurred when all processes in the system are passive 
and there are no basic messages in transit. DTD algo- 
rithms focus on the detection of such a state in which 
these necessary and sufficient conditions have been met. 

Chandy and Misra proved that any DTD algorithm 
must use 0( ]mg 1) control messages in its worst case exe- 
cution in order to determine termination [5]. In choosing 
an algorithm for a mobile wireless network, a minimal 
number of messages necessary for DTD was preferred. 
For a taxonomy of DTD algorithms categorized by sev- 
eral features, see [18]. 

2.2 Dijkstra and Scholten’s Solution 
In 1980, Dijkstra and Scholten introduced the problem 
of DTD and proposed an elegant solution [7]. The algo- 
rithm of Dijkstra and Scholten (hereafter called the DS 
algorithm) performs similarly to the execution of a con- 
current program; it is a call/reply or parental respon- 
sibility algorithm. In a concurrent program, the main 
procedure exits when it completes its main body and all 
of the procedures which it has called have exited. Fur- 
thermore, each called procedure may exit when it fin- 
ishes the execution of its body and all of the procedures 
which it has called have exited. Similarly, a node in the 
DS algorithm exits when it has completed its computa- 
tion and all the nodes to which it sent basic messages 
have completed. The DS algorithm is restricted to com- 
putations which begin at a single node, thus forming a 
computation tree. 

In the DS algorithm, basic messages travel down 
the computation tree. Control messages are replies to 
basic messages and thus travel up the computation tree. 
Each node in the DS algorithm ret,ains the total num- 
ber of basic messages it has sent to its successors and 
the number of basic messages it has received from each 
of its predecessors. A basic message is wareplied if the 
receiver of the basic message has not returned a control 
message. The receiver returns a control message after it 

has completed the requcstad job and has no unreplied 
basic messages which were a result, of the job. When the 
root node has no unreplied basic messages and is passive, 
termination is detected. 

Pseudocode for the DS algorithm follows. Each 
node keeps parent, passive, and pending for each job. 

Root node 

Upon becoming passive or pending becoming 0: 

if ((passive=True) and (pending=O)) 
distributed termination has been detected; 

Non-root nodes 

Upon finishing job m or pending becoming 0: 

if ((passive=True) and (pending=O)) 
send control message to parent; 

All nodes 

Upon the arrival of a basic message m from p-j : 

parent := p-j; 
passive := False; 
do job in m; 

Upon sending a basic message to a child: 

pending := pending+l; 

Upon receiving a control message from a child: 

pending := pending-l; 

The DS algorithm requires exactly one control mes- 
sage for each basic message in the system. As stated 
in Section 2.1, optimality in terms of message complex- 
ity for a DTD algorithm is o(]me]). The DS algorithm, 
which introduced the problem, is message optimal. Mes- 
sage complexity is important in choosing an algorithm 
for a mobile wireless network due to the expense of re- 
ceiving and transmitting messages. 

3 Mobile Computing and 
Networking 

In a mobile wireless network, a computer capable of re- 
taining attachment to a network while changing location 
is called a mobile node (MN). MNs wander throughout 
a set of cells, each of which is governed by a radio trans- 
mitter called a Base. Each Base is physically connected 
to the wired network and provides each MN within its 
cell a link-level point of attachment to the wired network. 
An example network illustrating these items is shown in 
Figure 1. 

Forman and Zahorjan list three major challenges 
that must be considered before mobile computing and 
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Figure 1: An example mobile network 

networking become commonplace [8]. The three chal- 
lenges are wireless issues (lower bandwidths, higher er- 
ror rates, more frequent disconnections, and lower se- 
curity than normal transmission media), portability is- 
sues (lower power and smaller storage capacity than non- 
mobile computers), and mobility issues (location man- 
agement for the MNs). In a solution to DTD for a mobile 
wireless network, we consider the wireless and portabil- 
ity issues. 

