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Abstract 
This paper addresses the issue of efficient and accurate 

petformance prediction of large-scale message-passing 
applications on high petforniance architectures using 
sinidation. Such simulators are often based on parallel 
discrete event simulation, Qpically using the conservative 
protocol to synchronize the simulation threads. The paper 
considers how a compiler cat1 be used to autoniatically 
extract information about the lookahead present in the 
application, and how this can be used to improve the 
performance of the null protocol used for  synchronization. 
These techniques are implemented in the MPI-Sin1 
siniulator and dHPF compiler, which had previously been 
extended to work together f o r  optimizing the sinidation of 
local coniputational components of an application. The 
results show that the availability of lookahead iiforniation 
iniproves the runtinie of the siniulator by factors rarigitig 

from 9% up to two orders of niagnitude, with 30.60% 
iniprovenietits being typical for  the real-world codes. The 
experiments also show that these iniprovements are 
directly correlated with reductions in the number of ruill 
niessages required by the simulations. 

1 Introduction 
Direct-execution simulators make use of available 

system resources to execute directly portions of the 
application code and simulate architectural features that 
are of specific interest, or are unavailable. For instance, 
direct execution simulators can be used to study various 
architectural components such as the memory subsystem 
or the interconnection network. The benefits of this direct- 
execution simulation are obvious: first, one can estimate 
the value of the new hardware without the expense of 
manufacturing or purchasing it; second, one can do the 
simulation fast: there is no need to simulate the 
workstation's behavior (for example down to the level of 
memory references) since that part of the hardware is 
readily available. However, the constraint of direct 
execution requires the simulator to use at least as much 
memory as the target application and constrains the 
simulator to run at least as long as the application. 
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To alleviate the cost of direct execution while still 
maintaining accuracy, in recent work we used compiler 
support to optimize the simulation of local code [3]. 
Compiler analysis identifies portions of local code whose 
results do not affect program performance. These sections 
of the local code are replaced by estimates of their 
execution time using an analytical model of their 
performance built by the compiler. Data used only in such 
computations can also be eliminated. As a result, we 
observed dramatic savings both in the simulator's runtime 
as well as its memory requirements [3]. 

In this paper, we examine how compiler analysis can be 
used to improve lookahead in parallel simulation, and 
hence further reduce simulation time. When a simulation 
thread (Logical Process (LP)) knows that before sending 
the next message, i t  will process a local code block whose 
execution time can be predicted, the LP can communicate 
that information (increased lookahead) to other LPs in the 
system, possibly allowing those LPs to process events that 
might not be otherwise processed. 

This paper makes three main contributions to parallel 
simulation of parallel applications: 
1 .  It demonstrates how compiler analysis of a target 

application program can be used to extract lookahead 
information useful to a parallel simulation algorithm. 

2. It augments an existing compiler-supported simulation 
system (the MPI-Sim simulator and the Rice dHPF 
parallelizing compiler) to incorporate this technique in 
parallel simulation, and 

3. It presents a preliminary experimental evaluation 
demonstrating the potential benefits of this technique. 
We present preliminary results evaluating the potential 

improvements that could be obtained by exploiting 
lookahead information when using the null message 
protocol [ 1 11 for LP synchronization. Using two synthetic 
codes and two standard applications (an ASCI benchmark, 
Sweep3D, and the NAS benchmark, SP), we compare how 
the simulator performs when it has no lookahead 
information versus when it can use the compiler-generated 
lookahead. The synthetic codes allow us to vary the 
granularity of computation between communications, 
which has a direct impact on the benefit of lookahead 
information. The two real codes have deterministic 
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communication patterns for which MPI-Sim would not 
require a synchronization protocol, but by forcing the null 
protocol we can examine how much similar applications 
would potentially benefit from the information about 
lookahead. Our results show that the simulations of the 
two real codes are 9% to 60% faster when using the 
lookahead information, and the improvements are higher 
when the granularity of local computations is higher. The 
synthetic applications show improvements by up to two 
orders of magnitude, as the granularity of computations is 
varied. In all the benchmarks, the improvements in 
simulation time are directly caused by reductions in the 
number of null messages required for the simulations. 
Although these results are preliminary and need to be 
confirmed by studies with additional applications, they 
illustrate the large potential benefits that could be achieved 
via compiler analysis of lookahead in target applications. 

