
AutomatedApplication-level Checkpointingof MPI Programs

Greg Bronevetsky, DanielMarques,Keshav Pingali,Paul Stodghill
Departmentof ComputerScience,

CornellUniversity, Ithaca,NY 14853

Abstract

Becauseof increasinghardware and software complexity,
the running time of many computationalscienceapplica-
tions is now more than the mean-time-to-failure of high-
peformancecomputingplatforms.Therefore,computational
scienceapplicationsneedto toleratehardwarefailures.

In this paper, we focuson the stoppingfailuremodelin
which a faulty processhangsand stopsrespondingto the
rest of the system. We argue that toleratingsuchfaults is
bestdoneby an approachcalled application-level coordi-
natednon-blockingcheckpointing,and that existing fault-
toleranceprotocolsin the literaturearenot suitablefor im-
plementingthisapproach.

In this paper, we presenta suitableprotocol,andshow
how it can be used with a precompiler that instruments
C/MPI programsto save applicationandMPI library state.
An advantageof ourapproachis thatit is independentof the
MPI implementation.We presentexperimentalresultsthat
arguethattheoverheadof usingoursystemcanbesmall.

1 Intr oduction

Fault-tolerantprogramminghasbeenstudiedextensively in
thecontext of distributedsystems[6]. In contrast,thehigh-
performanceparallelcomputingcommunityhasnotdevoted
muchattentionto this problembecausehardwarefailuresin
parallel platformswere not frequentenoughto be a cause
for concern. Most high-performancecomputingwasdone
on ”big-iron platforms”: monolithicvectoror parallelcom-
putersthatweredesigned,built, andmaintainedby a single
vendor. Becausethesemachinescostmany millions of dol-
lars,vendorscouldafford to designreliablecomponentsand
integratethem carefully to producerelatively robust com-
putingplatforms.Moreover, unlike distributedsystemspro-
gramssuchasair-traffic controlsystemsthatmustrun with-
out stopping,mostcomputationalscienceprogramsran for
durationsthatweremuchlessthanthemean-time-between-
failure(MTBF) of theunderlyinghardware.

0This work wassupportedby NSFgrantsACI-9870687,EIA-9972853,
ACI-0085969,ACI-0090217,ACI-0103723,andACI-0121401.

uncoordinated

non−blocking

optimistic causal

message logging

pessimistic

checkpointing

coordinated

blocking

Figure1: Hierarchyof differentfault tolerancetechniques

Recentchangesin thehigh-performanceparallelcomput-
ing world arebringingtheissueof fault-toleranceto thefront
andcenter. First, the numberof processorsin big-iron ma-
chinesis increasingrapidly: the recentlyannouncedBlue
Gene/L will have over 130,000[18]. Anecdotalevidence
is that sucha machinelosesa processorevery few hours;
increasingthe numberof processorsincreasesthe overall
performance,but it also increasesthe numberof pointsof
failure. Second,parallel computing is shifting from ex-
pensive monolithic hardwaresystemsto low-cost,custom-
assembledclustersof processorsand communicationfab-
ric. TherecenttrendtowardsInternet-widegrid-computing
is anotherchangein thehardwarepicturethat increasesthe
probability of hardwarefailuresduring programexecution.
Third, many computationalscienceprogramsare now de-
signedto run for daysor evenmonthsata time;someexam-
plesare the ASCI stockpilecertificationprograms[13]and
abinitio protein-foldingprogramssuchasIBM’ sBlueGene
[9] codeswhich areintendedto run for months.

Therefore,the running times of many applicationsare
now significantly longer than the MTBF of the underlying
hardware. Computationalscienceprogramsmust tolerate
hardwarefailures.

1.1 Problem Definition

To addressthis problem,it is necessaryto definethe fault
model. Two commonclassesof modelsare Stoppingand

Byzantine[11]. In a Stoppingmodel,a faulty processhangs
andstops� respondingto therestof thesystem,neithersend-
ing nor receiving messages.Byzantinefaultspermita faulty
processto performmoredamagingactssuchassendingcor-
rupteddatato otherprocesses.

In this paper, we focus our attentionon stoppingpro-
cesses.As we discussin this paper, therearemany inter-
estingproblemsto besolvedevenin this restricteddomain.
Moreover, a good solution for this failure model can be a
usefulmechanismin addressingthe moregeneralproblem
of Byzantinefaults.

In general,good abstractionsare key to effective han-
dling of failures.In thisspirit,wemakethestandardassump-
tion that thereis a reliabletransportlayer for deliveringap-
plicationmessages,andwebuild oursolutionsontopof that
abstraction.Onesuchreliable implementationof the MPI
communicationlibrary is LosAlamosMPI (LA-MPI) [7].

We cannow statethe problemwe addressin this paper.
We aregivena long-runningMPI programthatmustrun on
amachinethathas(i) areliablemessagedeliverysystem,(ii)
unreliableprocessorswhichcanfail silentlyatany time,and
(iii) a mechanismsuchasa distributed failure detector[8]
for detectingfailed processes.How do we ensurethat the
programmakesprogressinspiteof thesefaults?

1.2 Solution space

Figure1 classifiessomeof thewaysin which programscan
be madefault-tolerant. An excellentsurvey of thesetech-
niquescanbefoundin [6].

Checkpointingtechniquesperiodicallysaveadescription
of thestateof acomputationto stablestorage;if any process
fails,all processesarerolledbackto thelastcheckpoint,and
the computationis restartedfrom there. Message-logging
techniquesin contrastrequirerestartingonly the computa-
tion performedby the failed process.Surviving processes
arenot rolledbackbut musthelptherestartedprocessby re-
playing messagesthat weresentto it beforeit failed. The
simplestimplementationof messageloggingrequiresevery
processto save a copy of every messageit sends.A more
sophisticatedapproachmight try to regeneratemessageson
demandusingapproacheslike reversiblecomputation.Al-
thoughmessage-loggingis a very appealingideawhich has
beenstudiedintensively by thedistributedsystemscommu-
nity [5, 10,16], our experienceis that the overheadof sav-
ing or regeneratingmessagestendsto be so overwhelming
that the techniqueis not competitive in practice. This may
bebecauseparallelprogramscommunicatemoredatamore
frequentlythandistributedprograms[17].

We therefore focusoncheckpointing.
Checkpointingtechniquescanbeclassifiedalongtwo in-

dependentdimensions.
(1) The first dimensionis the abstractionlevel at which

the stateof a processis saved. In system-level checkpoint-

ing, the bits that constitutethe stateof the processmsuch
asthe contentsof the programcounter, registersandmem-
ory, aresavedonstablestorage.Examplesof systemsthatdo
system-levelcheckpointingareCondor[12]andLibckpt[14].
Somesystemslike Starfish[1]give the programmersome
control on what is saved. Unfortunately, completesystem-
level checkpointingof parallelmachineswith thousandsof
processorscanbe impracticalbecauseeachsystemcheck-
point can requirethousandsof nodessendingterabytesof
datato stablestorage.For this reason,system-level check-
pointingis notdoneonlargemachinessuchastheIBM Blue
Geneor theASCI machines.

