
ANALYSIS OF TIME WARP ON A 32,768 PROCESSOR IBM
BLUE GENE/L SUPERCOMPUTER

Akintayo O. Holder and Christopher D. Carothers

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180, U.S.A.
email: {holdea,chrisc}@cs.rpi.edu

ABSTRACT

The aim of our work is to investigate the performance and
overall scalability of an optimistic discrete-event simulator
on a Blue Gene/L supercomputer. We find that strong scaling
out to 16,384 processors is possible. In terms of event-rate,
we observed 853 million events per second on 16,384 pro-
cessors for the PHOLD benchmark. This is 1.5 times faster
than any previously reported PDES synchronization proto-
col for PHOLD executing on a Blue Gen/L supercomputer
(e.g. conservative, optimistic or hybrid). Additionally, we
observed 2.47 billion events per second for a PCS telephone
network model when executed on 32,768 processors. To the
best of our knowledge, this is the first multi-billion event
rate achieved for any Time Warp model executing on a Blue
Gene/L supercomputer.

Keywords: simulation, high performance computing, par-
allel discrete event simulation

1 INTRODUCTION

Time Warp (Jefferson 1985) is a synchronization protocol that
allows a parallel discrete-event simulation to speculatively
process event computations, but if the synchronization mech-
anism detects an event that has been processed out of time
stamp order (e.g. event causality error) it will undo or roll
back the offending event computations. The most common
technique for realizing rollback is state-saving. Here, the
original value of the state is saved prior to event execution.
Upon rolling back, the state is restored by copying back the
stored value.

In this paper we make two contributions; we demonstrate
that is possible to construct an efficient Time Warp simulator
which achieves linear scalability on the Blue Gene/L super-
computer out to 16,384 processors and continues to increase

its event rate out to 32,768 processors. We also demonstrate
that a synchronous Global Virtual Time (GVT) algorithm,
which defines a lower bound on any unprocessed or partially
processed event, can scale to 10’s of thousands of processors.

Rensselaer’s Optimistic Simulation System (ROSS) is the
basis for this experimental performance study. ROSS was
originally a Time Warp simulation engine that was optimized
for shared memory systems and is based on Georgia Tech
Time Warp (GTW) (Carothers et al, 1999). This version,
which we now call ROSS-SM, has some key features that are
important for efficient Time Warp execution. First, ROSS-
SM efficiently manages memory consumption (Carothers et
al, 1999) for both forward as well as rolled back event com-
putations. In particular, pointers to events are used whenever
possible rather than creating duplicate copies. This feature
eliminates the need for searches when performing event can-
cellation (e.g. direct cancellation (Fujimoto 1989)). Using
reverse computation also reduces the amount of state saved
and has been shown to dramatically improve parallel perfor-
mance (Carothers et al, 2000). Finally, GVT is computed us-
ing Fujimoto’s algorithm (Fujimoto 1997), an asynchronous
algorithm that uses a shared global flag to signal GVT com-
putation.

The Blue Gene/L is a completely different class of paral-
lel system. Here, modest computing nodes are connected by
a low latency, high bandwidth interconnects, including an in-
dependent collective network. Broadcast latency is compara-
ble to point to point messaging, making global reduction effi-
cient. The Blue Gene/L does not allow processors to directly
access remote memory, but it includes an efficient message
passing framework using MPI (MPI, 1994). Consequently,
our challenge is to migrate our efficient shared-memory im-
plementation into a highly optimized message passing system
that is capable of scaling to supercomputing class processor
counts.

The following issues are addressed as part of our imple-

mentation of ROSS on the Blue Gene/L which we call ROSS-
MPI: (i) the sharing of events between processes, (ii) the im-
pact of remote communication on memory consumption, (iii)
the role of global virtual time computation on fossil collec-
tion, (iv) identifying unique events and ensuring stable, de-
terministic execution.

The remainder of this study is organized as follows: a
brief overview of the IBM Blue Gene/L supercomputer is
provided in Section 2. We then discuss the details of the
ROSS-MPI implementation in Section 3 and present our syn-
chronous GVT algorithm in Section 3.3. The performance
results are presented in Section 4. Finally, related work is
discussed in Section 5 with closing remarks in Section 6.

