
A Duality-Based Unified Approach to Bayesian
Mechanism Design

YANG CAI

McGill University

and

NIKHIL R. DEVANUR

Microsoft Research

and

S. MATTHEW WEINBERG

Princeton University

In this letter we briefly survey our recent work [Cai et al. 2016]. In it, we provide a new duality

theory for Bayesian mechanism design which is quite general, and applies for any objective the
designer wishes to optimize, and for arbitrary agent valuations. We then apply our theory to

auction design settings with many independent buyers who have independent values for many
items, and are able to provide a unified proof of several recent exciting works on this front [Hart

and Nisan 2012; Li and Yao 2013; Babaioff et al. 2014; Yao 2015; Chawla et al. 2007; Chawla et al.

2010; Chawla et al. 2015]. These works all show that simple mechanisms are approximately optimal
in various settings. In some cases, our principled approach yields greatly improved approximation

ratios as well.
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1. INTRODUCTION

In this letter, we briefly overview our recent paper [Cai et al. 2016]. In it, we
present a new duality theory for Bayesian mechanism design that applies to settings
with multiple bidders with arbitrary valuation functions, and where the designer’s
objective may be some arbitrary function of the bidder types and outcome selected.
For the sake of exposition, in this letter we focus on a special case that has received
much attention recently: there are n bidders and m items, bidder i’s value for
item j (tij) is drawn independently from Dij , and the designer wishes to find
the revenue-optimal Bayesian Incentive Compatible auction. Such bidders might
be unit-demand (ti(S) = maxj∈S{tij}), additive (ti(S) =

∑
j∈S{tij}), or more

generally I-additive (ti(S) = maxS′⊂S,S′∈I{
∑
j∈S′ tij}, for some I ⊆ 2[m]). We

use the term matroid-additive if I is a matroid, and downwards-closed-additive if
I is downwards-closed. Recent work further generalizes this valuation space to
arbitrary XOS or subadditive functions with independent items. We omit formal
definitions of these in this note, referring the reader to [Rubinstein and Weinberg
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2015].
Even in the simplest of these settings (say, one additive or unit-demand bid-

der and two items), the optimal mechanism is known to be prohibitively complex
(e.g. [Hart and Reny 2012]), so much recent attention has shifted instead to de-
signing simple mechanisms that are approximately optimal. Starting from seminal
works of Chawla et.al. [Chawla et al. 2007] for unit-demand bidders, and Hart and
Nisan [Hart and Nisan 2012] for additive bidders, we now know that simple mech-
anisms are approximately optimal in quite general settings. Proofs of these results
were already quite principled, however the techniques developed were largely dis-
joint and there seem to be significant technical barriers to extending them beyond
unit-demand or additive bidders in multi-bidder settings. In our paper, we ap-
ply our new duality theory to these problems and derive a unified proof for many
works in this series. These results are important for two reasons: first, our duality
framework provides more explicit bounds than previous techniques, which allows
for improved approximation ratios and extensions to broader settings. Second, be-
cause our proofs all follow the same framework, we gain a considerable amount of
previously undiscovered intuition about these problems.

We summarize these results below. The first four bullets are proved in [Cai et al.
2016]. The last three are proved in a manuscript by one of the authors and his
collaborator [Cai and Zhao 2016]. Informal definitions of the simple mechanisms
used are included in footnotes below, and we refer the reader to our paper [Cai
et al. 2016] for more formal definitions.

Theorem 1. There is a canonical dual solution inducing the following results:

In [Cai et al. 2016],

—SRev ≥ OPT/4, when there is a single unit-demand buyer (matches [Chawla
et al. 2010]+ [Chawla et al. 2015]).1

—max{SRev,BRev} ≥ OPT/6, when there is a single additive buyer (matches [Babaioff
et al. 2014]).2

—PostRev ≥ OPT/24, when there are many unit-demand buyers (improved from
33.75 [Chawla et al. 2010]+ [Chawla et al. 2015]).3

—max{SRev,BVCG} ≥ OPT/8, when there are many additive buyers (improved
from 69 [Yao 2015]).4

In [Cai and Zhao 2016] (results below use the definition of “subadditive/XOS
over independent items” posed in [Rubinstein and Weinberg 2015]),

—max{SRev,BRev} ≥ OPT/64, when there is a single subadditive buyer (im-
proved from 338 [Rubinstein and Weinberg 2015]).

