IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 4, JULY 1982

391

Echo Algorithms: Depth Parallel Operations
on General Graphs

ERNEST J. H. CHANG

Editor’s Note: The referees have noted and the author agrees that this paper contains
information related to that contained in the paper, “Termination Detection for Diffusing
Computations,” by E. W. Dijkstra and C. S. Scholten. However, since this information
was independently developed by the author and was submitted for publication prior to
the appearance of the cited paper, fairness to the author requires its publication.

Abstract—This paper describes a method for the detection of proper-
ties of general graphs in an environment in which each node can be
considered an autonomous processor, interacting with its neighbors by
passing messages.

These algorithms are decentralized in that they depend on no central
controlling process nor on global storage. No node is required to know
the configuration or extent of the graph, and no global clock is required.
The algorithms are inherently asynchronous, and in general require exe-
cution time proportional to the diameter of the graph. '

Index Terms—Computer networks, decentralized control, distributed
computing, graph algorithms.

I. INTRODUCTION

HE technique of depth-first search is well known in
graph algorithms [1]. For example, finding the strong
components of a directed graph [9] or the biconnected com-
ponents of a general graph [1] are based on this method.
However, depth-first search is a technique which assumes that
only one operation at a time is performed on a graph. We ask
whether, given the possibility of parallel graph operations,
there is a parallel traversal method which is analogous to depth-
first search. In theory, such a traversal method could cover
the graph in time linearly proportional to the traversal of the
diameter of the graph, the longest of the shortest paths be-
tween all pairs of nodes. A sequential algorithm can do no
better than visit each node in turn. Furthermore, if there is a
procedure which can logically be separated into independent
parts, it is reasonable to execute these parts simultaneously
rather than sequentially.
We will present a class of algorithms for detecting properties
of general graphs which are based on the following model.

Manuscript received July 24, 1980.
The author is with the Department of Computer Science, University
~of Victoria, Victoria, B.C., Canada.

A distributed computer system is a connected graph in which
each node is a processor and each edge is a bidirectional com-
munications link. Let each processor have its own local storage,
and assume that it is capable of supporting multiple local pro-
cesses, so that while some application tasks are executing, it is
also capable of sending and receiving messages, and of initiat-
ing control algorithms. We assume a message-passing capability
which can send in parallel to the immediate neighbors of a
node, and has enough memory at each node to store all incom-
ing messages. We do not presume any fixed speed for trans-
mission between nodes, and we do not allow messages to over-
take one another on a link. Furthermore, we will assume that
message passing between two ends of a link use a protocol
requiring positive acknowledgment. Thus, either the message
has been sent successfully or the sender knows it has not and
retries. Any permanent message loss therefore occurs not in
transmission, but in association with node failures. Further-
more, there is no shared memory, global clock, or central
controller, nor does any node know the extent or membership
of the entire graph. The algorithms we will present are decen-
tralized, and they function through the cooperative behavior
of the nodes. They are based on message passing, and they use
a parallel graph traversal technique which takes advantage of
potential simultaneous activity.

The coordination of a loosely coupled multiprocessor system
presents interesting new problems. Coordination implies
knowledge of global properties, which is usually not present
a priori in a loosely coupled system having no global mecha-
nisms. Decentralized algorithms, existing at all processors,
must operate asynchronously through message passing to
coordinate the system as-a whole. Some control finctions
which are useful in a distributed system are: assigning an iden-

ity to a new processor, finding the ordering of all processor
identities in the system, finding the configuration of the
system, providing a mutual exclusion mechanism which per-

0098-5589/82/0700-0391$00.75 © 1982 IEEE

392

mits only sequential access to a critical set of resources, find-
ing the clusters of nodes (subgraphs) which are interconnected
by single links, and broadcasting a message quickly to all nodes.
Clearly, many of these control functions correspond to the
detection of simple graph properties of the multiprocessor
system. While we have studied decentralized algorithms for
these problems and others not included in this brief list, it is
our purpose in this paper only to present the fundamental
techniques underlying all such algorithms. We will then use
three of them to illustrate specific aspects of decentralized
control. A complete description of all the algorithms is outside
the scope of this paper, and can be found elsewhere [3]-[5].

The algorithms to be described are called Single-Source Sort,
Multisource sort, and Biconnected Component Detection. As
we present each algorithm, we will indicate its relevance to the
control requirements of a distributed system.

The decentralized nature of our method makes these algo-
rithms quite different from other parallel models which have
been proposed for finding graph properties. For example, a
parallel depth-first method in the literature is based on -
processors sharing common memory [6]. The studies of
parallelism for graph algorithms by Arjomandi [2] also assume
k-processors and common memory. Rosenstiehl’s [8] distrib-
uted algorithms based on a network of finite state machines
are very close in concept to ours, but assume a synchronous
system with simultaneous transitions based on sensing the
states of all neighbors at each step.

Fully parallel algorithms on graphs must solve some basic
problems. If several edges lead to one node, and the parallel
traversal of edges starting from some initial node should arrive
at that node simultaneously, how is this to be handled? Does
the message from each of the edges get passed on, and if not,
what is to be done with the ones which are aborted? How
does information get back to the starting node in a coordi-
nated fashion? We shall show that the class of parallel graph
algorithms which we call echo algorithms address these prob-
lems in simple and efficient ways.

II. EcHO ALGORITHMS

The basic ideas behind echo algorithms are simple, and will
be described informally in this section. Given a general graph
with intelligent nodes which can communicate along its edges,
the first idea is that message passing is the fundamental opera-
tion of any echo algorithm. Traversal of the graph therefore
means passing messages from one node to another. For any
particular node i which starts the execution of an echo algo-
rithm, the messages originating from i form a family, sharing
the identity of 7 in common.

The second idea is that there are two phases in the traversal
of a graph: a forward phase and an echo phase. The forward
traversal of a graph from a starting node is accomplished by
explorers, and the echo phase by echoes. Let us confine our-
selves at this point to single-source echo algorithms, those
which are started by one node, so that we can study the be-
havior of one family of explorers and echoes.

The third idea, then, is that each node which is visited for
the first time by an explorer will propagate explorers in paral-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 4, JULY 1982

lel along all the out-edges of that node. For a connected un-
directed graph, these would be all edges except the edge at
which the first explorer arrived. This edge is called the first
edge. Explorers coming to an already visited node will turn
into echoes, as will explorers coming to a sink node, one which
has no other edges. In general, echoes travel in a direction
opposite to that of explorers.

The fourth idea is that of arbitration. We assume a mecha-
nism at each node such that if two or more explorers arrive
at an unvisited node simultaneously, one and only one of them
is chosen as the first explorer to the node, and its edge of
arrival as the first edge of the node. The other explorers are
then considered as subsequent explorers to a visited node,
and turn into echoes. '

The fifth principle is that of synchronization. A node will
echo on its first edge after it receives an echo for each explorer
sent out. This is called the echo-merge mechanism. We as-
sume that there is an arbiter mechanism at each node such
that if messages should arrive simultaneously, they are given
some arbitrary sequential ordering.