2 Related Work 
Many of the early program simulators were designed 

for sequential execution [8, 12, 131. However, even with 
the use of direct execution, sequential program simulators 
tended to be slow with slowdown factors ranging from 2 to 
35 for each process in the simulated program [8]. Several 
efforts have been exploring the use of parallel execution 
[ lo ,  14, 17, 19, 221 to reduce the model execution times, 
with varying degrees of success. Many such simulators use 
sequential or parallel implementations of the quantum 
protocol. In order to support multiple simulation processes 
(possibly executing on multiple processors) and maintain 
accuracy, parallel simulation protocols are used to 
synchronize the processes. The Quantum protocol lets the 
processes compute for a given quantum before 
synchronizing them. In general, synchronous simulators 
that use the quantum protocol must trade-off simulation 
accuracy with speed; frequent synchronizations slowdown 
the simulation, but synchronizing less frequently 
introduces errors, by possibly executing statements out-of- 
order [24]. 

Parallel simulators include MPI-Sim [6, 211, described 
in the next section, the Wisconsin Wind Tunnel (WWT) 
[18, 221, a shared memory architecture simulation engine 
and SimOS [24], a complete system simulator (multiple 
programs plus operating system). SimOS, which simulates 
the MIPS architecture, takes into account system details 
such as cache and CPU models as well as device drivers. It 
is possible to use the emulation mode, which in part uses 
direct execution to characterize the program execution. In 
the emulation mode, the simulation is still ten times slower 
than real time. The main drawback of SimOS is ihat it does 
not use any synchronization protocol when running 
multiple simulation processes on a parallel platform [23], 
thus reducing the accuracy of the simulations. 

Although MPI-SIM is the only simulator that identifies 
communication patterns and directly exploits them for the 

purposes of synchronization, other simulators have used 
techniques to reduce the synchronization overhead. Among 
them are LAPSE [I41 and Parallel Proteus [17]. Both 
LAPSE and Parallel Proteus use some form of program 
analysis to increase the simulation window beyond a fixed 
quantum, without sacrificing accuracy. LAPSE uses a 
quantum protocol called WHOA (Window-based Halting 
On Appointments) and runtime analysis to determine the 
size of the simulation quantum. An appointment is the 
earliest time the message can be placed in the network. 
Adding the latency of the network to the appointment time 
gives the earliest possible arrival for the message. 
Processes use the minimum of their appointment times 
(incoming) to determine whether a message can be 
processed or not. Parallel Proteus reduces the 
synchronization overhead caused by frequent barriers of 
the quantum protocol by using predictive barriers and 
local barriers. The predictive barriers method uses runtime 
and compile time analysis to determine, at the beginning of 
a simulation quantum, the earliest simulation time at which 
any process will send a message to any other process. 

In previous work [2 I], we designed a novel approach to 
synchronization in which the blocking time at the receive 
statement is reduced by analyzing the communication 
patterns in the program. Speci ticaliy, each simulation 
process uses this analysis to locally identify whether an 
incoming application message is safe to process right away 
or whether synchronizations with other processes ar'e 
necessary. In some cases, the optimization resulted in  
simulations where no synchronization was necessary. 