One alternative which is popular is application-level
checkpointing. Applicationscan obtain fault-toleranceby
providing their own checkpointingcode[3].Theapplication
is written suchthat it correctly restartsfrom variousposi-
tions in the codeby storingcertaininformationto a restart
file. The benefitof this techniqueis that that the program-
merneedsonly save theminimumamountof datanecessary
to recover the programstate. For example,in an ab initio
proteinfolding code,it sufficesto save thepositionsandve-
locitiesof thevariousbases,which is a smallfractionof the
total stateof the parallelsystem. The disadvantageof this
approachto implementingapplication-level checkpointing
is that it complicatesthecodingof theapplicationprogram,
andit is onemorechorefor theparallelprogrammer.

In this paper, weexplore theuseof compilertechnology
to automateapplication-levelcheckpointing.

(2) The seconddimensionalong which checkpointing
techniquescanbe classifiedis the techniqueusedto coor-
dinateparallelprocesseswhencheckpointsneedto betaken.
In uncoordinatedcheckpointing,eachprocesssavesits state
whenever it wantsto without coordinatingwith otherpro-
cesses.Although this is simple,restartcanbe problematic
dueto exponentialrollback,which maycausethecomputa-
tion to roll sofarbackthatis makesnoprogress[6]. For this
reason,uncoordinatedcheckpointinghasfallenoutof favor.

Coordinatedcheckpointingcan be divided into block-
ing andnon-blockingcheckpointing. Blocking techniques
bring all processesto a stopbeforetaking a global check-
point. Hardwareblockingwasusedon theIBM SP-2to take
system-level checkpoints.Softwareblockingtechniquesex-
ploit barriers- whenprocessesreacha global barrier, each
onesavesits own stateon stablestorage.This is essentially
the solution usedtoday by applicationsprogrammerswho
roll their own application-level state-saving code.However,
this solutioncanfail for someMPI programssinceMPI al-
lows messagesto crossbarriers.Thesemessageswould not
be saved with the global checkpoint.Moreover, new data-
driven programmingstylesareeschewing the global barri-
ers,ubiquitousin BSP-stylebulk-synchronousprograms,in
favor of fine-grain,data-orientedsynchronization.Suchpro-
gramsmaynothavebarriers,andtheremaybenosafeplaces
in thecodein whichbarrierscanbeinsertedwithoutcreating

Run Time

Compile Time

MPI MPI

Hardware

Application Source
Fault−tolerant
ApplicationApplication Source

Fault−tolerant

Native Compiler
Adding Precompiler

Fault−tolerance

Fault−tolerant
Application

Fault−tolerant
Application

Protocol LayerProtocol Layer

Figure2: SystemArchitecture

deadlocks.
For thesereasons,non-blockingcoordinatedcheckpoint-

ing is an interestingalternative. In this approach,a global
coordinationprotocol, implementedby exchangingspecial
marker or control tokens,is usedto orchestratethe saving
of thestatesof individual processesandthecontentsof cer-
tain messages,to providea globalsnapshotof thecomputa-
tion from which thecomputationcanberestarted.A distin-
guishedprocesscalledtheinitiator is responsiblefor initiat-
ing andmonitoringtheprotocol;to take a local checkpoint,
anapplicationprocessmaycommunicatewith otherapplica-
tion processesbut it makesno assumptionsaboutthestates
of otherprocesses.TheChandy-Lamportprotocolis perhaps
the most well-known non-blockingprotocol [4]. Unfortu-
nately, theseprotocolsweredesignedto work with system-
level checkpointing— aswe discussin Section3, thereare
fundamentaldifficulties in usingthemfor application-level
checkpointing.

Therefore, we havedevelopeda new protocol for non-
blockingcoordinationthatworkssmoothlywith application-
level state-saving.

1.3 Overview of our appr oach

In this paper, we discussthe useof compiler technology
to implementapplication-level, coordinated,non-blocking
checkpointingof MPI programs.

Figure 2 is an overview of our approach. The CCIFT
(Cornell Compiler for Inserting Fault-Tolerance)precom-
piler readsalmostunmodifiedsingle-threadedC/MPI source
files and instrumentsthem to perform application-level
state-saving; the only additional requirementfor the pro-
grammer is that he insert calls to a function called
PotentialCheckpoint at points in the application
wherethe programmerwantscheckpointingto occur. We
have not yet implementedoptimizations to reduce the
amountof statethatis saved,sotheinstrumentedcodesaves
the entirestatewhen it takesa checkpoint. The outputof

thisprecompileris compiledwith thenativecompileron the
hardwareplatform,andis linked with a library that consti-
tutesaprotocollayer for implementingthenon-blockingco-
ordination. This layer sits betweenthe applicationandthe
MPI layer, andinterceptsall callsfrom theinstrumentedap-
plicationprogramto theMPI library1

This designpermits us to implementthe coordination
protocol without modifying the underlying MPI library,
which promotesmodularityandeliminatestheneedfor ac-
cessto MPI library codewhich is proprietaryon somesys-
tems. Further, it allows us to easilymigrate from oneMPI
implementationto another.

Therestof this paperis organizedasfollows. We intro-
ducesomenotationandterminologyin Section2. In Sec-
tion 3, we discussthe main hurdlesthat mustbe overcome
to implementour solution,andarguethat the coordination
protocolsin the literaturecannotbe usedfor our problem.
In Section4, we presentour solutionsto theseproblems.
In particular, we describea new coordinationprotocol that
supportswith application-level checkpointing.We have im-
plementedthis approachon a Windows 2000clusterat the
Cornell Theory Center. In Section5, we discusshow we
save andrestorethestateof theapplicationandtheMPI li-
brary. In Section6, we measuretheperformanceoverheads
of our approachby runninga numberof small benchmarks
on this platform. The full paperwill presentmoredetailed
measurementsof theseandlargerbenchmarks.Weconclude
in Section7 with a discussionof futurework.

2 Terminology

In this section,we introducethe terminologyandnotation
usedin therestof thepaper. Followingusualpractice,weas-
sumethatthesystemdoesnot initiatethecreationof aglobal
checkpointbeforeall previousglobalcheckpointshavebeen
createdandcommitedto globalstorage.

Theexecutionof anapplicationprocesscanthereforebe
divided into a successionof epochs wherean epochis the
period betweentwo successive local checkpoints(by con-
vention,thestartof theprogramis assumedto begin thefirst
epoch).Epochsarelabeledsuccessively by integersstarting
at zero,asshown in Figure3.

It is convenientto classifyan applicationmessageinto
three categories dependingon the epochnumbersof the
sendingandreceiving processesat the points in the appli-
cationprogramexecutionwhenthemessageis sentandre-
ceivedrespectively.

1NotethatMPI canbypasstheprotocollayerto readandwrite message
buffers in theapplicationspacedirectly. Suchmanipulations,however, are
not invisible to theprotocollayer. MPI maynot begin to accessa message
buffer until after it hasbeengiven specificpermissionto do so by the ap-
plication (e.g. via a call to MPI Irecv). Similarly, oncethe application
hasgrantedsuchpermissionto MPI, it shouldnot accessthat buffer until
MPI hasinformedit thatdoing so is safe(e.g. with the returnof a call to
MPI Wait). Thecallsto, andreturnsfrom, thosefunctionsareintercepted
by theprotocollayer.

P

Q

R

Start
of program

x

x

x

x

x

x

0

0

0

1

1

1

2

2

2Early

Intra-epoch Late

Global Checkpoint 2Global Checkpoint 1

Figure3: Epochsandmessageclassification

Definition 1 Givenan applicationmessage fromprocessA
to processB, let ��� betheepoch numberof A at thepoint in
theapplicationprogramexecutionwhenthesendcommand
is executed,andlet ��� betheepoch numberof B at thepoint
whenthemessage is deliveredto theapplication.