Last, but not least, explorers and echoes will carry informa-
tion with them about those parts of the graph which they have
traversed. A node which synchronizes echoes will process this
information, and will send the result with the echo from that
node. The starting node will finally receive all its echoes from
its out-edges, and after processing this information, will obtain
the result of the algorithm.

An echo algorithm, then, is started by some initiating node
sending out in parallel as many explorers as there are out-edges,
each onecarrying the identity of the starting node.

A. Definitions

Given a graph G =<V, E> where V is a nonempty set of
nodes and £ is a set of edges of the form (x, y) where x and y
are members of V, let n be the cardinality of V and e the
cardinality of £. We distinguish several classes of graphs. All
connected undirected graphs are called C-graphs. For directed
graphs, there are several possible subgraph relationships. A
directed graph G is type I or digraph I if it is a strongly con-
nected graph in which every node is reachable from every
other node. We call the reach set of a node v the set of nodes
in G to which there exists a directed path from v. Then a
digraph II is a directed graph whose reach sets are dissimilar,
but one of which is the entire set of nodes of the graph. A
digraph III is a directed graph which has no reach set contain-
ing all the nodes of the graph. Thus, there exists no node from
which all other nodes can be reached. A sink node in a C-graph
is a node with only one edge, while for a digraph, it is a node
with no edges leading out from it.

An initiator node S is a member of V which produces, in an
execution of an echo algorithm, a family of explorer and echo
messages. Let explorer[a,b] represent the explorer going
from node a to node . Then if « represents an arbitrary node,
explorer[a,b] is any explorer coming to node b, and explor-
er[a,a] would be any explorer leaving node a. We adopt the
same convention for echoes, and use { }to represent a set in
the usual manner, with a suffix -§ to indicate the initiator.

CHANG: ECHO ALGORITHMS

Thus, {echo[a,b]} - S would refer to all the echoes going to
node b belong to the family of messages of initiator S.

By [a,b] we will mean the edge going from a to node b,
and by [b,z] we will mean the same edge, but in the sense
of b to a. To convey a neutral sense of an edge connecting
a and b, we use (a,b).

An explorer which is the first to arrive at a niode is called a
primary explorer. An edge carrying a primary explorer is a
P-edge. A node may have several P-edges, but the P-edge on
which it was itself first visited is called its first edge. Its other
P-edges are first edges to their successor nodes. Non-P edges
clearly carry explorers to already visited nodes. Every node
has a first edge except the initiator, which is considered visited
a priori. A node which has P-edges leading out of it is called
a P-node, and a node which does not is a non-P node.

Echoes arise in two situations: at the termination of an ex-
plorer, and from a node which has received an echo for every
explorer it has sent out, and then itself echoes on its first edge.
In the first case, such an echo is called an initial echo, and the
node at which its corresponding explorers terminated is called
the origin of the initial echo.

B. General Properties

In order to elicit some properties general to most of the echo
algorithms, let us first describe the pure traversal algorithm.
This will also establish a prototype for the description of other
algorithms to follow. '

Algorithm O is a traversal of a graph from an initiator node,
and we cannot traverse nodes which are not reachable. Hence,
for a digraph, we can only study the subgraph G’ induced
from G by the reach set of the initiator node S in G. Call this
the S-reach graph of the original graph G. Therefore, Algorithm
0 can apply to any C-graph or diagraph I, and to the S-reach
graphs of digraph II and digraph IIl. Fig. 1 illustrates these
different types of graphs.

Explorers and echoes represent messages of two types going
from node to node, The basic identity of each is thus zype
and family name S. Implicit to the message is the To and
FROM node information, and other protocols which the com-
munications system may require. These are constant, and we
include them under the notion of basic identity. Algorithm O
requires no more than basic identity on a message.

Algorithm 0—Pure Traversal: First, assume that initiator S
sends explorers in parallel on all its out-edges, where an out-
edge is a directed edge from § for digraphs and all the edges of
S for a C-graph. We must consider the activity at each node
for the arrival of an explorer or an echo in a particular edge.

1) If the explorer is the first to arrive at the node, mark the
edge as first, and send explorers in parallel from the node on
the out-edges of the node. For a digraph, these are edges
directed from the node. For a C-graph, these are all edges
except the first edge.

2) If the explorer is not the first or if there are no out-
edges, then echo back along the edge on which the explorer
arrived.

3) If an echo comes to the node, then mark the edge as
having received an echo. If all echoes for the node have ar-

393

The b-reach graph of G

A Digraph II G

The a-reach graph of G’

The -d-reach graph of G’

A Digraph III G’

Fig. 1. Some reach graphs.

rived, then send an echo back along the first edge of the node,
unless the node is the initiator, in which case we are finished.
Let us look at the properties of the pure traversal algorithm.
These are based on the three fundamental mechanisms of echo
algorithms: explorers are sent in parallel from a node, each
node has only one edge on which it is first visited by an ex-
plorer, and a node waits for all its echoes to come back before
it itself echoes on its primary edge.
Property 1: Each node receives at least one explorer.
Argument: By assumption, only those graphs and sub-
graphs in which all nodes are reachable from S are in question.
Therefore, every node has a path from S. If any node did not
receive an explorer, then its predecessor on the path from §
could not have received one. By induction, either S did not
emit any .or else the node is not reachable. In any case, pre-
suming no loss of explorers, a contradiction arises. Hence,
there is no such node.]
Property 2: Eventually, all explorer activity will terminate.
Argument: We are only concerned with finite graphs. By
Property 1, every node will eventually be visited, and any
explorers generated thereafter can only come to sink nodes
or visited nodes, turning into echoes. , O
Property 3: There exist non-P nodes which have no P-edges
leading from them.
Argument: We are referring to edges which are first edges
to their successor nodes. Trivially, sink nodes have no out-

394

edges. Furthermore, by Property 1, all nodes eventually get
visited for the first time by an explorer. Hence, the last such
node can send explorers only to visited nodes. Thus, there
are no P-edges leading from it. O

Property 4: A P-node sending a primary explorer to its
successor can be said to precede it. Then there can be no cycle
of precedence.

Argument: If node a sends a primary explorer to b, then
this will cause b to send explorers from b. Hence, the activa-
tion of @ could not have been from one of these explorers.
Thus, if a precedeés b, then b could not precede a.

Corollary 1: 1t follows immediately that an edge (a,b), if it
is a P-edge, can only carry an explorer in one direction, either
from a to b or vice versa.