3 Background 
3.1 Simulation of Large-scale Applications with 

MPI-Sim 
The starting point for our work is MPI-Sim [6, 211, B 

direct-execution parallel simulator for performame 
prediction of MPI programs. MPI-Sim simulates an MPI 
application running on a parallel system (referred to as thce 
target program and system respectively). The machine on 
which the simulator is executed (the host machine) may bz 
either a sequential or a parallel machine. In general, the 
number of processors in the host machine will be less than 
the number of processors in the target architecture being 
simulated, so the simulator must support multi-threading . 
The simulation kernel on each processor schedules the 
threads and ensures that events on host processors are 
executed in their correct timestamp order. A target thread 
is simulated as follows. The local code is simulated by 
directly executing it  on the host processor. In the compiler- 
enhanced version of MPI-Sim, portions of the local code 
are modeled by an analytical performance model, while the 
remaining local code is directly executed. Communication 
commands are trapped by the simulator, which uses an 
appropriate model to predict the execution time for the 
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corresponding communication activity on the target 
architecture. 

MPI-Sim supports most of the commonly used MPI 
communication routines, such as point-to-point and 
collective communications. In the simulator, all collective 
communication functions are implemented in terms of 
point-to-point communication functions, and all point-to- 
point communication functions are implemented using a 
set of core non-blocking MPI functions. The simulator has 
been validated against several MPI implementations 
including those on the IBM SP and SGI Origin 2000 [6]. 

The simulation kernel provides support for sequential 
and parallel execution of the simulator. Parallel execution 
is supported via a set of conservative parallel simulation 
protocols [20], which typically work as follows: Each 
application process in  the simulation is modeled by a 
Logical Process (LP). Each LP can execute independently, 
without synchronizing with other LPs, until i t  executes a 
waif qperation (such as an MPI-Recv, MPI-Barrier, etc); a 
synchronization protocol is used to decide when such an 
LP can proceed. We briefly describe the default protocol 
used by MPI-Sim. Each LP in the model computes local 
quantities called Earliest Output Time (EOT) and Earliest 
Input Time (EIT) [ 5 ] .  The EOT represents the earliest 
future time at which the LP will send a message to any 
other LP in the model; similarly the EIT represents a lower 
bound on the receive timestamp of future messages that the 
LP may receive. Upon executing a wait statement, an LP 
can safely select a matching message (if any) from its 
input buffer, that has a receive timestamp less than its EIT. 
Different asynchronous protocols differ only in their 
method for computing EIT. However, in this paper, we 
concentrate on the Null Message protocol [ I  I], where the 
EOT is communicated between the LPs via null messages. 
In our model, when an LP is blocked at a receive statement 
and cannot find a matching message, the LP requests null 
messages from all LPs in the system (or a subset of LPs 
with which i t  communicates) and recomputes its EIT 
whenever a null message arrives. An LP can get a null 
message request at any time, at which point it returns its 
EOT. Later, we show how we use the compiler derived 
analytical models to extract the lookahead present in the 
application and thus improve an LP’s estimate of its EOT. 

3.2 Compiler Analysis 
In previous work [3], we implemented and evaluated 

compiler techniques to improve the performance of 
parallel simulation of very large message-passing parallel 
programs. The key idea underlying this work was to apply 
compiler analysis to locate fragments of local computation 
whose resulting values do not affect performance, and to 
avoid simulating those fragments in detail by replacing 
them with (symbolic) analytical performance estimates. 
For example, computations of values that determine loop 

bounds, branches, message patterns, and message sizes all 
have a direct impact on performance. In contrast, the 
results of other computations do not affect performance, 
and only their execution times are required for 
performance prediction. The latter, which we term as 
‘redundant’, do not need to be simulated in detail and can 
be abstracted away and replaced by an analytic 
performance estimate of their execution time, while 
simulating the rest of the program in detail. During 
simulation, the simulator can use the analytical estimate to 
advance the clock accordingly. As a corollary, it  is also 
possible to avoid performing data transfers’ for many 
messages whose values do not affect performance, while 
simulating the performance of the messages in detail. 

The compiler analysis for accomplishing the above has 
three major aspects: (1)  identifying the values in the 
program that do not affect performance (a value is a pair 
<variable, statemenn representing the data stored in that 
variable at that statement); (2) identifying computations 
that only affect these values and therefore can be 
abstracted away; and (3) generating symbolic estimates for 
the execution time of these computations. 