In any computation which includes MNs, there are 
three types of messages, each with a different cost. First, 
consider messages on the wired network (m,,,); we con- 
sider wired network messages inexpensive since they 
travel on a physical medium. Next, consider messages 
which are sent to (received by) MNs (m,); from an MN 
point of view, the power consumed by the receipt of a 
message is several times the power consumed by exe- 
cuting instructions. Last, consider messages which are 
transmitted by MNs (mt); a MN transmission consumes 
several times the power consumed by receiving a mes- 
sage. In this paper we present modifications to the DS 
algorithm in order to reduce the number of rnt and m, 
messages. 

4 Mobile Enhancements to the 
DS Algorithm 

Consider a distributed computation where all processes 
reside on MNs. A non-mobile aware implementation 
of Dijkst,ra and Scholtc~n’s DTD algorithm [7] rrquires 

[m,l = lrntj = 2 x IrnBj. Each control message sent to 
an MN incurs one m,; each control message sent by an 
MN incurs one mt . Figure 2 depicts a simple distributed 
computation, the DTD of the simple distributed compu- 
tation using the DS algorithm, and a timing diagram; 
solid arrows denote basic messages, dotted arrows de- 
note control messages, the grey vertical line denotes a 
state of the system (such as DTD), and, with time pro- 
gressing from left to right, a heavy line denotes activity 
and a thin line denotes passivity. 

DTD 

Figure 2: A graph and timing diagram for a simple dis- 
tributed computation 

In the DS algorithm, when node D completes node 
C’s computation, node D immediately replies to node 
C. Since C has completed its job when it receives this 
control message from D, C immediately replies to A (its 
caller). Termination, howeve!, can not be detected un- 
til D completes B’s computation and a control message 
is sent to B and then to A. Since node A can not de- 
tect termination until D is completed, D could cache C’s 
control message until it has completed all pending jobs. 
Therefore, our first improvement for converting the DS 
algorithm to a mobile wireless network allows MNs to 
cache control messages until completiig -their compu- 
tations. Figure 3 illustrates the time diagram for our 
enhanced DS algorithm. Notice that the reply from D 
to node C and node B are combined into a single mes- 
sage. This message is sent to the Base for D where it is 
split into two m,s. This improvement allows the MN to 
combine control messagesi to its .Baae which, in this ex- 
ample, reduces lmtl by one. In the best case, 

1 be reduced to n - 1, where n is the number o 
mtl could 
processes 

involved in the distributed computation. 
Our first enhancement functions correctly when pro- 

cesses do not make recursive or mutually recursive calls. 
Consider, for instance, the computation and timing di- 
agram in Figure 4. Node C is waiting on a reply from 
B, but B has cached its control messages until it is pas- 
sivc and has received rrplics from its children. Unfor- 
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DTD 

A 

Figure 3: The enhanced time diagram for Figure 2 

tunately, B is waiting on a reply from C; therefore, B 
is waiting (transitively) on its own reply. In the scheme 
developed thus far, if cycles exist, deadlock occurs. To 
prevent deadlock, we introduce a bitmap of size n which 
is added to each basic message (i.e., a small control mes- 
sage is piggybacked on each basic message). When node 
i sends a basic message, the node sets the ith bit in the 
bitmap it received for the current job and appends the 
bitmap to the message. At initialization, the root node 
creates a bitmap of size n with all zero entries. If node 
i receives a basic message with bit i set, it knows that 
a recursive (or mutually recursive) call has been made. 
When a node realizes it has received a recursive call, 
the job contained within the message is stored and the 
node immediately replies with a control message. The 
immediate reply does not remove the node from the com- 
putation tree, the immediate reply merely removes the 
cycle in the computation tree. Figure 5 exhibits the im- 
mediate reply to the example computation in Figure 4. 

A P 
B 

G C 

deadlock 

B 

C 

Figure 4: The effect of caching and recursive calls 

Pseudocode for our first enhancement to the DS al- 
gorithm follows. E&h node keeps parent and replied 
for each job as well as a single copy of number-active 
and pending. 