1SRevdenotes the optimal revenue attainable by posting a price on each item separately.
2BRevdenotes the optimal revenue attainable by posting a price only on the grand bundle of all

items.
3PostRevdenotes the optimal revenue attainable by a posted-price mechanism.
4For multiple bidders, SRev denotes the optimal revenue attainable by running Myerson’s auction

separately for each item. BVCG denotes the revenue attainable by running the VCG mechanism
with an additional per-bidder entry fee.
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—BPostRev ≥ OPT/70, when there are many downwards-closed-additive buyers.
(improved from 133 just for matroid-additive buyers [Chawla and Miller 2016]).5

—BPostRev ≥ OPT/268 , when there are many XOS buyers.

In the remainder of this letter we give a high level overview as to how our dual-
ity theory is derived and applied to this setting. We also note that other duality
theories for Bayesian mechanism design have been developed in recent works of [Gi-
annakopoulos and Koutsoupias 2014; 2015; Daskalakis et al. 2014; 2015; Haghpanah
and Hartline 2015]. We refer the reader to our paper for a more detailed comparison
of our work to these, but note here that ours is the first to extend to multiple bidders
and valuation functions beyond additive or unit-demand, and also the first to be
successfully applied to obtain approximation results, rather than a characterization
of the exact optimal mechanism in simple settings.

2. A LINEAR PROGRAM AND OUR DUALITY THEORY

Similar to a recent series of works that develops black-box reductions for Bayesian
mechanism design [Cai et al. 2012a; 2012b; 2013a; 2013b], we begin with an LP
formulation. To write the LP, we first introduce the concept of a reduced form. For
a mechanism M , the reduced form stores variables πMij (t), which is the probability
that bidder i receives item j when reporting type t to M (over any randomness
in M , as well as in D−i), as well as pMi (t), which is the expected price bidder i
pays when reporting type t to M (over the same randomness). We can also go in
the other direction, and say that a reduced form π is feasible if there exists some
mechanism M (that allocates each item at most once on every profile6) such that
π = πM . The space of feasible reduced forms is convex, and depends on D, so we
denote it by P (D). The LP simply optimizes expected revenue over all truthful
and feasible reduced forms.

To proceed, we’ll introduce a variable λi(t, t
′) for each of the Bayesian Incen-

tive Compatible (BIC) constraints, and take the partial Lagrangian of LP 1 by
Lagrangifying all BIC constraints. Every set of Lagrangian multipliers/dual vari-
ables induces a (possibly infinite) upper bound on the optimal solution to LP 1. Of
course, only finite upper bounds are useful. The first step is to characterize exactly
which dual solutions induce a finite upper bound (we call them useful):

Lemma 1 Useful Dual Variables. A set of dual variables is useful iff for
each bidder i, λi forms a valid flow, i.e., iff the following satisfies weak flow con-
servation (flow in ≥ flow out) at all nodes except the source:

—Nodes: A super source s, along with a node t for every type t ∈ T .

—fi(t) flow from s to t, for all t ∈ T .

—λi(t, t
′) flow from t to t′ for all t, t′ ∈ T .

5BPostRev denotes the optimal revenue attainable by a posted-price mechanism with an addi-

tional per-bidder entry fee.
6This is for the case of additive bidders. In the case of unit-demand bidders, M must also allocate

each bidder at most one item. In the case of I-additive bidders, M must also allocate each bidder

a set in I. A generalization of the reduced form is required to handle valuation functions beyond
I-additive, see [Cai et al. 2016].
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Variables:

—pi(t), for all bidders i and types t ∈ T , denoting the expected price paid by bidder i when

reporting type t over the randomness of the mechanism and the other bidders’ types.

—πij(t), for all bidders i, items j, and types t ∈ T , denoting the probability that bidder i receives

item j when reporting type t over the randomness of the mechanism and the other bidders’

types.

Constraints:

—πi(t) · t − pi(t) ≥ πi(t
′) · t − pi(t′), for all bidders i, and types t, t′ ∈ T , guaranteeing that the

reduced form mechanism (π, p) is BIC.

—π ∈ P (D), guaranteeing π is feasible.

Objective:

—max
∑n

i=1

∑
t∈T fi(t) · pi(t), the expected revenue.

Fig. 1. A Linear Program (LP) for Revenue Optimization.