� Latemessage:If � ��� ��� , themessage is said to bea
late message.� Intra-epochmessage:If � �
	 ��� , themessage is said
to bean intra-epoch message.� Early message:If � �
� ��� , the message is said to be
an early message.

Figure3 showsexamplesof thethreekindsof messages,
usingtheexecutiontraceof threeprocessesnamed� , and�

. MPI hasseveral kinds of sendandreceive commands,
so it is important to understandwhat the messagearrows
meanin the context of MPI programs. The sourceof the
arrow representsthe point in the executionof the sending
processat which control returnsfrom the MPI routinethat
wasinvoked to sendthis message.Note that if this routine
is a non-blockingsend,themessagemaynot make it to the
communicationnetwork until muchlater in execution;nev-
ertheless,whatis importantfor usis thatif thesystemtriesto
recoverfrom globalcheckpoint2, it will not reissuetheMPI
send. Similarly, the destinationof the arrow representsthe
delivery of themessageto theapplicationprogram.In par-
ticular, if anMPI_Irecv is usedby thereceiving processto
get themessage,thedestinationof thearrow representsnot
the point wherecontrol returnsfrom theMPI_Irecv rou-
tine, but the point at which anMPI_Wait for the message
would havereturned.

In the literature,latemessagesaresometimescalled in-
flight messages,andearlymessagesaresometimecalledin-
consistentmessages.This terminologywasdevelopedin the
context of system-level checkpointingprotocolsbut in our
opinion, it is misleadingin the context of application-level
checkpointing.

3 Difficulties in Application-le vel Checkpointing
of MPI programs

In this section, we describethe difficulties with imple-
mentingapplication-level,coordinated,non-blockingcheck-
pointing for MPI programs.In particular, we arguethat the

existing protocolsfor non-blockingparallelcheckpointing,
whichweredesignedfor system-level checkpointers,arenot
suitablewhenthestatesaving occursat theapplicationlevel.

3.1 Delayed state-sa ving

A fundamentaldifferencebetweensystem-level checkpoint-
ing and application-level checkpointing is that a system-
level checkpoint may be taken at any time during a pro-
gram’s execution, while an application-level checkpoint
can only be taken when a program executesPoten-
tialCheckpoint calls.

System-level checkpointing protocols, such as the
Chandy-Lamportdistributedsnapshotprotocol,exploit this
flexibility with checkpointschedulingto avoid the creation
of earlymessages— during thecreationof a globalcheck-
point, a process� must take its local checkpointbeforeit
canreada messagefrom process which sentafter tak-
ing its own checkpoint. This strategy doesnot work for
application-level checkpointing,becauseprocess� might
needto receive an early messagebeforeit can arrive at a
point whereit maytakea checkpoint.

Therefore,unlike system-level checkpointingprotocols,
application-level checkpointingprotocolsmusthandleboth
lateandearlymessages.

3.2 Handling late and early messa ges

We useFigure3 to illustratethe issuesassociatedwith late
andearly messages.Supposethat oneof the processesin
this figurefails afterthetakingof GlobalCheckpoint2. On
restart,eachprocesseswill resumeexecutionfrom its state
assaved in the checkpoint. For process to recover cor-
rectly, it mustobtainthe latemessagethatwassentto it by
process� prior to thefailure. However, process� will not
resendthismessagebecausethesendoccurredbefore� took
its checkpoint.Therefore,we needmechanismsfor (i) iden-
tifying latemessagesandsaving themalongwith theglobal
checkpoint,and(ii) replayingthesemessagesto thereceiv-
ing processduringrecovery. Latemessagesmustbehandled
by system-level checkpointingprotocolsaswell.

Earlymessages,suchasthemessagesentfrom process
to process

�
posea differentproblem. Process

�
received

this messagebeforetaking its checkpoint;after recovery it
doesnotexpectto beresentthismessage.For theapplication
to becorrect,therefore,process mustsuppressresending
this message.To handlethis, we needmechanismsfor (i)
identifying early messages,and (ii) ensuringthat they are
not resentduringrecovery.

Early messagesalso posea separateand more subtle
problem.Thesavedstateof process

�
atGlobalCheckpoint

2 may dependon the datacontainedin the early message
from process . If thatdatawasarandomnumbergenerated
by ,

�
’s statewould bedependenton a non-deterministic

event at . If the numberwas generatedafter took its
checkpoint,then on restart, and

�
may disagreeon its

value.
In general,wemustensurethatif aglobalcheckpointde-

pendson a non-deterministicevent,thateventwill re-occur
afterrestart.Therefore,mechanismsareneededto (i) log the
non-deterministiceventsthat a global checkpointdepends
on,sothat(ii) theseeventscanbereplayedduringrecovery.

3.3 Non-FIFO messa ge deliver y at application
level

Many system-level protocolsassumethat the communica-
tion betweena pair of processesbehavesin a FIFO manner.
For example,in theChandy-Lamportprotocol,a process�
that takesa checkpointsendsa marker token to otherpro-
cesses,informing themof what it hasdone. The protocol
reliesontheFIFOassumptionto ensurethattheseotherpro-
cessesmust receive this token beforethey canreceive any
messagesentby � afterit took its checkpoint.

In an MPI application,a process� canusetag match-
ing to receive messagesfrom in a different order than
as they weresent. Therefore,a protocol that works at the
application-level, aswould bethecasefor application-level
checkpointing,cannotassumeFIFO communication. It is
importanttonotethatthisproblemhasnothingto dowith the
FIFO(or lackof) behavior of theunderlyingcommunication
system;rather, it is apropertyof a particularapplication.

3.4 Collective comm unication

TheMPI standardincludescollectivecommunicationsfunc-
tions such as MPI_Bcast and MPI_Alltoall, which
involve the exchangeof dataamonga numberof proces-
sors. However, mostcheckpointingprotocolsin the litera-
ture,whichweredesignedin thecontext of distributedcom-
puting,ignoretheissueof collectivecommunication.

The difficulty presentedby suchfunctionsoccurswhen
someprocessesmake a collective communicationcall be-
fore taking their checkpoints,andothersafter. We needto
ensurethaton restart,the processesthat reexecutethe calls
do not deadlockand receive correctinformation. Further-
more,MPI_Barrier guaranteesspecificsynchronization
semantics,which mustbepreservedon restart.

3.5 Problems Checkpointing MPI Librar y State

Thekey issuein performingapplication-level checkpointing
of the stateof the MPI library is that we do not assumeto
have accessto its sourcecode. While it would be possi-
ble for usto addapplication-level checkpointingmethodsto
anexisting MPI implementation,this would limit theporta-
bility of our checkpointerandwould keepthe programmer

from usingvendor-provided,platform-optimizedimplemen-
tationsof MPI. Thus,our problemis to recordandrecover
thestateof theMPI library usingonly theMPI interface.