For the first step, we use a compiler-synthesized static 
tusk graph model [2, 41, an abstract program 
representation that identifies the sequential computations 
(tasks), the parallel structure of the program (task 
precedences, explicit communication), and the control- 
flow that determines the parallel structure. The symbolic 
expressions in the task graph for control flow conditions, 
communication patterns and volumes, and scaling 
expressions for sequential task execution times capture all 
these program variables that have a direct impact on 
program performance. 

For the second step, we use a compiler technique called 
program slicing [I61 to identify those portions of the 
computation that determine the values of those variables; 
these are exactly the computations that must be retained. 
(Given a particular value in a program as defined above, 
program slicing uses data and control dependence 
information to identify those portions of the computations 
that may directly or indirectly affect that value in some 
execution of the program. This analysis must be performed 
interprocedurally, and can be performed for an entire set of 
values at once.) The compiler then generates simplified 
MPI code that contains those computations plus the 
communication. The remaining code fragments are 
replaced by a call to a function that will be interpreted by 
the simulator as a command to advance its clock by a 
specified value; this value should correspond to the 
execution time of the abstracted computation. 

’ This saves simulation time because performing the data transfer 
may require significant overhead, e.g., if  the source and 
destination threads of the message are mapped to different host 
processors in the simulation. 
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Finally, in order to estimate the execution time of the 
abstracted code, the compiler generates simple symbolic 
expressions parameterized by direct measurement. 

The above techniques have been implemented in the 
Rice dHPF compiler [I]. In [3], we evaluated the above 
techniques for three benchmarks: Sweep3D [25], a key 
ASCI benchmark; NAS SP from the NAS benchmark suite 
[7] and Tomcatv, a SPEC92 benchmark. Over a wide 
range of problem sizes and numbers of processors (on the 
distributed memory IBM SP), the errors in the predicted 
execution times, compared with direct measurement, were 
at most 17% in all cases we studied, and often were 
substantially less (the direct execution MPI-Sim had errors 
of about 7%). Moreover, in each application, the compiler 
techniques led to a significant reduction in simulator 
memory usage (up to 2000 times) and simulation time (up 
to 10 times), thus allowing us to simulate problem sizes up 
to 100 times larger than what was possible with state-of- 
the-art simulation tools before. 

This paper extends the preceding work in two 
directions. First, we assume that the receive statements are 
not deterministic and an LP must use some 
synchronization algorithm to identify safe messages (we 
use a conservative null message algorithm for this). 
Second, we use the compiler-derived representation to 
extract the lookahead present in the application to improve 
performance of the null message protocol. 

4 Lookahead Extraction 
Lookahead plays an important role in improving the 

performance of conservative simulation protocols. In the 
context of the application, we focus on portions of the code 
where the simulation thread is blocked (such as in blocking 
receives and sends). When a logical process (LP) executes 
a receive statement, it checks if its input message queue 
contains any safe messages, i.e., any message with a 
timestamp less than the EIT of the LP. If so, the sale 
message(s) can be processed; otherwise the LP is blocked 
until its EIT is advanced using the underlying null message 
based protocol. 

In general, for program simulations using direct 
execution, the lower bound on the EOT of an LP is its 
current simulation time (T) plus L, the minimum latency of 
any message that can be sent. However, if the LP can 
compute an accurate lower bound on the execution time of 
a local code block that precedes any message 
transmissions, perhaps via compiler analysis, it can 
compute a more accurate EOT. At some point in its 
execution, let TLc represent the execution time of a code 
block of an LP, then its EOT becomes T+L+TLc, and thus 
enables the blocked LPs to have a better estimate of the 
EIT. In previous work, researchers have estimated this 
execution time using pre-simulation [ 151. In this paper, we 
show how this can be computed using compiler analysis, 
and used to improve the efficiency of the resulting model. 