DTD 

A 3 
*.: 

B 

Figure 5: Immediate response of recursive calls illustrat- 
ing bitmaps 

Root node 

y numberactive becoming 0 or pending becoming 

if ((number-active-O) and (pending-011 
distributed termination has been detected; 

Non-root nodes 

Upon finishing job m: 

number-active := number-active-l; 

~$IOII number-active becoming 0 or pending becoming 

if ((number-active=01 and (pending-011 
send control message to all parents not 

already replied; 

All nodes 

Upon arrival of a basic message m with bitmap b for p-j 
from p_k: 

replied := False; 
parent := p-k; 
number-active := number-active+l; 
if (b has bit j set) ( 

send control message to parent; 
replied := True; 

1 
do job in m; 

Upon sending a basic message to a child: 

pending := pending+l; 

Upon receiving a control message from a child: 

pending := pending-l; 

Our first enhancement to the DS algorithm for a 
mobile wireless network never adds messages to the sys- 
tem. In the worst case, however, there is no reduction 
in the number of control messages transmitted. In other 
words, our first enhancement aids in practical matters 
only, not in theoretical bounds. 

Althou h our first enhancement to the DS algorithm 
may reduce ‘i mt 1, a penalty for this reduction is possible. 
Specifically, the caching of control messages may cause a 
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delay in the detection of termination by the root of the 
computation tree. Consider the computation graph and 
timing diagram in Figure 6. As in Figure 3, D caches its 
reply to C while D completes B’s computation. Since B 
is a direct successor of A, a path of length two between 
D and A exists; since there are numerous intermediate 
nodes between A and C, the control message from D to 
C, which could have been sent while D was completing 
B’s computation, traverse a path of length n - 2 before 
reaching A. The issue at hand is the number of control 
messages which must be propagated between the time 
of actual termination and its detection. We call this 
distributed termination detection delay or DTD delay. 

The original DS algorithm has a DTD delay between 
zero and [maI. In the best case, the last node to finish 
its computation is the root; in the worst case, the com- 
putation tree takes the form of a chain with cycles as 
in Figure 4. In this case, the calling chain must be un- 
raveled, much like activation records are popped off the 
stack in the run-time memory of a typical procedural 
program. If recursive calls are not allowed, the maxi- 
mum depth of a calling chain would be n - 1, but since 
processes are allowed to recursively call one another, a 
chain with cycles may have a length of 1~~1. 

D-I-D 

A 

Figure 6: An example of a computation suffering from 
DTD delay 

Although our first enhancement to the DS algorithm 
can cause a DTD delay greater than the original DS al- 
gorithm when the same distributed computation is run 
with both versions of the algorithm, the worst case DTD 
dela for the enhanced version of the DS algorithm is 
O(nr. Figure 6 depicts an example of a computation in 
which the difference in DTD delay between our enhanced 
algorithm and the original DS algorithm is O(n). In our 
enhanced algorithm, D caches the reply to C while com- 
pleting B’s request. If D had not cached this control 
message (as in the original DS algorithm), the message 
may have reached the root (A) before D completed B’S 
computation; in other words, the original algorithm may 

have DTD delay of two in this example. Our first en- 
hancement to the DS algorithm has a DTD delay of n - 2 
in this example. 

(a) 

Figure 7: An execution example of the original DS algo- 
rithm 
(a) basic messages 
(b) control messages 

The second enhancement to the DS algorithm re- 
duces Im,. 1. Figure 7 depicts an example of message 
transmissions at an MN which, upon receiving a basic 
message, sends basic messages to two other MNs; a heavy 
line denotes an m,, a dashed lines denotes an m,, and 
a dotted line denotes an mt. If we assume the MNs in- 
volved in this distributed computation are in different 
cells, this scenario produces six ws (messages 1, 4, 6, 
7, 9, and 12) which induce three m,s (m 

