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1. INTRODUCTION

Discrete-event simulations model physical systems. The literature on par-
allel discrete-event simulation (PDES) usually views a physical system as a
set of communicating physical processes, each of which is represented in
the simulation by a logical process (LP). LPs communicate through time-
stamped messages reflecting changes to the system state. A time-stamp
reflects an instant where a state change occurs in the physical process
model.
Parallel discrete event simulation poses difficult synchronization prob-

lems, due to the underlying sense of logical time. Each LP maintains its
own logical clock representing the time up to which the corresponding
physical process has been simulated. The fundamental problem is to
determine when an LP may execute a known future event, and in so doing
advances its logical clock. If an LP advances its logical clock too far ahead
of any other LP in the system, it may receive a message with a time-stamp
in its logical past, called a straggler. The threat of stragglers is dealt with
by saving the simulation state periodically, and rolling back as appropriate
when a straggler arrives. Messages sent at times ahead of the straggler’s
time-stamp must be undone. Fundamental problems of PDES are reviewed
in Misra [1986], Fujimoto [1990], and Righter and Walrand [1989]. Nicol
and Fujimoto [1994] give a more current state-of-the-art review.
Most PDES synchronization protocols fall into two basic categories

(although a more detailed taxonomy is given in Reynolds [1988]). Conserva-
tive protocols (e.g., Chandy and Misra [1979], Bryant [1977], Peacock et al.
[1979], Lubachevsky [1988], Chandy and Sherman [1989], and Nicol
[1993a]) do not allow an LP to process an event with time-stamp t if one is
unable to assert that it will not receive another event with time-stamp less
than t at some point in the future. Optimistic protocols (e.g., Time Warp
[Jefferson 1985]) allow an LP to process an event before it is known for
certain that the LP will not later need to process an event with earlier
time-stamp. Causality errors are corrected through a rollback mechanism.
The earliest synchronization protocols are asynchronous—an LP synchro-

nizes solely on the basis of interactions with LPs with which it directly
communicates. Recently more synchronous protocols have attracted inter-
est. While details vary, the basic idea is to incorporate barrier synchroniza-
tions and global reductions on functions of future simulation times. Exam-
ples include Moving Time Window [Sokol et al. 1988], Conservative Time
Windows [Ayani and Rajae 1992], Conditional Events [Chandy and Sher-
man 1989], Bounded Lag [Lubachevsky 1988], Synchronous Relaxation
[Eick et al. 1993], Bounded Time Warp [Turner and Xu 1992], Breathing
Time Buckets [Steinman 1991], and YAWNS [Nicol 1993a]. The advantage
to a conservative protocol is that synchronization information moves
quickly through the system, lowering overhead costs. This efficiency usu-
ally comes at the price of more pessimistic synchronization, for example, an
LP A may block against the threat of a receiving a message at time t,
whereas the threatened message is actually from LP B to LP C. The global
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mechanisms allow for efficient computation of simulation times, like t. The
advantage to an optimistic protocol is the elimination of a separate GVT
(Global Virtual Time) calculation, and the reduction of the risk of cascading
rollbacks. As for the conservative methods, the price paid is the reduction
of asynchrony, and more limited opportunities for parallelism.
Our interest is in the conservative YAWNS protocol, and in its perfor-

mance relative to optimistic techniques. For this comparison the Bounded
Time Warp (BTW) protocol suits our purposes well because it, like YAWNS,
is an iterative algorithm requiring a global synchronization at the end of
each iteration. It is worthwhile to note the differences between these two
approaches. Both protocols consist of three phases where in the first phase
the LPs cooperatively define a global window of simulation time, in the
second phase the LPs concurrently process their events with time-stamps
falling within this window, and in the third phase the LPs engage in a
barrier synchronization. The primary difference is the size of the global
window of simulation time. YAWNS creates windows small enough to
guarantee that all processing within the window will be correct. BTW
defines larger windows, and allows the LPs to optimistically process all
events within this larger window.
By comparing YAWNS and BTW side-by-side we will better understand

the costs and benefits of employing optimism in a window-based frame-
work. By constructing very small windows YAWNS avoids the overheads of
optimism, at the cost of reduced parallelism and larger frequency of barrier
synchronization. Constructing larger windows, BTW enjoys a larger degree
of potential parallelism and a lower frequency of barrier synchronization,
but pays for that with state-saving and rollback overheads.
YAWNS was analyzed elsewhere [Nicol 1993a]. The present analysis of

BTW develops an approximated form of the probability distribution of the
number of events an LP executes within a window, and quantifies the
distribution using numerical techniques. This style of approach is standard
in many areas of modeling, but is relatively novel among analyses of
parallel simulation. It allows one to model more complex phenomena than
would otherwise be possible. One crucial point is that the approximation is
validated via simulation of a BTW computation. Another crucial point is
that our model incorporates a delay between the instant when an anti-
message is sent, and the instant it is received. This point has a profound
impact on the conclusions of the analysis.
Our model predicts that BTW’s optimal window size is much larger than

YAWNS’s, but surprisingly that only one or two events are processed (on
average) by an LP within this optimally sized window. To facilitate compar-
ison, we derive formulas for YAWNS’ and BTW’s performance as a function
of synchronization, state-saving, and event-reprocessing costs. Using these,
we determine that when the problem is sparse—one fine-grained LP per
processor—then asymptotically (as the number of LPs increases) BTW
prevails. However, if we fix the size of the architecture and aggregate LPs
onto processors, then YAWNS can prevail.
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The contribution of this article is to present a validated approach to
analytically approximating the behavior of a complex synchronization
protocol. Unlike most previous analyses of parallel simulation protocols,
the approach is general enough to incorporate numerous overhead costs,
and to include the effects of workload aggregation. Using this approach, we
compare YAWNS and BTW, and identify (as a function of overhead costs)
situations where it is more advantageous to use optimism and situations
where it is more advantageous to remain conservative. A reader uninter-
ested in the mathematical details may well still be interested in the
qualitative conclusions those details produce.
The remainder of the article is organized as follows: Section 2 describes

our analytic model and its relationship to others in the literature. Section 3
develops methods for approximating the probability distribution of an LP’s
workload, including reprocessed messages due to roll backs. Section 4
applies those approximations to compare YAWNS and BTW, and Section 6
presents our conclusions.

