
Performance benchmark of a parallel and distributed network simulator

Samson Lee, John Leaney, Tim O’Neill, Mark Hunter

Institute for Information and Communication Technologies, University of Technology, Sydney
PO Box 123, Broadway NSW 2007, Australia

{samlee,jrleaney,toneill}@eng.uts.edu.au, mark.hunter@alcatel.com.au

Abstract

Simulation of large-scale networks requires enor-
mous amounts of memory and processing time. One
way of speeding up these simulations is to distribute
the model over a number of connected workstations.
However, this introduces inefficiencies caused by the
need for synchronization and message passing be-
tween machines. In distributed network simulation, one
of the factors affecting message passing overhead is
the amount of cross-traffic between machines. We per-
form an independent benchmark of the Paral-
lel/Distributed Network Simulator (PDNS) based on
experimental results processed at the Australian Cen-
tre for Advanced Computing and Communications
(AC3) supercomputing cluster. We measure the effect
of cross-traffic on wall-clock time needed to complete
a simulation for a set of basic network topologies by
comparing the result with the wall-clock time needed
on a single processor. Our results show that although
efficiency is reduced with large amounts of cross-
traffic, speedup can still be achieved with PDNS. With
these results, we developed a performance model that
can be used as a guideline for designing future simula-
tions.

1. Introduction

Simulation of telecommunications networks allows

researchers to investigate and reason about the quali-

ties of a new or proposed system without the high cost

and risk of disruption associated with experimenting

on the real system. By carefully analyzing the hypo-

thetical system, problems can be avoided when the real

system is built. In the UTS-Alcatel Management of

Enriched Experience Networks (MEEN) project, simu-

lation is seen as a critical component in the verifica-

tion, validation and demonstration of the proposed

network management system. However, the scale of

the new-generation Enriched Experience Network

(EEN) [1] makes detailed packet-level simulation dif-

ficult because of the enormous amounts of memory

and processing time needed.

Given the need to speed up network simulations so

that larger and more complex networks can be repre-

sented, Liu, et al. [2] described three categories of

methodologies for speeding up network simulation:

simulation technology; simulation model abstraction;

and computational power.

In the simulation technology category, more effi-

cient algorithms for implementing the event-list ma-

nipulation such as the calendar queue [3] (used in ns-2)

instead of the basic linked-list can speed up simulation.

In the simulation model abstraction category, simplify-

ing the model attempts to improves efficiency such as

by representing traffic as fluid-flows [2, 4] instead of

individual packets. The third approach to speeding up

simulations is to use more resources such as faster ma-

chines or by distributing the model over a number of

connected machines [5].

The focus of this paper is in the third category. In

parallel distributed network simulation, multiple proc-

essors are used simultaneously for executing a single

simulation. However, the absence of a global clock

introduces the need for synchronization algorithms to

ensure that cause-and-effect relationships are correctly

produced by the simulator. Two methods to ensure

correct temporal order of the asynchronous event exe-

cution are: conservative and optimistic methods. The

conservative approach [6] strictly imposes the correct

temporal order of events. The optimistic approach [7]

uses a detection and recovery mechanism: whenever

the incorrect temporal order of events is detected, a

rollback mechanism or Time Warp is invoked to re-

cover.

 In the conservative approach one instance of the

simulator can only process an event when it has a guar-

antee no other event containing a smaller time-stamp

may arrive at some later time. An inefficiency of this

approach called message passing overhead is due to

the delay incurred by serializing event data (sometimes

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

called marshalling), transferring the serialized event to

the remote processor, and rebuilding the event from

the serialized data (sometimes called un-marshalling)

[8]. In general, simulations where much of the traffic

crosses the boundary of a simulator instance is more

susceptible to message passing overhead. In view of

that, our objective is to measure the effect of cross-
traffic on wall-clock execution time to complete a

simulation.