2 BLUE GENE/L SUPERCOMPUTER

The Blue Gene/L is an ultra large-scale supercomputer sys-
tem that is capable of having 131,072 processors. The Blue
Gene philosophy is that more powerful processors is not the
answer when it comes to winning the massively parallel scal-
ing war (Adiga et al, 2002). Instead, the Blue Gene architec-
ture balances the computing power of the processor against
the data delivery speed of the network. This led designers to
create smaller, lower power compute nodes (only 27.5 KW
per 1024 nodes) consisting of two IBM 32-bit PowerPCs run-
ning at only 700 MHz with a peak memory per node of 1 GB.
A rack of Blue Gene is composed into 1024 nodes consisting
of 32 drawers of 32 nodes in each draw. Additionally, there
are specialized I/O nodes that perform all file I/O. Nominally
there is one I/O node for every 32 compute nodes.

Interconnecting both drawers of nodes and racks are five
specialized primary networks. The first is the point-to-point
network which allows data to be sent between nodes. This
network is a 3-D torus consisting of 12 directional links with
a bandwidth of 175 MB/s each in the +− x, +− y and +−
z directions. The latency of a point-to-point message is a
function of the distance traveled between nodes. The 32,768
processor Blue Gene/L used in this study consists of 16 racks
with each rack being a 32x32x1 torus yielding a network of
32x32x16. The max distance is the sum of half the distance
for each direction which is 40 (e.g., 16 + 16 + 8) leading to a
max delay of 4 µs (i.e., each hop has a max delay of 100 ns).

In addition to the point-to-point network, there is a global
collective network that enables data collection, reduction and
redistribution to all nodes (or a subset) with a latency of 5 µs.
As we will see in Section 3.3, this collective network is criti-
cal to Time Warp’s ability to efficiently compute Global Vir-
tual Time (GVT) and re-claim memory. We observe here that
the collective network is able to compute a global reduction
operation across all processors almost as fast as the single
longest 1-way delay of the point-to-point network. This sug-
gest that any GVT algorithm using the point-to-point network
will not scale as well as using the collective network.

Next, there is an independent barrier network that is able

to complete a barrier of a full 64K node Blue Gene system in
less than 1.5 µs. Finally, there is a separate control network
used to transmit system health information as well as an Gi-
gabit Ethernet network which provides connectivity between
I/O nodes and an external parallel file system.

For this experimental study, the Blue Gene/L housed within
the Rensselaer Computational Center for Nanotechnology In-
novations (CCNI) is used. This is a 16 rack Blue Gene/L
system with 8 racks having 512 MB of RAM per node and
the other 8 racks configured with 1 GB of RAM per node.
The IBM XLC C compiler was used for all the results in
this paper. We were able to take full advantage of the com-
piler’s peak optimization level as well as architecture spe-
cific settings. Our specific compiler options where: -O5
-qarch=440d -qtune=440.

3 ROSS-MPI IMPLEMENTATION

In the ROSS implementation of the Time Warp protocol, the
processor element (PE) is an abstraction of the physical pro-
cessor which we realize as an MPI task. They are independent
processes that have exclusive memory access and communi-
cate via message passing. Events that are destined for a log-
ical process (LP) on another PE are sent as MPI messages to
the correct task. Each PE owns a number of LPs and uses
a master scheduler to process events in time stamp order for
all LPs assigned to that PE. Under the Time Warp protocol,
models are implemented as parallel applications where an LP
would be a logical thread of execution. The event handler
is executed by the event’s destination LP, as the LPs are re-
sponsible for processing and scheduling events. The models
are built from LPs and events, while the PEs and KPs are ar-
chitectural features used by ROSS. This allows the model to
define parallelism independently of the processor count. The
model provides the addressing protocol for routing events
among LPs and PEs. Next, because each physical processor
has it own memory, remote events are duplicated at the source
and destination PEs. This duplicaton allows us to implement
a rollback that spans across physical processors and separate
memory address spaces. Remote events, and how they are
handled will be important to the performance of ROSS-MPI.
Last, a synchronous GVT algorithm was implemented that
exploits the Blue Gene/L’s collective network to achieve scal-
able performance.

