AutomatedApplication-level Checkpointingof MPI Programs

Greg Bronevetsky, DanielMarques Kesha Pingali,Paul Stodghill
Departmenbf ComputerScience,
CornellUniversity, Ithaca,NY 14853

Abstract

Becauseof increasinghardware and software complexity,
the running time of mary computationalscienceapplica-
tions is now more than the mean-time-to-dilure of high-
peformanceomputingplatforms.Therefore computational
scienceapplicationseedto toleratehardwarefailures.

In this paper we focuson the stoppingfailure modelin
which a faulty processhangsand stopsrespondingto the
restof the system. We argue that toleratingsuchfaultsis
bestdone by an approachcalled application-leel coordi-
natednon-blockingcheckpointing,and that existing fault-
toleranceprotocolsin the literatureare not suitablefor im-
plementingthis approach.

In this paper we presenta suitableprotocol, and shov
how it can be usedwith a precompilerthat instruments
C/MPI programsto save applicationand MPI library state.
An advantageof our approachs thatit is independenof the
MPI implementation.We presentexperimentalresultsthat
arguethatthe overheadf usingour systemcanbe small.

1 Introduction

Fault-tolerantprogramminghasbeenstudiedextensiely in
the context of distributedsystemg6]. In contrastthe high-
performancearallelcomputingcommunityhasnot devoted
muchattentionto this problembecauséardwarefailuresin
parallel platformswere not frequentenoughto be a cause
for concern. Most high-performanceomputingwas done
on "big-iron platforms”: monolithic vectoror parallelcom-
putersthatweredesignedbuilt, andmaintainedoy a single
vendor Becausdhesemachinescostmary millions of dol-
lars,vendorscouldafford to designreliablecomponentsnd
integratethem carefully to producerelatively robust com-
puting platforms.Moreover, unlike distributedsystemspro-
gramssuchasair-traffic control systemghatmustrun with-
out stopping,mostcomputationakcienceprogramsran for
durationsthatweremuchlessthanthe mean-time-between-
failure (MTBF) of theunderlyinghardware.

OThis work wassupportecby NSF grantsACI-9870687 EIA-9972853,
ACI-0085969ACI-0090217 ACI-0103723andACI-0121401.

checkpointing

[coordinated]

[uncoordinated J

[blocking J [non-blocking J

message logging
[optimistic J [

[pessimistic] causal]

Figurel: Hierarchyof differentfaulttoleranceechniques

Recenthangeé thehigh-performancearallelcomput-
ing world arebringingtheissueof fault-toleranceo thefront
andcenter First, the numberof processorén big-iron ma-
chinesis increasingrapidly: the recentlyannouncedlue
Gene/Lwill have over 130,000[18]. Anecdotalevidence
is that sucha machinelosesa processorevery few hours;
increasingthe numberof processorsncreaseghe overall
performanceput it alsoincreaseghe numberof points of
failure. Second,parallel computingis shifting from ex-
pensve monolithic hardware systemso low-cost, custom-
assemblectlustersof processorsand communicationfab-
ric. Therecenttrendtowardsinternet-widegrid-computing
is anotherchangein the hardwarepicturethatincreaseshe
probability of hardwarefailuresduring programexecution.
Third, mary computationalscienceprogramsare now de-
signedto runfor daysor evenmonthsatatime; someexam-
plesarethe ASCI stockpilecertificationprograms[13jand
abinitio protein-foldingprogramssuchasI|BM’ s Blue Gene
[9] codeswhich areintendedto run for months.

Therefore,the running times of mary applicationsare
now significantlylongerthanthe MTBF of the underlying
hardware. Computationalscienceprogramsmust tolerate
hardwarefailures.

1.1 Problem Definition

To addresghis problem,it is necessaryo definethe fault
model. Two commonclassef modelsare Stoppingand

Byzantind11]. In a Stoppingmodel,afaulty procesangs
andstopsrespondingo therestof the system neithersend-
ing nor receving messageByzantinefaultspermitafaulty
procesgo performmoredamagingactssuchassendingcor-

rupteddatato otherprocesses.

In this paper we focus our attentionon stoppingpro-
cesses.As we discussin this paper thereare mary inter-
estingproblemsto be solved evenin this restricteddomain.
Moreover, a good solution for this failure modelcanbe a
usefulmechanisnin addressinghe more generalproblem
of Byzantinefaults.

In general,good abstractionsare key to effective han-
dling of failures.In this spirit, we make thestandardssump-
tion thatthereis areliabletransportiayerfor deliveringap-
plicationmessagesandwe build our solutionsontop of that
abstraction. One suchreliable implementationof the MPI
communicatioribrary is Los AlamosMPI (LA-MPI) [7].

We cannow statethe problemwe addressn this paper
We aregivenalong-runningMPI programthatmustrun on
amachinehathas(i) areliablemessageéeliverysystem(ii)
unreliableprocessorsvhich canfail silently atany time,and
(iii) a mechanisnmsuchasa distributed failure detector{8]
for detectingfailed processesHow do we ensurethat the
programmakesprogressnspiteof thesefaults?

1.2 Solution space

Figurel classifiessomeof thewaysin which programscan
be madefault-tolerant. An excellentsurwey of thesetech-
niguescanbefoundin [6].

Ched&pointingtechniqueperiodicallysare adescription
of the stateof a computatiorto stablestoragejf ary process
fails, all processearerolled backto thelastcheckpointand
the computationis restartedfrom there. Messae-logging
techniquesn contrastrequirerestartingonly the computa-
tion performedby the failed process. Surviving processes
arenotrolled backbut musthelptherestartegprocesdy re-
playing messageshat were sentto it beforeit failed. The
simplestimplementatiorof messagdogging requiresevery
procesdso save a copy of every messagét sends.A more
sophisticatedpproachmight try to regeneratenessageen
demandusing approachesik e reversiblecomputation. Al-
thoughmessage-loggings a very appealingdeawhich has
beenstudiedintensively by the distributedsystemsommu-
nity [5,10,16], our experienceis thatthe overheadof sav-
ing or regeneratingnessagesendsto be so overwhelming
thatthe techniqueis not competitive in practice. This may
be becausgparallelprogramscommunicatenoredatamore
frequentlythandistributedprogramq17].

We therefore focuson chedpointing

Checkpointingechniqueganbe classifiedalongtwo in-
dependentlimensions.

(1) Thefirst dimensionis the abstractiorevel at which
the stateof a procesds saved. In system-leel chedpoint-

ing, the bits that constitutethe stateof the processnsuch
asthe contentsof the programcounter registersand mem-
ory, aresavedonstablestorage Exampleof systemshatdo

system-lgel checkpointingareCondor[12]andLibckpt[14].

Somesystemslike Starfish[1]give the programmersome
control on whatis saved. Unfortunately completesystem-
level checkpointingof parallelmachineswith thousandof

processorsan be impractical becauseeachsystemcheck-
point can requirethousandf nodessendingterabytesof

datato stablestorage.For this reasonsystem-lgel check-
pointingis notdoneon largemachinesuchasthelBM Blue

Geneor the ASCI machines.