2. MODEL

Our analysis is of a parallelized queuing network simulation, where all
simulated servers are under heavy load. LPs represent servers, and events
occur when jobs either enter service, or are received by a queue. The
servers use nonpreemptive scheduling, and a job’s post-service destination
is presumed to be known at the time it enters service. The destination is
chosen uniformly at random from the set of all LPs. We allow for the data
content and next destination of a serviced job to depend upon the contents
and times of all jobs received by the LP prior to the time when that job
enters service. Because of this, a message reporting the job’s arrival at its
new destination is sent to its recipient at the time the job enters service.
This is called presending the job, and is an important aspect of both
YAWNS and Time Warp. A message has both a send-time and receive-time,
corresponding to the service-entry and service departure times. Service
time (reflecting an advancement in simulation time) is also random, and is
exponentially distributed with rate ms. The cost of processing a service-
entry event or a job arrival event is unity; our expression of physical
execution times will be in these units.
While simple, models like there are the basis for several analytic studies.

This model is similar to the one studied by Gupta, Akyldiz, and Fujimoto
[1991] (which we’ll refer to as GAF) in their study of asynchronous Time
Warp. The main differences are that we use unit cost for executing an event
and the GAF model uses an exponentially distributed execution cost; that
our model is basically that of a queuing system with single servers and a
non-preemptive queuing discipline whereas the GAF model is of a queuing
system with infinite servers; our model indirectly reflects the effects of
communication delay, and the GAF model assumes instantaneous commu-
nication. These differences are significant enough to prevent us from
quantitatively comparing our model results to GAF’s. We do note that
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GAF’s assumption of exponentially distributed event execution costs should
tend to worsen performance over our model, but the instantaneous commu-
nication and infinite servers should tend to improve it over ours. Further-
more, one increases the available parallelism in the GAF model by increas-
ing the number of messages; in our model one must increase the number of
LPs. Our model is also loosely related to the self-initiating model studied by
Nicol [1991], and is subsumed by Nicol’s message-initiating model in his
study of YAWNS [Nicol 1993a]. The former model concentrates on the
effects of fan-outs greater than one, and ignores the effects of rollback; the
latter model provides the analysis of YAWNS that we use in this article.
The bonding model of Eick et al. [1993] is closely related to ours, in that it
essentially describes the behavior of a parallelized queuing simulation
identical to ours except that a message describing a job’s departure is sent
only at the simulation instant when the job departs. This assumption is in
keeping with normal practice in serial simulations; however, parallel
simulations always pre-send messages if they can, for it increases the
parallelism. Another difference is that in our model, a re-executed event
chooses a new destination for its message uniformly at random, whereas
the bonding model assumes it is directed to the same LP as before. Neither
model is particularly realistic in this regard; it is not a critical facet of our
model. Finally, the randomly uniform routing assumption is shared by the
model studied by Felderman and Kleinrock [1991], who model time-stamp
advancement and event execution time differently.
Our analysis is unique in several ways. First, nearly all of the aforemen-

tioned models regard communication, state-saving, and synchronization as
negligible. We believe that these same costs largely define which synchro-
nization approach is best suited for a problem, and so should be explicitly
incorporated in the model. Secondly, our analysis is of an optimistic
window-based scheme where performance depends on the level of opti-
mism; in this regard only Eick et al.’s model is similar. Our analytic
approach is different, but can also be extended to the Eick et al. model.
Finally, only the analysis in Nicol [1993a] considers the beneficial effects of
aggregating LPs; as we shall see, this consideration can make it more
advantageous to forego optimism in a sufficiently aggregated case, whereas
optimism is better in the nonaggregated case.
Our analytic approach is computational and is based on simplifying

approximations. We develop an intuitive approximation to the probability
distribution of the number of events processed by an LP while executing a
window. The workload distribution includes reprocessed events induced by
rollbacks. With this distribution as a basis we add overhead costs, and
compute the average execution cost (in real time) per unit simulation time.
Before proceeding to the analysis, it is useful to review the YAWNS

mechanism. Presume that all LPs have executed all events up to simula-
tion time t. Under the assumptions that permit pre-sending messages, each
LP i can examine its state and predict the departure time di(t) of the next
job to receive service, excluding the one receiving service at t, assuming no
further message arrivals at i prior to that job entering service. This sort of
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lookahead is called conditional knowledge by Chandy and Sherman [1989],
because the validity of di(t) is conditional. Using standard minimum
reduction techniques, the LPs can quickly compute w(t) 5 mini{di(t)}; the
conservative YAWNS window is [t, w(t)). By construction, no job entering
service during the [t, w(t)), window also departs service. Coupling this
feature with message pre-sending, no message generated by an event in
[t, w(t)) has a receive time in [t, w(t)).
BTW is similar in the sense that it requires all LPs to synchronize at the

upper edge of the optimistic window, the time of that window is understood
by all processors. Whereas the original BTW algorithm proposed a window
synchronization mechanism whose cost is linear in the number of LPs, we
model the use of an algorithm with logarithmic cost, such as those de-
scribed in Nicol [1993b] or Steinman [1992].
Every time an event is processed (whether initially or due to a rollback) it

chooses a destination for its message, at random, regardless of the previous
behavior of that event in the window. This allows a message’s content and
destination to be a sensitive function of the complete message history at LP
i up to the time where the job enters service. This feature places BTW at a
disadvantage in that lazy cancellation is ineffective. Thus two messages are
generated upon reprocessing an event, an antimessage to cancel its previ-
ous routing and a new routing message sent to another (probably different)
LP. Like other analyses of Time Warp, we neglect the cost of processing the
antimessage at both the sender and receiver. However, in our model an
antimessage is not recognized instantaneously by its recipient, but only
after the recipient has processed all known events in its window. This
feature makes sense when the cost of probing for a new message is high
enough to govern that activity (which is the case on current distributed
memory architectures).

