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Abstract

Efficient computer simulation of complex physical

phenomena has long been challenging due to their multi-

physics and multi-scale nature. In contrast to traditional

time-stepped execution methods, we describe an approach

using optimistic parallel discrete event simulation (PDES)

and reverse computation techniques. We show that

reverse computation-based optimistic parallel execution

can significantly reduce the execution time of a plasma

simulation without requiring a significant amount of

additional memory compared to conservative execution

techniques. We describe an application-level reverse

computation technique that is efficient and suitable for

complex scientific simulations involving floating point

operations.

1. Introduction

Parallel Discrete Event Simulation (PDES) has been an

active research area in the high performance computing

community for many years. Synchronization techniques

for PDES systems are usually classified into two pricipal

categories: conservative approaches that avoid violating

the local causality constraint, and optimistic approaches

that allow violations to occur, but provide a mechanism to

recover. The operation of recovering a previous state in an

optimistic parallel simulation is known as a rollback, and

involves undoing incorrect computations.

A widely used technique for implementing rollback is

state-saving that saves the values of state variables prior to

an event computation and restores them by referring to

these saved values upon rollback. Copy state saving

creates an entire copy of a process’s state; incremental

state saving keeps a log of changes to individual state

variables; infrequent state saving periodically saves the

entire copy of the state. A relatively new technique for

rollbacks, reverse computation [1], realizes rollbacks by

performing the inverses of the individual operations

executed in the event computation. These techniques have

been exploited in small- and large-scale parallel

simulations.

However, advances in PDES research to date have yet

to be explored in space physical science, where multi-

physics and multi-scale physical systems are modeled by

partial differential equations and particles. Traditionally,

simplified models of such physical systems have been

simulated using time-driven or time-stepped approaches

[2]. The inherent limitations of the time-stepped approach

prevent the simulation of more complex physical systems

that are important in plasma physics and other areas of

science. Even the latest techniques developed in time-

stepped research such as adaptive mesh refinement (AMR)

[3] are constrained by excessive computational

requirements and the necessity to update all cells within a

given mesh patch based on the Courant-Friedrichs-Levy

(CFL) condition in that patch. Discrete event simulation

was recently used to model spatially discretized physical

systems [4] where it was shown that this approach not

only alleviates the constraint of the CFL condition but also

provides a significant performance advantage over the

time-stepped approach.

In our work, we extend this work and apply optimistic
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parallel discrete event simulation techniques to this

problem. Because memory constraints are often a severe

limitation in the size of the computations that can be

performed, reverse computation offers greater promise

than traditional state saving techniques. We explore the

use of reverse execution for plasma simulations to gain

new insights for such challenging, complex physical

systems. The combination of DES methodology and

reverse computing techniques offers the potential to

dramatically reduce the amount of time required to

perform plasma simulations without incurring a large

penalty in additional memory requirements.

The main contributions in this work can be summarized

as follows. To our knowledge, this is the first work to

apply reverse computation techniques to parallel physical

system simulations and to show performance advantages

using this approach. In addition, we provide a simple

model and guidelines for creating reverse simulation codes

at the application level that may help physicists or

astrophysicists to develop simulation prototypes without

comprehensive knowledge of PDES mechanisms.

The remainder of this paper is organized as follows.

The next section discusses related research. Section 3

provides an overview of the physical system we simulate

and the reverse computation approach. Section 4 gives an

in-depth discussion of the reverse computation

implementation and discusses its challenges. Section 5

presents experimental results from a preliminary

performance evaluation study. We conclude by reporting

current and future work in this area and provide guidelines

for reversing parallel physical simulation codes.

2. Related Work

A limited amount of research has examined physical

system simulation using parallel discrete event simulation

techniques. Perhaps the earliest was the “colliding pucks”

application developed for the Time Warp Operating

System (TWOS) [5]. This work, modeling a set of pucks

traveling over a frictionless plane, was used to benchmark

an early implementation of the Time Warp protocol.

Lubachevsky discusses the use of conservative simulation

protocols to create cellular automata models of Ising spin

[6]. Other work describes challenges in using discrete

event simulation techniques for a few other physical

system problems [7]. A formal approach to both discrete

event and continuous simulation modeling based on

DEVS (Discrete EVent System Specification), was

proposed by Zeigler et al. [8] and some numerical

solutions have been examined based on the DEVS

formalism [9].