One alternatve which is popular is application-level
chedkpointing Applications can obtain fault-toleranceby
providing their own checkpointingcode[3]. The application
is written suchthatit correctly restartsfrom variousposi-
tionsin the codeby storing certaininformationto a restart
file. The benefitof this techniqueis thatthat the program-
merneedsonly save the minimumamountof datanecessary
to recover the programstate. For example,in an ab initio
proteinfolding code,it sufficesto sase the positionsandve-
locities of the variousbasesyhich is a smallfraction of the
total stateof the parallel system. The disadwantageof this
approachto implementingapplication-leel checkpointing
is thatit complicateghe codingof the applicationprogram,
andit is onemorechorefor the parallelprogrammer

In this paper we explore the useof compilertechnology
to automateapplication-levelchedkpointing

(2) The seconddimensionalong which checkpointing
techniquescan be classifiedis the techniqueusedto coor
dinateparallelprocessewhencheckpointsieedto betaken.
In uncoordinatedheckpointingeachprocessavesits state
wheneer it wantsto without coordinatingwith other pro-
cesses.Althoughthis is simple, restartcan be problematic
dueto exponentialrollback, which may causethe computa-
tion to roll sofar backthatis makesno progresg6]. For this
reasonuncoordinateeheckpointinchasfallenout of favor.

Coordinatedcheckpointingcan be divided into block-
ing and non-blockingcheckpointing. Blocking techniques
bring all processeso a stop beforetaking a global check-
point. Hardwareblockingwasusedonthe|lBM SP-2to take
system-lgel checkpoints Softwareblockingtechniquesx-
ploit barriers- when processeseacha global barrier, each
onesavesits own stateon stablestorage.This is essentially
the solution usedtoday by applicationsprogrammersvho
roll their own application-leel state-saing code.However,
this solutioncanfail for someMPI programssinceMPI al-
lows message® crossbarriers. Thesemessagewould not
be sared with the global checkpoint. Moreover, new data-
driven programmingstylesare esch&ing the global barri-
ers,ubiquitousin BSP-stylebulk-synchronougprogramsjn
favor of fine-grain,data-orientedynchronizationSuchpro-
gramsmaynothave barriers andtheremaybenosafeplaces
in thecodein whichbarrierscanbeinsertedwvithoutcreating

compile Time

Fault-tolerant
Application Source

Fault-toleran

Application Source Application

Run Time

Faulttolerant
Application

Fault-tolerant
Application

‘ Protocol Layer ‘ [X J ‘ Protocol Layer ‘

|]

I MPI | I MPI
L L

‘ Hardware ‘

Figure2: SystemArchitecture

deadlocks.

For thesereasonsnon-bloking coordinateccheckpoint-
ing is aninterestingalternatie. In this approacha global
coordinationprotocol,implementedby exchangingspecial
marker or control tokens,is usedto orchestratehe saving
of the statesof individual processeandthe contentsof cer
tain messagegp provide a globalsnapshobf the computa-
tion from which the computatiorcanbe restarted A distin-
guishedproces<alledtheinitiator is responsibldor initiat-
ing andmonitoringthe protocol;to take alocal checkpoint,
anapplicationprocessnaycommunicatavith otherapplica-
tion processesbut it makesno assumptionsboutthe states
of otherprocessesThe Chandy-Lamporprotocolis perhaps
the mostwell-known non-blockingprotocol [4]. Unfortu-
nately theseprotocolsweredesignedo work with system-
level checkpointing— aswe discusdn Section3, thereare
fundamentadifficulties in usingthemfor application-leel
checkpointing.

Therefore, we have developeda new protocol for non-
blocking coodinationthatworkssmoothlywith application-
level state-saving

1.3 Overview of our approach

In this paper we discussthe use of compiler technology
to implementapplication-leel, coordinated,non-blocking
checkpointingof MPI programs.

Figure 2 is an overview of our approach. The CCIFT
(Cornell Compiler for Inserting Fault-Tolerance)precom-
piler readsalmostunmodifiedsingle-threade@/MPI source
files and instrumentsthem to perform application-leel
state-saing; the only additional requirementfor the pro-
grammer is that he insert calls to a function called
Pot ent i al Checkpoi nt at points in the application
wherethe programmeiwants checkpointingto occur We
have not yet implemented optimizationsto reduce the
amountof statethatis saved,sotheinstrumented¢odesaves
the entire statewhenit takes a checkpoint. The output of

this precompileiis compiledwith the natve compileronthe
hardware platform, andis linked with a library that consti-
tutesaprotocollayerfor implementinghenon-blockingco-
ordination. This layer sits betweenthe applicationandthe
MPI layer, andinterceptsall callsfrom theinstrumentedp-
plicationprogramto the MPI library*

This designpermits us to implementthe coordination
protocol without modifying the underlying MPI library,
which promotesmodularityand eliminatesthe needfor ac-
cessto MPI library codewhich is proprietary on somesys-
tems. Further, it allows usto easily migrate from one MPI
implementatiorio another

Therestof this paperis organizedasfollows. We intro-
ducesomenotationandterminologyin Section2. In Sec-
tion 3, we discussthe main hurdlesthat mustbe overcome
to implementour solution, and argue that the coordination
protocolsin the literature cannotbe usedfor our problem.
In Section4, we presentour solutionsto theseproblems.
In particular we describea new coordinationprotocolthat
supportswith application-leel checkpointing. We have im-
plementedhis approachon a Windows 2000 clusterat the
Cornell Theory Center In Section5, we discusshow we
save andrestorethe stateof the applicationandthe MPI li-
brary. In Section6, we measurahe performanceoverheads
of our approachby runninga numberof small benchmarks
on this platform. The full paperwill presentmore detailed
measurementsf theseandlargerbenchmarksWe conclude
in Section?7 with a discussiorof futurework.

2 Terminology

In this section,we introducethe terminologyand notation
usedn therestof thepaper Following usualpractice we as-
sumethatthe systendoesnotinitiate thecreationof aglobal
checkpointeforeall previousglobalcheckpointhave been
createcandcommitedto global storage.

The executionof anapplicationprocessanthereforebe
divided into a successiorof epots wherean epochis the
period betweentwo successie local checkpointgby con-
vention,thestartof theprogramis assumedo begin thefirst
epoch).Epochsarelabeledsuccessiely by integersstarting
atzero,asshowvnin Figure3.

It is corvenientto classify an applicationmessagento
three cateyories dependingon the epoch numbersof the
sendingand receving processest the pointsin the appli-
cation programexecutionwhenthe messagés sentandre-
ceivedrespectiely.

INotethatMPI canbypasghe protocollayerto readandwrite message
buffersin the applicationspacedirectly. Suchmanipulationshowever, are
notinvisible to the protocollayer MPI may not begin to accesa message
buffer until afterit hasbeengiven specificpermissionto do so by the ap-
plication (e.g. via acall to MPI _I r ecv). Similarly, oncethe application
hasgrantedsuchpermissionto MPI, it shouldnot accesghat buffer until
MPI hasinformedit thatdoing sois safe(e.g. with thereturnof a call to
MPI Wi t). Thecallsto, andreturnsfrom, thosefunctionsareintercepted
by the protocollayer

’

0 ¥ 1 v 2

I
I
I
P ; X ;
| ' Intrj—epoch Lat h
I
Q 0 X 1 % 2
i < X
\ v
i) E M]
R: 0 X L X
[\ '
! \ 1
Start

of program Global Checkpoint 1 Global Checkpoint 2

Figure3: Epochsandmessagelassification

Definition 1 Givenan applicationmessge from processA
to processB, let ¢ 4 betheepot numberof A at the pointin
the applicationprogramexecutionwhenthe sendcommand
is executedandlet e betheepod numberof B at thepoint
whenthemessage s deliveredto theapplication.

e Latemessagelf e4 < ep, themessgeis saidto bea
late messge.

e Intra-epochmessagelf e4 = ep, themessge is said
to beanintra-epot messge.

e Earlymessagelf e4 > ep, themessgeis saidto be
an early messge.