Thelibrary statecanbebrokenup into threecategories:

� Library messagebuffers. At the application-level,
messagesareinvisibleuntil they arereceivedby theap-
plication. Therefore,at checkpointtime, the applica-
tion cannotdistinguishwhethera givenmessageis sit-
ting in anetwork buffer onthesendingprocessor, being
transmitted,or sitting in a network buffer on thedesti-
nation processor. All suchmessagesareequivalently
“in-flight” from the application’s perspective. There-
fore, we do not needto checkpointthe library’s com-
municationbuffers.� MPI’ s opaque objects. Such objects are internal
to the MPI library but are visible to application
may via handles. Theseobjectsinclude requestob-
jects(MPI_Request), communicators(MPI_Comm),
groups(MPI_Group), datatypes(MPI_Datatype),
errorhandlers(MPI_Errhandler), userdefinedop-
erators(MPI_Op), andkey-valuepairs.� State internal to the MPI library . There is certain
statein theMPI library, suchasmessagequeues,timers
andthe network addressesof processors,that is com-
pletelyhiddento theapplication.Sincethisstatecannot
bemanipulatedvia MPI’s interface,it is impossiblefor
usto saveor restoreit. However, this is not requiredfor
correctness.All thatis requiredis thattheapplication’s
view of the library remainsconsistentbeforeandafter
restart.

4 A Non-Bloc king, Coor dinated Protocol for
Application-le vel Checkpointing

Wenow describethecoordinationprotocolfor globalcheck-
pointing. Theprotocolis independentof thetechniqueused
by processesto take local checkpoints.To avoid complicat-
ing thepresentation,wefirst describetheprotocolfor point-
to-pointcommunciationonly. Then,weshow thatcollective
communicationcanbe handledelegantly usingthe mecha-
nismin placefor point-to-pointcommunication.

4.1 High-le vel description of protocol

Phase #1 To initiate a distributed snapshot,the initiator
sendsa control messagecalledpleaseCheckpoint to all ap-
plication processes.Eachapplicationprocessmust take a
local checkpointat sometime after it receivesthis request,
but it is freeto sendandreceiveasmany messagesasit likes
betweenthetime it is askedto takeacheckpointandwhenit
actuallycomplieswith this request.

Phase#2Whenanapplicationprocessreachesapoint in
theprogramwhereit cantakea local checkpoint,it savesits
local stateandtheidentitiesof any earlymessageson stable

storage.It thenstartswriting a log of (i) every latemessage
it recei� ves,and(ii) theresultof every non-deterministicde-
cision it makes. Oncea processhasreceived all of its late
messages2, it sendsa control messagecalled readyToSto-
pLogging back to the initiator, but continuesto write non-
deterministicdecisionsto thelog.

Phase#3 Whenthe initiator getsa readyToStopLogging
messagefrom all processes,it knows thatevery processhas
taken its local checkpoint. Sinceevery processhastransi-
tionedto thenew epoch,any messagesentby any processor
after the initiator hasacquiredthis knowledgecannotbean
earlymessage.Therefore,all processescanstoplogging.To
sharethis informationwith the other processes,the initia-
tor sendsa control messagecalledstopLogging to all other
processes.

Phase#4 An applicationprocessstopsloggingwhen(i)
it receivesastopLoggingmessagefrom theinitiator, or (ii) it
receivesamessagefrom aprocessthathasstoppedlogging.

Thesecondconditionis a little subtle.Becausewe make
no assumptionsaboutmessagedelivery order, it is possible
for thefollowing sequenceof eventsto happen.

1. ProcessPreceivesastopLoggingmessagefrom theini-
tiator, andstopslogging.

2. P makesa non-deterministicdecision.
3. P sendsa messagecontainingthis decisionto process

Q which is still logging.
4. ProcessQ usesthis informationto createaneventthat

it logs.

WhenQ savesits log, wehaveaproblem:thesavedstate
of theglobalcomputationis causallydependenton anevent
thatwasnot itself saved. To avoid this problem,we require
aprocessto stoploggingif it receivesamessagefrom apro-
cessthat has itself stoppedlogging. Theseconditionsfor
terminatingloggingcanbedescribedquiteintuitively asfol-
lows: aprocessstopsloggingwhenit hearsfrom theinitiator
or from anotherprocessthat all processeshave taken their
checkpoints.

Oncethe processhassaved its log on disk, it sendsa
stoppedLoggingmessagebackto theinitiator. Whentheini-
tiatorreceivesastoppedLoggingmessagefrom all processes,
it recordson stablestoragethatthecheckpointthatwasjust
createdis theoneto beusedfor recovery, andterminatesthe
protocol.

4.2 Piggybac ked inf ormation on messa ges

To implementthis protocol,the protocol layer mustpiggy-
backasmallamountof informationoneachapplicationmes-
sage.Thereceiverof amessageusesthispiggybackedinfor-
mationto answerthefollowing questions.

1. Is themessagea late,intra-epoch,or earlymessage?

2Weassumetheapplicationcodereceivesall messagesthatit sends.

2. Hasthesendingprocessstoppedlogging?
3. Whichmessagesshouldnot beresentduringrecovery?

The piggybackedvalueson a messagearederivedfrom
thefollowing valuesmaintainedon eachprocessby thepro-
tocol layer.

� epoch: This integerkeepstrackof the epochin which
the processis. It is initialized to 0 at start of execu-
tion, andincrementedwheneverthatprocesstakesa lo-
cal checkpoint.� amLogging: This is abooleanthatis truewhenthepro-
cessis logging,andfalseotherwise.� nextMessageID: This is an integer which is initialized
to 0 at thebeginningof eachepoch,andis incremented
whenever the processsendsa message.Piggybacking
this valueon eachapplicationmessagein anepochen-
suresthat eachmessagesentby a given processin a
particularepochhasa uniqueID.

A simpleimplementationof theprotocolcanpiggyback
all threevalueson eachmessagethat is sentby theapplica-
tion. Whena messageis received,the protocollayerat the
receiverexaminesthepiggybackedepochnumberandcom-
paresit with theepochnumberof thereceiver to determine
if the messageis late, intra-epoch,or early. By looking at
the piggybackedboolean,it determineswhetherthe sender
is still logging. Finally, if themessageis anearlymessage,
thereceiverlogsthepair � sender, messageID� . Thesepairs
aresaved to stablestoragewhenthe processortakesits lo-
cal checkpoint. During recovery, thesepairs are retrieved
from stablestorageby thereceiversof thesemessages,and
thesendersof theseearlymessagesareinformedof themes-
sageIDssothatresendingthesemessagescanbesuppressed.

Furthereconomyin piggybackingcanbeachievedif we
exploit the fact that at most oneglobal checkpointcan be
ongoingatany time. Thismeansthattheepochsof processes
candiffer by at mostone. Let us imaginethat epochsare
coloredredandgreenalternatively. Whenthereceiver is in
a greenepoch,andit receivesa messagefrom a senderin a
greenepoch,thatmessagemustbeanintra-epochmessage.
If themessageis from a senderin a redepoch,themessage
couldbeeithera latemessageor anearlymessage.It is easy
to seethatif thereceiver is not logging,themessagemustbe
anearlymessage;otherwise,it is a latemessage.Therefore,
a processneedonly keeptrackof thecolor of its epoch,and
this color canbepiggybackedinsteadof theepochnumber.
With thisoptimization,thepiggybackedinformationreduces
to two booleansandaninteger.