Seminal work in optimistic parallel discrete event

simulation was completed by Jefferson [10]. State saving

has historically been the dominant approach to enabling

the rollback of computations. Much work has been done to

reduce the cost of state saving both using hardware [11]

and software support. The less costly software approaches

reported in the literature include copy state saving,

incremental state saving [12, 13] and infrequent state

saving [14, 15, 16, 17]. A different approach avoiding the

cost of state saving was first described in [1], where

reverse execution is used to roll back computations. Their

reverse procedures were automatically generated by a

compiler. More recent work using reverse execution for

parallel network simulations, using manually generated

code, was reported in [18]. Our work is different in that it

applies reverse execution techniques to the simulation of

physical systems that involve complex floating point

operations and generates reverse code based on

application semantics.

Traditionally, complex physical systems described by

partial differential equations and particles are modeled by

time-stepped simulations. The authors in [4] recently

demonstrated both the feasibility and efficiency of

applying discrete event simulation (DES) methodology to

model such complex systems. Their study shows that a

performance improvement of up to two orders of

magnitudes is achievable by switching from a time-

stepped approach to an event-driven approach. Our study

is based on their work and focuses on parallel execution

techniques for their DES models. In particular, we

examine the feasibility of optimizing the parallel

synchronization mechanism by applying reverse

computation techniques.

3. Overview

In this section we describe the computational plasma

simulation model that is used as a case study. A more

detailed discussion on the DES modeling methodology

and the physics behind the models can be found in [4].

Since our focus is on the use of reverse execution

techniques in optimistic simulation, a high level

description of the model suffices for our purpose.

3.1. Computational Model: PIC Simulation

One of the great challenges in space physics is to

understand how the solar wind interacts with the earth’s

magnetosphere. The work presented in [4] was the first to

use a DES approach to simulating such complex physical

systems. A feasibility study based on the well-known

particle-in-cell (PIC) model [19] was described to provide

the foundation for development of such multi-physics and

multi-scale simulations. We choose this same model for

our feasibility study.

The PIC modeling approach serves as a good starting

point in theoretical research in plasma dynamics. This

model is conceptually simple, yet captures the

characteristics of physical phenomena involved and can be

extended to more complex models. However, the PIC
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simulation is nontrivial in that it simulates movements of

millions of particles and their interactions with the fields.

There has been considerable interest in improving its

performance in the high performance computing

community. Although we apply reverse computation

method only to this particular model in our study, the

programming model and methodology used here are

representative of grid-based physical systems. Therefore,

the approach presented here may be applicable to a wider

range of physical systems.

We limit our simulations to a one-dimensional

electrostatic model using spherical coordinates. Figure 1

illustrates a plasma PIC simulation of charging a

spacecraft immersed in neutral plasma by injecting a

charged beam from its surface [19]. The spacecraft is

initially charge-neutral and immersed in the charge-neutral

plasma of the solar wind. A charged beam is periodically

injected from the spacecraft surface. The effect of beam

injection is two-fold: the surface charge of the spacecraft

incurs a change equal in magnitude but with an opposite

sign to the injected beam particles; the field in the plasma

space incurs a change equal to the beam both in magnitude

and sign. The change in plasma field would affect the

plasma particles’ movement which in turn affects the

plasma field.

Figure 1. Schematic of the PIC model

3.2. Parallelization

In PDES of a PIC model, the simulation domain is

divided into “cells” with each cell mapped onto one

logical process (LP). In our spacecraft model, each cell is

called a “shell”, and is modeled as a Shell class (we will
use the terms cell and shell interchangeably). Two distinct

regions are shown in figure 1, based on different grid

spacing. The state of each LP includes the cell field

variables and the states of all particles within the cell

boundaries. The dynamic behavior of the system is driven

by particle movements that are modeled by events.

Whenever a particle moves across a cell boundary, the

electric field in the affected cells is updated by keeping

track of the charge that crosses the boundary [4]. Note that

field updates are limited to active cells in which events are

allowed to be scheduled.

There are three types of events associated with particle

movements: ParticleArrivalEvent, ParticleDepartureEvent

and ParticleInjectEvent. The corresponding event handlers

are outlined in figure 2. When the simulation starts, all

active cells are initialized, including electric fields and

particle states (velocities, positions, etc.). In particular,

each particle’s movement is determined by its MoveTime

or cell exit time (a time in the future when the particle will

exit the hosting cell). Whenever a particle is created or

inserted in a cell, its exit time must be calculated and a

pair of departure and arrival events scheduled at the exit

time. In addition, a particle’s exit time needs to be

recalculated whenever the hosting cell “wakes up”. A

wakeup happens when a cell’s field changes beyond a

threshold value, resulting in the need for recalculation of

exit times of all its particles. The physical activities

associated with each component shown in figure 2 will be

explained in detail in section 4.