Corollary 2: 1t also follows that a non-P edge must carry
explorers in both directions. For if @ and b are not activated
one by another, they must have both sent out explorers on
all their nonfirst edges. Clearly, the edge (a,b) is such an edge.
Thus, it must carry explorer[a, b] as well as explorer[b,a]. O

Property 5: Every explorer on an edge induces a corre-
sponding echo.

Argument: Consider all non-P edges. They carry explorers
to visited nodes, and immediately induce an echo. For those
P-edges which lead to sink nodes, a corresponding echo is also
generated at that node. It follows that a node which only has
non-P edges leading from it will get all its echoes, and be able
to send an echo on its first edge, or else it is a sink node, and
also echoes.

A P-nodé has a primary edge leading out of it, and a non-P
node does not. Consider an explorer on a P-edge from a P-node.
It either leads to another P-node or to a non-P node. By in-
duction on the finite size of the graph, all P-nodes must even-
tually lead to non-P nodes. In the previous paragraph, we have
shown that non-P nodes will echo on their first edges. Hence,
the P-edges leading to non-P nodes will receive echos. By
induction, all P-edges will eventually receive an echo. O

III. PERFORMANCE OF ALGORITHM 0

The efficiency of this algorithm can be considered using
three metrics: total number of message passes in the system,
elapsed communication time for the algorithm, and the amount
of storage required at each node. We make some important
assumptions about elapsed time. First, we assume that pro-
cessor time is very small compared to communications time.
Second, in an asynchronous system, we have no guarantees
as to how fast messages move, except that all messages take
a bounded time to traverse a link. For purposes of analysis,
we will consider the average case where messages take approxi-
mately the same time to traverse an edge.

Consider number of message passes first. It is bounded by 4e
where e is the number of edges in the graph. Since each edge
(a,b) can have at most two explorers, one in each direction,
and two corresponding echoes, the total number is bounded
by 4e. Note that for a digraph, it is 2e, since there are no
symmetrical pairs of explorers which travel on directed edges.

Assume that each edge takes approximately one unit of time
to traverse, so that we can estimate bounds for the communi-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 4, JULY 1982

cation cost of a decentralized algorithm. Define the S-span of
a graph as the longest of the shortest paths from S to any ele-
ment in the reach set of S. When the metric of weight used is
message travel time, we used the term timed S-span. '

It follows that the timed S-span of a graph represents the
time it takes for explorers to reach every node of the graph,
called the forward phase of the echo algorithm. If we assume
that explorers and echoes have the same speeds, then the tra-
versal of the graph from S will take twice the timed S-span of
the graph. .

For a C-graph or'a digraph I, traversals starting from any
node i will have the same reach set. The largest of the i-spans
is referred to as the diameter of the graph. The timed diameter
is then the maximum of all traversals of the graph for all start-
ing nodes. We extend this notion to include digraph II’s, even
though the reach sets of different nodes may be different. The
largest i-span will be taken to be the diameter of a digraph II.
From this point on, unless otherwise specified, we will mean
timed path length when we refer to path length, and timed
diameter when we refer to diameter.

In the execution of a pure traversal algorithm from a initi-
ator S, the communication time is less than or equal to twice
the diameter of the graph. This result follows immediately
from the definition of diameter and the parallel activity of
the algorithm.

The storage required at each node for a pure traversal algo-
rithm is O(n) bits where 7 is the number of nodes in the graph.
This follows from observing that a node i has at most 7 edges,
each of which needs one bit to mark the arrival of its echo.
To mark the primary edge of 7 requires log n bits, and to main-
tain the name of the node only uses log n bits. Finally, each
message carries the basic identity of the initiator and a type,
which is (log # + 1) bits. Finally, one bit is needed to mark a
node as visited. Thus, the total is (n + 3 log n + 2) bits, which
is O(n) bits.

IV. TRAVERSAL EXECUTION GRAPH

Since we have not made any particular assumptions as to the
exact speed of explorers or echoes, a particular execution of
an echo algorithm may cause different sequences of arrivals of
explorers and different edges to be primary edges. Each exe-
cution of a graph G by a pure traversal algorithm can be repre-
sented by an execution graph EG drawn as follows.

Draw the node S’ in EG to correspond to the node S in G,
and for each explorer which goes from S to a successor node i
in G, create anew node i’ in EG, and draw a directed arc from
S’ to i'. Do this for each explorer coming from a node i in G,
creating a new node in EG to correspond to its successor in G.
If an explorer terminates at a visited node or a sink node in G,
its corresponding directed edge in £G terminates in a leaf node
of EG. Nodes in EG are labeled according to the names of
their corresponding nodes in G.

The execution graphs for different types of graphs share the
same general characteristics, but differ in some details. We will
introduce their salient features by considering the execution
graphs of connected undirected graphs first, and then seeing
what the differences are in the case of directed graphs. Fig. 2

CHANG: ECHO ALGORITHMS

Fig. 2. A C-graph and some of its execution graphs.

shows a C-graph and several of its possible execution graphs.
In spite of the differences in the topology of these execution
graphs, however, they exhibit some remarkably regular proper-
ties.

First of all, it is easy to see that each is a directed tree in
which the root is the initiator S and directed edges represent
the movement of explorers from a node which is the root of
a subtree to its successors. The movement of echoes is up the
tree EG, with the echo-merge mechanism operating at each
root of a subtree, to produce a new echo. A leaf node in EG
which has a corresponding internal node in EG represents
the stopping of an explorer at a visited node in G. In fact, if
a is the leaf node and b is its immediate predecessor in EG,
then not only do 4 and b exist as internal nodes in EG, but
there also exists, by Property 4, the edge [¢,b] in EG, with b
.being a leaf. A leaf in £G with no corresponding internal node
represents a sink node in G.

A. The Leaves of EG

The number of leaves of EG is equal to the number of dis-
tinct explorers in EG, which is also the number of distinct
paths taken in the traversal of G. The graph £G has a number
of internal nodes EG.int and a number of leaf nodes EG. leaf.
The original graph G has n nodes, one of which is S, the initi-
ator of the algorithm. The number of edges of S is called the
degree of S, written S.d. Let V' be the set of nodes of G with
S removed. Then the sink nodes of G among V' can be desig-
nated V'.sink. Each of these corresponds to a leaf node in EG
which has no matching internal node. Note that although the
initiator node S may be a sink node in G, nevertheless, it will

395§

always be an internal node of EG, being the root of the tree
EG. The internal nodes in EG are exactly the nodes of G
which are not sinks in V', i.e.,

EG.int=n- V' sink.

The number of leaves of EG can be found by the following
calculation for C-graphs.

Let S.d be the degree of S, let n be the number of nodes of
G, let {R} be the set of nodes in G which are not sinks or' S,
with cardinality 7, and let 8 be the sum of the degrees of the
nodesin {R}.

