Programming with Proofs and Explicit Contexts
— Revisited —

Brigitte Pientka S
o

McGill University, Montreal
beluga

Joint work with J. Dunfield (Queens University, Kingston)



How to program and reason with formal

systems and proofs?



How to program and reason with formal systems?

e Formal systems (given via axioms and inference rules) play an
important role when designing and implementing software.

Type systems; Evaluation; Program Transformations;Logics; etc.

e Mechanizing properties about formal systems establishes trust
and avoids flaws. Type preservation; Compiler correctness;

Cut-elimination; Church-Rosser property; etc.



Underlying Motivation

e Abstract over common operations

e Support common features uniformly

“The motivation behind the work in very-high-level languages is to ease the
programming task by providing the programmer with a language containing
primitives or abstractions suitable to his problem area. The programmer is
then able to spend his effort in the right place” B. Liskov [1974]



Back in the 80s...

1987 R. Harper, F. Honsell, G. Plotkin: A Framework for
Defining Logics, LICS'87

1988 F. Pfenning and C. Elliott: Higher-Order Abstract
Syntax, PLDI'88

1989 F. Pfenning: EIf: A language for Logic Definition and
Verified Meta-Programming, LICS'89

e Dependently Typed Lambda Calculus (A) serves as a
Meta-Language for representing formal systems

e Higher-order Abstract Syntax (HOAS) :
Uniformly model binding structures in Object Language with

(intensional) functions in LF



Uniformly handle:
— Bound Variables,

— Hypothetical and Parametric Assumptions



Step 1: Representing Types and Terms in LF

Types A,B :=nat | A= B Terms M ::= x | lam x:A.M | app M N



Step 1: Representing Types and Terms in LF

Types A,B :=nat | A= B Terms M ::= x | lam x:A.M | app M N

LF Representation

tp: type. tm: type.
nat: tp. lam: tp — (tm — tm) — tm.
arr: tp — tp — tp. app: tm — tm — tm.

On Paper (Object Language) In LF (Meta Language)

‘ lam nat Ax.x
lam x:nat. lam x:nat=-nat.x ‘ lam nat Ax.lam (arr nat nat) Ax.x
lam x:nat. lamt f:nat=-nat.app f x ‘

lam x:nat.x (Identity)

lam nat Ax.lam (arr nat nat) Af.app f x

e Higher-order Abstract Syntax (HOAS) :
Uniformly model binding structures in Object Language with
(intensional) functions in LF

e Inherit a-renaming and single substitutions



Step 2: Representation of Typing Rules in LF
u
x:A

Typing Rules
M:A=B N:A ., Wil
app M N : B ) lamx:AM: A= B

T-LAaM™"




Step 2: Representation of Typing Rules in LF
u
A

Typing Rules X
M: B
M:A=B N:A T
app M N : B AL lamx:AM: A= B AL

LF Representation

of: tm — tp — type.
t_app: of M (arr A B) — of N A

— of (app M N) B.

t_lam: (Mx:tm.of x A — of (M x) B)
— of (lam A M) (arr A B).

e Hypothetical derivations are represented as LF functions (simple type)

e Parametric derivations are represented as LF functions (dependent type)

On Paper (Object Language) ‘ In LF (Meta Language)
u v
X : nat y :nat
D
y i nat

t_lam¥V

lam y:nat.y) : (nat = nat
( 4 y) ( ) t_lam Ax.Au.t_lam Ay.Av.D

t_lam**
(lam x:nat.lam y:nat.y) : (nat = nat = nat)




How to reason inductively?
— LF definitions are not inductive

— We must handle “open” objects

Preservation: If M: Aand M — N then N : A.
Uniqueness: If T M:Aand [ =M : B then A=B.




Back in the 90s ...

1997 ¢ R. McDowell and D. Miller:A Logic for Reasoning
with Higher-Order Abstract Syntax. LICS 1997
(Reason about HOAS indirectly; closed HOAS objects)

1998 ¢ C. Schiirmann and F. Pfenning: Automated Theorem
Proving in a Simple Meta-Logic for LF, CADE’'98

(No proof witnesses)

1999 ¢ F. Pfenning and C. Schiirmann: Twelf — A
Meta-Logical Framework for Deductive Systems,
CADE'99 (Regular worlds; proofs as relations with LF.)