Figure3 shavs examplesof thethreekinds of messages,
usingtheexecutiontraceof threeprocessesamedP, Q and
R. MPI hasseveral kinds of sendandreceve commands,
so it is importantto understandvhat the messagearrons
meanin the context of MPI programs. The sourceof the
arron representghe point in the executionof the sending
processat which control returnsfrom the MPI routinethat
wasinvokedto sendthis messageNote thatif this routine
is a non-blockingsend,the messagenay not make it to the
communicatiometwork until muchlaterin execution;nev-
erthelesswhatis importantfor usis thatif thesystentriesto
recoverfrom globalcheckpoin®, it will notreissughe MPI
send. Similarly, the destinationof the arrow representshe
delivery of the messagéo the applicationprogram.In par
ticular, if anMPI _| r ecv is usedby thereceving processo
getthe messagethe destinatiorof the arrow representsiot
the point wherecontrol returnsfrom the MPl _I r ecv rou-
tine, but the point at whichan MPl _Wi t for the message
would have returned.

In the literature,late messageare sometimescalledin-
flight messagesndearly messagearesometimecalledin-
consistenmessagesT his terminologywasdevelopedin the
contet of system-lgel checkpointingprotocolsbut in our
opinion, it is misleadingin the context of application-leel
checkpointing.

3 Difficulties in Application-le vel Checkpointing
of MPI programs

In this section, we describethe difficulties with imple-
mentingapplication-leel, coordinatednon-blockingcheck-
pointing for MPI programs.In particulay we arguethatthe

existing protocolsfor non-blockingparallelcheckpointing,
whichweredesignedor system-lgel checkpointersarenot
suitablewhenthestatesaving occursattheapplicationlevel.

3.1 Delayed state-sa ving

A fundamentabifferencebetweensystem-leel chekpoint-
ing and application-level chedkpointing is that a system-
level chedkpoint may be taken at any time during a pro-
gram’s execution, while an application-level chedkpoint
can only be taken when a program executesPot en-
ti al Checkpoi nt calls.

System-leel checkpointing protocols, such as the
Chandy-Lamportlistributed snapshoprotocol, exploit this
flexibility with checkpointschedulingto avoid the creation
of early messages— duringthe creationof a global check-
point, a processP musttake its local checkpointbeforeit
canreada messagdrom processy which Q sentaftertak-
ing its own checkpoint. This stratey doesnot work for
application-lerel checkpointing,becauseprocessP might
needto receve an early messageéeforeit canarrive at a
pointwhereit maytake a checkpoint.

Therefore,unlike system-lgel checkpointingprotocols,
application-leel checkpointingorotocolsmusthandleboth
lateandearlymessages.

3.2 Handling late and early messages

We useFigure 3 to illustratethe issuesassociateavith late
and early messages Supposehat one of the processein
this figurefails afterthe taking of Global Checkpoint2. On
restart,eachprocessesvill resumeexecutionfrom its state
assaved in the checkpoint. For process() to recover cor-
rectly, it mustobtainthe late messagehatwassentto it by
processP prior to the failure. However, processP will not
resendhismessagéecaus¢hesendoccurrecheforeP took
its checkpoint.Therefore we needmechanismsor (i) iden-
tifying late messageandsaving themalongwith the global
checkpointand(ii) replayingthesemessageto the recev-
ing processluringrecovery. Latemessagemustbehandled
by system-lgel checkpointingorotocolsaswell.

Earlymessagesuchasthemessagsentfrom process)
to processR posea differentproblem. Processk receved
this messagdeforetaking its checkpoint;afterrecovery it
doesnotexpectto beresenthismessagelor theapplication
to be correct,therefore process) mustsuppressesending
this message.To handlethis, we needmechanismgor (i)
identifying early messagesand (ii) ensuringthat they are
notresentduringrecovery.

Early messageslso posea separateand more subtle
problem.Thesavedstateof processh at Global Checkpoint
2 may dependon the datacontainedin the early message
from procesg). If thatdatawasarandomnumbergenerated
by @, R’s statewould be dependenbn a non-deterministic

eventat Q. If the numberwas generatedhfter Q took its
checkpoint,then on restart,Q and R may disagreeon its
value.

In generalwe mustensurehatif aglobalcheckpointe-
pendson a non-deterministi@vent,thateventwill re-occur
afterrestart. Thereforemechanismareneededo (i) log the
non-deterministiceventsthat a global checkpointdepends
on, sothat(ii) theseeventscanbereplayedduringrecovery.

3.3 Non-FIFO message delivery at application
level

Many system-lgel protocolsassumethat the communica-
tion betweena pair of processebehaesin a FIFO manner
For example,in the Chandy-Lamporprotocol,a processP
thattakes a checkpointsendsa marker token to other pro-
cessesjnforming them of what it hasdone. The protocol
reliesonthe FIFO assumptiorio ensurehattheseotherpro-
cessesnustreceie this token beforethey canreceve ary
messagasentby P afterit tookits checkpoint.

In an MPI application,a processP canusetag match-
ing to receve message$rom @ in a different order than
asthey were sent. Therefore,a protocolthat works at the
application-leel, aswould be the casefor application-leel
checkpointing,cannotassume-IFO communication. It is
importantto notethatthis problemhasnothingto dowith the
FIFO (or lack of) behaior of theunderlyingcommunication
systemyather it is a propertyof a particularapplication.

3.4 Collective comm unication

TheMPI standardncludescollective communication$unc-
tions suchas MPI _Bcast and MPlI _Al | t oal | , which
involve the exchangeof dataamonga numberof proces-
sors. However, mostcheckpointingprotocolsin the litera-
ture,whichweredesignedn the context of distributedcom-
puting,ignoretheissueof collectve communication.

The difficulty presentedy suchfunctionsoccurswhen
someprocessesnake a collective communicationcall be-
fore taking their checkpointsand othersafter We needto
ensurethat on restart,the processeshat reexecutethe calls
do not deadlockand receve correctinformation. Further
more, MPl _Barri er guaranteespecificsynchronization
semanticswhich mustbepreseredonrestart.