Our main contribution is an independent benchmark

of the conservative Parallel/Distributed Network Simu-

lator (PDNS) developed at Georgia Institute of Tech-

nology based on experimental results processed at the

Australian Centre for Advanced Computing and Com-

munications (AC3) cluster. We measure the effect of

cross-traffic and interaction on wall-clock time needed

to complete a two processor simulation for a set of

basic network topologies by comparing the result with

the wall-clock time needed on a single processor.

This work is part of a UTS-Alcatel research group

that seeks to understand and manage large-scale com-

plex networks, where large scale means millions of

entities and users. Firstly, we are investigating the effi-

cacy of Policy-Based Network Management (PBNM)

to reduce the complexity of the management task, aug-

mented by advanced simulation to predict effects. Sec-

ondly, we are exploring the needs, wants and expecta-

tions of users to better understand and accommodate

them, under the banner of Quality of Experience

(QoE). Thirdly, we are modeling, developing and visu-

alizing the evolving system using the approach of Ar-

chitecture-based Engineering to ensure the realization

of a system design which will achieve its functional

and non-functional qualities.

The remainder of this paper is organized in five sec-

tions. In Section 2, we provide an overview of the par-

allel and distributed simulator. In Section 3, we de-

scribe the design of the experiments conducted for this

paper. In Section 4, we give details of the individual

experiments. In Section 5, the results of the experi-

ments are analyzed and discussed. Finally in Section 6,

are our conclusions and future work. Additional re-

lated work is described in Section 7.

2. Parallel/Distributed Network Simulator

The PADS research group at Georgia Tech [9] has

developed extensions and enhancements to the popular

ns-2 [10] simulator to allow a network simulation to be

run in a parallel and distributed fashion, on a network

of workstations. We chose PDNS instead of alterna-

tives, such as GTNetS [11] and DaSSF [12] among

others because of the familiarity, availability and wide-

spread use of ns-2 models. For the purposes of this

work, we will not be examining the other parallel dis-

crete event network simulators.

PDNS uses a federated simulation approach where

separate instantiations of ns-2 modeling different sub-

networks execute on different processors. PDNS uses a

conservative approach to synchronization. No federate

in the parallel simulation will ever process an event

that would later have to be undone due to receiving

messages in the simulated past.

PDNS uses a new scheduler called RTI instead of

the default calendar scheduler in ns-2. The RTI sched-

uler uses the time management functions of the lib-

Synk/RTIKIT libraries [13, 14] for synchronization.

3. Experimental design

The experiments presented in this paper have been

conducted as part of an experimental design life-cycle.

Previously, pre-structural experiments have been per-

formed, which has contributed to our evolution in un-

derstanding the problem. For a detailed discussion of

the experimental design life-cycle, see our previous

paper [1].

For all experiments, we have simplified the choice

of network topology, traffic characteristics, and trans-

port protocols. They represent abstractions of the ac-

cess and core of any telecommunications network, and

are not meant to be complete or accurate representa-

tions of a real EEN. These baseline experiments could

serve as a reference when designing more realistic

simulations. Although not as realistic, our topologies

provide more control over the ratio of cross-traffic

compared to the commonly used benchmark specifica-

tion developed by the research group at Dartmouth

College [15].

All simulation experiments were processed on re-

sources at the Australian Centre for Advanced Com-

puting and Communications (AC3) [16]. We used

Barossa, which is a Linux Beowulf cluster with 155

dual 3GHz Pentium 4 nodes (152 compute nodes),

each with 2GB RAM. It is located within the Austra-

lian Technology Park in Redfern, Sydney.

There were a number of environmental factors that

needed to be considered to control error in our experi-

ments. Since the processor, disk and memory resources

can be shared between users simultaneously, care was

taken to minimize the effect due to this.

Barossa uses the Portable Batch System (PBS),

which is a batch scheduling system that allocates re-

quested resources to jobs submitted in a queue. It is

possible that PBS allocates one processor in a compute

node where the other processor is in use by another

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

user. To ensure that exclusive use of that node could

be obtained, it was necessary to request both proces-

sors of a compute node even though only one proces-

sor was used (i.e. the two processor experiments were

conducted using one processor on each of two com-

puters).