Shell::arrival( ParticleArrivalEvent *e ) {
if ( this cell is active ) {

update cell state;
insert particle in cell;

} else if ( e is a beam particle ) {
activate cell;

}
}
Shell::departure( ParticleDepartureEvent *e ) {

if ( particle bounced from right neighbor ) {
bounce particle back; // no cell state change

} else {
update cell state;

}
}
Shell::inject( ParticleInjectEvent *e ) {

update cell state;
insert beam particles;

}

Figure 2. A simplified PIC model

3.3. Reverse Computation Approach

The characteristics of this plasma simulation present

three major challenges concerning the synchronization of

parallel computations. The rationale for the parallelization

approach used here is based on the following

considerations.

• Lookahead. The simulation is highly dynamic. The

amount of parallelism can vary dramatically as the

simulation progresses. Dependencies among events

are governed by each particle’s exit time, but this time

can be arbitrarily close into the near future. This low

level of “predictability” results in a low, dynamically

changing value of lookahead that makes efficient

execution using conservative synchronization

techniques difficult. This suggests that optimistic
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synchronization [10] may be a more natural choice for

this simulation.

• Memory. Realistic plasma simulations involve a

large number of events, on the order of billions.

Complex data structures are often needed. This

makes traditional approaches to optimistic execution

using state saving problematic: the amount of memory

required can be prohibitively large. Further, the

amount of model-level computation performed for

each event tends to be relatively small, on the order of

a few microseconds on a contemporary CPU. This

suggests that the time overhead for state saving may

be significant, and hence could significantly degrade

performance, even utilizing techniques such as

incremental state saving. While various techniques to
reduce the cost of state-saving-based rollbacks have
been developed [20, 21], our experiences indicate
much memory is still needed to achieve efficient

parallel execution [22]. For this reason, reverse

computation was selected for the parallelization of

this plasma simulation code. However, comparison of

the reverse execution approach with other advanced

check-pointing approaches remains an area of future

investigation.

• Floating point. The reverse computation approach

proposed in [1] uses an automated approach to

creating the reverse execution code for each line of

forward execution code. For example, a decrement

statement is generated to undo an increment statement

in the forward execution code. This approach

becomes problematic when floating point arithmetic

is used because the computation may not be easily

reversed due to effects such as round-off error. Here,

we explore a different approach where the program is

viewed at a higher level of abstraction, and suitable

reverse computation code is developed manually.

These factors motivate the approach that was adopted

for optimistic synchronization using manually derived

reverse computation code. We believe this can be used to

build a foundation for future work in developing scalable

parallel simulators for complex physical systems.

4. Parallel Simulation Code

Here we use a one-dimensional model of the spacecraft

electrostatic particle code as an illustrative example to

discuss some of the challenges in generating the reverse

code for this physical system simulation. There are two

types of distinct physical entities in this simulation:

particles and cells
1
. Particles move across cells and each

1
The spacecraft situated at one end of the spatial coordinate can be

cell keeps track of the particles residing within its own

domain. The communication between adjacent cells

occurs via particle movement events that contain

information of particle physical states. The complex data

structures housing the particles and physical processes

being captured require a careful modeling of the system.

The object-oriented design used here allows one to

encapsulate physical properties via classes..

The code in Figure 2 includes three event handlers, one

for each type of event. Much of the complexity of the

event computation is encapsulated within the insert and
update operations. An insert operation includes an

“insert” queue operation (data structures representing

particles in the cell are organized in a priority queue) and

computation of the exit time of that particle from the cell

based on an equation of motion. An update operation
recomputes the cell’s field value based on the arrival

particle’s charge. The change in the field value may

trigger an expensive wakeup computation that again scans

the particle list and updates each particle’s exit time.