Furtheroptimizationis possible. If 32-bit integersare
used,thetwo mostsignificantbits of anintegercanbeused
to representthe color of the epochandthe stateof the am-
Loggingflagof thesender, andremaining30bitscanbeused
asthemessageID.This solutionshouldwork fine becauseit
is unlikely that a singleprocesswill sendmorethana bil-

lion messagesbetweencheckpoints!With thisoptimization,
the protocol� canbe implementedby piggybackinga single
integeron theapplicationpayload.

4.3 Completion of receipt of late messa ges

Finally, we needa mechanismfor allowing an application
processin oneepochto determinewhenit hasreceived all
thelatemessagessentin thepreviousepoch.Protocolssuch
asthe Chandy-LamportalgorithmassumeFIFO communi-
cationbetweenprocesses,sothey donotneedexplicit mech-
anismsto solvethisproblem.SincewecannotassumeFIFO
communicationat the applicationlevel, we needto address
this problem.

The solution we have implementedis straight-forward.
In every epoch, each process � remembershow many
messagesit sent to every other process (call this value� ��������������� �!�#" %$). Eachprocess also remembers
how many messagesit received from every other process
� (call this value &'�)(���*,+�� �����-��� �.0/1�2$. When a pro-
cess� takesits local checkpoint,it sendsa 354768���������������
messageto the otherprocesses,which containsthenumber
of messagesit sentto them in the previous epoch. When
process receivesthis controlmessage,it cancomparethe
valuewith &9�)(���*:+��)��������� �!;/<�2$ to determinehow many
moremessagesto wait for.

A minor detail is thata processP actuallyneedsto keep
two receivecountsfor eachprocessQ thatmaysendit mes-
sages;this is becauselatemessagesfrom P to Q sentin one
epochmaybe interspersedwith intra-epochmessagesfrom
P to Q sentin the next epoch. In theprotocolgivenbelow,
thesetwo countersarecalled =>&'��+�*���� � � �)(���*:+��)��������� and
(,��&)&9����� � � (?�@*,+��)��������� .

A moresubtleissueis the following: sincethe valueof� ��������������� �!�#" A$ is itself sent in a control message,
how does know how many of thesecontrol messagesit
shouldwait for? A simplesolutionis to assumethat every
processmaycommunicatewith everyotherprocessin every
epoch,so a processexpectsto receive a � �@���������-��� con-
trol messagefrom every otherprocessin the system. This
solutionworks,but if thetopologyof theinter-processcom-
municationgraphsis sparse,most � ��������������� controlmes-
sageswill contain0, which is wasteful. If the topologyof
this communicationgraphis sparseandfixed,we cansetup
a datastructurein theprotocollayerthatholdsthis informa-
tion. Thereareevenfanciersolutionsfor thecasewhenthe
communicationtopologyis sparseanddynamic,but we do
not presentthemhere. In the pseudo-codeof Figure4, we
assumethattheinter-processcommunicationgraphis fixed,
andweusethetermssendersandreceivers to denotetheset
of processesthatsendmessagesto a givenprocess,andthe
setof processesthat aresentmessagesby a given process
respectively.

4.4 Putting it all tog ether

Figure4 is a synthesisof the mechanismsdiscussedabove
into asingleprotocolwhichis executedby theprotocollayer
at eachprocessor, = .

Eachprocessmaintainsthefollowing variables:
� epoch: Thecurrentepochnumber. Initialized to 0.� amLogging: whetheror not logging of late messages

andnon-determinismis occurring.Initialized to false.� nextMessageID: TheID of thenext messagesent. Ini-
tializedto 0.� checkpointRequested: Trueif a localcheckpointshould
betakenatthenext call topotentialCheckpoint.
Initialized to false.� sendCount[B]: Numberof messagessentto processorB
duringthecurrentepoch.Initialized to 0.� earlyIDs[B]: ID’sof earlymessagesreceivedfrom pro-
cessorB . Initialized to nil.� currentReceiveCount[B]: Numberof intra-epochmes-
sagesreceivedfrom processorB . Initialized to 0.� previousReceiveCount[B]: Numberof latemessagesre-
ceivedfrom processorB . Initialized to 0.� totalSent[B]: Numberof messagessentby processorB
beforeit took its lastcheckpoint.Initialized to C .

4.5 Collective Comm unication

We will useMPI_Allreduce to illustratehow collective
communicationis handled.In Figure5, collective commu-
nicationcall A shows anMPI_Allreduce call in which
processesP andQ executethecall after taking local check-
points, and processR executesthe call before taking the
checkpoint.During recovery, processesP andQ will reex-
ecutethis collective communicationcall, but processR will
not. Unlesssomethingis done,theprogramwill not recover
correctly.

Our solution is to usethe log to save the result of the
MPI_Allreduce call atprocessesPandQ. During recov-
ery, whenthe processesreexecutethe collective communi-
cationcall, theresultis readfrom thelog andreturnedto the
applicationprogram.ProcessR doesnot reexecutethecol-
lective communicationcall. To make this intuitive ideapre-
cise,weneedto specifywhentheresultof acollectivecom-
municationcall likeMPI_Allreduce shouldbelogged.

A simplesolutionis to requirea processto log theresult
of every collective communicationcall it makesduring the
time it is logging. Collective communicationcall B in Fig-
ure5 illustratesasubtleproblemwith thissolution- process
R executestheMPI_Allreduce after it hasstoppedlog-
ging, so it would be incorrectfor processesP andQ to log
theresultsof their call. This problemis similar to theprob-
lem encounteredin thepoint-to-pointmessagecase,andthe
solutionis similar (andsimpler). Eachprocesspiggybacks
its amLogging bit on the applicationdata,andthe function

communicationEventHandler()
Applicationmessagesendto processD :

PiggybackE epoch,amLogging,nextMessageIDF
on themessage

sendCount[D]++
nextMessageID++

Applicationmessagereceive from processG :
Remove E epochH ,amLoggingH ,messageIDHIF

from themessage
earlymessage://assertnotamLogging

appendmessageIDH to earlyIDs[G]
intra-epochmessage:

if (amLogging andnot amLoggingH)
finalizeLog()

currentReceiveCount[G]++
latemessage://assertamLogging

appendmessageto log
previousReceiveCount[G]++
receivedAll?()

Controlmessage:pleaseCheckpoint
checkpointRequestedJ true

Controlmessage:stopLogging
finalizeLog()

Controlmessage:mySendCount(K) from processG
totalSent[G] JLK
if (amLogging)//M hastakenits own checkpoint

receivedAll?()

receivedAll?()
if (for all sendersG),

previousReceiveCount[G] J totalSent[G])
sendreadyToStopLogging messageto initiator
totalSent[G] JON for all sendersG

finalizeLog()
write log to stablestorage
amLogging J false
sendStoppedLogging messageto initiator

potentialCheckpoint()
if (checkpointRequested= false)return
save nodestateto stablestorage(seeSection5)
epoch++
for eachreceiver D

sendmySentCount(sendCount[D]) to D
for eachsenderG

previousReceiveCount[G] = currentReceiveCount[G]
currentReceiveCount[G] = length(earlyIDs[G])
save earlyIDs[G] to stablestorage
earlyIDs[G] J nil

checkpointRequestedJ false
amLogging J true
nextMessageID J 0
receivedAll?()

Figure4: Application-level CheckpointingProtocol

P

Q

R

x

x

x

Global checkpoint

Collective
Communication Call B

logging
ended

Communication Call A
Collective

Figure5: CollectiveCommunication

invokedby MPI_Allreduce computestheconjunctionof
thesebits. If any processinvolvedin thecollective commu-
nicationcall hasstoppedlogging,all theotherprocessesget
to know aboutit, anddo not log the resultof the call; they
alsostoplogging.