Proposition 1:

EG.leaf=S.d + [0 - 2r].

Argument: Start with the degree of S. There are at least
that many explorers in the execution of G. Consider the re-
maining nodes. A node with two edges has one primary in-
edge and one out-edge. Thus, an explorer coming to such a
node does not create an additional path, but merely extends
an existing one.

Therefore, the number of edges in excess of two at each of
the remaining nodes represents the number of additional paths
created by explorers starting from S. However, if a node isa
sink in G, clearly it does not add any more paths since it only
has one edge. Thus, we exclude all sink nodes and the initiator
node from consideration. Call this remaining set of nodes R,
with cardinality . For each of these nodes, the number of
additional paths is the number of edges at the node, i.e., the
degree of the node, in excess of two. For all nodes in {R},
then, the additional paths are the sum of the degrees of these
nodes less twice their number (27). O

B. The Edges of EG

Each edge in EG represents the movement of an explorer,
and therefore the total number of edges in EG is a measure
of the total work done in one execution of a pure traversal
algorithm. It turns out that this number is dependent only on
the original graph G, and not at all on the manner of traversal.
Furthermore, the number of edges in EG can be computed
from a C-graph G as follows.

If EG.e is the number of distinct edges of EG we wish to
count, and EG.leaf is the number of leaves of EG which we
can compute from G as above, then given that we also know
G.e, the total number of edges in G, and V', sink, the number
of sink nodes in G not including S, we have the following.

Proposition 2: :

EG.e=G.e + (EG.leaf - V'.sink)/2.

Argument: Note first that every edge of G is in EG, either
as an edge leading to an internal node or an edge leading to a
leaf node which is a sink. Thus, the number of edges in EG
is at least G. e, the number of edges in G.

Now consider those leaf nodes in £G which represent the
stopping of an explorer at a visited node. If such a path is

[a,b], from a to b, then by Property 5, there must be a sym-

metric path [b,a] which holds an explorer going the opposite

396

way which stops at node a. Each edge in G carrying an ex-
plorer to a visited node therefore contributes an additional
edge to EG.

The number of such additional edges is easily found. The
leaf nodes of EG represent either explorers stopping at sinks
or at visited nodes, in which case such explorers occur in pairs.
Therefore, if we know the number of sink nodes in G which
contribute to the leaves of EG, the remaining leaves of EG are
those from explorers stopping at visited nodes. The number
of sinks in G can be counted by simply examining G, with the
proviso that if the detector node S is a sink node (has only one
edge), then it is not included, for it cannot contribute to a leaf
of EG, being by definition the root of EG.

The number of leaf nodes in £G from visited nodes in G is
then EG. leaf - V'.sink, and the number of additional edges of
EG in excess of G.e is half this number. But EG. leaf can be
found, by Proposition 1, from knowing some parameters of
the original graph G. Therefore, the number of distinct edges
in EG can also be determined from the graph G alone. a

For directed graphs, a similar execution graph can be drawn.
The number of leaf nodes is found by taking the out-degree
of S (the number of out-edges of S), and adding the number
of out-edges in excess of one at each of the remaining nodes.
This follows from the simple observation that additional paths
are created only at nodes which have more than one out-edge.

The EG for a directed graph has the nice property that the
number of edges in EG is exactly the number of edges in G.
This is so because each node can only send one explorer on
an out-edge, and each edge, being directed, can get an ex-
plorer only from its source node.

C. The Traversal Spanning Tree

Observe that if we remove from EG all the leaf nodes repre-
senting the termination of explorers at visited nodes and the
edges directed into them, we are left with a tree in which each
node of G is represented only once, and each edge is a first edge
to its successor node. This is exactly a spanning tree of G. We
call it a traversed spanning tree and for brevity, a P-tree, since
each edge is a P-edge. Thus, we see that the parallel traversal
method guarantees the construction of a spanning tree in
which every node is visited once. The traversal execution
graph not only includes a spanning tree, but also an edge-
spanning tree in which each edge is traversed. Note that in a
P-tree, all internal nodes are P-nodes and all leaf nodes are
non-P nodes, since none of their out-edges in £G is a P-edge.

This is the main reason why echo algorithms will be seen to
be a basic technique for distributed systems. It uses a method
of constructing a spanning tree in parallel, with communica-
tion time just twice the diameter of the graph. It is, further-
more, a method in which, regardless of the exact sequencing of
the messages, the total number of message passes (a measure
of overall work), is constant for a given graph, and can be
precomputed.

In a computer network, it may be argued that once a mini-
mum spanning tree has been found, it is the fastest way to
broadcast a message to all nodes. However, because of the
variability of communication delays, any predetermined span-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 4, JULY 1982

ning tree may not, in fact, represent the fastest current set of
paths which reach all nodes. On the other hand, a pure traver-
sal echo algorithm always takes the minimum amount of time
to span the entire graph, and thus, in general, may be expected
to perform slightly better than any given minimum spanning
tree. This does not presume that the echoes for the pure tra-
versal also take the minimum time to return. However, we note
that an echo algorithm requires 2 e messages, while a minimum
spanning tree traversal only needs n messages once it has been
established.

V. Speciric ECHO ALGORITHMS

The basic traversal algorithm can be modified to yield a large
number of decentralized parallel graph algorithms. In this
section, we will present three echo algorithms. The first one is
a simple Single-Source algorithm in which a particular node
initiates the algorithm, which executes in parallel, the required
answer finally being obtained by the initiator node. The task
to be performed is to get the identities of all the processors in
the system in sorted form (assuming a total ordering on identi-
ties).

The second is a simple Multiple-Source echo algorithm. Mul-
tiple-Source algorithms are designed to take into account the
situation in which several nodes may initiate an activity which
has a common global end. In this case, all nodes which initiate
this algorithm within a certain functional time bound partici-
pates in the algorithm, which produces a distributed ordering
by identity (or priority) of the participants. By this, we mean
that each node becomes aware of the identities of its predeces-
sor and successor in the ordering, with the highest and lowest
nodes being aware of their distinctive rank.

The third is a nontrivial Single-Source algorithm for finding
the biconnected components of an undirected and connected
graph. The answer will be found in a member of each bicon-
nected component, and is thus in distributed form.

A. Algorithm 1-Single-Source Sort

In order for a new node to be added to a distributed system,
it is necessary for it to obtain a unique identity. Assume that
the set of all possible identities has a total ordering. Then a
node can simply take an identity currently unused or larger
than the current largest one. Although the new processor
cannot itself participate in the system, we can postulate a
mechanism by which it asks its nearest processor in the net-
work to obtain an identity for it. To avoid duplicates, this
mechanism should only be used sequentially in a global sense.
We have previously [3], [4] indicated how a decentralized
mutual exclusion mechanism might be implemented and as-
sume its existence for the present. Once a node is allowed to
proceed, it need only obtain a sorted list of all nodes presently
in the network, find an unassigned number, and initiate the
new node into the network. The algorithm which follows
describes how such a sorted list is easily obtained. It applies
to C-graphs and S-reach graphs of directed graphs. Each echo
needs to be able to carrying the names of all the nodes. Every
initial echo carries the name of its origin. Explorers only need
basic identification, i.e., the name of the initiator, and a type.