It may be noted that the reverse computation techniques

introduced in [1] would generate the reverse code for each

instruction without taking into account the semantics of

the higher level operations that are being performed. This

will clearly lead to inefficiencies for the queue

management operations used in this code, and as

mentioned earlier, leads to difficulties concerning the

reversibility of floating point operations. The model-

specific approach taken here involves generating the

reverse code for the application by exploiting knowledge

of the higher level semantics of the operations being

performed. We call this approach application-level reverse

computation. Here, each cell must manage a large number

of particles within its domain. The choice of container

class directly affects the efficiency of the simulation. We

use the list class because of its efficient insertion and
deletion operations. However, both insertion and deletion

are destructive due to pointer assignments and thus

irreversible. However, it is clear from a higher level

examination of the operations being performed that

insertion and deletion are perfect inverse operations of

each other. Indeed, reverse computation in such queue

operations are more memory-efficient than state-saving.

Careful readers may notice that the particle departure

event handler depicted in figure 2 does not specify any

deletion operation that matches the insertion operations in

the particle arrival event handler. In fact, deletions are

performed aggregately on an as-needed basis. This is done

based on performance considerations. Instead of deleting

each particle at its exiting time, a near-periodic deletion

operation is used to amortize the cost of deletions in

treated as a special cell that does not keep the physical states of particles.

We use “cells” thereafter to refer to the regular cells unless otherwise

specified.
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queues. It is observed that wakeup events happen almost

periodically with a frequency determined by physical

conditions within the simulation; furthermore, each

wakeup requires a scan of the cell’s particle queue. We

find that restricting deletion operations only at cell wakeup

times reduces the total overhead of particle deletions

without introducing excessive memory usage. Since the

aggregate deletions are used to clean up the obsolete states

for particles that have already exited, no rollbacks are

needed to recover these obsolete states in the event of

undoing a wakeup.

Figure 3 shows the reverse code of the simulation.

Notice that after decomposing the forward code into

components based on simulating physical processes, the

reverse code is relatively easy to construct based on the

operations shown in figure 3. The next step for generating

the complete reverse code is just a matter of reversing

each physical process. Examples of reversing some of the

more difficult processes are shown in figure 3.

Shell::undo_arrival( ParticleArrivalEvent *e ) {
if ( cell was activated ) {

undo_activate cell;
} else if ( cell already active ) {

delete particle in cell;
undo_update cell state;

}
}
Shell::undo_departure( ParticleDepartureEvent *e ) {

if ( particle was bounced from right neighbor ) {
undo_bounce particle;

} else {
undo_update cell state;

}
}
Shell::undo_inject( ParticleInjectEvent *e ) {

delete beam particles;
undo_update cell state;

}

Figure 3. A simplified reverse code of the PIC

model
The insert operation appears in both particle arrival and

injection event handlers. Its effect includes assigning

memory for the new particle states in the queue and

scheduling arrival/departure event pairs at each particle’s

future exiting time. Conversely, the delete operation in the
reverse code should perform corresponding inverses of

these processes. Particles in each cell are organized in a

FILO (first-in last-out) queue, so the delete operation

always removes the particle at the head of the queue that is

exactly the same particle that was inserted in the forward

computation. As for “undoing” event scheduling, it is

assumed the underlying simulation engine provides the

application with a primitive for explicitly retracting

scheduled events; this is very useful to implement the

delete operation.
The effect of the activate process is to load an inactive

cell where previously no particle movements are allowed

with particles of uniform distribution. Its basic operation is

in fact multiple particle insertions. Its reverse code can

utilize the insert-delete pair operations described above.
The cell state update process is in fact the most

complex process and its reverse code is not trivial. Each

update performs two major computations: computes the
cell’s new field values and then updates the cell’s particle

queue. Each cell computes its field locally and keeps track

of field values at its left and right boundaries by summing

the charges passing through that boundary. During a cell’s

field update, an addition of charge at its boundary can be

simply reversed as a subtraction of the charge at the

boundary upon rollback. The update on a particle queue,

however, is not as easy. It requires a check of the wakeup

condition (i.e., the field change exceeding a threshold) and

triggers a wakeup event if necessary. Otherwise it makes

no changes. As previously described, a cell wakeup is the

single most costly operation in the plasma simulation. In

the event of a wakeup, all particles’ states are recomputed

based on the new cell field values and obsolete particle

states are erased. The destructive nature of the re-

computation is one of the principal challenges in

generating the reverse code for this simulation.