3. ANALYSIS

The principle challenge in modeling optimistic protocols is to capture the
effects of rollbacks, for, the occurrence of one straggler message may trigger
one or more rollbacks. In our specific case, we have the additional challenge
of capturing the effect that BTW’s global synchronization has on rollback
propagation. This is a very difficult analytic problem; we make headway by
use of some intuitive approximations. If a straggler arrives at time s and if
the first post-rollback event at that LP has time stamp t, then for an
additional rollback to be triggered the receive time of the message sent at
time t must lie inside of the BTW synchronization window. The probability
that this occurs depends on the relative positioning of time s within the
window—the closer s is to the end of the window, the less likely it is to
trigger another rollback. In fact, if we condition on knowing that a
straggler message arrives at time s, under the model assumptions we can
compute exactly the probabilistic effects of that straggler has on anti-
message generation. Because the actual arrival time distribution for a
message is intractably complex, we approximate its form and numerically
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compute parameter estimates of that form, thereby allowing computation of
the effects of stragglers. The form is based on the intuition that the arrival
time of a straggler message can be viewed as a sum of service times,
because for any given message arriving at time t we can trace back a chain
of service durations given to different jobs at different LPs. This approxi-
mation is novel among analyses of parallel simulation. As part of this
calculation, we use more standard approximations such as replacing a
conditional binomial distribution with a mean-matched Poisson distribu-
tion, and assumption of independence between random variables whose
correlation structure is very low due to randomizing effects of stochastic
routing.
The approximated distributional form of message arrival times permits

us to compute the probability distribution of the random number W of
events executed (including re-executions) within a window of width A. W
clearly depends on A, but this dependence will not be expressed in the
notation. Our initial goal is to determine the probability distribution of W;
note that this distribution is the same for all LPs under the uniformity
assumptions made. Given the distribution, we can add overhead and
execution costs, and determine the mean time mA required to complete the
window by the processor requiring the longest time to do so. mA/A serves as
our metric, measuring the average execution time required per unit simu-
lation time.
We focus on “generations” of messages, a notion which arises as follows.

Imagine that LPs synchronize at t, and then each executes all known
events in the window [t, t 1 A) without receiving or being affected by any
message not present at the synchronization. The set of messages sent
during the first sweep with time-stamps in [t, t 1 A) are defined to be in
generation 1. As we have noted earlier, some messages sent during the first
sweep will have time-stamps greater than [t, t 1 A); these are explicitly
excluded from consideration because they have no effect on processing in
the present window. Each generation 1 message causes an LP to rollback
and reprocess all events in the window that lie ahead of it’s receive
time-stamp. This reprocessing in turn generates another set of messages—
ones in generation 2. Continuing in this vein, a message is in generation
i 1 1 if it is the direct result of a rollback caused by a generation i
message. We denote the random number of generation i messages received
by an LP as Gi, and denote by Ri the random number of events processed
as a result of receiving generation i messages.
Our analysis is of a simulated nonpreemptive queuing network with load

so high that every server is always busy. When A is small, the job will
arrive in one window, then wait for service through one or more windows.
Discounting the possibility of a job going into service in the same window
as it arrives, at time t an LP knows the number, the entry times, and the
service times of all jobs it will place into service in window [t, t 1 A).
These jobs and their associated times remain unaltered throughout the
processing of the window. However, the contents and destinations of
messages the LP sends during [t, t 1 A) are permitted to change as a
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function of the messages arriving in [t, t 1 A). Observe then that the
number of service entry events an LP has in [t, t 1 A) is a random variable
S that is Poisson distributed with mean Ams. Since the routing of jobs is
taken to be uniformly at random, the LP also knows of J job arrival events,
where J is also Poisson with mean Ams. S and J are independent.
Event reprocessing costs depend on how quickly the parallel simulator

receives and reacts to straggler messages. For example, the analysis of
Gupta et al. [1991] assumes zero message transmission delay, and that
rollback occurs immediately following the complete processing of whatever
event is being served at the instant the straggler message arrives. If two or
more stragglers arrive during that processing time, the reprocessing effect
is as though only the straggler with least time stamp was received, others
exact no additional cost. But now consider the effect a communication delay
may have on the algorithm. If A is small enough, an LP will have few
events in a window; in the time it takes a message to travel between
processors, the recipient LP will already be ready to synchronize at time
t 1 A. Even if communication is faster it is frequently the case (and we
have observed on actual applications) that the cost of probing for new
messages after each event is prohibitively high on distributed memory
architectures, because such a probe involves a system call. In our model, if
a straggler message is received at some time s [ [t, t 1 A) then the effect
of that straggler is to re-execute all events at that LP from s to t 1 A, and
to send anti-messages after all messages generated previously by those
events. If an LP receives k generation i stragglers, then each is processed
serially, incurring k separate recomputation costs. This aspect of the model
concerns timing of message arrivals and their subsequent processing.
While BTW need not behave in this way, it may do so as long as an LP has
only a few events in a window and the communication lag is noteworthy.
If we define generation 0 messages as corresponding to the service entry

events and job arrival events, we write R0 5 S 1 J, and express the total
number of events processed in the window by

W 5 O
i50

`

Ri .