The home directory of Barossa is shared among all

nodes, meaning that there is a higher potential for disk

access delays when the fileserver is busy. Although

our experiments did not require extensive reading or

writing, initial experiments had occasional standard

output messages used for debugging and monitoring

time/memory during a simulation. Even for such trivial

operations, there were intermittent delays of up to 15

seconds. To ensure this did not affect our final results,

these messages were turned off, and all files were writ-

ten to the scratch space on the compute node’s local

hard drive during a simulation and subsequently cop-

ied to the home directory.

The focus of this work is the effect of cross-traffic

on simulation wall-clock execution time, and not on

simulation memory usage. However, we also moni-

tored memory usage for all the experiments to ensure

that there was sufficient physical memory available so

that simulation wall-clock execution time would not be

affected by virtual memory “disk thrashing”.

4. Details of experiments

The experiments were conducting using PDNS ver-

sion 2.27-v1a with libSynk dated 15 July 2004. For

consistency, the same RTI scheduler was used for both

one and two processor simulations, with message com-

pression enabled. Scheduler look ahead was 10ms for

two processor simulations, and 999999 for one proces-

sor simulations. Additionally, we disabled all unneces-

sary packet headers and used nix-vector routing to

optimize memory usage and execution speed.

We studied the effect of cross-traffic on wall-clock

execution time for a set of basic network models. First

is the dumbbell topology, and the second is an exten-

sion of the dumbbell topology. TCP traffic generators

were used in both models and a number of parameters

including wall-clock time to complete a simulation

were observed and sampled. These are described in the

following subsections.

4.1. Dumbbell topology

The network model that we examined first is the fa-

miliar dumbbell topology that is frequently used in

network research studies. Our dumbbell topology has

C leaf nodes that are connected to routers N1,0 and N2,0

on both ends of a shared link. Each of the leaf nodes

are connected to the corresponding router with 512

Kbps full-duplex links with an arbitrary 5 ms delay.

The shared link has an over-provisioned full-duplex

bandwidth of C × 512 Kbps to minimise the effect of

congestion on wall-clock execution time, and has an

arbitrary delay of 10 ms. There is a total of 2C + 2

nodes in this network model. For the purposes of these

experiments, one end of the dumbbell is labelled

Group 1, and the other end is labelled Group 2, as de-

picted in Figure 1. Each group can be distributed onto

two separate processors, or they can be combined and

simulated on one processor.

Each leaf node is a source of traffic, and there are C
sources in each group. Since the objective of this work

is to study the effect of cross-traffic on wall-clock exe-

cution time, we define two types of traffic connections.

Remote connections are source-destination pairs where

the source N1,r or N2,r is in one group and the corre-

sponding destination N2,r or N1,r is in the other group.

There are R remote connections in each group. Local

connections are source-destination pairs where the

source N1,l or N2,l and destination N1,l+1 or N2,l+1 are

neighbours in the same group. The last local source

N1,C or N2,C in each group connects to the first local

source N1,R+1 or N2,R+1 also in the same group. There

are L local connections in each group. The number of

traffic sources in each group is C=R+L. The total num-

ber of traffic sources in this network model is 2C.

To illustrate the above, let C=500, R=100, L=400.

Remote connections: N1,r sends traffic to N2,r and

N2,r also sends traffic to N1,r where r=[1, 2, …, 100].

Local connections: NG,l sends traffic to NG,(l+1) where

l=[101, 102, …, 499] and G=[1, 2]. NG,500 sends traffic

to NG,101 where G=[1, 2].

With this model, we could vary the amount of cross-

traffic in a two processor simulation by keeping C con-

stant and using different values of R. For constant C in Figure 1. Dumbbell topology.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

two processor simulation, there is minimum cross-

traffic when R/C=0, and there is maximum cross-

traffic when R/C=1. Accordingly, for a two processor

simulation there will be more message passing over-

head due to cross-traffic when R/C=1 than when

R/C=0.