Example 1: 

MPI-Recv (...... ) 
for (j=1; j<N; j++) { 

mdiagtjl = mdiag[j-11; 
ndiag = ndiag + mdiag[ j I ; } 

MPI-Recv (&a, ...... ) ; 
for (k=O; k<ndiag; k++ ) 

MPI-Send(&a, ) ; 

for (j=1; j<N; j++) { 

a[kl = a[k-ll + ... 
...... (4 

mdiag[j] = mdiag[j-11; 
ndiag = ndiag + mdiag[j]; } 

MPI-Recv(&a, ...... ) ; 
advance-clock(ndiag * w-3); 
MPI-Send(&a, ) ; (b) ...... 

for (j=l; j<N; j++) { 
mdiag[j] = mdiag[j-11; 
ndiag = ndiag + mdiagtjl; 1 

set-lookahead(ndiag* w-3); 
MPI-Recv(&a, ...... ) ; 
reset-lookaheado; 
advance-clock(ndiag*w-3); 

...... MPI-Send(&a, ) ; (c) 
~~~~~ 

Example la  shows a portion of a code where boundary 
conditions of a loop are calculated, a receive statement i s  
posted’, values of an array “a” are calculated, and finally 
the computed data is sent to the next processor. Such a 
code structure is common in many scientific applications, 
including applications discussed in this paper. The 
compiler can estimate that the amount of time the second 
loop is executed is the number of times the second loop is 
executed (ndiag) times the average duration of a single 
iteration of the loop ( ~ - 3 ) ~ .  The compiler also determines, 
based on the task graph analysis described in  the previous 
section, that in order to predict the performance of the 
code, the actual values computed in array a are not 
necessary. Hence, it replaces that portion of the code with 
a call to advance the simulation clock by the estimated 
execution time of the loop (Example 1 b) (For details about 
how the compiler calculates the analytic estimates, please 
see [ 3 ] . )  The first loop cannot be abstracted away since the 
value of ndiag computed by the loop body is needed I:O 

estimate the performance of the second loop. The compiler 
can also notice that a communication primitive precedes 

’ In real applications, the receive would be posted before the loop 
boundary calculation. We use this code here only to illustrate 
better the example. 

This is clearly a simplistic estimate, but it can be improved 
using existing compiler-driven modeling techniques for 
sequential code (e.g., [9]). The specific choice of this model is 
orthogonal to the optimizations we have proposed. 
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the second loop, and assumes that simulation process 
synchronization might occur during the communication 
call. The compiler then provides the simulator with 
lookahead information before the communication call is 
made (set-lookahead (ndiag*w-3 ) ) and then resets 
the lookahead to 0 after the communication call. Note that 
this use of lookahead information introduces no udditionul 
approximations in the simulation, beyond the compiler- 
enhanced simulation described in our previous work. 

Example 2: 
for (j=l; j<N; j + + )  1: 

mdiag[ j] = mdiag[j-11 ; 
ndiag = ndiag + mdiag[jl;} 

MPI-Recv(&a, ...... ) : 
for (k=O; k<ndiag; k++ ) { 

a[kl = a[k-11 + ... } 
MPI-Send(&a, ...... ) ; (4 

Set-lookahead(N*w-2); 
MPI-Recv (... ... ) 
reset-lookaheado; 
for ( j = l ;  j<N; j++) { 

mdiag[jl = mdiagrj-11; 
ndiag = ndiag + mdiagrj]; } 

set_lookahead(ndiag*w-3); 
MPI-Recv (&a, ...... ) ; 
reset-lookaheado; 
advance-clock(ndiag*w-3) 
MPI-Send (&a, ...... ) ; (b) 

Even though we used analytic performance estimates 
only for code blocks that were abstracted away, for the 
purpose of lookahead we can also use compiler-generated 
performance estimates for portions of the code that need to 
be directly executed (such as loop boundary calculations). 
The key requirement is that these estimates must be lower- 
bounds for the actual execution time, so that the simulator 
does not violate causality. Consider Example 2. In 2a, 
there is a receive before the loop boundary calculation. 
Although we need to calculate the value of ndiag in the 
loop body, the compiler can let the simulator know that, 
when i t  is blocked i n  communications, it will not send a 
message with a timestamp smaller than the current 
simulation time plus the minimum message latency (L) 
plus the lookahead (N*w-2) (Example 2b). After the 
communication call is completed, the lookahead is reset to 