Observe that the event re-executions counted by Ri with i . 0 are
overhead. The distribution of each reprocessing cost Ri depends on the
number of generation i messages. Given a total number N generation i
messages in the system, the number arriving at an LP is a binomial B(N,
1/P) random variable, P being the number of LPs. In principle, we could
carry the analysis forward retaining the binomial form. In practice there is
a computational advantage to modeling the binomial with a Poisson ran-
dom variable with matching mean. This approximation is standard when N
is large and 1/P is small, which is the case for the early generations whose
contributions dominate W.
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As noted earlier, the distribution of a message’s arrival time is too
complex to handle exactly (owing to inescapable probabilistic dependen-
cies). Our approximation of the arrival time distribution of a message notes
that the message corresponds to a service-entry event in some LP; the
arrival time is the service-entry time plus an exponential. Each service
entry event has some rank reflecting whether it is the first, second, or so on
service entry event in [t, t 1 A), on its LP. The arrival time distribution of
the message sent by the ith service entry event following time t is t plus
the convolution of i 1 1 i.i.d. exponentials, i.e., an Erlang-(i 1 1); we say
that the arrival message has rank i 1 1. We will have occasion to condition
on the service-entry event lying in [t, t 1 A), in which case the message’s
arrival time distribution altered by this conditioning. In order for such a
message m to be sent (in generations . 0), the ith service entry event must
be reprocessed, implying the arrival of an earlier straggler—information
that alters m ’s arrival time distribution. Our model does not attempt to
capture this distributional dependency. Under our simplifying assumption
then, every generation i arrival message in [t, t 1 A) has a time-stamp
whose distribution is t, plus some Erlang conditioned on being less than A.
If we chose a representative random generation-i arrival in [t, t 1 A),

what is its rank? The probability of the rank being k is the expected
fraction ai,k of generation i messages that have rank k. Letting f̃k(s) be the
density function for an Erlang-k conditioned on being less than A, we
approximate the arrival time density function of an arbitrary generation i
message as the mixture t 1 (k52

` ai,kf̃k(s). We will show how to approxi-
mate the coefficients {ai,k}.
Table I summarizes our notation. All random quantities are LP-oriented,

rather than system-oriented.
It remains to determine weighting factors {ai,k} and the distributions for

W, Gi, and Ri. The approach is to condition on S 1 J 5 k, and determine
distributions for Gi, Ri, and W suitably conditioned, call them Gi(k), and
Ri(k), and W(k). Under our model assumptions, the correlation between
message arrival times at an LP are very slight; taking them to be indepen-

Table I. Summary of Notation.

W Total events processed in a window
S Service entry events in a window
J Job arrival events
ms Service rate for queue server
Gi Generation i arrival messages received
Ri Events reprocessed by all generation i arrivals
ri Events reprocessed by single generation i arrival
ai,j Fraction of generation i arrivals with rank j
f̃ j(s) Density function of Erlang-j conditioned on s # A
Fj(s) Cumulative distribution function for Erlang-j
B(n, p) A binomial random variable with parameters n and p
Hj(s) Cumulative distribution function of Erlang-j conditioned

on sum of first (j 2 1) stages being less than A
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dent we compute W(k) 5 (i50
` Ri(k), because the individual random

variables in the convolution will be independent. It is straightforward then
to uncondition on S 1 J (since S and J are independent and Poisson). The
values for E[Gi] and {ai,k} can be built up with increasing i, as will be
shown.
First consider E[Gi]. A generation 1 message arises whenever a service-

entry event in [t, t 1 A) sends an arrival message with time-stamp less
than t 1 A (all other arrival events were sent by service entry events in
previous windows). If we condition on S 5 k service-entry events in [t, t 1
A), the joint distribution of their times in [t, t 1 A) is identical to that of k
independent [t, t 1 A) uniform random variables [Ross 1983, pg. 37].
Choosing one of these k uniformly at random, the probability that its
arrival message lies outside of [t, t 1 A) is given by

Pr$Arrival message time

for service entry event . t 1 A uS 5 k} 5 E
t

t1A 1

A
exp~2msv!dv

5
1.02exp~2msA!

A
.

This leads to the observation that the mean number of arrival messages
generated in [t, t 1 A) that fall outside of [t, t 1 A) is 1.0 2exp(2msA).
Since the mean total number of arrival messages generated in [t, t 1 A) is
msA, we obtain

E@G1# 5 msA 2 ~1.0 2 exp~2msA!!.

Values for the {a1,k} are also easily derived. For an arrival message to be
of rank j, it is necessary that the Erlang associated with its arrival time
t 1 a be less than t 1 A. From Bayes Theorem, we obtain

a1, j 5 Pr$A generation 1 arrival message in @t, t 1 A! has rank j $ 2%

5 Pr$a , Erlang-j u a , A%

5
Fj~A!

Ok52
` Fk~A!

for j $ 2,

where Fk is the cumulative distribution of an Erlang-k with rate parameter
ms.
We now turn to the analysis for higher generations. Suppose E[Gi] and

the values {ai, j} are known for generation i; condition on S 1 J 5 k and
consider the distribution of Ri(k). In our formulation, an arrival at time t 1
v [ [t, t 1 A) will cause the reprocessing of every known arrival event and
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service-entry event with time-stamp between t 1 v and t 1 A. Given S 1
J 5 k we again may view the placement in time of events on [t, t 1 A) as
that of k uniforms on [t, t 1 A]. As a consequence, the number of events
reprocessed by a rollback-inducing arrival at time t 1 v has the distribu-
tion of a Binomial B(k, (A 2 v)/A), representing the sum of k Bernoullis
with success probability (A 2 v)/A. Coupling this fact with the approxi-
mated distributional form of generation i messages, we compute

Pr$n events reprocessed by generation i message uJ 5 k% (1)

5 E
v50

A O
j52

`

ai, jf̃ j~v! Pr$B~k, ~A 2 v!/A! 5 n%dv. (2)

Equation (1) approximates the distribution of random variable ri(k), the
random number of events reprocessed by a single generation i message,
conditioned on S 1 J 5 k. We ignore here the fact that the arrival message
is itself an arrival event, and that the set of known arrival events is
continuously in flux through successive generations. Accepting this we
approximate the distribution of Ri(k) as the random convolution of M
independent instances of ri(k), M being Poisson with rate E[Gi] (M ’s true
distribution is B (Gi

(N), 1/N), Gi
(N) being an N-fold convolution).