Part of the wall-clock execution time depends on the

number of events that need to be processed by the

simulator. Events include packet-level operations such

as entering and exiting a queue at each packet hop. In

the dumbbell topology above, each remote connection

requires packets to be sent to a destination that is three

hops away. In comparison, each local connection re-

quires packets to be sent to a destination that is only

two hops away.

4.2. Extended dumbbell topology

The dumbbell topology previously described does

not provide symmetry in terms of number of packet

hops as R/C is varied. The network model that we ex-

amined next is an extension of the dumbbell topology

that attempts to provide symmetry and therefore a

more constant wall-clock execution time. This topol-

ogy also contains C leaf nodes connected to routers

N1,0 and N2,0 on both sides of a shared link, with one

side labelled Group 1 and the other side labelled Group

2. In addition, a second router L1,0 and L2,0 is con-

nected to the original router in both groups, and there

are C leaf nodes connected to these second routers.

The link characteristics are the same as before. There

is now a total of 4C + 4 nodes in this network model.

Each group can be distributed onto two separate proc-

essors, or they can be combined and simulated on one

processor. The model is depicted in Figure 2.

Each leaf node connected to N1,0 and N2,0 is a source

of traffic, and there are C sources in each group. Re-

mote connections are source-destination pairs where

the source N1,r or N2,r is in one group and the corre-

sponding destination N2,r or N1,r is in the other group.

There are R remote connections in each group. Local

connections are source-destination pairs where the

source N1,l or N2,l and corresponding destination L1,l or

L2,l is in the same group. There are L local connections

in each group. The number of traffic sources in each

group is still C=R+L. The total number of traffic

sources in this network model is still 2C.

To illustrate the above, let C=500, R=276, L=224.

Remote connections: N1,r sends traffic to N2,r and

N2,r also sends traffic to N1,r where r=[1, 2, …, 276].

Local connections: NG,l sends traffic to LG,l where

l=[277, 278, …, 500] and G=[1, 2].

As with the dumbbell model, we could vary the

amount of cross-traffic in a two processor simulation

by keeping C constant and using different values of R.

Wall-clock execution time can be measured in one and

two processor simulations with different amounts of

cross-traffic.

The key difference with this extended dumbbell

model is that both remote and local connections re-

quire packets to be sent to a destination that is three

hops away.

It must be noted that a different number of L nodes

participate in a connection when R/C is varied. Hence

the number of nodes for which state is accessed during

the course of a simulation is different. Although not

evident in the results presented in Section 5, there is a

possibility for cache performance to be affected due to

the different amount of state that is accessed during the

course of the simulation.

4.3. Traffic

The traffic was kept homogeneous for simplicity

and to make the results more predictable. We used

Tahoe TCP transport agents with default parameters

and simulated FTP applications for bulk data transfer.

Each of the FTP applications were configured to start

sending at a random time uniformly distributed

throughout the duration of the simulated time, t. They

were configured to continue sending for a random du-

ration exponentially distributed with a mean of t/4,

after which the application stops sending. This is rep-

resentative of a number of data bursts within the simu-

lated time, and distributes the TCP slow-start behav-

iour throughout the simulated time.

It was expected that this type of traffic is sensitive to

cross-traffic in a two processor simulation because of Figure 2. Extended dumbbell topology.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

the interaction that is necessary between sender and

receiver. For this type of traffic, the sender is only able

to process the current window of packets before hav-

ing to wait for an acknowledgement sent from the re-

ceiver.

4.4. Sampling of data

Since the dumbbell and extended dumbbell models

are divided into groups, each group can be simulated

as a federate on two processors. Alternatively, the

groups can be combined into a one processor simula-

tion. The wall-clock execution times for one processor

and two processor simulations can be measured and

compared. The expectation is that in general, two

processor simulations with minimal cross-traffic will

outperform the one processor equivalent. Also, the

expectation is that two processor simulations with

maximum cross-traffic will not outperform the one

processor equivalent due to message passing overhead.

If these expectations are correct then the objective of

the experiment is to find the value of R/C where one

processor simulation wall-clock execution time is less

than two processor simulation wall-clock execution

time.