0. This extension is not included in this paper because 
developing lower-bound performance estimates via 
compiler analysis requires substantial new research and is 
a subject for future work. 

performance of the applications within 7% of the measured 
system. The compiler-enhanced simulator, which used 
analytical models for portions of the computation, 
validated to within 17% of the measured system. The use 
of lookahead information in this work does not introduce 
any additional approximations over the latter. Therefore, 
we focus here on the improvement in performance of the 
null message protocol achieved by using the compiler- 
extracted lookahead information. All the following 
experiments were run on the IBM SP-2 at Lawrence 
Livermore, and used up to 128 processors on the machine. 

5.1 Benchmarks 
We use two synthetic benchmarks and two real world 

applications in our experiments. In the first synthetic code, 
the processes of the application are logically arranged in a 
ring topology. The processes execute several computation 
and communication iterations. First, the even processors 
perform a given amount of computation and then decide 
whether to send the results to the “right” or to the “left”. 
The odd processes then enter the computation and 
communication phase. In each iteration, the receiving 
process does not know where the next message is coming 
from and therefore may need to request null messages 
from other simulation processes (assuming that a demand 
driven null message algorithm is used) to decide whether a 
given message is safe to process. The second application 
increases the dimension of the process topology to two. 
Again the processes are divided into two communicating 
groups. The first group computes its values and decides 
whether to send the values first horizontally and then 
vertically, or the other way around. Once again, the 
receiver needs to use null messages to identify safe 
messages. In both applications, the computation is 
abstracted away by the compiler and replaced with 
compiler generated analytical models. We will refer to the 
two synthetic benchmarks as ID and 2D, respectively. 

We also use two standard benchmarks, the ASCI 
Sweep3D code [25], a key benchmark used in the DOE 
ASCI program, and NAS SP, a fluid dynamics code from 
the NAS benchmark suite [7]. The compiler abstracted 
away most of the computation present in the codes. The 
most aggressive version of MPI-Sim [21] detects from the 
parameters to MPI calls that the null message protocol is 
not necessary for these two codes. We force the simulator 
to use the null message protocol in order to characterize 
the value of the lookahead in these codes and examine the 
potential benefits of the optimization. Many other 
applications such as NAS LU (which solves the same 5 Results 
problem as NAS SP using a different algorithm) do require 

MPI-Sim and the compiler optimized MPI-Sim have the null protocol, but are currently not supported by our 
been previously validated [3, 6, 211 on a variety of dHPF compiler extensions for simulation. 
applications such as NAS, ASCI and SPEC92 benchmarks In the following experiments, we compare the absolute 
on two ha rd~~are  Platforms: the IBM sp and the SGI performance improvement between MPI-Sim using no 
Origin 2000. The original MPI-Sim predicted the lookahead information (NOL) and MPI-Sim using the 
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lookaheads calculated by the compiler (LO). In both 
versions, the previous compiler optimization of abstracting 
away redundant computations is included so that we use a 
sophisticated and efficient simulation system as a baseline, 
and so that the two versions have identical accuracy. 

5.2 Impact of Lookahead for Synthetic 

The amount of computation in the ID synthetic 
benchmark is related to the minimum message latency in 
the system (L=54pec). The amount of computation 
(which is abstracted away) is taken from a normal 
distribution with three different means. Experiments are 
conducted for means of W4, W8 and W20 and a standard 
deviation of 10% of the mean. In the first experiments, the 
number of host processors is the same as the number of 