One example of an irreversible operation is the

calculation of a particle’s exit time MoveTime. It is

calculated by finding the roots dt of the quadratic

equations [4]:

0
2

1 2
=++ CellWidthPosdtVeldtAcc (1)

0
2

1 2
=+�+�� PosdtVeldtAcc (2)

where Acc, Vel, Pos are particle acceleration, velocity and

position in the cell, respectively. Equations (1) and (2)

represent the right and left exit conditions, respectively. dt

is the time difference between the current simulation time

and the particle’s last movement time. The smallest real

value of dt is used for MoveTime. An initial inspection of

the quadratic equations seems to suggest the impossibility

of applying reverse computation to this process. However,

if we apply the reverse computation approach at the

application level, we find that the movement of the

particle is highly reversible. Based on the physical laws of

particle motion, the recovery of dt does not require the

direct inverse of the quadratic equations. Indeed, as

illustrated in figure 4, the particle’s acceleration, velocity

and position states can be simply rolled back by reverse

computation and then the critical state dt can be

reconstructed by carrying the forward computation using

the recovered particle states. Note that the parameters

cell_field and dt in the reverse code refer to the rolled-
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back cell_field value and the time difference between now

and the time when the particle moved right before the

wakeup. Finally, we note that random number generation

is essential to this parallel simulation. Therefore, an

efficient random number generator (RNG) that is

reversible and has a long period is required. For this

purpose, we use the reversible RNG that is described in

[1].

Particle::update_position( double dt ) {
Pos += Vel * dt + 0.5 * Acc * dt * dt;

}
Particle::update_velocity( double dt ) {

Vel += Acc * dt;
}
Particle::update_acceleration( double cell_field ) {

Acc = cell_field * particle_charge / particle_mass;
}
Particle::reverse_position( double dt ) {

Pos = Pos - Vel * dt - 0.5 * Acc * dt * dt;
}
Particle::update_state( double cell_field, double dt ) {

update_position(dt);
update_velocity(dt);
update_acceleration(cell_field);
dt = update_dt(); // solve eq. (1) and (2)
MoveTime = now + dt;

}
Particle::reverse_state( double cell_field, double dt ) {

update_acceleration(cell_field);
update_velocity( -dt );
reverse_position(dt);
dt = update_dt();
MoveTime = now + dt;

}

Figure 4. The reverse code example of the

particle states

5. Performance Evaluation

The application-level reverse computation approach is

best implemented in a system that decouples

implementation details of the simulation engine from the

application in order to allow one to focus one’s efforts on

application semantics. As a result, a simulation engine that

can support reverse computation at an application level

and provide efficient management of large numbers of

events with minimal storage requirement is needed. In

addition, the simulation engine should have the flexibility

and extensibility to support future refinement of the

parallel simulation.

The parallel simulation code using reverse execution

described in the previous section was implemented using

µsik, a general-purpose parallel/distributed simulation

engine based on a micro-kernel architecture [23]. µsik

provides primitives supporting multiple synchronization

approaches, including optimistic and conservative

synchronization, as well as means to relax event ordering

rules and mixing different approaches to synchronization

within a single parallel execution. It therefore provides the

capabilities needed for the parallel physical system

simulations described here.

In a µsik simulation, logical (simulation) processes

(LP) are fully autonomous entities that communicate via

events. In our simulation model, each cell is implemented

as an LP and can choose to run conservatively or

optimistically. A conservative implementation of the

simulation described here performed very poorly, due to

poor lookahead, and is not discussed further. We focus on

optimistic execution using our reverse handlers to support

rollback.

5.1. Experiment Configuration

To demonstrate the feasibility and efficiency of reverse

computation in the electrostatic plasma simulation, we

carried out all experiments on a Symmetric Multi-

Processor (SMP) machine running Red Hat Linux 7.3 with

a customized 2.4.18-10smp kernel. The SMP machine is

equipped with eight Pentium III 550MHz Xeon processors

that share 4GB of memory.

We use normalized units throughout our simulation,

where length, time and velocity are normalized to electron

Debye length, electron plasma frequency and electron

thermal velocity, respectively. The spacecraft is assumed

to have a 500 unit radius and each cell has a width of 0.24

units. The solar wind plasma is initially loaded with

uniformly distributed electrons and protons. We choose

the initial values of 30 electrons and 30 protons per cell.

The injected positron beam has energy of 10 kev with an

injection period of 0.004. Upon initialization, there are up

to 7000 cells of which the first 70 close to the spacecraft

are “active”; as the simulation progresses up to time 60,

the beam travels further away from spacecraft surface and

thus more cells are activated.