Lemma 1 tightly characterizes useful dual solutions as those that induce a valid
flow in a graph where the nodes correspond to possible bidder types. The way to
interpret these dual solutions is through complementary slackness: t sending flow to
t′ in λi corresponds to the incentive constraint between t and t′ binding for bidder
i. For every useful dual solution, we can also define a corresponding virtual value
function. The definition might seem arbitrary until the theorem stated afterwards.

Definition 1 Virtual Value Function. For each λ, we define a correspond-
ing virtual value function Φλ(·), such that for every bidder i, every type t ∈ T ,
Φλi (t) = t− 1

fi(t)

∑
t′∈T λi(t

′, t)(t′ − t). Note that Φλi (t) is an m-dimensional vector

(like all t ∈ T ).

Theorem 2 Virtual Welfare ≥ Revenue. For any set of useful duals λ
and any BIC mechanism M = (π, p), the revenue of M is no larger than the virtual
welfare of π w.r.t. Φλ(·).

n∑
i=1

∑
t∈T

fi(t) · pi(t) ≤
n∑
i=1

∑
t∈T

m∑
j=1

fi(t) · πij(t) · Φλij(t)

Let λ∗ be the optimal dual variables and M∗ = (π∗, p∗) be the revenue optimal BIC
mechanism, then the expected virtual welfare with respect to Φλ

∗
under π∗ equals

the expected revenue of M∗.

Theorem 2 provides our duality theory. Essentially, we are claiming that every
useful dual solution can be interpreted as a virtual valuation function, which upper
bounds the optimal attainable revenue. So the dual problem to revenue maximiza-
tion is a search for virtual valuation functions. In the next section, we show that
there is a canonical way of setting the dual variables such that the corresponding
optimal virtual welfare attainable by any feasible allocation (not necessarily BIC) is
a good upper bound - this is important as analyzing the space of feasible allocations
is drastically less complex than the space of BIC mechanisms.
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Fig. 2. An example of λ for one bidder and two items.

3. A CANONICAL DUAL AND DECOMPOSITION

Here, we briefly show two examples of how to use our duality theory. Let’s begin
with a somewhat trivial upper bound. Observe that setting λi(t, t

′) = 0 for all i, t, t′

results in a useful dual solution. Plugging this in to Definition 1, we get Φλi (t) = t.
So by Theorem 2, we get that the revenue of any BIC mechanism is at most its
welfare. Of course, this is a trivial upper bound and we did not need a dualilty
theory to prove it, but perhaps it is an illustrative example.

Let’s move on now to a canonical dual solution for a single bidder that induces the
upper bound used in the first two bullets of Theorem 1.7 For simplicity, we assume
the type space is a m-dimensional bounded integer lattice ×j∈[m][Hj ]. It will soon
be clear to the readers that the same flow can be easily extended to the general
case. Consider the following implicitly defined flow: for all valuation vectors t, let
j∗(t) = argmaxj{tj} (break ties lexicographically). Let t′ = (tij∗(t) + 1; ti,−j∗(t)),
i.e. the type that takes t’s favorite item and increases the value by 1. Then t′ sends
all of its incoming flow into t and it is the only type that sends flow into t. Note
that t′ might not exists for all t, in which case these types receive no incoming flow
except from the super source s. Note that every type sends outgoing flow to at most
one other type, but again that not all types send outgoing flow. Figure 2 shows a
diagram of this flow. So what Φλ does this flow induce? It is not immediate to
see, but some inductive calculation yields that: Φλj (t) = tj , for all j 6= j∗(t), and

Φλj∗(t)(t) = ϕj∗(t)(tj∗(t)), where ϕj(tj) = tj− 1−Fj(tj)
fj(tj)

, Myerson’s single-dimensional

virtual value for Dj [Myerson 1981]. This gives us a stronger upper bound on the
optimal attainable revenue by any BIC mechanism: it is no more than the welfare
of all non-favorite items, plus the revenue of a related single-dimensional “copies”
setting first studied by [Chawla et al. 2007]. In the paper, we show how to get a

7Technically, the presented dual is only for the case that each Dj is regular. A small modification
is necessary for irregular distributions.
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constant factor of this upper bound using the simple mechanisms prescribed above.
Here is some further intuition behind this bound: the optimal attainable welfare is

a trivial upper bound, and can be observed simply by ignoring all BIC constraints
except for individual rationality. Our canonical bound is also a relaxation: we
are ignoring all BIC constraints except for where the bidder considers minimally
underreporting their value for their favorite item. This turns out to be a surprisingly
useful relaxation, which induces all of the bounds in Theorem 1 after going through
our duality theory.
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