Kernel processes (KPs) (Carothers et al, 2000) improve
the efficiency of fossil collection by aggregating events pro-
cessed for a group of LPs into a larger list. ROSS-MPI maps
the LPs to the KPs and the KPs to the PEs, but it is the
responsibility of the model to assign LPs their identifiers.
When a PE needs to schedule an event on another PE, it
uses the model’s LP addressing scheme, which will be de-
scribed below. Remote events introduce the need to differen-
tiate among events, so we use age a sequence number that
uniquely identifies all the events generated between any pair

Figure 1: Architecture of a Processor Element (PE)

of LPs. Because the MPI standard (M.P.I 1994) guarantees
in order delivery of messages, event arrival order is preserved
thus avoiding the complex case of having to process cancel
events prior to the receipt of their positive event counterpart.
This aspect is described in more detail in Section 3.2.1. Fi-
nally, the GVT algorithm empties the receive buffers and uses
collective operations to ensure all processor elements agree
that there are no transient events. We define an overflow
buffer to be used for receiving remote events during GVT
computation. This overflow buffer allows GVT computation
to proceed when regular event memory has been exhausted.

3.1 Processor Element Communication

As shown in Figure 1, each MPI task contains a PE data struc-
ture, arrays of LPs and KPs, and a free list of events. The free
list is an allocation of all the events that will be used over the
life of the simulation. ROSS does not allocate memory dur-
ing allocation, rather it provides a reference to an event in the
free list. These are distributed equally among processor ele-
ments which should ensure that each processor performs an
equal share of the work. ROSS-MPI assumes that the model
will be well balanced, but better support for unbalanced mod-
els will be available in the future. This would include a more
general LP to KP mapping structure, that will allow variance
in the number of LPs assigned to a KP. We do believe that
a balanced model is best suited for large platforms, like the
Blue Gene. However, we acknowledge the need to support
models where LPs are assigned varying workloads.

ROSS-MPI maps the LPs to KPs, but models may take
advantage of the scheme when defining their LP addressing
scheme. ROSS-MPI ensures that the ith KP is assigned the
((i−1)(nlp/nkp)+1), ((i−1)(nlp/nkp)+2)..(i)(nlp/nkp)
LPs, where nlp and nkp are the number of LPs and KPs re-
spectively. Each LP is assigned an address that is comprised
of an index and a peid, the model then assigns an lpid.
The peid refers to the processor element that contains the
LP, and the index is the location of the LP in the local ar-

Figure 2: Handling concurrent events due to roll back

ray of LPs. The lpid is a unique identifier that is used by
the model. The map_lp_to_pe function maps the lpid
to the peid and the map_lp_to_local function maps it
to the index. We chose to always compute the address pair
consisting of the index and the peid, as opposed to con-
structing a table that describes the mapping or caching the
computed results. This is a space-computation trade-off. A
mapping table would limit the scale of the model that could be
executed since mappings for all the LPs would be retained on
each MPI task and caching would increase complexity of the
implementation. Based on our current performance results,
we have seen no indication that the use of efficient mapping
functions degrades performance.

3.2 Remote Events

Remote events are generated when the source and destination
LPs are not on the same PE. The source LP creates the remote
event and places it on the current event’s caused_by_me
list. The “current event” is the event that is being processed
by the LP during event generation. Next, the source LP sends
the event to the PE that hosts the destination LP. When the
destination PE receives an event it finds the correct destina-
tion LP, and inserts the event in the priority queue. If the
source LP needs to rollback, it will send a remote cancel event
that contains a duplicate of the remote event. ROSS only uses
the source LP, destination LP, time stamp and age to iden-
tify the correct event, but a complete duplicate is sent. The
mapping functions are used by the PEs to find the source and
destination LPs of an event.

When a PE sends a remote event, it uses map_lp_to_pe
to compute the destination peid. The destination PE, upon
receiving a remote event, uses the map_lp_to_index to
find the local LP that corresponds to the destination lpid.
These mapping functions must initialized before the sched-
uler loop begins as any LP could be referenced once event
processing commences. The model builder must ensure that
all the peid, index pairs are mapped to lpids.