5.2. Parallel Performance

Figure 5 shows a snapshot visualization of phase space

structures for the solar wind electrons, protons and beam

particles from a time-stepped simulation and the optimistic

PDES simulation. Both simulations are run up to 60 time

units, and with the same simulation parameters except

using different random number generators (RNG). The

PDES used a specialized reversible RNG in contrast to the

generic single-stream RNG used in the time-stepped

simulation. Despite this difference, the two phase space

structures at the end of the simulations are rather close in

form. The result from the PDES execution with reverse

computation is verified to accurately capture the main

features of movement for all three species of particles at
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the end of the simulation. In particular, it can be seen that

the beam front in both simulations has propagated to the

same distance and beam particles display a similar shape

in phase space. It is also evident that the electron phase

space has a finer resolution in the PDES case for up to

4000 cells. This is the result of its fine time-scale based

on individual particles. A minor difference to note is that,

in the PDES case, the phase space does not extend all the

way to the right wall, whereas in the time-stepped model,

it does. This is because we model an expanding box in

PDES but not the time-stepped model. Overall, the results

helped serve as validation of our optimistic simulation

model against the original sequential simulation model.

Figure 5. Validation by phase space

comparison of time-stepped simulation and

PDES with reverse computation.

The speedup of DES over TDS has been discussed in

great detail in [4]. In our work, we focus on further

improving the DES performance by realizing

parallelization in the simulation and utilizing optimistic

synchronization. All the parallel experiments discussed in

the following section were run with the same physical

parameters and resulted in the same number of committed

events as the sequential runs. Figure 6 shows the parallel

speedup in terms of execution time for up to 8 processors.

The sequential data is measured by running the parallel

code on a single processor. It should be noted that the

single processor execution incurs neither rollbacks nor

state saving overhead. Because µsik was designed for

both efficient sequential and parallel execution, we believe

these measurements reflect the performance one could

expect to see using a reasonably efficient sequential

simulation engine.

Figure 6. PDES vs. sequential DES

We observe that the optimistic parallel execution

achieves a nearly linear speedup up to 4 processors, but

the performance improvement is somewhat less in going

from 4 to 8 processors. This phenomenon is largely due to

the fact that there is relatively little computation per

particle event. As the computation is distributed over

more and more processors, the amount of computation

between event communications decreases, resulting in

reduced speedup. We expect that this problem will not

persist if a larger, more complex physical model such as a

three dimensional plasma code were used. An initial test

with an increased simulation time of 2 units did show

better speedup performance due to the fact that the longer

the simulation runs, the more cells are activated, resulting

in more balanced computation for each processor.

A second factor that results in less than optimal

performance concerns the distribution of the workload.

Figure 7 shows the amount of computation assigned to

each processor in each of the runs. Here, the load is

distributed by first dividing the physical area encompassed

by the simulation into two regions (as illustrated in figure

1) with the initially active cells closer to the spacecraft in

the “heavy activity” region, and other cells forming the

“less active” region. Cells in the active regions are evenly

grouped and distributed among the available processors,

while other cells are grouped into sub-regions or “blocks”
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and distributed among processors in a round-robin fashion.

All simulations shown in figure 7 have a fixed “block”

size. We observe that during the lifetime of each

simulation, the processor load shows significant variation

as more and more cells become active. Upon simulation

termination, the simulation with the largest number of

processors tends to be the least balanced. The imbalance is

inherent of such simulations due to their highly dynamic

nature and the static load-balancing scheme. Further

investigation of characteristics of electrostatic plasma

simulations is needed to aid in the development of a more

efficient load-balancing algorithm for this application that

can lead to better parallel performance for large numbers

of processors.

Figure 7. Event rate distribution

5.3. Efficiency

Intuitively, grid-based physical systems such as the

electrostatic plasma simulation studied here have the

desirable features of locally solved field values and

queuing/dequeuing operations that are time-reversible, but

the evolution of the system itself (beam injections, cell

wakeups in our case) is not time-reversible. However, with

the application-level reverse computation illustrated here,

we have shown that numerical operations in the

electrostatic plasma simulation chosen for this study are

truly reversible, despite round-off errors and irreversible

evolution processes. The most important discovery from

our study is that application-level reverse computation

may be quite efficient for these scientific simulations.

The efficiency mainly comes from two contributing

factors: the smaller amount of additional memory required

for optimistic execution, particularly, queue operations

where no additional state is required to perform rollbacks;

note the fact that the simulation is not constrained by

arbitrarily small look-ahead values. However, there are

still important practical issues related to reverse

computation.