3.5 Problems Checkpointing MPI Librar y State

Thekey issuein performingapplication-leel checkpointing
of the stateof the MPI library is that we do not assumeo
have accesdo its sourcecode. While it would be possi-
ble for usto addapplication-leel checkpointingnethodgo
anexisting MPI implementationthis would limit the porta-
bility of our checkpointelandwould keepthe programmer

from usingvendorprovided,platform-optimizedmplemen-

tationsof MPI. Thus,our problemis to recordandrecover

the stateof the MPI library usingonly the MPI interface.
Thelibrary statecanbebrokenupinto threecategories:

e Library messagebuffers. At the application-level,
messageareinvisible until they arerecevedby theap-
plication. Therefore,at checkpointtime, the applica-
tion cannotdistinguishwhethera given messagés sit-
ting in anetwork buffer onthesendingorocessarmeing
transmitted or sitting in a network buffer on the desti-
nation processar All suchmessagesre equivalently
“in-flight” from the applications perspectie. There-
fore, we do not needto checkpointthe library’s com-
municationbuffers.

e MPI's opaque objects. Such objects are internal
to the MPI library but are visible to application
may via handles. Theseobjectsinclude requestob-
jects(MPlI _Request), communicatorgMPl _Conm,
groups(MPl _Gr oup), datatypes(MPI _Dat at ype),
errorhandlergMPl _Er r handl er), userdefinedop-
eratorg MPl _Op), andkey-valuepairs.

e State internal to the MPI library. Thereis certain
statein theMPI library, suchasmessageueuestimers
andthe network addressesf processorsthatis com-
pletelyhiddento theapplication.Sincethis statecannot
bemanipulatediia MPI'sinterface,it is impossiblefor
usto sase or restoredt. However, thisis notrequiredfor
correctnessAll thatis requiredis thattheapplications
view of the library remainsconsistenbeforeandafter
restart.

4 A Non-Bloc king, Coordinated Protocol for
Application-le vel Checkpointing

We now describehecoordinatiorprotocolfor globalcheck-
pointing. The protocolis independenof thetechniqueused
by processeto take local checkpoints.To avoid complicat-
ing the presentationye first describethe protocolfor point-
to-pointcommunciatioronly. Then,we show thatcollective
communicationrcan be handledelegantly using the mecha-
nismin placefor point-to-pointcommunication.

4.1 High-le vel description of protocol

Phase#1 To initiate a distributed snapshot,the initiator
sendsa control messagealled pleaseChéointto all ap-
plication processes.Eachapplicationprocessmusttake a
local checkpointat sometime afterit recevesthis request,
but it is freeto sendandreceive asmary messageasit likes
betweerthetimeit is askedto take acheckpointandwhenit
actuallycomplieswith thisrequest.

Phase#2 Whenanapplicationprocesseaches pointin
theprogramwhereit cantake alocal checkpointjt savesits
local stateandthe identitiesof arny earlymessagesn stable

storage.It thenstartswriting alog of (i) every late message
it recevves,and(ii) theresultof every non-deterministicle-
cisionit makes. Oncea processhasrecevedall of its late
messagés it sendsa control messagecalled readybSto-
pLogging backto the initiator, but continuesto write non-
deterministicdecisiongo thelog.

Phase#3 Whentheinitiator getsa ready bStopLagging
messagdrom all processest knows thatevery processhas
taken its local checkpoint. Since every processhastransi-
tionedto the new epoch,ary messagsentby ary processor
afterthe initiator hasacquiredthis knowledgecannotbe an
earlymessageThereforeall processesanstoplogging. To
sharethis information with the other processesthe initia-
tor sendsa control messagealled stopLaging to all other
processes.

Phase#4 An applicationprocessstopslogging when (i)
it recevesastopLaging messagérom theinitiator, or (ii) it
recevesamessagérom aprocesghathasstoppedogging.

Theseconcconditionis alittle subtle.Becauseve make
no assumptionsiboutmessagealelivery order, it is possible
for thefollowing sequencef eventsto happen.

1. Proces# recevesastopLaging messagérom theini-
tiator, andstopslogging.

2. Pmakesanon-deterministicecision.

3. P sendsa messageontainingthis decisionto process
Q whichis still logging.

4, Process) usesthis informationto createan eventthat
it logs.

WhenQ savesits log, we have aproblem:thesavedstate
of the globalcomputations causallydependenbn anevent
thatwasnot itself saved. To avoid this problem,we require
aprocesgo stoploggingif it recevesamessagéom apro-
cessthat hasitself stoppediogging. Theseconditionsfor
terminatinglogging canbedescribedjuiteintuitively asfol-
lows: aprocesstopdoggingwhenit hearsrom theinitiator
or from anotherprocesghat all processesave taken their
checkpoints.

Oncethe processhassaved its log on disk, it sendsa
stoppedLgging messagéackto theinitiator. Whentheini-
tiatorrecevesastoppedLggingmessagéom all processes,
it recordson stablestoragethatthe checkpointthatwasjust
createds theoneto be usedfor recovery, andterminateghe
protocol.

4.2 Piggybacked information on messages

To implementthis protocol, the protocollayer mustpiggy-
backasmallamountof informationoneachapplicatiormes-
sage.Thereceierof amessageseghis piggybacledinfor-
mationto answetrthefollowing questions.

1. Isthemessaga late,intra-epochpr earlymessage?

2We assumehe applicationcoderecevesall messagethatit sends.

2. Hasthesendingprocessstoppedogging?
3. Which messageshouldnot beresentduringrecovery?

The piggybacled valueson a messagere derived from
thefollowing valuesmaintainedn eachprocesdy the pro-
tocol layer.

e epod: This integer keepstrack of the epochin which
the processis. It is initialized to O at startof execu-
tion, andincrementedvheneerthatprocesgakesalo-
cal checkpoint.

e amlLaging: Thisis aboolearthatis truewhenthepro-
cesss logging,andfalseotherwise.

o nextMessgelD: This is anintegerwhich is initialized
to 0 atthebeginning of eachepoch,andis incremented
wheneer the processsendsa message Piggybacking
this valueon eachapplicationmessagén anepochen-
suresthat eachmessagesentby a given processin a
particularepochhasa uniquelD.

A simpleimplementatiorof the protocolcanpiggyback
all threevalueson eachmessag¢hatis sentby theapplica-
tion. Whena messagés receved, the protocollayer at the
recever examinesthe piggybaclkedepochnumberandcom-
paresit with the epochnumberof the recever to determine
if the messages late, intra-epoch,or early. By looking at
the piggybacled boolean,it determinesvhetherthe sender
is still logging. Finally, if the messagés an early message,
thereceverlogsthepair <sendermessagelB.. Thesepairs
aresaved to stablestoragewhenthe processotakesits lo-
cal checkpoint. During recovery, thesepairs are retrieved
from stablestorageby the receversof thesemessagesand
thesender®of theseearlymessageareinformedof themes-
sagelDsothatresendindhesemessagesanbesuppressed.

Furthereconomyin piggybackingcanbe achievedif we
exploit the fact that at most one global checkpointcan be
ongoingatary time. Thismeanghattheepochf processes
candiffer by at mostone. Let usimaginethat epochsare
coloredredandgreenalternatvely. Whenthereceveris in
agreenepoch,andit recevesa messagérom a sendetin a
greenepoch thatmessagenustbe anintra-epochmessage.
If the messagés from a sendelin aredepochthemessage
couldbeeitheralatemessag®er anearlymessagelt is easy
to seethatif thereceveris notlogging,themessagenustbe
anearlymessagegtherwiseijt is alate messageTherefore,
aproces:eedonly keeptrack of thecolor of its epoch,and
this color canbe piggybacledinsteadof the epochnumber
With thisoptimization thepiggybacledinformationreduces
to two booleansandaninteger.