target processors. 

Table 1 shows the results for the 1D benchmark with 
the 3 different means. The rows are divided into three 
groups, representing the three means 2.7psec, 6.75psec 
and 13.5psec. The number of target processors is varied 
from 4 to 100. The shaded areas represent a simulator’s 
runtime greater than 2hrs (7,20Osec), the maximum readily 
available machine time. Clearly, the simulator’s ability to 
extract lookahead results in better performance. As the 
amount of lookahead increases (when the mean of the 
distribution for the abstracted computation is increased), 
the performance difference between NOL and LO also 
increases. 

Benchmarks 

1 Mean=L/20= I Runtime in seconds 

4 
16 

2.7pec I 
Procs NOL I LO 

862.428 26.9109 
4262.14 127.972 

Mean = L/8= 
6.75pec 

4 2565.98 63.2986 

Table 1: Runtime for MPI-Sim with and without 
lookahead, 1D benchmark with various means. 

Procs 

1 1 1,258 4,445,148 
22.226.220 556.800 

I I 
4 13,333,479 I 3 3 3,48 3 

C I I 
4 30,613,356 I 7403 17 

I 

I00 I I 
Table 2 Null message performance for the 1D 

synthetic benchmark. 

The great differences in the runtimes of the simulators 
are directly related to the number of protocol messages 
needed to perform the simulation, as can be seen from 
Table 2. 

Similarly, for the 2D benchmark (with a fixed amount 
of lookahead), MPI-Sim is able to use the lookahead to 
improve the simulator’s performance by as much as two 
orders of magnitude for up to 49 target processors (host 
processors = target processors), as seen in Figure I .  For 
more than 49 processors, the simulator which had no 
lookahead information did not complete the simulation i n  
the available time (7,200sec). The improvement in 
performance is directly related to the reduction in the 
number of necessary null messages, as shown in Figure 2. 

Runtime for 20 problem size 

0 x) 40 60 80 100 120 

host processors (=target procs) 

Figure 1: 2D Synthetic Problem, the number of host 
processors equals the number of target processors. 
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35000000 
- 30000000 - 
c’ g25000000 
B ~0000000 
g ~15000000 ,.s El 0000000 
= 5000000 

0 

Mean 

2.7pec 

2D problem size 

Targetprocs NOL LO 
4 850.096 24.3271 
16 891 .I66 27.26 

0 20 40 60 80 100 120 
host processors 

Figure 2: Null message performance for the 2D 
synthetic benchmark. 

Table 3: Simulator’s runtime for the 1D problem 
running on 4 host processors. 

Although MPI-Sim with lookahead performed well for 
synthetic benchmarks, it is important to evaluate its 
performance on standard codes. We first look at the NAS 
SP benchmark, size A (the smallest size in the suite). 
Figure 3 shows the runtime of both NOL and LO when 
simulating NAS SP. In this case, the number of host 
processors is equal to the number of target processors. For 

the NAS SP benchmark, the lookahead we were able to 
extract allowed MPI-Sim to execute on the average 58.4% 
faster then the original simulator. Again, the improvement 
in performance is consistent with the decreased number of 
messages. The simulator without lookahead needs on 
average 72.5% more protocol messages (Figure 4). 

NAS SP, class A 

> 7,200 

4 16 25 36 

target procs 

Figure 3: Runtime of MPI-Sim when simulating NAS 
SP class A. 

0 NOL 
0 LO 

4 16 25 36 

target procs 
__~______ ~ - - - ~ 

Figure 4: The number of protocol messages needed for 
synchronization in NAS SP. 

The last set of experiments is for the Sweep3D 
benchmark. Figures 5 and 6 show the performance of MPI- 
Sim with a per processor fixed problem size of 4x4~255.  
The host system uses 16 processors to simulate up to 64 
target processors. For this configuration, LO runs on the 
average 29.83% faster than the version without lookahead 
(Figure 5), which corresponds to the 25% reduction in the 
number of null messages (Figure 6). 
_ _ _ _ _ _ _ ~ _ _ _  ~ 

16 Host Processus, 4x4~255 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0  

Target Processors 

Figure 5: Runtime of MPI-Sim simulating Sweep3D, 
4x4~255 per processor size, using 16 processors. 
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I 1 