CHANG: ECHO ALGORITHMS

Each node holds a current list initially containing only its own
name.

1) Let the initiator S start the forward phase of a pure tra-
versal by sending explorers in parallel on its edges.

2) An explorer coming to a node for the first time marks
the edge as first, and sends explorers in parallel on the other
edges of the node. If the node is a sink, the explorer termi-
nates, and an initial echo is sent instead on the first edge of the
node.

3) A subsequent explorer at a node terminates, and an ini-
tial echo is sent on the edge on which the explorer arrived.

4) Each initial echo carries the name of its origin.

5) As an echo arrives at a node, the list of names carried
by that echo is merged into the current list at the node, delet-
ing duplicates.

6) After all echoes have arrived at a node, it sends off its
echo, on its first edge, containing its current list.

7) If the node in 6) is the initiator, then the current list is
the sorted list of all the nodes of the graph.

In considering the execution graph, clearly the algorithm is
collecting a merged list of the nodes in each subtree, progres-
sively towards the root. We are not proposing this as an im-
proved sorting algorithm, but rather pointing out that a simple
echo algorithm can perform a basic function effectively.

In terms of communication time and message passes, this is
the same as a basic traversal. In terms of storage, each echo
may have to carry # names, and hence each node needs at least
2n log n bits to accommodate its own current list and the list
carried by an arriving echo.

We can improve the algorithm by a simple modification. Let
only P-nodes include their names in the sublists being con-
structed. Since P-nodes form a spanning tree, each node is
included once and only once in any list. There is no redun-
dancy, and the number of operations in the merges is the
same as in a conventional merge-sort. This change is ac-
complished by having echoes which arise from explorers
at visited nodes carry an empty list.

B. Algorithm 2—Multisource Sort

If a subset K of processors simultaneously requires access to
a set of resources which exist in distributed form, but only one
processor is to proceed at a time, a serializing mechanism will
be needed. Such a mechanism cannot be placed at any specific
resource because the set of required resources is distributed.
Instead, the contending processors must agree among them-
selves as to who proceeds and in what order. One class of
problems in which this situation arises is the multiple-copy
update of distributed databases. A rational and simple way
in which such an agreement might be reached is for the pro-
cessors to enter into an ordering cycle, following which an
update cycle can occur, each processor executing in order of
priority. For simplicity, consider the case in which priority
is equivalent to the identity of the processor. The algorithm
below produces a distributed ordering of those nodes which
wish to update, and are included in this cycle of updates.
There are two mechanisms, one to include candidates for a

397

particular cycle, and the other to produce the distributed
ordering.

The inclusion mechanism works as follows. Each node has a
status which is either asleep, awake, or shutoff. Initially, all
nodes are asleep. Some node that spontaneously wishes to
start turns itself awake. An explorer coming to an awake node
considers that node included. An explorer coming to an asleep
node turns it to shutoff, and clearly an explorer at a shutoff
node considers it excluded. Note that a shutoff node does not
participate in the node ordering, but must act to receive echos
and send explorers, since it may be intermediate in the path
between two awake nodes.

To do the ordering of nodes, each echo keeps two fields:
larger and smaller. Initially, larger contains some largest imple-
mentation number TOP, and smaller some smallest implemen-
tation number BOT. Each included node performs a basic tra-
versal, and among the included nodes it encounters, it finds
the smallest node larger than itself and the largest node smaller
than itself. When the algorithm is finished, the largest of the
included nodes will know that fact because its larger remains
as TOP, while the smallest of the nodes has its smaller value
unchanged from BOT.

1) Let an asleep node wishing to participate turn itself
awake, and send its explorers on all out-edges.

2) An explorer coming to an asleep node turns it to shutoff.

Note: From this point, consider only the activities for a

particular family of messages, originating from a particular
initiator. Thus, an explorer coming to a node on a P-edge
means an explorer of that family visiting a node for the first
time. :
3) An explorer on a P-edge to a node marks the node as
having been visited by that family, the first edge for that
family, then sends out more explorers. If the node is a sink,
then if it is an awake node, 5) is done; or else if it is a shuzoff
node, 4) is done.

4) An explorer coming to a visited shutoff node creates an
initial echo, carrying the initiator name, with larger = Top and
smaller = BOoT. The node sends the echo back.

5) An explorer coming to a visited awake node creates the
same echo, but if the node is smaller than the initiator, it
places the node name in smaller and if it is larger, it places it
in larger. The node echoes.

6) As a node receives echos for a family, it constructs an
echo which will contain the largest of the {smaller} and the
smallest of the {larger} fields in the echoes. After all the
echoes have arrived, an awake node tries to place its own name
in either the larger or the smaller field of the constructed
echo. Then it echoes along its first edge. A shutoff node
simply echoes on its first edge. ;

7) If the node in 6) is the initiator of the echoes in question,
then the algorithm terminates for that initiator. The initiator
that is largest among the awake nodes identifies itself by find-
ing that its larger field still contains TOP.

This algorithm contains & parallel executions of a modified
basic traversal. In thinking of echoes coming back up the sub-
trees of the execution graph, all nodes are involved for echoing
purposes, but only awake nodes compete for being either the

398

largest of the nodes smaller than the initiator or the smallest
of the larger nodes. The result of this algorithm is that a doubly
linked list of the sorted nodes is found and stored in distrib-
uted form among the larger and smaller fields of the k involved
nodes.

Communication time for executing n simultaneous execu-
tions of a traversal algorithm can be considered to be the same
as executing one algorithm if the processors are very fast com-
pared to communications. Thus, as messages arrive, they are
handled with a negligible loss of time. The messages are se-
quential on any particular link, and as long as the transmission
rate is larger than the message generation rate, messages will
not back up at a node. Under these assumptions, the elapsed
time for this algorithm is just O(D), where D is the diameter of
the graph, since there are k traversals, but each traversal occurs
in parallel. Furthermore, the number of message passes in
total is bounded by 4ke since a single traversal needs at most
4e message passes. -

Finally, each node needs at most 7 bits to mark echo arrivals
for each family in the worst case of a fully connected graph.
In addition, for each family, each node needs to maintain an
echo while it is being constructed. This is the name of three
nodes and only needs (3 logn) bits. Therefore, storage is
bounded by n + 3 logn bits at a node for each family. For
the entire algorithm, then, we need nk + 3% log n bits. Since
k is, at most, n, the storage needs are of O(n?).