We performed simulations of the network model de-

scribed above with C=500 for [20, 30, 40, 50, 60] min-

utes of simulated time, t. We took samples of each

value of R from 0 to C in single increments. For each

simulation, we recorded wall-clock time, described

next.

The total wall-clock execution time to complete a

simulation is Ttotal = Tinit + Trun. Initialisation Tinit begins

when the script is first loaded and includes creating the

simulated node and link objects in memory. The main

factor determining Tinit is the number of nodes and

links in the simulated topology. Tinit finishes and Trun

begins when the event scheduler begins processing

packet-level events, and finishes when the scheduler is

halted. The main factor determining Trun is the simu-

lated time, t and the number of packet hops as a result

of traffic being sent through the network from source

to destination. Additionally, for two processor simula-

tions, Trun is also dependent on the amount of cross-

traffic between simulator instances.

 We did not record packet-level events to a trace

file, so disk access was not a major factor affecting

Ttotal. Available physical memory should also affect

Ttotal, but was not considered in our experiments be-

cause our values of C were chosen such that there was

sufficient available physical memory to avoid “disk

thrashing”. These values were determined through

exploratory experiments.

5. Results analysis and comments

To illustrate our analysis of results for dumbbell

and extended dumbbell topologies, the charts in Figure

3 and Figure 4 show the total wall-clock execution

time required for simulating 60 minutes (t = 3600) as

R/C is varied from 0 to 1. Note the points where one

processor (1p) and two processor (2p) wall-clock exe-

cution times intersect. For brevity, charts for the other

values of simulated time t are not included, but are

summarized in the performance models shown in Ta-

ble 1 and Table 2.

The results of Tinit were approximately constant for

all values of t and R/C, so we used the averages of

those results in our performance models. The results of

Trun for each value of t were dependent on R/C, espe-

cially for two processor simulations due to message

passing overhead. The trendlines of Trun were ap-

proximately linear for each value of t, so we fitted it to

the simple equation Trun = m × (R/C) + b. The gradient,

m and y-intercept, b are functions of t, and we ob-

served that they are actually proportional to t. There-

fore, m/t and b/t were calculated for each value of t and

the averages used in our performance models. These

performance models of Ttotal for one and two processor

simulations with C=500 are shown beneath the corre-

sponding sections of Table 1 and Table 2. They were

verified by plotting theoretical values with actual data.

For small values of t, most of the computations only

involve initialization and calculating the routes for

connections since the number of packet-level events is

also small. Because of this, there were cases where two

processor simulations always completed faster than the

one processor simulation, regardless of R/C. There

were also cases where one processor simulation is

more efficient than the two processor simulation, de-

pending on the value of R/C.

We used our performance model to solve for t when

R/C=1 (i.e. when the two processor simulation is least

efficient) to find the value of t such that two processor

simulation would be more efficient than one processor

simulation regardless of R/C. For the dumbbell topol-

ogy, this value of t was 48 seconds. For the extended

dumbbell topology, this value of t was 81 seconds. If

the simulated times are less than these values, then

there is a clear performance gain in using PDNS with

two processors instead of one processor.

For simulated times that are greater than the above

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

values, we can find the maximum value of R/C before

one processor simulation becomes more efficient than

two processor simulation due to message passing over-

head. We used our performance model and found that:

R/C = 21.46/t + 0.55 for the dumbbell topology, and

R/C = 28.21/t + 0.65 for the extended dumbbell to-

pology.

From the above equations, we can estimate the

maximum value of R/C before the effect of cross-

traffic outweighs the performance gains of two proces-

sors. For very large simulated times (as t),

R/C=0.55 for the dumbbell topology. The value is

R/C=0.65 for the extended dumbbell topology. This

means that for any R/C less than these values, two

processor simulations will be more efficient than the

one processor simulation. We can use this value as a

general rule to keep remote connections versus total

connections to be less than 0.55 for dumbbell topology

and 0.65 for extended dumbbell topology.