Values {ai, j} are computed in a similar fashion. If we condition on a
generation i arrival at time t 1 v and condition on there being m
service-entry events in [t, t 1 A), then the number of these falling between
t 1 v and t 1 A is binomial. The probability that a generation i 1 1
message of rank j is generated by this arrival is zero if there aren’t enough
service-entry events, i.e., if j 2 1 . m. Otherwise, it is the probability that
the ( j 2 1)st service-entry event occurs after v, and that the message it
generates falls within [t, t 1 A). This gives

bi11, j~m! 5 Pr{ generation i message creates

(3)a rank jgeneration i 1 1 message u S 5 m}

5 Hj~A! 3 E
v50

A O
j52

`

ai, jf̃ j~v! Pr$B~m, v/A! . j 2 1%dv

where we recall that Hj is the cumulative distribution function of an
Erlang-j conditioned on the sum of its first j 2 1 exponential stages being
less than A. Hj(A) gives us the probability that a reprocessed rank-( j 2 1)
service-entry event produces a message in the next generation.
Figure 1 helps to explain these ideas. A situation with S 5 5 is shown,

where an arrival message at time t 1 v falls ahead of the first three service
entry events. The service entry events ahead of the arrival have ranks 4
and 5 respectively. Arcs illustrate the send/receive time difference between

Analysis of Bounded Time Warp • 307

ACM Transactions on Modeling and Computer Simulation, Vol. 6, No. 4, October 1996.



the messages sent by the reprocessed events; the rank 4 event message
falls within the window, the rank 5 event message does not. In order for
there to be a rank 5 message generated, the 4th ranked service event must
lie to the right of v, as must the receive time of its message. The
distribution of that receive time is an exponential added to the distribution
of the 4th service event, the latter of which is a conditional Erlang-4.
For each rank j let bi11, j be the result of unconditioning equation (2) on

S. Then, recalling that each reprocessed service-entry event generates two
messages (with the same time-stamp), the mean number of generation i 1
1 messages with rank j is 2 3 E[Gi] 3 bi11, j, and the coefficients {ai11, j}
are given by

ai11, j 5 E@Gi#S bi11, j

Ok52
` bi11,k

D .
Finally, the mean number of arrival messages in the next generation is
simply

E@Gi11# 5 2O
k52

`

bi11,k .

Using these recursions one may, for every S 1 J 5 k, compute the
distribution of Ri(k), for all generations i 5 1, 2, . . . . Conditioned on S 1
J 5 k, the random variables R0(k), R1(k), . . . may be taken to be
independent (because the processes driving them are highly randomized
arrivals from elsewhere), whence we may compute the distribution of the
convolution W(k) 5 ( i50

` Ri(k). Finally, knowing this distribution for each
S 1 J 5 k, we compute the distribution of W by unconditioning on S 1 J
(known to be Poisson).
The distribution of W describes the workload of a single LP, in terms of

the numbers of events processed. With large numbers of LPs and the
randomizing message routing, we may treat the LP workloads as being
independent random variables. It is then straightforward to express the
expected maximum workload among N LPs. Letting MN(A) be the maxi-
mum workload, we know that for every nonnegative integer w

Pr$MN~A! # w% 5 Pr$W # w%N

Fig. 1. Reprocessing of a rank 4 service-entry event generates a rank 5 message for the next
generation.
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so that

E@MN~A!# 5 O
w50

`

Pr$MN~A! . w%

5 O
w50

`

~1.0 2 Pr$W # w%N!.

Numerical problems may arise computing yx when y is small and x is
large; a good approximation for E[MN(A)] is the so-called characteristic
maximum, used for instance in Eick et al. [1993]. Given N, the character-
istic maximum of W is the smallest value wc such that Pr{W . wc} , 1/N.
Since W is discrete, we further refine the estimate with linear interpolation
of W ’s cumulative distribution function between wc and wc 2 1, in essence
creating a continuous version W̃ and solving for w̃c such that Pr{W̃ . w̃c}
5 1/N. w̃c estimates E[MN(A)].
Of course, any computer program calculating these distributions must

truncate the infinite sums. Taking ms 5 1, we have found that summing
over the first twelve generations yields convergent numbers when A [ (0,
2ms). A precise complexity analysis of the computation involves enumerat-
ing the number of discrete points used to model distribution functions, a
messy proposition considering that our code adaptively chooses the number
of points needed. Practically speaking, the computational complexity is not
large. Each data point on the curves we will illustrate required a small
number of seconds of computation on a personal computer.
In the course of this research we experimented with several different

forms for the approximate message arrival time distribution. The form
developed here was validated against a large number of empirically ob-
served observations, drawn from many values of N and A. Figure 2
provides a representative sample of the validation, comparing model pre-
dictions of E[M64(A)] and E[M1024(A)] with simulation-based measure-
ments for varying values of A. The simulation is of a heavily loaded
queuing network simulation, synchronized under BTW. Each measurement
point is estimated from one hundred window replications. As our purpose is
only to ensure that the model captures general trends we omit confidence
intervals. We see that the model predicts behavior well over a range where
the predictions span a factor of ten between smallest, and largest, although
there is a breakdown at the larger end. This is likely due to the model’s
overly pessimistic calculation that every straggler causes re-execution of
every event ahead of within the window. With larger window sizes BTW
increasingly deviates from this behavior, because recognizing two strag-
glers concurrently, only the one with smaller arrival time causes recompu-
tation.
It is also instructive to consider how the fraction of committed events

(those events that are not later reprocessed) behaves as a function of A.
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This is illustrated in Figure 3, where we plot the ratio of the expected
maximum committed workload on a processor to the expected maximum
total workload, for 64 and 1024 LPs. For both curves shown, the fraction of
useful work decreases linearly in A after a certain point. This suggests that
within our model framework it does not make sense to increase A indefi-
nitely. This is explained in the section to follow.