If we were to use this technique for the multiple copy up-
date problem, the largest contender would start by sending an
update using parallel traversal to all nodes. We would adopt
Ellis’ technique [7] of using two types of update messages,
an update and an update final. When all echoes for an update
traversal have returned to the initiator of the update, it trans-
fers control to the node described in its smaller field. If it is
the last node to update, then its smaller contains the imple-
mentation number BOT, and the node sends out update final
messages. All other nodes which initiate an update use update
messages. Nodes which echo following the execution of
update final messages will reset their states to asleep, so that
another set of updates can be performed.

C. Biconnected Components of a Graph

For a connected undirected graph G, its biconnected compo-
nents [1] are those subsets of nodes and edges which share a
common cycle. There may be edges in G which belong to no
cycles, and these are considered to be a biconnected compo-
nent of two members. All sink nodes, therefore, are in bicon-
nected components of two members.

Equivalently, biconnected components contain no internal
articulation points where “a vertex a is said to be an articula-
tion point of G if there exist vertices v and w such that v, w,
and a are distinct, and every path between v and w contains
the vertex a” [1]. However, the biconnected components
themselves must be connected through articulation points of
the graph G; or else they would form a single biconnected
component. Thus, although a biconnected component does
not contain any internal articulation points, one or more of its
nodes may be articulation points of the whole graph G. Ar-
ticulation points are critical in the reliable functioning of a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 4, JULY 1982

network in that a node failure of an articulation point pro-
duces a disjoint graph. Thus, it is important from time to time
for a network to discover its articulation points and the mem-
bers of its biconnected components.

This Single-Source algorithm is based on the following obser-
vation: if G contains articulation points, then for any bicon-
nected component of G with nodes {a}, there exists a node v
in {a} which is an articulation point of G (or is the initiator
node) such that v is the root of a subtree in £G in which all
the nodes of {a} are internal nodes. Call this subtree <v>.
Then the explorers in <v> terminate only at the nodes of
{a}. At node v, therefore, all the leaf nodes of <v> are ac-
counted for by its internal nodes. By using echoes to bring
information concerning the internal and termination nodes
of lower subtrees in <v>, it is possible at v to find that all
leaf nodes are accounted for by the internal nodes of <v>.
At this point, all of {a} has been identified as members of one
biconnected component. For this iterative process to func-
tion properly, biconnected components, as detected, reduce
themselves to single nodes. Thus, the sink nodes in V' are
the first biconnected components to be identified and re-
duced. The algorithm finishes when the initiator node receives
all its echoesand does a final echo-merge. At termination, each
articulation point of the graph G knows the biconnected com-
ponents of which it is a member. If necessary, the initiator
node can gather this information by sending appropriate re-
quests which trigger responses only at articulation nodes.

1) Termination and Intermediate Sets: Echoes are used to
describe their subgraphs as they move up the tree EG. An
echo will consist of basic identity, status, and two sets, INT
and TER. The set TER consists of the terminal nodes in the
subtree described by an echo still unaccounted for by the
nodes of INT, the set of internal nodes in the same subtree.
These will be referred to collectively as the pair of the echo
(INT,TER). Status describes whether the termination of the
explorer for an initial echo was at a sink node or a visited
node. An internal node v of EG which receives an initial echo
from node w with status sink will identify itself as an articula-
tion point for the biconnected component {v,w}, and replace
the biconnected component by the equivalent node {v}. Thus,
the description of subtrees by echoes is simplified as echoes
move up the tree if biconnected components are present.

A node v receiving more than one echo with termination
status visit looks for a common cycle by trying to account for
all the terminal nodes of any subset of its echoes by the inter-
nal nodes of the same subset. If this condition can be found,
then a biconnected component has been identified.

Proposition 3: If an echo has a status of visit, then there is
another echo that also has a status of visit, which shares at
least one common ancestor node in the execution graph.
Moreover, for the two echoes, there is a last common ancestor
at which the unaccounted termination nodes of each echo will
be in the set of internal nodes of the other.

Argument: We know for a C-graph, by Property 4), that ex-
plorers stop in pairs on an edge if the termination condition
is visit. By definition, all explorers for a Single-Source algo-
rithm originate from the initiator node, and trivially, they have
a common ancestor.

CHANG: ECHO ALGORITHMS

If two explorers stop on the same edge mutually, then if the
edge is (v,w), and the explorer stopping at w took some path p
from the initiator, then the explorer stopping at v took some
path q. The path p has as its last two nodes vw, and ¢ has as
its last two nodes wv. Thus, the termination of path p is an
internal node of path g and vice versa.

Two explorers stopping mutually must have taken different
paths. We already know they must have at least one common
ancestor, the initiator node. However, if they have more than
one common node on their paths, there must be a last such
common node before their paths diverge. This last node is the
root of a subtree in EG, and the echos which it receives will
describe the divergent subpaths and their terminations. a

Corollary: By Proposition 3, explorers which share a com-
mon path from the initiator but diverge at a last common node
v will produce echoes which converge at node v to describe the
subtrees traversed by the divergent explorers. Node v, the last
common node, is therefore the first node which can detect
whether the explorers have traversed the nodes of a biconnécted
component of which v is an articulation point of G. This
justifies looking for biconnected components as echoes move
up the subtree.

Now we can describe how echoes are merged at a node, which
we will call Echo-Merge rules.

1) An initial écio whose origin is a sink node w is created
with INT = {¢} and TER = {w} and status sink. Then if v
receives an echo from w with statussink, {v,w} is a biconnected
component, and v marks the edge (v,w) inactive.

2) Now consider the set of echos with status visiz which
come to v. Each echo carries the pair (/NT,TER). We succes-
sively perform set intersection of each TER with INT from the
other echoes. If all these interesections are NULL, then we
produce a new pair (/NT,TER) from the union of all the INT’s
and the union of all TER’s. A new echo is then formed, with
the new pair and a status of visit, and sent along the first edge
of v. It represents all intermediate and terminal nodes seen
in the subtree of v, and furthermore, it describes the property
that no cycles were found, to date. Each intersection repre-
sents cycle detection.

3) If any TER N INT +# ¢, then form a new pair (INT,TER)
from two echoes by doing unions on TER and INT. Re-
place the two pairs by this new pair, and continue 3) until the
condition in 2) is found: the intersections of all pairs are
NULL. Rule 3) is called maximal cycle detection.

4) Now take each such pair (/NT,TER) from 3), and if any
element of TER is a member of its corresponding INT set,
remove it from TER. At the end, if TER is émpty, then we
have found a biconnected component whose members are
{v} UINT. By Proposition 3, if v is the articulation point of
a biconnected component, it is also the first node at which it is
possible to identify the member of the biconnected compo-
nents. We now mark inactive all edges whose echoes have gone
to make up this pair, save {v} U INT as a biconnected compo-
nent at v, and remove this pair from the pairs of (INT,TER)
being considered. The process of eliminating members of TER
is called bicon identification.