5.1. Comments on dumbbell topology

As described in section 4.1, our dumbbell topology

is not symmetrical, and there are three hops from

source to destination for remote connections, and only

two hops for local connections. Accordingly, for a one

processor simulation, there will be slightly more

packet-level events that need to be processed by the

t T sim_init T run (m) T run (m /t) T run (b) T run (b /t) t T sim_init T run (m) T run (m /t) T run (b) T run (b /t)

1200 15.80 139.52 0.12 540.75 0.45 1200 8.42 539.61 0.45 291.97 0.24

1800 15.76 208.74 0.12 807.81 0.45 1800 8.28 828.77 0.46 437.13 0.24

2400 15.71 278.36 0.12 1075.87 0.45 2400 8.36 1099.16 0.46 585.37 0.24

3000 15.79 350.00 0.12 1345.27 0.45 3000 8.43 1338.58 0.45 728.46 0.24

3600 15.91 426.22 0.12 1616.78 0.45 3600 8.48 1779.38 0.49 823.38 0.32

Avg: 15.80 0.12 0.45 Avg: 8.39 0.46 0.26

1p T total = 15.8 + t × [0.12 × (R/C) + 0.45] 2p T total = 8.39 + t × [0.46 × (R/C) + 0.26]

t T init T run (m) T run (m /t) T run (b) T run (b /t) t T init T run (m) T run (m /t) T run (b) T run (b /t)

1200 22.39 -45.93 -0.04 699.39 0.58 1200 11.80 500.23 0.42 379.10 0.32

1800 24.40 -74.15 -0.04 1105.19 0.61 1800 11.80 701.89 0.39 584.56 0.32

2400 24.45 -93.49 -0.04 1473.78 0.61 2400 11.90 913.32 0.38 775.16 0.32

3000 22.33 -111.20 -0.04 1732.15 0.58 3000 11.81 1145.98 0.38 972.25 0.32

3600 24.50 -126.98 -0.04 2192.66 0.61 3600 11.90 1369.66 0.38 1179.47 0.32

Avg: 23.92 -0.04 0.60 Avg: 11.84 0.39 0.32

1p T total = 23.92 + t × [-0.04 × (R/C) + 0.6] 2p T total = 11.84 + t × [0.39 × (R/C) + 0.32]

Table 1. Dumbbell topology results

Table 2. Extended dumbbell topology results
1 procesor simulation, C =500 2 processor simulation, C =500

2 processor simulation, C =5001 processor simulation, C =500

0

500

1000

1500

2000

2500

3000

0% 20% 40% 60% 80% 100%

R /C

T
o

ta
l W

al
lc

lo
ck

T
im

e
[s

]

1p T_total

2p T_total

1p=2p T_total

Figure 3. Results for dumbbell
topology, C=500, t=3600

0

500

1000

1500

2000

2500

3000

0% 20% 40% 60% 80% 100%

R /C

T
o

ta
l W

al
lc

lo
ck

T
im

e
[s

]

1p T_total

2p T_total

1p=2p T_total

Figure 4. Results for extended dumbbell
topology, C=500, t=3600

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

simulator when R/C=1. If there is sufficient bandwidth

on the shared link, the expected wall-clock execution

time should therefore increase slightly as R/C is varied

from 0 to 1. For two processor simulation, it was ex-

pected that the effect of cross-traffic would result in a

more significant increase in wall-clock execution time

as R/C is varied from 0 to 1.

Our results showed that this was true. The gradient

m was positive for both one and two processor simula-

tions, with the latter being more significant.

5.2. Comments on extended dumbbell topology

As described in section 4.2, our extended dumbbell

topology is more symmetrical and there are two hops

from source to destination for both remote and local

destinations. Accordingly, for a one processor simula-

tion, there will be similar numbers of packet-level

events that need to be processed by the simulator for

all values of R/C. This model is more symmetrical in

terms of packet hops as R/C varies. If there is suffi-

cient bandwidth on the shared links, the expected wall-

clock execution time should therefore remain more

constant as R/C is varied. However, since remote con-

nections only are bi-directional, the link bandwidth

will be shared with returning TCP acknowledgements.