“5” 
2, 8, 

and 10) and three mts (messages 3, 5, and 11 . A re- 
duction in the number of control mrs can be realized in 
an enhancement similar to that proposed by Badrinath, 
Acharya, and Imieimski [2]. These authors propose that 
as much of the work as possible is delegated to the Base. 
This delegation involves the Base retaining data struc- 
tures for each MN under its care. In the DS algorithm, 
an MN can use its Base to retain the list of unreplied ba- 
sic messages. The basic messages are still transmitted as 
mws, n+s, and mts since the MN must obtain the infor- 
mation contained within the message. The Base peeks 
at the messages in order to retain the number of nodes 
from which the MN expects replies, as well as a lit of 
nodes which are expecting a reply from the MN. When 
the MN becomes passive, it tells the Base. Figure 8 illus- 
trates this enhancement with the simple example from 
Figure 7. Message 7 communicates to the Base that the 
MN has completed its computations; thus, after the re- 
sponses arrive for the basic messages transmitted by the 
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MN, the Base transmits a control message to the MN’s 
caller. In this example, two m, messages are saved. Leaf 
nodes benefit from this enhancement only when they are 
called by more than one node, intermediate nodes benefit 
only when they are either called by more than one node 
or call more than one node, and the root node benefits 
only when it calls more than one node. 

(a) 

Figure 8: An execution example of the Badrinath en- 
hancement to the DS algorithm 
(a) basic messages 
(b) control messages 

Pseudocode for our second enhancement to the 
DS algorithm follows: Each node keeps parent and 
replied for each job as well as a single copy of 
number-active and pending. The variables pending 
and numberactive are stored at the Base for each node 
and parent and replied are stored at the Base for each 
job. 

Base of root node 

Upon number-active becoming 0 or pending becoming 
0: 

if ((number-active-O) and (pending=011 
distributed termination has been detected; 

Base of non-root node 

F numberactive becoming 0 or pending becoming 

if ((number,active=O) and (pending=O)) 
send control message to all parents not 

already replied; 

Base of node pj 

Upon receiving a basic message m for p-j from p&: 

replied := False; 
parent := p-k; 
number-active := number-active+l; 
if (b has bit k set) ( 

send control message to parent; 
replied := True; 

1 
send job in m to p-j ; 

Upon receiving a control message from a child of p-j: 

pending := pending-l; 

Upon receiving a done message from p-j: 

number-active := number-active-l; 

Any MN 

Upon receipt of a job from the Base: 

do job; 

Upon end of a job: 

send done message to Base; 

Upon sending a message to a child: 

// nothing special 

This second enhancement to the DS algorithm, like 
the first, does not change the message optimality of the 
algorithm. As stated above, the Badrinath enhancement 
does not always reduce the number of messages. There 
fore, the bounds on the number of messages continues to 
be O(lm~[). This enhancement, like our first enhance- 
ment, is a practical enhancement for DTD in a mobile 
wireless network. 

5 Conclusions 
As stated above, the Badrinath enhancement can be used 
in conjunction with the caching enhancement. Contro- 
versy exists, however, over whether Bases will provide 
the required service. If Bases do make such a service 
available, the use of the service may be based on a combi- 
nation of the importance of the computation, the neces- 
sity of savings, and the cost of the service. The caching 
enhancement is available for use regardless of the ser- 
vice provided by the Base and should be utiliid for a 
reduction of 1~~1. 

The enhancements in thii paper do not reduce the 
bound on the number of messages, but they do reduce 
the number of m,s and mts required for termination de- 
tection in practice. Therefore, the bound on the number 
of messages continues to be O(lm~ ); this bound has 
been proven as message optimal for Ib TD. 

An area of future work includes converting other 
appropriate existing DTD algorithms to a mobile wire 
less network. DTD delay should be considered strongly 
since, in the mobile world, transmission delay due to er- 
ror rates and disconnections expound DTD delay which 
exists in the algorithm. 
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