3.2.1 Augmenting Direct Cancellation

When a remote event or cancel arrives, the PE must be able to
tell if the event is unique or a copy of an existing event. A re-
mote cancel without the associated event is an error, as is the
duplication of a remote event. With ROSS-SM every event
is made unique by leveraging shared memory to perform di-
rect cancellation (Fujimoto 1989). Here, a “cancel” mes-
sage/event is a pointer reference to the actual real event, thus
making the positive event and the anti-message the same ob-
ject. With ROSS-MPI, the PE must search the priority queue
and processed list to cancel a previously sent remote event.
The use of KPs (Carothers et al, 2000) allows us to perform
a quick linear search of the processed list. The search of the
priority queue, which is a Splay Tree data structure, is derived
from the insert method which has a complexity of O(log(n))
(Sedgewick 1998). To implement a search we must be able
to differentiate among the events in the simulation. Consider
the case shown in Figure 2. Here, a source LP schedules an
event A at time t to a destination LP. The source LP is then
rolled back and it generates an anti-message for event A. Af-
ter rollback is complete, the source LP schedules a new event
B at time t on destination LP. When processing the cancel for
A we must be aware that the new event B could have the same
time stamp despite being the “correct” event. Thus, we need
a mechanism to uniquely identify events that are to be can-
celled. To accomplish this, we identify an event using these
four fields: (i) the event’s simulated time at which it is to
be processed recv_ts, (ii) source lp src_lpid, (iii) des-
tination lp dest_lpid, and (iv) a sequence number age.
Every logical process maintains an non-decreasing sequence
counter, when it generates an event it assigns the event the
current value as its age, and then increments the counter.
This agewill be different for each event generated by a given
LP. In the scenario we discussed, event A and cancel A would
have the same age while B, the newer event, would be differ-
ent. This happens because cancels are copies of the original
event, and only new events are given unique ages.

3.2.2 Correctness and efficiency

A remote cancel event is a copy of the original event that is
sent with a different MPI tag. Using a stub event, like DSIM
(Chen and Szymanski 2007), while reducing network traf-
fic, appears to complicate event handling and may not im-
prove memory efficiency. At the source PE, we fossil col-
lect the remote event when their parent is being collected.
We exploit the observation that only the parent has a refer-
ence to the remote event. When fossil collecting, we check
the caused_by_me list and fossil collect all remote events.
This approach allows us to reclaim memory efficiently and
eliminates the need to manage lists of remote events.

ROSS-MPI retrieves remote events by combining block-
ing receives with non-blocking probes. The non-blocking
probe signals when a remote event is available, but it will

not block if the buffers are empty. The combination gives
us the semantics of non-blocking receives with simpler code
and without the use of expensive MPI operations like mes-
sage cancel. We use the MPI_ANY_TAG to poll both event
types, rather than retrieve events and cancels separately. This
solves the following race condition: if the event and cancel
arrive when the PE is retrieving cancels, the cancel, which is
processed first, will appear to be unaccompanied. By polling
both ports and checking the event type after retrieval the prob-
lem is avoided. This solution is dependent on the semantics
of MPI point-to-point communication which guarantees that
”messages are non overtaking” (M.P.I 1994). The race condi-
tion is avoided since an event/cancel pair is sent between the
same two LPs, and a cancel can only be generated after the
initial event.

3.3 GVT algorithm

A consistent cut (Mattern 1994) divides the events into past
and future. Here, no events would be sent from the future
into the past. If all the processors agree to the cut, the Global
Virtual Time (GVT) is the time stamp of the earliest event in
the present.

Algorithm 1 is a global reduction (Chen and Szymanski
2007) GVT algorithm, it is synchronous and it uses collective
operations to create a consistent cut. When the processors
reach the synchronization point they ensure that all transient
messages are accounted for by performing a collective sum
over the count of outstanding messages. Once all messages
are accounted for, the cut is formed and then the processors
perform a collective minimum over their local virtual time
(LVT) which consists of the minimum of any event in the
priority queue or otherwise awaiting processing. The latency
of broadcast on the Blue Gene/L makes a synchronous global
reduction GVT algorithm an efficient choice.

3.3.1 Correctness

A correct GVT algorithm must solve the transient message
and simultaneous reporting problems (Fujimoto and Hybi-
nette 1997). We present arguments that show our algorithm
addresses both problems. A transient message is a message
that is not visible to any processor because it is traversing the
network. The simultaneous reporting problem exists where
both the sender and receiver expect the other to account for
the event in their respective notions of local virtual time (LVT).

Transient message, by induction. Basis: Consider the base case
at time 0, no remote events have been created, so the sum
of the differences between the messages sent and received is
zero. There are no transient messages.