Accordingly, it was expected that there will be a slight

decrease in wall-clock execution time as R/C is varied

from 0 to 1. For two processor simulation, it was ex-

pected that the effect of cross traffic would result in a

more significant increase in wall-clock execution time

as R/C is varied from 0 to 1.

Our results showed that this was true. The gradient

m was negative for one processor simulations, and was

positive for two processor simulations. The latter was

more significant.

6. Summary and future work

We studied the effect of cross-traffic on wall-clock

execution time in the Parallel/Distributed Network

Simulator (PDNS) for a set of basic network topolo-

gies by benchmarking the results from simulations on

one and two processors. We defined our first topology

based on a dumbbell network to include variables for

remote and local connections. By controlling these

variables, we were able to control the amount of cross-

traffic in our experiments. We defined our second to-

pology as an extension of the first such that there is the

same amount of packet hops to destinations for both

remote and local connections. For both topologies, we

defined the variables that were sampled, including

components of total wall-clock time execution time.

The experimental results were processed on a Beo-

wulf cluster at the Australian Centre for Advanced

Computing and Communications (AC3). We reduced

error due to the shared computing environment by en-

suring exclusive use of a compute node’s processors,

as well as by writing to local scratch space instead of

to the shared filesystem. Our experience gained from

using these resources will be useful for future simula-

tion studies.

Our results showed that for C=500, when simulated

time is less than 48 seconds for our dumbbell topology,

or less than 81 seconds for our extended dumbbell to-

pology, two processor PDNS simulations outperforms

one processor simulations regardless of our defined

unit of cross-traffic, R/C. When simulated time is more

than these values, two processor PDNS simulations

will be more efficient than one processor simulation if

R/C < 21.46/t + 0.55 for our dumbbell topology, and if

R/C < 28.21/t + 0.65 for our extended dumbbell topol-

ogy. Finally, these results can help us estimate the

maximum value of R/C before the effect of cross-

traffic outweighs the performance gains of using two

processors in parallel.

The current results do not fully exploit the potential

of the 155 node Beowulf cluster at AC3. Future work

includes extending the experiments with more complex

network models using more than two processors. We

did not include results for shared memory communica-

tions, which is also future work.

The details of the results and analysis are only ap-

plicable to the testing environment and models used

and not to other scenarios. As such, the results must be

interpreted in light of this. The models and methodol-

ogy of varying the ratio of remote and local connec-

tions versus total connections that have been described

in this paper need to be extended to other models. Fur-

ther generalization of the performance models will be

useful to help understand the relative advantages of

using PDNS for our network simulations.

Additionally, other methods for speeding up simu-

lations, such as the other two categories described in

the introduction of this paper can be examined in the

future. We are particularly interested in the fluid-flow

models.

7. Related work

The creators of PDNS and libSynk at the Georgia

Institute of Technology have published several papers

that include benchmarks of PDNS, including the fol-

lowing.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

In [17], Perumalla et al show that RTI-based paral-

lel simulations can scale extremely well and achieve

very high speedup. Their experiments yielded more

than 80-fold scaled speedup in simulating large

TCP/IP networks, demonstrating performance of up to

6 million simulated packet transmissions per second on

a Linux cluster. Networks containing up to two million

network nodes were simulated. In [18], Fujimoto et al

presents results from experiments utilizing as many as

1536 processors yielding performance as high as 106

Million packet transmissions per second. In [19], Riley

et al present experimental results achieving nearly 2

million network nodes with linear efficiency up to 128

federates.

This paper differs from the abovementioned related

works in that this is an independent benchmark that

focuses on the overhead effects of simulated traffic

crossing simulator boundaries. Although it is well

known that increasing the ratio of remote traffic will

degrade parallel distributed simulation performance, it

is less well known the quantitative conditions where

parallel distributed simulations become slower than an

equivalent simulation performed on a single processor.

As an independent research group, our experiences

gained with PDNS have been very positive, and our

results demonstrate certain conditions that need to be

considered when designing future experiments.