4. COMPARISON WITH YAWNS

It is instructive to consider how E[MN(A)] behaves as a function of A.
E[MN(A)] is basically the product of three terms, (i) the number of
message generations required until all LPs have finished the window, (ii)
the average number of rollbacks per generation, (iii) the average number of
messages reprocessed per rollback. Our simulations have suggested that
the number of generations grows linearly in A, an observation that agrees

Fig. 2. Comparison of observed and predicted mean maximum events processed in a window
by any LP.
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with the analysis of Eick et al. [1993]. The number of messages reprocessed
each rollback also increases linearly in A, for the simple reason that
increasing the window size introduces new events at the top of the window
to be rolled back along with the ones which were rolled back with smaller
windows. The average number of rollbacks per generation is also linear in
A, because each arrival message is assumed to cause the re-evaluation of
all later messages. E[MN(A)] is at least a cubic function of A, so that the
cost per simulation time unit E[MN(A)]/A (whose units are execution time
per simulation time unit) is at least quadratic in A. This suggests that
there may be some A* minimizing this cost. Figure 4 confirms this
intuition. In fact, it is interesting to note that A* appears to be slightly less
than ms 5 1. This too is in agreement with the model of Eick et al., even
though the models and costs are different. We conclude that A 5 ms is an
excellent choice (and will shown that it remains so in the presence of
reasonable overheads), and in the remainder presume this equality.

Fig. 3. Fraction of committed events as a function of A, for 64 and 1024 LPs.
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To incorporate the effects of state-saving, we’ll assume that the per-event
cost of state-saving is a factor of a, so that the cost of executing n events
with attendant state-saving is an, a $ 1. Note that this model does not
presume that state is saved each event; it only presumes that the aggregate
state-saving overhead amortized over events is a. This is equivalent to
saying that the effect of state-saving is to cause the execution to run at 1/a
the speed of an equivalent computation that does not state-save.
E[MN(A)] (and hence Figure 4) does not incorporate the cost of synchro-

nization nor state-saving. The effect of state-saving cost a is to simply shift
the curves illustrated in Figure 4 vertically by a factor of a; the optimal
window size does not change. If we include a synchronization cost Z for
each window, the true cost per simulation time unit is aE[MN(A)]/A 1
Z/A. Depending on the value of Z, the optimal window size may grow.
However, an analysis of Figure 4 shows that Z must be very large to
significantly alter the optimality of window sizes near ms. Having seen that

Fig. 4. E[MN(A)]/A as a function of A, for 64 and 1024 LPs.
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E[MN(A)]/A is at least a quadratic function of A, simple calculus shows
that the A minimizing E[MN(A)]/A 1 S/A is O(Z1/3). More concretely we
may ask for the value of Z forcing the optimal window size to be almost
twice ms. This occurs roughly when the adjusted function is equal at the
rightmost two points of a curve in Figure 4, (i.e., when E[MN(1.9)]/1.9 1
Z/1.9 5 E[MN(1.8)]/1.8 1 Z/1.8; algebra yields Z 5 63.6, a number
reflecting a synchronization cost that is more than three times larger than
the window’s entire computation cost at that point, and is ten times larger
than the cost of executing committed events. Overheads this large aren’t
practical; in the remainder we consider the case where Z is moderate (e.g.
no more than the window’s computation cost), and we may continue to use
ms as a close-to-optimal window size.
In order to compare synchronization costs in YAWNS and BTW, we must

consider how synchronization is performed in an optimistic computation. A
software solution described by Nicol [1991] has every LP engaging in
synchronization activity once it finds itself apparently at the synchroniza-
tion point. We could assume some synchronization cost for each and every
straggler message, however this seems excessive. Instead, we’ll assume
that the number of synchronizations are those one would incur by synchro-
nizing at the end of each generation; this is in fact a reasonable way to
program BTW, because following each synchronization the processors can
determine whether there are further stragglers, and so decide whether to
move on to the next window. Our experience with the optimistic barrier
studied in Nicol [1993b] is that its cost is close to twice that of a
conventional synchronization. Our simulation studies show that a window
of width A 5 ms requires 2.5 generations on average, a figure that is
relatively insensitive to the number of LPs.
It turns out that the behavior of E[MN(ms)]/ms in N is an almost

perfectly linear function of log N in the range considered, with E[MN(ms)]/
ms ' log N 1 2.9, as illustrated in Figure 5. Taking B as the execution cost
of a conventional barrier synchronization the overall execution cost per
unit simulation time given N LPs is

Coptim~N! < a~log2N 1 2.9! 1 5B. (4)

In the context of our earlier remarks concerning synchronization cost Z,
this function is reasonable when 5B is of the order of the computation cost,
say, 5B , a(log2 N 1 2.9).
Now consider YAWNS. Nicol [1993a] established that the average width

of the conservative window is at least ms=p/(2N) ' 1.25ms/=N. In
windows this small, the average maximum number of events processed by
any LP is no larger than 2, for large N it is much closer to 1. Including the
barrier synchronization, YAWNS’ cost per unit simulation time is no
greater than

Cyawns~N! 5
~2 1 B! ÎN

1.25
. (5)
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We may use Eqs. (3) and (4) to compare the approaches, given values for
overhead costs. At a higher level we observe that BTW has an O(log2 N)
cost while YAWNS has an O(=N) cost. For sufficiently large N, BTW will
always achieve a lower cost. How large must that N be? We depict this
graphically in Figure 6, plotting the solution (to a) of equation Coptim 2
Cyawns 5 0, as a function of log2 N and for various values of B. Solutions
a 5 a(N, B) , 1 are plotted as 1, since state-saving can never accelerate
the cost of executing an event. For any given value of a* and known value
B, one can determine the N* for which a* 5 a(N*, B), and determine that
BTW is better than YAWNS for all N $ N*. Imagine that state-saving
doubles the cost of executing an event. Plotting the line a 5 2 we look for
its intersection with the various synchronization cost curves; N ’s associated
with the intersection define N*. For instance, if B 5 0, then BTW is better
for N . 128. If B 5 1.0 however, then BTW needs only N . 100, and if
B 5 10.0 it needs only N . 40. YAWNS is clearly impacted more strongly

Fig. 5. E[MA(ms)/ms] as a function of log2 N.
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by increasing synchronization costs, as it synchronizes on the order of =N
times more often than BTW.
The assumptions under which we’ve analyzed YAWNS show that if

simulation time advances by exponentially distributed amounts and if only
one LP is assigned to each processor, then YAWNS has a relatively high
cost. However, YAWNS performance is sensitive to both of these assump-
tions. If an LP’s service time is bounded below by g . 0, then the size of a
YAWNS window at least g. This seemingly minor change of assumptions
defeats the assured asymptotic superiority of BTW, because it changes
YAWNS O(=N) cost to O(1/g). The relative performance of YAWNS and
BTW depend primarily then on a, B, and g.
Next we show that by considering the effects of aggregating LPs onto

processors, YAWNS again circumvents BTW’s assured superiority, even if
service times are exponentially distributed. The reasoning is straightfor-
ward. Let N denote the number of LPs, P denote the number of processors,