Inductive step: For a given epoch, we increase the counter
for each message and decrease for each reception. At the
end of the epoch the counter is zero. If a transient message
exists, it would be sent during or before the current epoch. If

Algorithm 1 GVT Computation algorithm
Require: global message counter, the difference between

events sent and received since last GVT.
Require: local gvt estimate, earliest remote event since the

last GVT.
Ensure: GVT is the minimum of all unprocessed events

message counter = 0
repeat

while incoming messages available do
read(remote event)
decrement global message counter
if local gvt estimate > remote event time stamp then

local gvt estimate = remote event time stamp
end if
enqueue remote event

end while
MPI ReduceAll(global message counter,message counter,
SUM)

until message counter == 0
global message counter = 0
LVT = min(earliest event in priority queue, earliest unpro-
cessed cancel event)
MPI ReduceAll(LVT,GVT,MIN)

the transient message was sent during this epoch, the counter
must be negative when we entered the epoch. If the transient
message was sent before, the counter must be positive when
we entered. Since the counter is always zero when an epoch
ends neither is possible.

Simultaneous reporting, by contradiction. Assume the simul-
taneous reporting problem exists. This implies that a PE must
have received the GVT computation request after it has trans-
mitted the earliest event in the system and the destination PE
already responded the GVT request and sent its LVT before it
has received the earliest event. In this case, each PE believes
the other responsible for the inclusion of this earliest event
in there LVT calculation. So GVT is being computed while
the event is being transmitted. Our prior argument shows,
there are no messages in-flight when GVT computation com-
mences.

3.4 Memory Management

Memory management in ROSS-MPI focuses on the impact of
remote events. ROSS-SM is a memory efficient Time Warp
implementation but remote events have the potential to dou-
ble memory consumption, as previously noted in Section 3.2.
The pathological cases will always cause problems, but we
take the following steps to manage memory consumption.
First, overflow buffers are allocated for use when receiving
events during GVT computation and, at the source PE we
fossil collect remote events with their parents.

The overflow buffer is a one time allocation specified by
the model, and is only used when the PE’s free list has been
exhausted. Events allocated from the overflow buffer are added
to the PE’s free list when deallocated, they are not returned
to the overflow buffer. The number of events allocated to the
overflow buffer is defined by tw_events_gvt_compute.
The overflow buffer is only used for retrieving remote events
during GVT computation, and its length should be dependent
on the communication pattern of the model. It should be pro-
portional to number of iterations through the full ROSS-MPI
scheduler loops which is set by g_tw_gvt_interval, and
the size of the processing batches ,g_tw_mblock. If the
PE’s free list is empty, it will abort the scheduler loop and
begin to compute GVT, and then start fossil collection.

3.5 Eliminating Global Data Structures and
Non-Deterministic Event Processing

In addition to efficiency and correctness, we ensure the sim-
ulator scales well by eliminating global data structures and
globally redundant operations. Instead of a global array of
random number generators, we distributed each random num-
ber generator as part of the LP data structure. The stream is
reversible (Carothers et al, 1999), allowing the reverse com-
putation to “undo” any previous calls to the random number
generator. The new fields in the LP data structure are the ar-
rays that contain the seeds of the random stream and the vari-
ables used in sampling other distributions. The streams are
seeded sequentially, so given the lpid we can calculate how
many seeds to skip and initialize the stream with limited re-
dundant work. A nice side effect of this data structure design
change is that it co-locates the random number seeds with the
LP state which enables better LP data locality for improved
cache performance during event processing.

We also address the increased probability that two events
may have the same destination LP and time stamp. As dis-
cussed in (Wieland 1997) simulations with running times that
are large compared with the granularity at which events are
scheduled increase the probability that two or more events
will have the same destination LP and time stamp, if not the
same source LP. To ensure deterministic event processing in
the face of event simultaneity, the source LP, destination LP
and the age of an event will be considered when sorting events
in priority queue. This allows every event to be uniquely iden-
tified, and ensures the ordering is independent of the insertion
order. We also rollback when the new event is equal to or
older than the last processed event. This insures that all events
with the same time stamp will be executed in deterministic or-
der, but at the expense of increased rollbacks. However, be-
cause this behaviour occurs infrequently in real applications,
we do not believe overall performance is degraded. By rolling
back under these conditions, we must consider the possibility
of livelock if there is a cycle of LPs scheduling events with
zero delay. We do not believe this pathological case to be a

reasonable situation in a model.