8. Acknowledgement

Thanks to AC3 for their support in using the clus-

ter.

Thanks to the PDNS group for the simulator soft-

ware and support through the PDNS mailing list.

We acknowledge the funding by UTS, Alcatel and

the ARC via grant LP 0219784, which includes an

APA(I) for Samson Lee.

8. References

[1] S. Lee, N. Sheridan-Smith, T. O'Neill, J. Leaney, K.

Sandrasegaran, and S. Markovits, "Managing the Enriched

Experience Network -- Learning-Outcome Approach to the

Experimental Design Life-Cycle," presented at Australian

Telecommunication Networks and Applications Conference

(ATNAC'03), Melbourne, Australia, 2003.

[2] B. Liu, D. R. Figueiredo, Y. Guo, J. Kurose, and D.

Towsley, "A Study of Networks Simulation Efficiency: Fluid

Simulation vs. Packet-level Simulation," presented at IEEE

INFOCOM'2001, Anchorage, Alaska, 2001.

[3] R. Brown, "Calendar queues: A fast O(1) priority queue

implementation for the simulation event set problem," Com-
munications of the ACM, vol. 31, pp. 1220-1227, 1988.

[4] G. F. Riley, T. M. Jaafar, and R. M. Fujimoto, "Inte-

grated Fluid and Packet Network Simulations," presented at

MASCOTS'02, Fort Worth, Texas, 2002.

[5] R. M. Fujimoto, Parallel and Distributed Simulation
Systems: Wiley Interscience, 2000.

[6] K. M. Chandy and J. Misra, "Distributed Simulation: A

Case Study in Design and Verification of Distributed Pro-

grams," IEEE Transactions on Software Engineering, vol. 5,

pp. 440-452, 1979.

[7] D. R. Jefferson, "Virtual time," ACM Transactions on
Programming Languages and Systems, vol. 7, pp. 404-425,

1985.

[8] S. Bhatt, R. Fujimoto, A. Ogielski, and K. Perumalla,

"Parallel Simulation Techniques for Large Scale Networks,"

IEEE Communications Magazine, vol. 36, pp. 42-47, 2002.

[9] "PDNS - Parallel/Distributed NS."

http://www.cc.gatech.edu/computing/compass/pdns/, 2004.

[10] "The Network Simulator - ns-2."

http://www.isi.edu/nsnam/ns/, 2004.

[11] "GTNetS - Georgia Tech Network Simulator."

http://www.ece.gatech.edu/research/labs/MANIACS/GTNet

S/, 2004.

[12] "Dartmouth Scalable Simulation Framework

(DaSSF)." http://www.cs.dartmouth.edu/research/DaSSF/,

2004.

[13] Georgia Tech, "Federated Simulations Development

Kit." http://www.cc.gatech.edu/computing/pads/fdk.html,

2001.

[14] K. Perumalla, "libSynk library."

http://www.cc.gatech.edu/computing/pads/kalyan/libsynk.ht

m, 2004.

[15] J. H. Cowie, D. M. Nicol, and A. T. Ogielski, "Mod-

eling the Global Internet," Computing in Science and Engi-
neering, 1999.

[16] "Australian Centre for Advanced Computing and

Communications." http://www.ac3.edu.au/edu/, 2004.

[17] K. S. Perumalla, A. Park, R. M. Fujimoto, and G. F.

Riley, "Scalable RTI-Based Parallel Simulation of Net-

works," presented at Parallel and Distributed Simulation, San

Diego, CA, USA, 2003.

[18] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, and

M. H. Ammar, "Large-Scale Network Simulation: How Big?

How Fast?," presented at Meeting of the IEEE International

Symposium

on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems (MASCOTS),

2003.

[19] G. F. Riley, M. H. Ammar, R. M. Fujimoto, A. Park,

K. Perumalla, and D. Xu, "A Federated Approach to Distrib-

uted Network Simulation," ACM Transactions on Modeling
and Computer Simulation, vol. 14, pp. 116-148, 2004.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