Theeleganceof this solutionowesmuchto thedecision
to implementtheprotocolin a layerthatsitsbetweentheap-
plicationprogramandtheMPI library. Eachcollectivecom-
municationcall is actually implementedby the MPI layer
usingmany point-to-pointmessages.Hadthelayerbeenim-
plementedbetweenMPI andtheoperatingsystem/hardware
layer, the protocol would have had to deal with all these
low-level point-to-pointmessages,whichwouldbefarmore
complex.

Most of the other collective communicationcalls can
be handledin this way. Ironically, the only one that re-
quiresspecialtreatmentis MPI_Barrier. Supposethat
the collective communicationcall A in Figure 5 is an
MPI_Barrier. The solutiondescribedabove will effec-
tively convert thebarrierto a no-opduringrecovery, which
is incorrectsincebarriersareusedto synchronizeprocesses.
Thecorrectsolutionis to ensurethatall processesinvolved
in a barrierexecuteit in the sameepoch. A simple imple-
mentationis the following. All processesinvolved in the
barrierexecutean all-to-all communicationjust beforethe
barrierto determineif they areall in thesameepoch.If not,
processesthathave not yet takentheir local checkpointsdo
so, ensuringthat the barrier is executedby all processesin
the sameepoch. This solution requiresthe precompilerto
inserttheall-to-all communicationandthepotentialcheck-
pointingcallsbeforeeachbarrier.

5 State Saving

5.1 Application state-sa ving

The state of the application running on each node con-
sists of its position in the static text of the program, its
position in the dynamicexecutionof the program,its lo-
cal and global variables,and its heap-allocatedstructures.
The precompilermodifies the application sourceso that
this state is correctly saved, and can be restarted,at the
potentialCheckpoint positionsin theoriginal code.

The approachthat we describedoesnot currently save

any lessdatathansystem-level checkpointing.However, it
is a starting� point for optimizing the amountof statethat is
saved at a checkpoint. In Section7, we describeongoing
work towardsthisgoal.

5.1.1 Checkpointing the application’ s position

Checkpointinga process’position is handledby inserting
labelsat the potentialCheckpoint and function call
locationsin theoriginal source.We utilize a datastructure,
the a Position Stack (PS) to recorda traceof a program’s
executionby insertingcodeto manipulatethe PSaslabels
are encountered.Figure 6 shows an exampleof the code
insertedby theprecompilerto manipulatethePS.

Whena checkpointis taken, the PS is saved aspart of
the checkpoint.If the applicationis restarted,the PS is re-
stored,and eachfunction jumps to the label that it stored
on the PS. In sucha manner, the activation stackis rebuilt
andtheprogramis preparedto resumeimmediatelyafterthe
potentialCheckpoint locationwherethe checkpoint
wastaken.

function1()
{

if(restart)
goto (PS.item(i++))

//...
PS.push(1);

label_1:
function2();
PS.pop();

//...
PS.push(2);
potentialCheckpoint();

label_2:
PS.pop();
//...

}

Figure6: PositionStack manipulation

The precompiler only needs to insert labels
at function calls that can eventually lead to a
potentialCheckpoint location. In order to in-
sure that the PS correctly reflects which function call
is currently active, the precompilerneedsto decompose
certaincomplex statements,suchasa statementcontaining
two calls to checkpointablefunctions,or a returnstatement
thatmakesacall to one.

5.1.2 Checkpointing the application’ s data

If weensurethattheprocesses’originalandrecoveredstack
always begins at the save virtual address,using the tech-
niquesdescribedabovewill ensurethat,afterrestart,theac-
tivation stackframeswill have samepositioningasduring

the original run. Therefore,a stackvariablewill have the
samevirtual addressbothbeforeandafterrestart.

We utilize anotherdatastructure,the Variable Descrip-
tor Stack VDSto saveandrestorethestackvariables’values.
TheVDSstorestheaddressandsizeof eachstackvariable.
Theprecompilerinsertscodethatmanipulatesthis structure
asvariablesenterandleavescope.Figure7 showssuchma-
nipulations.

function(int a)
{

VDS.push(&a, sizeof(a));
int b[10];
VDS.push(&b, sizeof(b));
{

int c;
VDS.push(&c, sizeof(c));
//...
VDS.pop;

}
VDS.pop;
VDS.pop;

}

Figure7: ManipulatingtheVDS

The applicationusesthe VDS to save and restorethe
stackvariables’ values. When a checkpointis taken, for
every recordin the VDS, it copiesthe specifiednumberof
bytes,from the specifiedaddress,into the checkpointfile.
On restart,we first restorethe stackusingthe PS, andthen
usetheVDSto restorestackvariablesby copying theirvalue
from thecheckpointto their locationsonthestack.TheVDS
mustbesavedandrestoredaspartof thelocal checkpoint.

A similar mechanismcanbeusedto handleglobalvari-
ables.In orderto discoverall of aprogram’sglobalvariable,
eithertheprecompilermusthaveaccessto all sourcefilesof
theprogramat once,or this discovery mustbedoneduring
linking. We arecurrentlyusingtheformerapproach.

5.1.3 Checkpointing the application’ s heap

Similar to thestackvariables,a heapallocatedobject,upon
restart,needsto berestoredto thesamevirtual addressthat
it hadin the original process.Additionally, we would also
needto ensurethat theheapmanagementstructures(ie. the
free list) arerestoredcorrectly. Therefore,our precompiler
providesits own heapmanagementsystem.

This heapmanagementsystemmaintainsa HeapObject
Structure, HOS, which is similar to the the VDS andcon-
tainsthestartingaddressandlengthof each“li ve” heapob-
ject. Whencheckpointing,weusetheHOSto copy theheap
objectsto the checkpointfile. The HOS, alongwith some
otherheapmanagementstructures,is savedwith thecheck-
point. On restart,we requestthe samechunkof virtual ad-
dressspace,restoretheHOS, anduseit to copy theobjects
from thecheckpointfile backontotheheap.

5.1.4 A note on pointer s

Becausestackvariablesandheapobjectsarerestoredto their
original virtual addresses,we needto make no specialcon-
siderationregardingdatapointers:they aresavedasordinary
data. A valid datapointerin the original processwill point
to thesameobjectin therecoveredone.

This strategy differs significantly from the oneusedin
thePORCH([15]). Becausetheirgoalwasto createacheck-
pointfile thatcouldbeusedwithin aheterogeneousenviron-
ment,they couldmakenoassumptionsregardingtheaddress
or lengthof a program’svariables.Insteadthey wereforced
to employ “re-locatable”pointersandto convertvaluesto an
architectureneutralrepresentationwhencheckpointing.

Thedisadvantagesto suchtechniquesarethataprogram-
meris requiredto work with a subsetof theC languagethat
disallows arbitrarycasting,andthat thereis a performance
costto bepaidwhenconvertingvaluesfrom onerepresenta-
tion to another. Sinceportability is notoneof ourgoals,and
becausewe feel that the limitations on programmingstyle
andtheaddedoverheadof doingpointerconversionaretoo
burdensomefor ourapplications,we havechosennot to fol-
low thePORCHapproach.