Furtheroptimizationis possible. If 32-bit integersare
used thetwo mostsignificantbits of anintegercanbe used
to representhe color of the epochandthe stateof the am-
Loggingflagof thesenderandremaining30bitscanbeused
asthemessagelDThis solutionshouldwork fine becausét
is unlikely that a single processwill sendmorethana bil-

lion messagebetweercheckpointsMWith this optimization,
the protocol canbe implementedy piggybackinga single
integeronthe applicationpayload.

4.3 Completion of receipt of late messages

Finally, we needa mechanisnfor allowing an application
processn oneepochto determinewhenit hasrecevedall
thelate messagesentin the previousepoch.Protocolssuch
asthe Chandy-LamporgalgorithmassumeFIFO communi-
cationbetweerprocessesothey donotneedexplicit mech-
anismsto solve this problem.Sincewe cannotassumd-1FO
communicatiorat the applicationlevel, we needto address
this problem.

The solution we have implementeds straight-forward.
In every epoch, each process P remembershow mary
messaged sentto every other process@ (call this value
sendCount(P — (@)). Eachprocess alsoremembers
how mary messaged receved from every other process
P (call this value receiveCount(Q) — P). Whena pro-
cessP takesits local checkpointjt sendsamySendCount
messageo the otherprocessesyhich containsthe number
of messaged sentto themin the previous epoch. When
procesq) recevesthis controlmessageit cancomparethe
valuewith receiveCount(Q) <— P) to determinehow mary
moremessagewd wait for.

A minor detailis thata process actuallyneedgo keep
two receve countsfor eachprocessQ thatmay sendit mes-
sagesthis is becausdate messagefrom P to Q sentin one
epochmay be interspersedith intra-epochmessagefrom
P to Q sentin the next epoch. In the protocolgiven below,
thesetwo countersare called previous ReceiveCount and
current ReceiveCount.

A moresubtleissueis the following: sincethe value of
sendCount(P — @) is itself sentin a control message,
how does@ know how mary of thesecontrol message#
shouldwait for? A simplesolutionis to assumehat every
processnaycommunicatevith every otherprocessn every
epoch,so a processexpectsto receve a sendCount con-
trol messagdrom every other processin the system. This
solutionworks, but if thetopologyof theinter-processom-
municationgraphsis sparsemostsendCount controlmes-
sageswill containO, which is wasteful. If the topology of
this communicatiorgraphis sparseandfixed,we cansetup
adatastructurein the protocollayerthatholdsthis informa-
tion. Thereareevenfanciersolutionsfor the casewhenthe
communicatiortopologyis sparseanddynamic,but we do
not presenthemhere. In the pseudo-codef Figure4, we
assumehattheinterprocescommunicatiorgraphis fixed,
andwe usethetermssendes andreceives to denotethe set
of processethatsendmessage® a given processandthe
setof processeshat are sentmessage®y a given process
respectiely.

4.4 Putting it all tog ether

Figure4 is a synthesisof the mechanismsliscussedbove
into asingleprotocolwhichis executedby theprotocollayer
ateachprocessarp.

Eachprocesgnaintainghefollowing variables:

e epod: Thecurrentepochnumber Initialized to 0.

e amlLaging: whetheror not logging of late messages
andnon-determinisnis occurring.Initialized to false.

e nextMessagelD: ThelD of the next messageent. Ini-
tializedto 0.

e chedkpointRequestedirueif alocal checkpoinshould
betakenatthenext calltopot ent i al Checkpoi nt .
Initialized to false.

e sendCourfyz]: Numberof messagesentto processot
duringthecurrentepoch.lnitialized to O.

o earlylDdq]: ID’sof earlymessagescevedfrom pro-
cessoy. Initializedto nil.

e currentReceiveCoupf]: Numberof intra-epochmes-
sagegecevedfrom processoy. Initializedto 0.

e previousReceiveCoufif]: Numberof latemessagere-
ceivedfrom processor,. Initializedto 0.

o totalSenfq]: Numberof messagesentby processoy,
beforeit tookits lastcheckpoint.nitialized to oc.

4.5 Collective Communication

We will useMPl _Al | r educe to illustrate how collective
communicationis handled.In Figure5, collectve commu-
nicationcall A shaovsanMPl _Al | r educe call in which
processe® andQ executethe call aftertakinglocal check-
points, and processR executesthe call before taking the
checkpoint. During recovery, processe® andQ will reex-
ecutethis collective communicatiorcall, but procesR will
not. Unlesssomethings done,the programwill notrecover
correctly

Our solutionis to usethe log to save the resultof the
MPI _Al | r educe call atprocesse® andQ. During recov-
ery, whenthe processeseexecutethe collective communi-
cationcall, theresultis readfrom thelog andreturnedo the
applicationprogram. ProcessR doesnot reexecutethe col-
lective communicatiorcall. To make this intuitive ideapre-
cise,we needto specifywhentheresultof a collective com-
municationcall like MPl _Al | r educe shouldbelogged.

A simplesolutionis to requirea procesgo log theresult
of every collective communicatiorcall it makesduring the
time it is logging. Collective communicatiorcall B in Fig-
ure5illustratesa subtleproblemwith this solution- process
R executeghe VPl _Al | r educe afterit hasstoppedog-
ging, soit would be incorrectfor processe$ andQ to log
theresultsof their call. This problemis similar to the prob-
lem encountereth the point-to-pointmessagease andthe
solutionis similar (and simpler). Eachprocessiggybacks
its amLagging bit on the applicationdata,andthe function

communi cat i onEvent Handl er ()
Applicationmessagesendto processl:
Piggyback<epoh,amLagingnextMessgelD>
onthemessage
sendCourjtl]++
nextMessagelD++
Applicationmessageeceie from procesau:
Remae <epod, ,amLaging,,messgelD, >
from themessage
earlymessage://assarotamLaging
appendmessgelD,, to earlylDqu]
intra-epochmessage:
if (amLayging andnotamLaging.,)
finalizelLog()
currentReceiveCoupt]++
late message://asseaamLaging
appendmessagéo log
previousReceiveCount]++
recei vedAl | ?()

ControlmessagepleaseChédqoint
chedkpointRequested- true
ControlmessagestopLaging
finalizelLog()
ControlmessagemySendCouit) from process:
totalSenfu] < n
if (amLayging)//p hastakenits own checkpoint
recei vedAl | ?()

recei vedAl | ?()
if (for all senders),
previousReceiveCount] < totalSenju])
sendreadyBStopLgging messagéo initiator
totalSenfu] < oo for all senders:

finalizelLog()
write log to stablestorage
amLayging < false
sendStoppedLgging messag¢o initiator

pot enti al Checkpoi nt ()

if (chekpointRequested false)return

save nodestateto stablestorageseeSection5)

epoh++

for eachrecever d
sendmySentCouiisendCourtl]) to d

for eachsenden:
previousReceiveCount] = currentReceiveCoupi]
currentReceiveCoupt] = lengthgarlylDgu])
save earlylDqu] to stablestorage
earlylDsfu] < nil

chedpointRequested- false

amLaging « true

nextMessgelD — 0

recei vedAl | ?()

Figure4: Application-level CheckpointingProtocol

Collective Collective
', Communication Call A Communication Call B

Ny T
\ logging
Global checkpoint ended

Figure5: Collectve Communication

invokedby MPI _Al | r educe computeghe conjunctionof
thesebits. If any processnvolvedin the collective commu-
nicationcall hasstoppedogging,all the otherprocesseget
to know aboutit, anddo not log the resultof the call; they
alsostoplogging.