Fig. 6. Function specifying LP threshold N* after which YOW is better than YAWNS.
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and presume that each processor simulates N/P LPs. Prior analysis of
YAWNS under our model assumptions shows that the average size of a
YAWNS window is y(N) 5 1.25ms/=N; the number of events each LP
executes in a window is Poisson with rate 2y(N). Since LPs are indepen-
dent, the number of events a processor executes each window is Poisson
with rate l(N) 5 2.5=N/P. If MP(l) is the mean expected maximum of P
Poissons with rate l, then YAWNS’ cost per unit simulation time per
co-resident LP is

Dyawns~N! 5
ÎN
1.25

3
MP~l~N!! 1 B

N/P
.

Eick et al. [1993] study the asymptotics of MP(r), showing that MP(r) ;
logP/loglog P for small r, and MP(r) ; 2r for r 5 V(log P). l(N) increases
unboundedly in N, implying that for sufficiently large N

Dyawns~N! ,
2l~N! 1 B

N/P

5 4 1
B

l~N!
.

The second term vanishes as N grows, showing that YAWNS’ normalized
execution cost per LP is asymptotically constant.
The result above does not imply that YAWNS’ normalized cost is asymp-

totically 4 because constants in the asymptotic analysis are missing from
our expressions. However, Figure 7 plots the predicted cost (not asymp-
totic) as a function of log(N/P), assuming P 5 16 and B 5 0. It also plots
the predicted performance of BTW, again assuming A 5 ms, under the
same values of N and P. State-saving overhead factors of a 5 1, 1.2 and 1.5
are shown. These figures are obtained by computing appropriate convolu-
tions of W, and finding the expected maximum convolved processor load.
Since aggregation may change the relative optimality for BTW of A 5 ms,
we also computed costs assuming other window sizes. Differences from the
presented data were small. When synchronization costs contribute little to
the overhead cost under high loads, it is clear now that YAWNS can do
better than BTW under high degrees of aggregation, or when state-saving
overhead is significant.
It should also be noted that our model works against BTW in the

aggregated case. When LPs tend to communicate with other LPs on the
same processor one may expect advantages due to significantly reduced
communication costs. This is especially true in our model because the
recomputation cost due to delayed stragglers is consequential. However,
the assumption that messages are routed uniformly at random means that
no such locality is present in the model. Our costing assumptions remain
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valid in the aggregated case so long as event processing costs are of the
same order as communication and the window size is small.

5. EXTENSIONS

We believe that our general analytic approach can be extended in some
valuable ways. The first extension permits analysis of simulations where
the routing probabilities are not uniform. Since our core analysis is of a
single LP, and that analysis is driven by an assumed message arrival rate,
one easily envisions constructing different workload probability distribu-
tions for LPs that have different arrival rates. One can then compute the
expected maximum LP workload numerically. Note however that the
assumption of independence between LP workloads may in special cases
become less viable. We can anticipate the effect of such a change on the
performance of YAWNS and BTW. The performance of both methods will

Fig. 7. YAWNS and BTW normalized cost per unit simulation time under aggregation as a
function of log (N/P).
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degrade because of load imbalance in the arrival events. However, BTW’s
performance should suffer more, because of additional roll-back induced
workload at LPs with higher-than-average arrival rates. One also imagines
changes where LP message arrival rates remain the same, but the routing
probabilities are changed to induce locality—consider a ring of LPs that
communicate only with neighbors. So long as servers remain heavily
loaded, our approach remains the same. The question of how the change
affects an actual simulation is valid. Our experience with random-but-
uniformly balanced routing in other contexts has been that differences
exist, but they are small.
Another consideration is to relax the assumption that all servers are

heavily loaded. We don’t believe this changes our approach much; the
number of service events in a window of size A becomes Poisson with rate
rmA, r being the server utilization. We also need to account for the
possibility of a job entering service upon arrival. These details appear to be
manageable.
Lastly and most importantly, we believe it is possible to extend the

analysis to explicitly model the communication delay between when a
message is sent, and received. To accomplish this we envision modeling the
arrival process at an LP as a nonhomogeneous Poisson process, whose rate
function depends on the communication lag. Our computational model will
have to be based in physical time (given the probabilistic description at
time t, we compute its description at time t 1 d). However, such an
approach offers the possibility of accounting for the phenomena that only
the earliest known straggler initiates rollbacks. We hope that an extension
of this type will sharpen our predictive power for larger windows.

6. CONCLUSIONS

We have analyzed a simple model of parallel simulation, to compare the
performance of the conservative YAWNS synchronization protocol, and the
optimistic Bounded Time Warp protocol. Our approach is novel to the
problem area, and is relatively simple. We show how to compute approxi-
mate probability distributions of processor workload. To these distributions
we add overheads due to state-saving, and synchronization. In addition, we
consider the effects on performance due to aggregating many LPs onto a
processor.
Our analysis predicts that BTW has some optimally-size window, a