I 16 Host Processors, 4x4~255 /ONOLI 1 

I 
I 16 25 36 49 64 

target processors ~ 

Figure 6: Number of null messages used by MPI-Sim 
simulating Sweep3D, 4~4x255 per processor problem 

size. 

16 Host Processors, 14x14~255 
I 

0 10 20 30 40 50 60 70 

target processors 

Figure 7: Runtime of MPI-Sim simulating Sweep3D, 
14~14x255 per processor size, using 16 processors. 

16 Host Processors, 14xl4~2!% 

16 25 3 6 4 9  64 

Target Processors 

Figure 8: Number of null messages used by MPI-Sim 
simulating Sweep3D, 14~14x255 per processor size. 

When the per-processor problem size is larger 
(14x14~255 per processor size), the granularity of the 
computation is greater (the lookahead is greater) and thus 
the benefit from lookahead is increased. Figure 7 shows 
the runtime of NOL and LO when using 16 host processors 
and simulating target systems from 16 to 64 processors. 
The performance improvement in the LO version is on the 
average 45% faster and the decrease of null messages is on 
the average 48%. 

Our final two figures study the impact of lookahead 
information on the speedup of the simulator. We simulate 

Sweep3D for a fixed total problem size of loo3 cells 
running on a fixed target system of 128 processors, and 
vary the number of host processors. The LO version of 
MPI-Sim performs on the average only 9.2% better than 
the NOL version, mainly because the granularity of 
computation per target processor is quite low for this case 
(Figure 9). 
I 
I 100 cubed total problem size, 128 Target procs 

I 

0 4 8 12 16 20 24 28 32 I 
I host procs 

Figure 9: Runtime of MPI-Sim predicting the 
performance of loo3 total problem size and a 128 

processor target system. 

I lOOcubed total problemsize, 128 Target procs 

0 4 8 12 16 20 24 28 32 
number of host processors I 

Figure 10: Speedup of MPI-Sim predicting the 
performance of loo3 total problem size and a 128 

processor target system. 

Figure 10 shows that both versions achieve a maximum 
speedup of about 3 when using 4 host processors, and their 
speedup degrades beyond that point because the 
computation granularity per host processor is decreasing, 
thus decreasing the available lookahead. Since only a 
relatively small lookahead is available, the efficiency of 
the parallel simulation is relatively poor and the difference 
in performance of the LO and NOL versions is not as great 
as in the cases where computation granularity is greater. 

6 Conclusions 
In this paper, we have considered how compiler 

analysis can extract lookahead information to improve the 
performance of parallel simulation of message-passing 
parallel applications. Our prior system used compiler 
analysis to abstract away portions of the computational 
code and replace them with analytical performance 
estimates, yielding large benefits in simulator efficiency 
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(those benefits are obtained for either sequential or parallel 
simulation). In this paper, we showed that the compiler 
estimates can be used to provide lookahead information to 
the simulator, which can reduce the synchronization 
messages required for the synchronization protocol used in 
parallel simulation. We presented preliminary experiments 
using two synthetic applications and two widely used real 
world codes, which showed that using lookahead 
information may potentially lead to large reductions in the 
running time of the simulator. 

We identify two key issues for future work. First, we 
must examine additional applications to evaluate to what 
extent these applications benefit from techniques to 
improve lookahead in parallel simulation. Second, and 
perhaps most exciting, we aim to explore how lookahead 
estimation techniques could be used for arbitrary 
computations, not just those whose results do not affect 
performance. This is important because such a technique 
could lead to significant additional improvements for a 
broad range of codes, especiaily irregular codes. The key 
challenge in this work would be to develop compiler 
techniques for reliable lower-bound performance estimates 
for computational fragments. 
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