The eleganceof this solutionowesmuchto the decision
to implementhe protocolin alayerthatsitsbetweertheap-
plicationprogramandthe MPI library. Eachcollective com-
municationcall is actually implementedby the MPI layer
usingmary point-to-pointmessagedladthelayerbeenim-
plementedetweerMPI andthe operatingsystem/hardare
layer, the protocol would have had to deal with all these
low-level point-to-pointmessagesyhich would befarmore
complex.

Most of the other collective communicationcalls can
be handledin this way. Ironically, the only one that re-
quiresspecialtreatmentis MPI _Bar ri er . Supposehat
the collectve communicationcall A in Figure 5 is an
MPI _Barri er. Thesolutiondescribedabove will effec-
tively corvertthe barrierto a no-opduringrecovery, which
is incorrectsincebarriersareusedto synchronizeprocesses.
The correctsolutionis to ensurethatall processesvolved
in a barrierexecuteit in the sameepoch. A simpleimple-
mentationis the following. All processesnvolved in the
barrier executean all-to-all communicationust beforethe
barrierto determinef they areall in the sameepoch.If not,
processethathave not yet takentheir local checkpointdo
so, ensuringthat the barrieris executedby all processein
the sameepoch. This solution requiresthe precompilerto
insertthe all-to-all communicatiorandthe potentialcheck-
pointing callsbeforeeachbarrier

5 State Saving
5.1 Application state-saving

The state of the application running on each node con-
sists of its position in the static text of the program, its
position in the dynamic execution of the program,its lo-
cal and global variables,andits heap-allocatedtructures.
The precompilermodifies the application source so that
this stateis correctly saved, and can be restarted,at the
pot ent i al Checkpoi nt positionsin theoriginal code.
The approachthat we describedoesnot currently save

ary lessdatathansystem-lgel checkpointing.However, it
is a startingpoint for optimizing the amountof statethatis
saved at a checkpoint. In Section7, we describeongoing
work towardsthis goal.

5.1.1 Checkpointing the application’ s position

Checkpointinga process’positionis handledby inserting
labelsat the pot ent i al Checkpoi nt andfunction call
locationsin the original source.We utilize a datastructure,
the a Position Stak (PS to recorda trace of a programs
executionby insertingcodeto manipulatethe PS aslabels
are encountered.Figure 6 shavs an example of the code
insertedby the precompileto manipulatehe PS

When a checkpointis taken, the PSis saved as part of
the checkpoint.If the applicationis restartedthe PSis re-
stored,and eachfunction jumpsto the label that it stored
on the PS In sucha manner the activation stackis retuilt
andthe programis preparedo resumammediatelyafterthe
pot ent i al Checkpoi nt locationwherethe checkpoint
wastaken.

functionl()

if(restart)
goto (PS.iten(i++))
/...
PS. push(1);
| abel _1:
function2();
PS. pop() ;

/...

PS. push(2);

pot ent i al Checkpoi nt();
| abel _2:

PS. pop() ;
...
Figure6: Position Stak manipulation

The precompiler only needs to insert labels
at function calls that can eventually lead to a
pot enti al Checkpoi nt location. In order to in-
sure that the PS correctly reflects which function call
is currently active, the precompilerneedsto decompose
certaincomplec statementssuchasa statementontaining
two callsto checkpointabldunctions,or a returnstatement
thatmakesa call to one.

5.1.2 Checkpointing the application’ s data

If we ensurehatthe processesoriginal andrecoveredstack
always begins at the save virtual addressusing the tech-
niquesdescribedabore will ensurethat,afterrestarttheac-
tivation stackframeswill have samepositioningas during

the original run. Therefore,a stackvariablewill have the
samevirtual addres$othbeforeandafterrestart.

We utilize anotherdatastructure,the Variable Descrip-
tor Stadk VDSto save andrestorethe stackvariables'values.
The VDSstoresthe addressandsize of eachstackvariable.
The precompilerinsertscodethatmanipulateshis structure
asvariablesenterandleave scope Figure7 shavs suchma-
nipulations.

function(int a)

{

VDS. push(&a, sizeof(a));

int b[10];

VDS. push(&b, sizeof(b));

{
int c;
VDS. push(&c, sizeof(c));
/...
VDS. pop;

VDS. pop;
VDS. pop;

Figure7: Manipulatingthe VDS

The applicationusesthe VDS to save and restorethe
stackvariables’values. When a checkpointis taken, for
every recordin the VDS it copiesthe specifiednumberof
bytes,from the specifiedaddressjnto the checkpointfile.
On restart,we first restorethe stackusingthe PS andthen
usetheVDSto restorestackvariablesby copying theirvalue
from thecheckpointo theirlocationsonthestack.TheVDS
mustbe savedandrestoredaspartof thelocal checkpoint.

A similar mechanisntanbe usedto handleglobal vari-
ables.In orderto discoverall of aprogramsglobalvariable,
eitherthe precompilemusthave accesdo all sourcefiles of
the programat once,or this discovery mustbe doneduring
linking. We arecurrentlyusingtheformerapproach.

5.1.3 Checkpointing the application’ s heap

Similar to the stackvariables a heapallocatedobject,upon
restart,needso berestoredo the samevirtual addresghat
it hadin the original process.Additionally, we would also
needto ensurethatthe heapmanagemersdtructuregie. the
free list) arerestoredcorrectly Therefore,our precompiler
providesits own heapmanagemergystem.

This heapmanagemergystemmaintainsa HeapObject
Structue, HOS which is similar to the the VDS and con-
tainsthe startingaddressandlengthof each'li ve” heapob-
ject. Whencheckpointingwe usethe HOSto copy theheap
objectsto the checkpointfile. The HOS alongwith some
otherheapmanagemengtructuresis savedwith the check-
point. On restart,we requesthe samechunkof virtual ad-
dressspacerestorethe HOS anduseit to copy the objects
from the checkpoinfiile backontotheheap.

5.1.4 A note on pointer s

Becausetackvariablesandheapobjectsarerestoredo their
original virtual addressesye needto make no specialcon-
sideratiorregardingdatapointers:they aresavedasordinary
data. A valid datapointerin the original processwill point
to thesameobjectin therecoveredone.

This stratgyy differs significantly from the one usedin
thePORCH([15]). Becausgheirgoalwasto createacheck-
pointfile thatcouldbeusedwithin aheterogeneousnviron-
ment,they couldmake noassumptionsegardingtheaddress
or lengthof a programs variables.Insteadthey wereforced
to employ “re-locatable”pointersandto corvertvaluesto an
architectureneutralrepresentatiomwhencheckpointing.

Thedisadwantageso suchtechniquesrethataprogram-
meris requiredto work with a subsebf the C languagehat
disallows arbitrary casting,andthatthereis a performance
costto be paidwhencorvertingvaluesfrom onerepresenta-
tion to another Sinceportability is not oneof our goals,and
becausewe feel that the limitations on programmingstyle
andthe addedoverheadf doing pointercorversionaretoo
burdensoméor our applicationswe have chosemotto fol-
low the PORCHapproach.