5) After 4) has been applied to all pairs, either there are no
pairs left, in which case v is considered a sink; and an echo

399

with status sink and INT of {¢} and TER of {v} is sent along
the first edge of v. If there are pairs left, then a new echo is
formed, as described in 2). The combined process of maximal
cycle detection, and then bicon identification, is called bicon
composition.

Proposition 4: The Echo-Merge rules allow a biconnected
component to be identified at one of its member nodes which
corresponds to the root of a subtree in an execution graph EG.

Argument: By Rule 1, biconnected components of two
nodes are found as soon as an echo with status sink is recéived
at a node v, which is a meémber of the biconnected component
{v, sink node}. Furthermore, the sink node is a leaf node in
EG and v is an internal node.

Now consider a biconnected component M of at least three
nodes, one of which is v, with v being an articulation point of
G. Then all explorers going into- M have come through v, and
v is the common ancestor of all the echoes in M. Whatever
paths are taken from v into M, they must end in nodes which
are in M. Therefore, by Proposition 3, in the echoes which
come back to v, the set of terminal nodes must all find match-
ing internal nodes.

Consider a node at which bicon composition yields the pair
(INT,TER) with TER being empty, called the zero pair. We
show that the nodes in INT must be a biconnected compo-
nent. Maximal cycle detection assures us that terminal nodes
of the paths taken from v end in intermediate nodes of other
paths, and therefore that these nodes are linked. Furthermore,
there is no path which terminates at a node outside of the
nodes in INT.

The only way in which the nodes and edges of INT do not
form a biconnected component is if there is some path from
one of the nodes in INT which leads to a node outside of INT,
thus making the INT part of a larger biconnected component.
This cannot happen without this edge terminating at some
node x outside of INT. If so, then bicon identification would
have produced TER containing x, not empty. Thus, there is
no such edge leading out of the nodes of INT,

Note that for v to be the articulation point of a biconnected
component in the graph G, there must be at least two echoes
returning to v. Otherwise, it would not be the root of diver-
gent paths leading into the biconnected component, and some
other node, either further up or down the tree, would identify
the biconnected component. O

Algorithm 3—Biconnected Component Detection

The algorithm for finding the biconnected components of a
C-graph has been largely described above by the rules for bicon
composition. Given an initiator node S, let it execute the
forward phase of a pure traversal by sending explorers in
parallel on the nonfirst edges of nodes as they are first visited.

1) Let the initiator send explorers in parallel on its edges.
The first explorer at each node causes more explorers to be
sent in parallel from that node. Anexplorer coming to a visited
node v sends an echo back with the pair (/NT,TER) of ({¢},
{v}) and status of visit. If the node is a sink, the same (INT,
TER) pair will be sent, but the status of the echo will be sink.

2) If a node v receives an echo with status sink having (INT,
TER) of ({¢}, {w}), then {v,w} is a biconnected component,

400

and the edge on which the echo arrived is marked inactive.
Now try 3).

3) If all the echoes for a node v have arrived and all edges
have been marked inactive, then create a new echo with status
sink and (INT,TER) of ({¢}, {v}), and send the echo on the
first edge of the node.

4) Otherwise do bicon composition according to Echo-Merge
rules 2)-4), identify all biconnected components, and mark
appropriate edges as inactive. If all edges are now inactive,
then do 3); or else send the echo built by Echo-Merge rule 2)
along the first edge of the node.

5) If the node in 3) and 4) is the initiator, then the algo-
rithm is done. A check for correctness here is that all edges
should be inactive, and there should be no terminal nodes still
unaccounted.

We note that Algorithm 3 detects biconnected components
at nodes which are articulation points of G and at the initiator
node (which may not be an articulation point). Even so, the
rules for Echo-Merge which identify biconnected components
apply equally. Essentially, the roots of the smallest subtrees
which contain all the nodes of a biconnected component as
internal nodes are the nodes at which biconnected components
can be identified.

Behavior: We must now consider the behavior of the algo-

rithm, Given that there is a single initiator node, the al-
gonthm is very similar to the pure traversal algorithm. in that
explorers make one forward sweep and echos make one sweep
back towards the initiator. Thus, elapsed time, mainly consid-
ering communications, is approximately 2D where D is the
diameter of the graph.
_ The number of messages is, as with a pure traversal algo-
rithm, between 2e and 4e. The major component of effort in
this algorithm comes at éach Echo-Merge and in the amount of
storage required at each node.

Each echo carries the sets INT and TER. At the worst, the
set INT can contain # nodes, and thé same can be said of the
set TER. The fact that at any time, the sum of the nodes held
in TER and INT can be no more than 27 helps in considering
overall work, but not in the amount of space that must be allo-
cated for the worst case. If each set of INT,TER must contain
n nodes, then n log n bits are needéd for each set. For a node
to hold n echoes, then at least 2n* log n bits are needed for
all echoes to describe the pairs (/NT,TER). Of course, if we
know the value of n a priori; then a bit map would suffice
for storing the sets, which brings the requirement down
ton?.

Now consider the number of operations at each bicon com-
position. Maximal cycle detection involves the intersection of
each TER against a set INT from a different echo. There can
be at most n echoes at each node. If each TER is intersected
against n- 1 INT sets, then there are n® intersections. At
best, each set operation can be considered as one operation.
Thus, there are at least n? operations at each node for cycle
detection.

Bicon detection, given the set of disjoint pairs found by
maximal cycle detection, consists of removing elements of
TER which are in its corresponding INT set. There are at most

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 4, JULY 1982

n/2 new pairs, and each such removal can be done in at most 7
operations. The operations at each node are dominated by
maximal cycle detection, which is basically n?.

These bounds by no means reflect an average situation. For
one thing, if there are only sinks, then maximal cycle detec-
tion is never needed. In the case of a fully connected graph,
each path is, on the average, two long. The expected number
of set operations at each noninitiator node, which receives
n - 2 echoes, is just one since each echo has an INT of {¢}, and
hence does not have to participate in any set intersection. At
the initiator node, n - 1 echoes arrive, but each intersection of
an INT with a TER from a different echo will find a match-
ing element. Thus, only n - 2 set operations are needed. In
comparison, if all /NT and TER are disjoint, then (n - 1)?
intersections would have been needed. We leave the study of
this aspect to future research.

VI. DiscussioN

In this paper, we have presented a model of a distributed
computer system in which autonomous processors can cooper-
ate without using centralized mechanisms. The need to obtain
global information motivated the creation of algorithms which,
although decentralized in control, nevertheless achieve a
system-wide goal. These algorithms are based on the tech-
nique of parallel depth-traversal of a general graph such that a
minimum edge covering is obtained in an asynchronous fash-
ion. As a class; we have called them echo algorithms.