Ideally, one would like to apply reverse computation to

all reversible operations. But reverse computation also

comes at a cost: if the number of destructive operations is

sufficiently large and no efficient application-level reverse

computation can be found, employing reverse computation

can result in worse performance than state-saving. One

such case as pointed out in [1] is when a rollback spans

several processed events. Merely switching pointers to

restore a state based on the earliest rolled back event

incurs a small cost in copy state-saving; while reverse

computation must roll back one event at a time and thus

excessive rollbacks can cause performance to degrade

considerably. The effect of this is particularly severe in

our simulation when a rollback spans multiple wakeup

events.

Our solution to reducing the rollbacks of costly wakeup

events is to limit the “optimism” of the parallel execution.

The idea of controlling optimism is not new. One such

approach is first described in the Moving Time Window

(MTW) protocol [24], where LPs are not allowed to

advance beyond a time window above the GVT. Although

other approaches such as probabilistic rollbacks [25], local

rollbacks [26], Breathing Time Buckets [27] and Wolf

Call mechanism [28], have been proposed to counter the

effect of over-optimism, we simply choose to a time

window-based approach because of its simplicity and low

overhead. µsik supplies simulation applications with a

convenient facility for our purpose. A “run-ahead”

parameter, which is in fact the moving window size, can

be set by the model upon simulation initialization. This

limits how far in simulation time each LP can run ahead of

other LPs during optimistic execution. By tuning the run-

ahead parameter based on cell wakeup frequency, we are

able to reduce or eliminate consecutive rollbacks of

wakeup events. The significant performance gain in our

experiment indicates the extra operation associated with

the window maintenance is a small cost to pay. Further

improvement in parallel performance is possible by fine-

tuning the run-ahead value. This is left for future

investigation.

In addition to the basic reverse computation techniques

discussed here, advanced reverse techniques can be

applied to the plasma simulation. For example, compiler-

supported reverse computation can be used to further

optimize the parallel performance at run-time. This

approach is beyond the scope of our discussion and will be

studied in the future.

6. Conclusions

In this work, we have applied reverse execution to

perform parallel discrete event simulations of a physical

system. We demonstrated that application-level reverse

computation can be used to manually generate efficient

reverse code. These results suggest that reverse

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05) 

1087-4097/05 $20.00 © 2005 IEEE 



computation merits further investigation as an approach

for parallel/distributed simulation of physical systems

modeled using a discrete event simulation paradigm.

As previously mentioned, the PIC simulation

considered in this paper is only a simplified example of

reverse execution in simulating physical systems. The

examples given in section 4 are representative and

certainly do not encompass the diversity and complexity

of all physical system simulations. However, the

underlying reverse techniques can be used in other grid-

based models without extensive modifications. Here we

provide some guidelines for the development of parallel

physical discrete event simulations using reverse

computation. Since our exploration of reverse computation

is an on-going research effort, the guidelines provided

here should be used as references rather than strict rules

for applying reverse computation in scientific simulations.

• Reverse computation is well-suited for fine-grained

applications such as 1D electrostatic grid-based

plasma models. It is especially useful where efficient

queue management is needed. But other optimization

techniques should also be considered in order to fully

optimize parallel performance.

• Good knowledge of the application semantics,

especially the underlying physics, can be beneficial in

producing reverse code for physical systems. Model-

specific optimization can be quite efficient but

requires knowledge of application-level operations.

The simple example of reversing the quadratic

equation would not have been efficient, if at all

possible, without knowledge of the physics involved

(particle’s motion in this case).

• The modeling process largely determines how

successfully reverse computation will improve

parallel performance. Initial analysis in [1] shows that

complex use of jump instructions such as goto, break
and continue are difficult to optimize in terms of

memory usage.

• In modeling physical systems, one should attempt to

avoid monolithic code for event handlers and use

functions calls that are associated with each physical

process. If an event handler only consists of a long

sequence of simple instructions, it is difficult to

extract application semantics and therefore reverse

computation will degenerate to instruction-by-

instruction reverse execution. Using many small

function calls that reflect physical processes helps to

develop reverse codes based on physical properties of

the system. Another advantage is easier debugging

and testing for the reverse code.

The work presented here is only an initial step based on

a simplified physical system. Yet, the results show

promise. Our goal is to build a scalable parallel simulator

for complex physical systems by exploitation of more

advanced reverse computation techniques.
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