5.2 MPI Librar y State-Saving

As was already mentioned,our protocol layer intercepts
all calls that the application makes to the MPI library.
Using this mechanismwe are able to record the direct
state changesthat the application makes (e.g., calls to
MPI _Attach_buf f er). In addition,someMPI functions
take or returnhandlesto opaqueobjects.The protocollayer
introducesa level of indirectionsothatthe applicationonly
seeshandlesto objectsin the protocol layer (hereafterre-
ferredto pseudo-handlgswhich containthe actualhandles
to the MPI opaqueobjects. On recovery, the protocollayer
mustreinitializethe pseudo-handleis suchaway thatthey
arefunctionallyidenticalto their counterpartén theoriginal
process.

The MPI opaqueobjectswhosehandlesarestoredin the
pseudo-handlesanbe dividedinto two types:transientand
persistent Transientobjectscomeinto existenceoften and
tend to have shortlifetimes while persistentobjectscome
into existencerarelyandtendto have longlifetimes. We use
a separatenechanisnfor reinitializing the pseudo-handles
of eachtype of MPI opaquenbject.

The only MPI objectsthat we considerastransientare
MPI _Request objects.Theseobjectsarecreatedby non-
blocking communicationfunctions, suchas MPl _| send
or MPl _Irecv, and are destryed by functions such as
MPI _Wait. Whena MPl _|Isend or MPl _|recv that
createa MPl _Request objectoccursbeforea checkpoint
andthethecallto MPlI _ Wi t thatdestrystheobjectoccurs
afterthecheckpointthenonrecovery, thepseudo-handléor
that MPl _Request objectmustbe correctlyreinitialized.

ThisdoesnotnecessarilyneanthattheMPl _Request ob-
jectmustberecreatedit meanghatcallingMPl _\ai t with
the pseudo-handleusthave the sameeffectthatit did dur-
ing the original execution.

The pseudo-handldéor an MPl _Request object cre-
atedby MPI _| send mustbe reinitialized so that the call
to MPI _Wai t will returnimmediately which meansthat
the sendbuffer may be reusedby the application. This is
becausehecallto MPl _I send thatcreatedherequesbb-
jectedoccurredbeforethe checkpoint. Either the message
wasreceiedbeforethereceving processotooksits check-
point, in which casethe datais part of the checkpoint,or
after, in which casethe messages storedin the recever’s
logs. In eithercasejt is safefor theapplicationto reusethe
buffer.

The pseudo-handldéor an MPl _Request object cre-
atedby MPI _| r ecv mustbe reinitialized in one of two
ways. If thereceive matchesa latemessagén therecever’s
log, this messagenay be copiedto the recever buffer and
MPI Wit may returnimmediately If the receve does
not matchary late messagethenit mustmatcha sendthat
is issuedafter checkpointing. In this case,on recovery,
MPI _| r ecv mustbe calledagainwith exactly the samear
gumentsandits handlestoredin the pseudo-handle.

All objectsbesidesMPl _Request 's are classifiedas
persistenbpaqueobjectsandare handledasfollows. Each
processorrecordsall the function namesand argumentsof
every call that createsor manipulateshesepersistentob-
jects. This recordis saved to stablestorageas part of the
localcheckpointOnrestarteachprocessowill replaythese
callsin orderto recreateeffectively the samepersistenpb-
jectsthatexistedat the time of the checkpoint.The pseudo-
handlesare reinitialized with the handlesto thesenew ob-
jects.

6 Performance
6.1 Experimental setup

We performedour experimentakvaluationonthe CMI clus-
ter at the Cornell Velocity supercomputer This clusteris

composedof 64 2-way Pentiumlll 1Ghz nodes,featuring
2GBof RAM andconnectedby aGiganetswitch. Thenodes
have 40MB/secbandwidthto local disk. Due to hardware

problemswe usedonly 16 of thoseprocessas for our tests;
in the final paper we will presentresultsfor the full ma-
chine The operatingsystemon the machinesvasWindows

2000 andwe usedMPI/Pro 1.6.4asour MPI implementa-
tion. The applicationswere compiledusing the Microsoft

C/C++ Optimizing Compiler version12, using the "Opti-

mized for Speed”optimizationsetting. We evaluatedthe

performancef our checkpointeonthreecodes:

¢ A denseConjugateGradientcodefrom YingfengSuof
the Universityof SanFrancisco.This codeimplements

a parallelconjugategradientalgorithmwith block row
distribution. The mainloop performsa parallelmatrix
vectormultiply andaparalleldotproductwith commu-
nication coming from an allReduceand an allGather
which areimplementedn termsof point-to-pointmes-
sagesalonga butterfly tree. We ranthe denseCG code
for 500iterations.

o A LaplaceSolver, by RaghuReddyfrom the Pittshurgh
Supercomputingenter Thisprogramusesan x n grid
of numbersthat is distributed by block rows. During
eachiterationevery grid cell is updatedo bethe aver-
ageof the numberscontainedby the neighboringcells
(up, down, left, right) in the previous iteration. The
communicatiorcomedrom eachprocessoexchanging
borderrows with the processofabove” it andthe pro-
cessor’below” it. We ranthe Laplacecodefor 40000
iterations.

e Neurosys,a neuron simulator by Peter Pachecoof
the University of San Francisco(available publically
at http://nexus.cs.usfca.edu/neurosysfsesa graphof
neuronswhich excite andinhibit eachother via their
connections.The currentstateof eachneuronis com-
puted by solving a function of the statesof the neu-
ronsthatareconnectedo it. The evolution of the neu-
ron network throughtime is computedvia the Runge-
Kutta methodfor differentialequations.The program
is parallelizedby assigningeachprocessoi block of
neuronsto work with. Communicationconsistsof 5
MPI _Al | gat her 'sand1 MPI _Gat her in eachoop
iteration. We ranNeurosysor 3000iterations.

All the checkpointsn our experimentsarewrittento the
local disk, with a checkpointinterval of 30 seconds.

6.2 Performance

Theperformancef our protocolwasmeasuredby recording
theruntimesof eachof four versionsof theabove codes.

1. Theunmodifiedprogram

2. Version#1 4 codeto piggybackdataon messages

3. Version#2 + protocol’slogsandsaving theMPI library
state

4. Version#3 + saving theapplicationstate

Experimentatesultsareshovn in (Figure8).