4 EXPERIMENTAL RESULTS

PHOLD is a synthetic benchmark, commonly used for testing
the performance of Time Warp simulators (Chen and Szy-
manski 2005) and (Perumalla 2006). PHOLD has minimal
event processing, minimal look ahead due to event scheduling
being based on a random distribution and a random commu-
nication pattern. PHOLD can be configured by changing the
event population and the ratio of remote events. PHOLD was
configured to schedule 10 percent of events to remote LPs.
The simulations had 1024x1024 or 1,048,576 LPs and an ini-
tial event population of either 10 or 16 events per LP. The
10 events per LP case and 10 percent remote ratio are com-
parable with the PHOLD configuration used by Permulla’s
performance study in (Perumalla 2007).

The second workload model is a PCS network that pro-
vides wireless communication services for cellular phone sub-
scribers. Here, the service area of a PCS network is populated
with a set of geographically distributed transmitters/receivers
called radio ports. A set of radio channels are assigned to
each radio port, and the users in the coverage area (or cell
for the radio port) can send and receive phone calls by using
these radio channels. When a user moves from one cell to
another during a phone call a hand-off is said to occur. In this
case the PCS network attempts to allocate a radio channel in
the new cell to allow the phone call connection to continue.
If all channels in the new cell are busy, then the phone call is
forced to terminate. It is important to engineer the system so
that the likelihood of force termination is very low (e.g., less
than 1%). What is special about this application is that it is an
instance of a class of applications that are self-initiated (Nicol
1991). Here, LPs typically schedule most of their events to
themselves, which leads to fewer remote messages relative
to locally scheduled events making this class of applications
well suited for ultra large processor count systems like the
Blue Gene/L. For a detailed explanation of our PCS model,
we refer the reader to (Carothers et al, 1995).

The PCS model had a grid of 4096x4096 PCS cells which
results in LPs with a constant configuration except for the
simulated time, which was doubled for the 32,768 processor
run.

4.1 PHOLD Performance

Because our access to the Blue Gene/L is limited, we where
only able to perform one run at each processor count config-
uration. However, as well will demonstrate, the Blue Gene’s
performance has very little variation unlike typical multi-user
clusters and thus we believe these single run performance
numbers to be very close to the multi-run averages. Addition-
ally, the CCNI Blue Gene/L partitions are predefined with the
following node counts: 512, 1024, 4096, 8192 and 16384.

Figure 3: Event Rate for PHOLD across multiple runs on
2048 processors for 16 events per LP .

Thus, in order to maxmially utlize the processor counts in
each available partition class, we made runs using processor
counts of 1024 using a 512 nodes, 2048 using 1024 nodes,
8192 using 4096 nodes, 16,384 using 8192 nodes and 32,768
using 16,384 nodes.

Unlike typical large-scale clusters, the Blue Gene has no
virtual memory and does not support a multi-program envi-
ronment where OS-level daemons co-exist and compete for
resources with user-level compute jobs. Thus, we found very
little variance in performance across multiple runs. In order to
demonstrate repeatable performance, we used multiple runs
on smaller processor partitions. Figure 3 shows the event rate
of PHOLD over 10 runs with 2048 processors. The standard
deviation of the event rate was 0.05% of the mean, with PCS
(not shown) it was 0.01% of the mean.

Figure 4 shows the aggregate event rate of PHOLD as a
function of processor count. For the 16 events per LP case, we
observed a rate of 43 million events per second on 1024 pro-
cessors, which increased to a peak event rate of 798 million
on 16,384 processors. Additionally, we observed an increase
in event rate for the 10 events per LP case. The peak event
rate was 853 million. This is about 1.5 times better than the
peak rate described by Perumalla (Perumalla 2007), using any
PDES synchronization scheme (e.g. conservative, optimistic
or hybrid) on the same hardware. We believe the increase in
performance for the 10 events per LP case is due to lower
priority queue overheads as consequence of the smaller per
processor event population.

For the 10 events per LP case, the per processor event

Figure 4: Event rate for PHOLD for both 10 events per LP
and 16 events per LP as a function of processor count.

Figure 5: Primary and secondary rollbacks for PHOLD for
16 events per LP case as a function of processor count.

rate was 45,000 on 2048 processors and it increased to 52,000
with 16,384 processors. The speedup of PHOLD appears to
be super-linear despite the use of strong scaling. A lack of
available work was a concern given that the 1,048,576 LPs
are spread over 16,384 processors yielding only 64 LPs per

Figure 6: Event rate for PCS Model as a function of processor
count.

processor. We attribute the super-linear performance to a de-
crease in priority queue overheads as the processor count in-
creases. Recall, we use a Splay Tree data structure for the
priority queue which as both a O(log(n)) complexity for en-
queue and dequeue operations. As the processor counts dou-
ble, the event population per processor goes down by half,
which decreases priority operations by a log(2) factor.