5.2 MPI Librar y State-Saving

As was alreadymentioned,our protocol layer intercepts
all calls that the application makes to the MPI library.
Using this mechanismwe are able to record the direct
state changesthat the application makes (e.g., calls to
MPI_Attach_buffer). In addition,someMPI functions
take or returnhandlesto opaqueobjects.Theprotocollayer
introducesa level of indirectionsothat theapplicationonly
seeshandlesto objectsin the protocol layer (hereafterre-
ferredto pseudo-handles), which containtheactualhandles
to theMPI opaqueobjects.On recovery, theprotocollayer
mustreinitializethepseudo-handlesin sucha way that they
arefunctionallyidenticalto theircounterpartsin theoriginal
process.

TheMPI opaqueobjectswhosehandlesarestoredin the
pseudo-handlescanbedividedinto two types:transientand
persistent. Transientobjectscomeinto existenceoften and
tend to have short lifetimes while persistentobjectscome
into existencerarelyandtendto have long lifetimes.Weuse
a separatemechanismfor reinitializing the pseudo-handles
of eachtypeof MPI opaqueobject.

The only MPI objectsthat we consideras transientare
MPI_Request objects.Theseobjectsarecreatedby non-
blocking communicationfunctions, such as MPI_Isend
or MPI_Irecv, and are destroyed by functions such as
MPI_Wait. When a MPI_Isend or MPI_Irecv that
createsaMPI_Request objectoccursbeforea checkpoint
andthethecall toMPI_Wait thatdestroystheobjectoccurs
afterthecheckpoint,thenonrecovery, thepseudo-handlefor
thatMPI_Request objectmustbe correctly reinitialized.

ThisdoesnotnecessarilymeanthattheMPI_Request ob-
jectmustberecreated;it meansthatcallingMPI_Waitwith
thepseudo-handlemusthave thesameeffect that it did dur-
ing theoriginalexecution.

The pseudo-handlefor an MPI_Request object cre-
atedby MPI_Isend mustbe reinitializedso that the call
to MPI_Wait will return immediately, which meansthat
the sendbuffer may be reusedby the application. This is
becausethecall to MPI_Isend thatcreatedtherequestob-
jectedoccurredbeforethe checkpoint. Either the message
wasreceivedbeforethereceiving processortooksits check-
point, in which casethe datais part of the checkpoint,or
after, in which casethe messageis storedin the receiver’s
logs. In eithercase,it is safefor theapplicationto reusethe
buffer.

The pseudo-handlefor an MPI_Request object cre-
atedby MPI_Irecv must be reinitialized in one of two
ways.If thereceivematchesa latemessagein thereceiver’s
log, this messagemay be copiedto the receiver buffer and
MPI_Wait may return immediately. If the receive does
not matchany latemessage,thenit mustmatcha sendthat
is issuedafter checkpointing. In this case,on recovery,
MPI_Irecv mustbecalledagainwith exactly thesamear-
gumentsandits handlestoredin thepseudo-handle.

All objectsbesidesMPI_Request’s are classifiedas
persistentopaqueobjectsandarehandledasfollows. Each
processorrecordsall the function namesandargumentsof
every call that createsor manipulatesthesepersistentob-
jects. This recordis saved to stablestorageaspart of the
localcheckpoint.Onrestart,eachprocessorwill replaythese
calls in orderto recreateeffectively the samepersistentob-
jectsthatexistedat thetime of thecheckpoint.Thepseudo-
handlesarereinitializedwith the handlesto thesenew ob-
jects.

6 Performance

6.1 Experimental setup

WeperformedourexperimentalevaluationontheCMI clus-
ter at the Cornell Velocity supercomputer. This cluster is
composedof 64 2-way PentiumIII 1Ghz nodes,featuring
2GBof RAM andconnectedby aGiganetswitch.Thenodes
have 40MB/secbandwidthto local disk. Due to hardware
problems,weusedonly 16 of thoseprocessors for our tests;
in the final paper, we will presentresultsfor the full ma-
chine. Theoperatingsystemon themachineswasWindows
2000andwe usedMPI/Pro 1.6.4asour MPI implementa-
tion. The applicationswerecompiledusing the Microsoft
C/C++ Optimizing Compiler version12, using the ”Opti-
mized for Speed”optimizationsetting. We evaluatedthe
performanceof our checkpointeron threecodes:

� A denseConjugateGradientcodefrom YingfengSuof
theUniversityof SanFrancisco.Thiscodeimplements

a parallelconjugategradientalgorithmwith block row
distribution. Themain loop performsa parallelmatrix
vectormultiply andaparalleldotproduct,with commu-
nication coming from an allReduceand an allGather,
which areimplementedin termsof point-to-pointmes-
sagesalonga butterfly tree.We ranthedenseCG code
for 500iterations.� A LaplaceSolver, by RaghuReddyfrom thePittsburgh
SupercomputingCenter. Thisprogramusesa �%PQ� grid
of numbersthat is distributedby block rows. During
eachiterationevery grid cell is updatedto betheaver-
ageof thenumberscontainedby theneighboringcells
(up, down, left, right) in the previous iteration. The
communicationcomesfrom eachprocessorexchanging
borderrows with theprocessor”above” it andthepro-
cessor”below” it. We ran theLaplacecodefor 40000
iterations.� Neurosys,a neuron simulator by Peter Pachecoof
the University of SanFrancisco(available publically
at http://nexus.cs.usfca.edu/neurosys/),usesa graphof
neuronswhich excite and inhibit eachother via their
connections.Thecurrentstateof eachneuronis com-
putedby solving a function of the statesof the neu-
ronsthatareconnectedto it. Theevolution of theneu-
ron network throughtime is computedvia the Runge-
Kutta methodfor differentialequations.The program
is parallelizedby assigningeachprocessora block of
neuronsto work with. Communicationconsistsof 5
MPI_Allgather’sand1MPI_Gather in eachloop
iteration.We ranNeurosysfor 3000iterations.

All thecheckpointsin our experimentsarewritten to the
localdisk,with acheckpointinterval of 30seconds.

6.2 Performance

Theperformanceof ourprotocolwasmeasuredby recording
theruntimesof eachof four versionsof theabovecodes.

1. Theunmodifiedprogram
2. Version#1 R codeto piggybackdataon messages
3. Version#2 R protocol’slogsandsaving theMPI library

state
4. Version#3 R saving theapplicationstate

Experimentalresultsareshown in (Figure8).