The general technique which we have introduced has been
shown to be simple, versatile, and efficient. Echo algorithms
function in parallel, asynchronously, and take éxecution time
for communications of the order of the diameter of the graph
modeling the network of machines. Although echo algorithms
operate strictly on message passing, the number of messages,
in general, in bounded by 4e where e is the number of edges
in the graph. The storage required at a node, for most algo-
tithms, is small and bounded by n? bits where n is the number
of nodes in the graph. Echo algorithms can be single-source,
originating and terminating at a specific node, or multiple-
source, in which several nodes in the network coordinate their
activity in a consistent way, although they independently
initiate their participation in the algorithm.

Further research which leads naturally from the material
presented includes the effect of failures on echo algorithms,
the relationship of heterogeneous processors of mixed capa-
bilities on their execution, the formal verification of decen-
tralized algorithms such as echo algorithms, and the better
quantification of performance by including the effects of
queueing and congestion in the network. This paper repre-
sents only a first step in the application of a new class of
algorithms to the better understanding of decentralized
systems.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and
Analysis of Computer Algonthms Reading, MA: Addison-Wesley,
1974.

[2] E. R. Arjomandi and D. G. Corneil, “Parallel computations in
graph theory,” SIAM J. Comput., vol. 7, May 1978.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 4, JULY 1982

[3] E.J.H. Chang and R. Roberts, “An improved algorithm for decen-
tralized extrema finding in circular configurations of processes,”
Commun. Ass. Comput. Mach., vol. 22, May 1979.

[4] E.J.H. Chang, “Decentralized algorithms in distributed systems,”
Ph.D. dissertation, Univ. Toronto, Toronto, Ont., Canada, 1979.

[5] E.J.H. Chang and K. Sevcik, “Decentralized algorithms for the
multiple-copy update problem,” Univ. Victoria, Victoria, B.C.,
Canada, Tech. Rep. 1979.

[6] D. M. Eckstein and D. A. Alton, “Parallel graph processing using
depth-first search,” in Proc. Conf. Theoretical Comput. Sci., Univ.
Waterloo, Waterloo, Ont., Canada, Aug. 1977.

[7] C. A. Ellis, “A robust algorithm for updating duplicate databases,”
in Proc. 2nd Berkeley Workshop on Distributed Data Management
and Computer Networks, Univ. California, Berkeley, May 1977.

[8] P. Rosenstiehl et al., “Intelligent graphs: Networks of finite auto-
mata capable of solving graph problems,” in Graph Theory and
Computing, R. Read, Ed. New York: Academic, 1972.

[9] R. E. Tarjan, “Depth first search and linear graph algorithms,”
SIAM J. Comput., vol. 1, no. 2, 1972.

401

Emest J. H. Chang was born in Shanghai,
China. He received the B.Sc. degree from the
University of Manitoba, Winnipeg, Man.,
Canada, in 1964, the M.D. degree from the
University of British Columbia, Vancouver,
B.C., Canada, in 1970, the M.Math. degree in
computer science from the University of
Waterloo, Waterloo, Ont., Canada, in 1974,
and the Ph.D. degree in computer science from
the University of Toronto, Toronto, Ont.,
Canada, in 1979.

He interned in Kaiser Foundation Hospitals, San Francisco, CA, and
worked with Medical Methods Research, Kaiser Foundation, Oakland,
CA, as a Research Fellow in 1970. He was a Research Assistant Pro-
fessor in Computer Science and a National Health Scholar from 1974 -
1976. Since 1979, he has been an Assistant Professor at the Depart-
ment of Computer Science, University of Victoria, Victoria, B.C.,
Canada. His research interests include decentralized algorithms, com-
puter graphics in videotex systems, computer-assisted instruction, and
medical informatics.

Dr. Chang is a member of the Association for Computing Machinery.

Load Balancing in Distributed Systems

TIMOTHY C. K. CHOU aAnD JACOB A. ABRAHAM, MEMBER, IEEE

Abstract—In a distributed computing system made up of different
types of processors each processor in the system may have different
performance and reliability characteristics. In order to take advantage
of this diversity of processing power, a modular distributed program
should have its modules assigned in such a way that the applicable
system performance index, such as execution time or cost, is optimized.
This paper describes an algorithm for making an optimal module to
processor assignnient for a given performance criteria. We first propose
a computational model to characterize distributed programs, consisting
of tasks and an operational precedence relationship. This model allows
us to describe probabilistic branching as well as concurrent execution in
a distributed program. The computational model along with a set of
seven program descriptors completely specifies a model for dynamic
execution of a program on a distributed system. The optimal task to
processor assignment is found by an algorithm based on results in
Markov decision theory. The algorithm given in this paper is com-
pletely general and applicable to NV-processor systems.

Index Terms—Computer networks, distributed processing, optimal
scheduling, performance analysis.

I. INTRODUCTION

URRENTLY, the field of distributed processing is the
focus of a great deal of research interest [15], [16],
[14], [4]. This is primarily due to the availability of inexpen-

Manuscript received July 16, 1980; revised February 16, 1982. This
work was supported by the Joint Services Electronics Program under
Contract N-00014-79-C-0424.

T.C.K. Chou is with Tandem Computers, Cupertino, CA 95014.

J. A. Abraham is with the Coordinated Science Laboratory, Univer-
sity of Illinois, Urbana, IL 61801.

sive computer hardware, growing sophistication in distributed
software, and an increased interest in improving system perfor-
mance and reliability. In this paper we define a distributed
computer system to be any computer system with two or
more arbitrarily interconnected processors. In particular, we
are interested in loosely coupled systems [7], where the com-
munication time between processors is an important system
parameter. Systems such as CM* [17], ICOPS [19], DCS [5],
and those based on IBM’s SNA [12] and DEC’s DECNET
[3] are all good examples of the type of system we are consid-
ering. The results of this paper are also applicable to avionics
system design and distributed process control where dedicated
processors of various types are used.

Furthermore, we define a distributed program as a program
that consists of several program modules or tasks that are free
to reside on any processor in a distributed system. In general,
we are considering a heterogeneous processor system in which
each processor may have different performance and reliability
characteristics. In order to fully utilize this diversity of pro-
cessing power it is advantageous to assign the program modules
of a distributed program to the processors in such a way that
the execution time of the entire program is minimized. This
assignment of tasks to processors to maximize performance is
commonly called load balancing.

We are basically studying a problem closely related to opti-
mal deterministic task scheduling. Therefore, we should be
aware that results from deterministic scheduling are valid in
basically two cases: first, if we are interested in only a rough
approximation of system performance such as a lower bound

0098-5589/82/0700-0401$00.75 © 1982 IEEE