¢ In denseCG, the total overheadfor taking full check-
points every 30 secondsis 14% for a 4096x40960r
8192x8192matrix. Thisincreaseslramaticallyto 43%
whenwe move up to 16384x16384. However, since
the overheads only 4.5% whenwe do everythingbut
recordtheapplicationstatejt is clearthatthereasorfor
theincreasedverheads thatsizeof applicationstate.
e The addition of checkpointingto the Laplace Solver
addsonly 2.1%overheadn theworstcasetested.This

canbe explainedby the factthat even biggestdataset
wetestechadonly 2.1MB of applicationstate whichis
muchlessthanthe amountwherethe denseconjugate
gradientcode beganslowing down. Furthermorethe
amountof datathe LaplaceSolver sendsper message
is muchmorethanthe datathatwe attachto eachmes-
sage,soour piggybacledinformationaddslittle over
head.

e Neurosysdoesa lot of computationand communica-
tion on arelatively smalldataset. Its smallapplication
state which variesfrom 18KB to 1.24MB, is too small
to causemuchoverheadrom recordingthe application
state.However, we seeanotherinterestingoverheadn
the differencebetweenthe runtimesof the unmodified
versionandthe versionthatusesthe protocollayer but
takesno checkpoints.The primary differencebetween
thetwo is thatthelatter piggybacksdataon messages.
Neurosysuses5 MPI _Al | gat her’s in every it-
eration and in our implementation,each such data
MPI _Al | gat her is preceededby a command
MPI _Al | gat her which sendsaroundthe relevant
controlinformation. This accountdor thejumpin run-
time whichis ashigh as160%for 16x16. However, as
the input sizesincreasesthe messagesizesand com-
putationtime alsoincreasebut the numberof messages
doesnot. Thus, the additionalwork masksthe over-
headassociateavith passingaroundcontroldata,lead-
ing this overheadto drop to 85% of the total runtime
for 32x32,34%for 64x64andjust 2.7%for 128x128.

7 Conclusions and Future Work

In this paper we have shavn that application-leel non-
blockingcoordinateatheckpointingcanbeusedto addfault-
toleranceto C/MPI programs.We have arguedthat existing
checkpointingprotocolsare not adequateor this purpose
andwe have developeda novel protocolto meetthe need.

We have presentedh systemthat can usedto transform
C/MPI programgto useour protocol. This systemusespro-
gramtransformatiortechnologyto transforntheapplication
sothatit will save andrestoreits own state.We have shavn
how the stateof the underlyingMPI library canbe recon-
structedby theimplementatiorof our protocol.

The goal of our projectis to provide a highly efficient
checkpointingmechanismfor MPI applications. One way
to minimize checkpointoverheadis to reducethe amount
of datathat mustbe saved whentaking a checkpoint. We
arecontinuingthedevelopmenbf our precompilersothatit
may utilize analysistechniquego determineareasof mem-
ory thatcanbe safelyexcludedfrom a checkpoint.

Othershave worked on using compiler technologiego
avoid checkpointingdleadandread-onlyvariableq2]. Their
work focussedn staticallyallocateddatastructuresn FOR-
TRAN programs. We would like to extend suchwork to

Dense Conjugate Gradient

Running Time (sec)
= = N N
o (o)) o [$))
o o o o
o o o o

o
o
o

o

4096x4096 8192x819216384X16384

Problem Size
Neurosys
2500 1.24MB
o
[
<
[}
£
=
j=2)
£
=
=
=1
4

16x16 32x32 64x64 128x128
Problem Size

Laplace Solver

2.1MB

c
c
] 532KB
500 138KB “ﬂﬂ
0 HMEE
512x512 1024x1024 2048x2048
Problem Size

Hl Unmodified Program

I Using Protocol Layer, No Checkpoints
[Checkpointing, No Application State
[Full Checkpoints

The number above each set of bars
is the size of the application state
for that problem size.

Figure8: Performance&harts

handlethe dynamicallycreatedn C/MPI applications.

Anothertechniquewe aredevelopingis the detectionof
distributed redundantdata. If multiple nodeseachhave a
copy of thesamedatastructure pnly oneof thenodesneeds
to includeit in its checkpoint. On restart,the othernodes
will obtaintheircopy from theonethatsavedit.

Both thesetechniquesare actually specializationsof a
more generaltechniquethat we term recomputatiorched-
pointing. For somedatastructuresacompilermight beable
to determinehow to recomputetheir values. If the descrip-
tion of this recomputatiorrequiresless spacethan storing
their data,we shouldstorethe description,ratherthanthe
data,in the checkpoint.

We would alsolik e to extendthis work to provide fault-
tolerancefor other typesof high performancecomputing
systemssuchas sharedmemorymachinesandthe MPI-2
messag@assingstandard.

References

[1] A. AgbariaandR. Friedman. Starfish: Fault-tolerantdynamic mpi
programson clustersof workstationsIn 8th IEEE International Sym-
posiumon High PerformanceDistributed Computing 1999.

[2] M. Beck,J.S.Plank,andG. Kingsley. Compilerassisteaheckpoint-
ing. TechnicalReportUT-CS-94-2691994.

[3] A. Beguelin,E. SeligmanandP. StephanApplicationlevel fault tol-
erancan heterogeneousetworksof workstationsJournal of Parallel
and DDistributed Computing 43(2):147-1551997.

[4] M. ChandyandL. Lamport. Distributed snapshots:Determining
globalstatef distributedsystemsACM Transaction®n Computing
Systems3(1):63—75,1985.

[5] E.N.ElnozahyandW. ZwaenepoelManetho:Transparentollback-
recovery with low overhead|imited rollbackandfastoutput. 1992.

[6] M. Elnozahy L. Alvisi, Y. M. Wang,andD. B. Johnson.A suney
of rollback-receery protocolsin messaggassingsystems. Techni-
cal ReportCMU-CS-96-181 Schoolof ComputerScience Carngie
Mellon University Pittshurgh, PA, USA, Oct.1996.

[7] R. Graham,S.-E. Choi, D. Daniel, N. Desai, R. Minnich, C. Ras-
mussen,D. Risinger and M. Sukalski. A network-failure-tolerat
message-passirgystentor tera-scalelusters.In Proceeding®f the
InternationalConfeenceon Supecomputing2002 2002.

[8] I. Gupta,T. ChandraandG. Goldszmidt. On scalableand efficient
distributedfailure detectors2001.

[9] IBM Research. Blue gene project overview.
http://wwwresearch.ibm.com/blgene/, 2002.

Online at

[10] D. B. JohnsorandW. Zwaenepoel.Transparenbptimistic rollback
recovery. Openmting System®feview, 25(2):99-1021991.

[11] N.Lynch.DistributedAlgorithms MorganKaufmann SanFrancisco,
California,first edition,1996.

[12] J.B. M. Litzkow, T. TannenbaunandM. Livny. Checkpointandmi-
grationof unix processem thecondordistributedprocessingystem.
TechnicalReport1346,University of Wisconsin-Madison]1997.

[13] National Nuclear Security Administration. Asci home. Online at
http://wwwnnsa.doe.gdasc/,2002.

[14] J.S.Plank,M. Beck, G. Kingsley, andK. Li. Libckpt: Transparent
checkpointingunderunix. TechnicalReportUT-CS-94-2421994.

[15] B. Ramkumarand V. Strumpen. Portablecheckpointingfor het-
erogenousirchitecturesln Symposiunon Fault-Tolerant Computing
pagesH8-67,1997.

[16] S.Rao,L. Alvisi, andH. M. Vin. Egida: An extensibletoolkit for
low-overheadfault-tolerance In Symposiunon Fault-Tolerant Com-
puting pages48-55,1999.

[17] T.TabeandQ.F. Stout. Theuseof theMPI communicatioribrary in
theNAS parallelbenchmarksTechnicalReportCSE-TR-386-9917,
1999.

[18] TheBlueGene/LTeam.An overviev of thebluegene/lsupercomputer
In SC2000High PerformanceNetworkingand Computing 2002.