prediction borne out by experiments. The window is relatively large com-
pared to YAWNS’, but is still so small that on average a logical processor
executes only two events within it. Using this window size we construct
equations predicting BTW’s and YAWNS’ execution cost per unit simula-
tion time, and observe that under the assumption of one LP per processor,
BTW is asymptotically better than YAWNS, as the number of LPs grows.
However, when we analyze performance allowing many LPs per processor
we find that YAWNS does better than BTW under moderate levels of
aggregation, or when state-saving costs are nonnegligible.
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Far-reaching quantitative conclusions are questionable for a model of
this type. For both YAWNS and BTW small changes in model assumptions
will significantly affect quantitative results. Qualitatively though, we may
infer that if actual reprocessing costs resemble those in our model and
global synchronization costs aren’t high, then it is likely that limiting
optimism is a good thing in a window-based framework. We also conclude
that if probability distributions driving simulation time advance have no
lower support, then YAWNS will not do well when the problem is sparse
relative to the architecture. However, this problem disappears for larger
problems where LPs are highly aggregated onto processors. Perhaps the
strongest conclusion we offer is that performance of parallel simulations is
more strongly a function of state-saving, synchronization/communication
costs, problem size, and degree of aggregation than it is for the specific
synchronization protocols. Synchronization methods ought to be chosen
after the problem is known, and to take advantage of the problem’s
characteristics.
An open and important question remains, whether a window-based

framework offers better performance than a completely asynchronous one.
While we have not addressed this problem, we believe that extension of our
analytic approach to the Gupta et al. model assumptions may lead to the
desired comparison. We also believe a more precise treatment of the effects
of communication delay is possible, which will lead to better understanding
of the effect the underlying architecture has on synchronization behavior.

ACKNOWLEDGMENTS

Our good friend and colleague, J. Mark Duva, passed away in the fall of
1995 before this paper was published. He will be sorely missed.

REFERENCES

AYANI, R., AND RAJAE, H. 1992. Parallel simulation using conservative time windows. In
Proceedings of the 1992 Winter Simulation Conference. Society for Computer Simulation,
San Diego, Calif., pp. 709–717.

BRYANT, R. 1977. Simulation of packet communication architecture computer systems.
Tech. Rep. MIT-LCS-TR-188. Massachusetts Institute of Technology, Cambridge, Mass.

CHANDY, K., AND MISRA, J. 1979. A case study in the design and verification of distributed
programs. IEEE Trans. Softw. Engin. SE-5, 5 (May), 440–452.

CHANDY, K., AND SHERMAN, R. 1989. Conditional event approach to distributed simulation.
In Proceedings of the 1989 SCS Multiconference on Distributed Simulation. Society for
Computer Simulation, International, San Diego, Calif., pp. 93–99.

EICK, S. G., GREENBERG, A. G., LUBACHEVSKY, B. D., AND WEISS, A. 1993. Synchronous
relaxation for parallel simulations with applications to circuit-switched networks. ACM
Trans. Model. Comput. Sim. 3, 4 (Oct.), 287–314.

FELDERMAN, R., AND KLEINROCK, L. 1991. Bounds and approximations for self-initiating
distributed simulation without lookahead. ACM Trans. Model. Comput. Sim. 1, 4 (Oct.),
386–406.

FUJIMOTO, R. 1990. Parallel discrete event simulation. Commun. ACM 33, 10 (Oct.), 30–53.
GUPTA, A., AKYLDIZ, I., AND FUJIMOTO, R. 1991. Performance analysis of time warp with
multiple homogeneous processors. IEEE Trans. Softw. Eng. 17, 10 (Oct.), 1013–1027.

JEFFERSON, D. 1985. Virtual time. ACM Trans. Prog. Lang. Syst. 7, 3 (July), 404–425.

Analysis of Bounded Time Warp • 319

ACM Transactions on Modeling and Computer Simulation, Vol. 6, No. 4, October 1996.



LUBACHEVSKY, B. 1988. Bounded lag distributed discrete event simulation. In Proceedings of
the 1988 SCS Multiconference on Distributed Simulation. Society for Computer Simulation,
International, San Diego, Calif., pp. 183–191.

MISRA, J. 1986. Distributed discrete-event simulation. Comput. Surv. 18, 39–64.
NICOL, D. M. 1991. Performance bounds on parallel self-initiating discrete-event simula-
tions. ACM Trans. Model. Comput. Sim. 1, 1 (Jan.), 24–50.

NICOL, D. M. 1993a. The cost of conservative synchronization in parallel discrete-event
simulations. J. ACM 40, 2 (Apr.), 304–333.

NICOL, D. M. 1993b. Global synchronization for optimistic parallel discrete event simula-
tion. In Proceedings of the 7th Workshop on Parallel and Distributed Simulation, IEEE
Computer Society Press, Los Alamitos, Calif., pp. 27–34.

NICOL, D., AND FUJIMOTO, R. 1994. Parallel simulation today. Ann. Oper. Res. 53, 249–286.
PEACOCK, J., WONG, J., AND MANNING, E. 1979. Distributed simulation using a network of
processors. Comput. Netw. 44–56.

REYNOLDS, P. 1988. A spectrum of options for parallel simulation. In Proceedings of the
1988 Winter Simulation Conference. Society for Computer Simulation, International, San
Diego, Calif., pp. 325–332.

RIGHTER, R., AND WALRAND, J. 1989. Distributed simulation of discrete event systems. Proc.
IEEE 77, 1 (Jan.).

ROSS, S. 1983. Stochastic Processes. Wiley, New York.
SOKOL, L., BRISCOE, D., AND WIELAND, A. 1988. Mtw: A strategy for scheduling discrete
simulation events for concurrent execution. In Proceedings of the 1988 SCS Multiconference
on Distributed Simulation. Society for Computer Simulation, International, San Diego,
Calif., pp. 169–173.

STEINMAN, J. 1991. Speedes: Synchronous parallel environment for emulation and discrete
event simulation. In Proceedings of the SCS Western Multiconference on Advances in
Parallel and Distributed Simulation. Society for Computer Simulation, International, San
Diego, Calif., pp. 95–103.

STEINMAN, J. 1992. Speedes: A unified approach to parallel simulation. In Proceedings of the
6th Workshop on Parallel and Distributed Simulation. IEEE Press, Los Alamitos, Calif., pp.
75–84.

TURNER, S., AND XU, M. 1992. Performance evaluation of the bounded time warp algorithm.
In Proceedings of the 6th Workshop on Parallel and Distributed Simulation. IEEE Press, Los
Alamitos, Calif., pp. 117–126.

Received April 1994; revised July 1995 and August 1996; accepted September 1996

320 • P. M. Dickens et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 6, No. 4, October 1996.