� In denseCG, the total overheadfor taking full check-
points every 30 secondsis 14% for a 4096x4096or
8192x8192matrix. This increasesdramaticallyto 43%
when we move up to 16384x16384. However, since
the overheadis only 4.5%whenwe do everythingbut
recordtheapplicationstate,it is clearthatthereasonfor
theincreasedoverheadis thatsizeof applicationstate.� The addition of checkpointingto the LaplaceSolver
addsonly 2.1%overheadin theworstcasetested.This

canbe explainedby the fact thatevenbiggestdataset
wetestedhadonly 2.1MBof applicationstate,whichis
muchlessthanthe amountwherethe denseconjugate
gradientcodebeganslowing down. Furthermore,the
amountof datathe LaplaceSolver sendsper message
is muchmorethanthedatathatwe attachto eachmes-
sage,soour piggybackedinformationaddslittle over-
head.� Neurosysdoesa lot of computationand communica-
tion on a relatively smalldataset. Its smallapplication
state,which variesfrom 18KB to 1.24MB,is too small
to causemuchoverheadfrom recordingtheapplication
state.However, we seeanotherinterestingoverheadin
thedifferencebetweentheruntimesof theunmodified
versionandtheversionthatusestheprotocollayerbut
takesno checkpoints.Theprimarydifferencebetween
thetwo is thatthelatterpiggybacksdataon messages.
Neurosys uses 5 MPI_Allgather’s in every it-
eration and in our implementation,each such data
MPI_Allgather is preceeded by a command
MPI_Allgather which sendsaround the relevant
controlinformation.Thisaccountsfor thejump in run-
time which is ashigh as160%for 16x16.However, as
the input sizesincreases,the messagesizesandcom-
putationtimealsoincreasebut thenumberof messages
doesnot. Thus, the additionalwork masksthe over-
headassociatedwith passingaroundcontroldata,lead-
ing this overheadto drop to 85% of the total runtime
for 32x32,34%for 64x64andjust 2.7%for 128x128.

7 Conc lusions and Future Work

In this paper, we have shown that application-level non-
blockingcoordinatedcheckpointingcanbeusedtoaddfault-
toleranceto C/MPI programs.We have arguedthatexisting
checkpointingprotocolsare not adequatefor this purpose
andwehavedevelopedanovel protocolto meettheneed.

We have presenteda systemthat canusedto transform
C/MPI programsto useour protocol.This systemusespro-
gramtransformationtechnologyto transformtheapplication
sothatit will save andrestoreits own state.We haveshown
how the stateof the underlyingMPI library canbe recon-
structedby theimplementationof ourprotocol.

The goal of our project is to provide a highly efficient
checkpointingmechanismfor MPI applications. Oneway
to minimize checkpointoverheadis to reducethe amount
of datathat mustbe saved when taking a checkpoint. We
arecontinuingthedevelopmentof ourprecompilersothatit
mayutilize analysistechniquesto determineareasof mem-
ory thatcanbesafelyexcludedfrom a checkpoint.

Othershave worked on using compiler technologiesto
avoid checkpointingdeadandread-onlyvariables[2]. Their
work focussedonstaticallyallocateddatastructuresin FOR-
TRAN programs. We would like to extend suchwork to

4096x4096 8192x819216384X16384
0

500

1000

1500

2000

2500

3000
Dense Conjugate Gradient

Problem Size
R

un
ni

ng
 T

im
e

(s
ec

)

8.2MB
33MB

131MB

Unmodified Program
Using Protocol Layer, No Checkpoints
Checkpointing, No Application State
Full Checkpoints

512x512 1024x1024 2048x2048
0

500

1000

1500

2000

2500

3000

3500
Laplace Solver

Problem Size

R
un

ni
ng

 T
im

e
(s

ec
)

138KB
532KB

2.1MB

16x16 32x32 64x64 128x128
0

500

1000

1500

2000

2500

Neurosys

Problem Size

R
un

ni
ng

 T
im

e
(s

ec
)

18KB
75KB

308KB

1.24MB

The number above each set of bars
is the size of the application state
for that problem size.

Figure8: PerformanceCharts

handlethedynamicallycreatedin C/MPI applications.
Anothertechniquewe aredevelopingis thedetectionof

distributed redundantdata. If multiple nodeseachhave a
copy of thesamedatastructure,only oneof thenodesneeds
to include it in its checkpoint. On restart,the othernodes
will obtaintheircopy from theonethatsavedit.

Both thesetechniquesare actually specializationsof a
moregeneraltechniquethat we term recomputationcheck-
pointing. For somedatastructures,acompilermightbeable
to determinehow to recomputetheir values.If thedescrip-
tion of this recomputationrequireslessspacethanstoring
their data,we shouldstorethe description,ratherthan the
data,in thecheckpoint.

We would alsolike to extendthis work to provide fault-
tolerancefor other types of high performancecomputing
systems,suchassharedmemorymachines,andthe MPI-2
messagepassingstandard.

References

[1] A. AgbariaandR. Friedman. Starfish: Fault-tolerantdynamicmpi
programsonclustersof workstations.In 8th IEEEInternationalSym-
posiumonHigh PerformanceDistributedComputing, 1999.

[2] M. Beck,J.S.Plank,andG. Kingsley. Compiler-assistedcheckpoint-
ing. TechnicalReportUT-CS-94-269,1994.

[3] A. Beguelin,E. Seligman,andP. Stephan.Applicationlevel fault tol-
erancein heterogeneousnetworksof workstations.Journalof Parallel
andDistributedComputing, 43(2):147–155,1997.

[4] M. Chandyand L. Lamport. Distributed snapshots:Determining
globalstatesof distributedsystems.ACM TransactionsonComputing
Systems, 3(1):63–75,1985.

[5] E. N. ElnozahyandW. Zwaenepoel.Manetho:Transparentrollback-
recovery with low overhead,limited rollbackandfastoutput.1992.

[6] M. Elnozahy, L. Alvisi, Y. M. Wang,andD. B. Johnson.A survey
of rollback-recovery protocolsin messagepassingsystems.Techni-
cal ReportCMU-CS-96-181,Schoolof ComputerScience,Carnegie
Mellon University, Pittsburgh,PA, USA, Oct.1996.

[7] R. Graham,S.-E. Choi, D. Daniel, N. Desai,R. Minnich, C. Ras-
mussen,D. Risinger, and M. Sukalski. A network-failure-tolerant
message-passingsystemfor tera-scaleclusters.In Proceedingsof the
InternationalConferenceonSupercomputing2002, 2002.

[8] I. Gupta,T. Chandra,andG. Goldszmidt. On scalableandefficient
distributedfailuredetectors,2001.

[9] IBM Research. Blue gene project overview. Online at
http://www.research.ibm.com/bluegene/, 2002.

[10] D. B. JohnsonandW. Zwaenepoel.Transparentoptimistic rollback
recovery. OperatingSystemsReview, 25(2):99–102,1991.

[11] N. Lynch.DistributedAlgorithms. MorganKaufmann,SanFrancisco,
California,first edition,1996.

[12] J.B. M. Litzkow, T. TannenbaumandM. Livny. Checkpointandmi-
grationof unix processesin thecondordistributedprocessingsystem.
TechnicalReport1346,Universityof Wisconsin-Madison,1997.

[13] National NuclearSecurityAdministration. Asci home. Online at
http://www.nnsa.doe.gov/asc/,2002.

[14] J. S. Plank,M. Beck,G. Kingsley, andK. Li. Libckpt: Transparent
checkpointingunderunix. TechnicalReportUT-CS-94-242,1994.

[15] B. Ramkumarand V. Strumpen. Portablecheckpointingfor het-
erogenousarchitectures.In SymposiumonFault-Tolerant Computing,
pages58–67,1997.

[16] S. Rao,L. Alvisi, andH. M. Vin. Egida: An extensibletoolkit for
low-overheadfault-tolerance.In Symposiumon Fault-Tolerant Com-
puting, pages48–55,1999.

[17] T. TabeandQ. F. Stout.Theuseof theMPI communicationlibrary in
theNAS parallelbenchmarks.TechnicalReportCSE-TR-386-99,17,
1999.

[18] TheBlueGene/LTeam.An overview of thebluegene/lsupercomputer.
In SC2000High PerformanceNetworkingandComputing, 2002.