Figure 5 shows the number of rollbacks, primary and sec-
ondary for the 16 events per LP case as a percentage of com-
mitted events. This rollback ratio increased, almost linearly,
with the increase in processor count. Both primary and sec-
ondary rollback ratios appeared to be gradually increasing,
but we only observed a total rollback ratio of 0.54% with
16,384 processors. These low rollback ratios indicate the pro-
cessors spend most of their time doing useful work.

4.2 PCS Performance

Figure 6 shows that our event rate increases almost linearly to
2 billion events per second on 16,384 process, but beyond that
the increase is sub-linear. The 25% increase in performance
implies that the per processor event rate fell by 40% as we
increased to 32,768 processors. The peak event processing
rate was 2.47 billion events per second on 32,768 processors.
Figure 7 shows that the ratio of rollbacks is less than 0.06%
of the committed events. We do not believe changes in the
ratios are significant as they remain low. The performance
decrease could due to the size of the model, or limitations in
the Blue Gene/L hardware, especially the collective network.

Figure 7: Primary and secondary rollbacks for PCS Model as
a function of processor count.

The longer run for the 32K processor case was not believed to
be responsible for the sharp decrease in per processor event
rate. Further investigation is needed before we fully under-
stand this phenomenon.

5 RELATED WORK

There have been some investigation into the performance of
discrete event simulation on supercomputers with more than
1000 processors. The performance of conservative, optimistic
and other approaches to PDES on the Blue Gene/L has been
examined (Perumalla 2007). The observed performance may
have been limited by the use of strong scaling and limited ac-
cess to the Blue Gene/L. In a related Blue Gene Consortium
report (Perumalla 2007), they describe porting the SCATTER
road network model, highlighting the issue of porting exist-
ing models. PHOLD and PCS are well balanced models, we
consider load balancing to be beyond the scope of this paper,
but it would be interesting to consider problems where this is
an issue.

The performance of PDES on a 750 node Alpha server
has also been investigated (Chen and Szymanski 2005). They
were able to process an impressive 228 million events per
second on 1024 processors. Their PHOLD model schedules
events at one of the four nearest neighbors, which should
exploit the quad processor SMP nodes while avoiding the
Quadrics network switch. DSIM uses, Time Quantum GVT
(Chen and Szymanski 2007), a manager-worker GVT algo-
rithm which reserves processors as GVT managers. They es-

timate that one manager is needed for every 128 processors,
but the approach appears to be scalable.

In the context of GVT algorithms based on hardware-
based acceleration approaches, there been some activity in the
past. Of note, Pancerella and Reynolds (1993), they present
results of simulations that suggest that hardware assisted, target-
specific global reductions can dramatically improve parallel
simulator performance. More recently Noronha and Abu-
Ghazaleh (2002) has shown the benefits of offloading the GVT
computation to network interface cards. However, here Mat-
tern’s asynchronous GVT algorithm (Mattern 1994) is used
as opposed to a synchronous reduction network-based algo-
rithm.

6 CONCLUSIONS

We demonstrate that it is possible to construct an efficient
optimistic Time Warp simulator which achieves linear scala-
bility on the Blue Gene/L supercomputer, and we were able
to process almost 2 billion events per second on a 16,384
processors for the PCS model. This would indicate that the
optimistic approach to PDES has strong scaling potential on
the largest scale supercomputers of today. It also demon-
strates that a synchronous GVT computation algorithm can
be used in an efficient Time Warp implementation provided
that the underlying supercomputer architecture supports high-
performance global collective operations. These results sug-
gest that a synchronous algorithm, which can exploit the pres-
ence of a global collective/reduction network, will outper-
form a point-to-point solution, especially when scaling to near-
petascale supercomputer system.

As future work, we plan to compare how the Blue Gene
performs relative to other supercomputer architectures such
as Texas Ranger, AMD Quad-Core Opteron Cluster and the
Cray XT3 MMP system which are both part of the TeraGrid
(see www.teragrid.org).

REFERENCES

Adiga, N.R and et al., 2002. An overview of the Blue Gene/L
Supercomputer. Proceedings of the ACM/IEEE Confer-
ence on Supercomputing, pp. 1–22, November 16–22
Baltimore, Maryland, USA.

Carothers, C.D., Bauer, D. and Pearce, S., 2000. ROSS: A
High-Performance, Low Memory, Modular Time Warp
System, Proceedings of the 14th Workshop on Parallel
and Distributed Simulation, pp. 53–60, May 28 - 31,
Bologna, Italy.

Carothers, C.D., Fujimoto, R.M. and Lin, Y-B. 1995. A case
study in simulating PCS networks using Time Warp. Pro-
ceedings of the 9th workshop on Parallel and Distributed
Simulation, pp 87–94, June 13 - 16, Lake Placid, New
York, USA.

Carothers, C. D., Perumalla, K.S., and Fujimoto, R.M., 1999.
Efficient optimistic parallel simulations using reverse com-
putation. ACM Transactions on Modeling and Computer
Simulation 9(3):224–253.

Chen, G. and Szymanski, B.K., 2005. DSIM: scaling Time
Warp to 1,033 processors. Proceedings of the 37th con-
ference on Winter simulation, pp 346–355. December 4-
7, Orlando, Florida, USA.

Chen, G. and Szymanski, B.K., 2007. Time quantum GVT: A
scalable computation of the global virtual time in parallel
discrete event simulations. Scalable Computing: Prac-
tice and Experience:Scientific International Journal for
Parallel and Distributed Computing, 8(4):423–436.

Fujimoto, R.M. and Hybinette. M., 1997. Computing global
virtual time in shared-memory multiprocessors. ACM Trans-
actions on Modeling and Computer Simulation, 7(4):425–
446.

Fujimoto, R.M., 1989. Time Warp on a shared memory mul-
tiprocessor. Trans. Soc. Comput. Simul. Int., 6(3):211–
239.

Jefferson, D.R., 1985. Virtual time. ACM Trans. Program.
Lang. Syst., 7(3):404–425, 1985.

Mattern, F., 1994. Efficient algorithms for distributed snap-
shots and global virtual time approximation. Journal of
Parallel and Distributed Computing, 18(3):423–434.

Message Passing Interface Forum., 1994. MPI: A message-
passing interface standard. Message Passing Interface
Forum. Available from: http://www.mpi-forum.org/ [ac-
cessed 16 March 2008]

Noronha, R. and Abu-Ghazaleh, N.B., 2002. Using programm-
able nics for Time Warp optimization. Proceedings of the
International Parallel and Distributed Processing Sympo-
sium, April 15-19, Fort Lauderdale, Florida, USA.

Nicol, D.M., 1991. Performance bounds on parallel self-
initiating discrete-event simulations. ACM Transactions
on Modeling and Computer Simulation, 1(1):24–50.

Pancerella, C. and Reynolds, P.F., 1993. Disseminating criti-
cal target-specific synchronization information in parallel
discrete event simulation. : Proceedings of the 7th Work-
shop on Parallel and Distributed Simulation, pp 52–59,
May 16 - 19, San Diego, California, USA.

Perumalla, K.S., 2006. Ultra-scale parallel discrete event
applications. Oak Ridge National Laboratory. Available
from: http://www.bgconsortium.org/ [accessed
16 March 2008]

Perumalla, K.S., 2007. Scaling Time Warp-based discrete
event execution to 10**4 processors on a blue gene su-
percomputer. Proceedings of the 4th international confer-
ence on Computing frontiers, pp 69–76, May 7-9, Ischia,
Italy.

Sedgewick, R., 1998. Algorithms in C. 3rd ed. Boston:Addison-
Wesley

Wieland, F., 1997. The Threshold of Event Simultaneity.
Proceedings of the Workshop on Parallel and Distributed

Simulation, pp 56–59, June 10 - 13, Lockenhaus, Austria.

AUTHOR BIOGRAPHIES

AKINTAYO HOLDER is a Ph.D. student in the Computer
Science Department at Rensselaer Polytechnic Institute. His
research interests are parallel and distributed computing.

CHRISTOPHER D. CAROTHERS is an Associate Profes-
sor in the Computer Science Department at Rensselaer Poly-
technic Institute. He received the Ph.D., M.S., and B.S. in
Computer Science from Georgia Institute of Technology in
1997, 1996, and 1991, respectively. His research interests in-
clude parallel and distributed systems, simulation, network-
ing, and computer architecture.