“the whole HOAS approach by its very nature disallows a
feature that we regard of key practical importance: the ability
to manipulate names of bound variables explicitly in
computation and proof. ” [Pitts, Gabbay'97]



Back in 2008

2008 ¢ A. Nanevski, F. Pfenning, B. Pientka: Contextual Modal
Type Theory, ACM TOCL 2008

2008 ¢ B. Pientka: A type-theoretic foundation for programming
with higher-order abstract syntax and first-class
substitutions, POPL'08 simply-typed

2008 ¢ B. Pientka and J. Dunfield: Programming with proofs and
explicit contexts, PPDP'08 dependently-typed

Key Observation: Characterize LF object together with the LF context

e lam nat Ax.lam (arr nat nat))\f.I:]
I:} has LF type tm in the LF context x:tm, f:tm

e t_lam )\x.)\u.[]

D has LF type of (lam nat Ay.x) (arr nat nat) in LF context x:tm,u:of x nat.



Back in 2008

2008 ¢ A. Nanevski, F. Pfenning, B. Pientka: Contextual Modal
Type Theory, ACM TOCL 2008

2008 ¢ B. Pientka: A type-theoretic foundation for programming
with higher-order abstract syntax and first-class
substitutions, POPL'08 simply-typed

2008 ¢ B. Pientka and J. Dunfield: Programming with proofs and
explicit contexts, PPDP'08 dependently-typed

Key Observation: Characterize LF object together with the LF context

e lam nat Ax.lam (arr nat nat))\f.I:]
I:} has contextual LF type [x:tm, f:tm - tm]

° t_lam)\x.)\u.D

D has contextual LF type [x:tm,u:of x nat + of (lam nat Ay.x) (arr nat nat)].



Back in 2008

2008 ¢ A. Nanevski, F. Pfenning, B. Pientka: Contextual Modal
Type Theory, ACM TOCL 2008

2008 ¢ B. Pientka: A type-theoretic foundation for programming
with higher-order abstract syntax and first-class
substitutions, POPL'08 simply-typed

2008 ¢ B. Pientka and J. Dunfield: Programming with proofs and
explicit contexts, PPDP'08 dependently-typed

Key Observation: Characterize LF object together with the LF context

e lam nat Ax.lam (arr nat nat))\f.I:]
I:} has contextual LF type [x:tm, f:tm - tm]

° t_lam)\x.)\u.D

D has contextual LF type [x:tm,u:of x nat + of (lam nat Ay.x) (arr nat nat)].

Key Observation: Abstract over LF contexts to enable recursion



The tip of the iceberg: Beluga

—
Proofs as Functional Programs

Main Proof
/’//\ \

Renaming Scope B;inding
Hypothesis-. Variables

pstitution Contgxt
S\g} n\lav\ab\es'((ee

VD b
B\ . a‘\o(\

Contextual
Logical Framework LF

“We may think of [the] proof as an iceberg. In the top of it, we find
what we usually consider the real proof; underwater, the most of the matter,
consisting of all mathematical preliminaries a reader must know in order to
understand what is going on.” S. Berardi [1990]



Step 2a: Theorem as Type

Theorem: Type Uniqueness
If Di:TFM:A and C::IT-M:B then £: A= B. J

10



Step 2a: Theorem as Type

Theorem: Type Uniqueness
If Di:TFM:A and C::IT-M:B then £: A= B. J

is represented as
Computation Level Type for function unique
My:ctx.[YyF of MA] - [y F of MB] — [ F eq A B] J

e Parameterize over and distinsuigh between contexts
e Contexts are structured sequences

e Contexts are classified by context schemas
schema ctx = some [t:tp] block x:tm, u:of x t;

10



Step 2a: Theorem as Type

Theorem: Type Uniqueness
If Di:TFM:A and C::IT-M:B then £: A= B. J

is represented as
Computation Level Type for function unique
My:ctx.[y F of M A[]] — [y F of M B[]l — [+ eq A B] J

e Parameterize over and distinsuigh between contexts
e Contexts are structured sequences

e Contexts are classified by context schemas
schema ctx = some [t:tp] block x:tm, u:of x t;

e Mis a term that depends on ~; it has type [y + tm]
A and B are types that are closed; they have type [ - tp]
Fact: All meta-variables are associated with a substitution.
~~ M is implicitely associated with the identity substitution
~> A and B are associated with a weakening substitution 10



Intrinsic Support for Contexts

schema ctx = some [t:tp] block x:tm, u:of x t; J

e The context x : nat, y : nat = nat is represented as
bl:block(x:tm,u:of x nat),
b2:block(y:tm,v:of y (arr nat nat))

e Well-formedness: bl:block (x:tm,u:of y nat) is ill-formed.
x:tm, y:tm, u:of x nat is ill-formed.

e Projections (b1.1 or bl.x) to access components of a block

e Declarations are unique: bl is different from b2
bl.x is different from b2.x

e Later declarations overshadow earlier ones

e Support Weakening and Substitution lemmas

11



Step 2b: Proofs as Programs

rec unique:[ly:ctx. I A:[tp].M B:[tp].M M:[y + tm].
[y of MA[1] — [y +F of MB[1] - [+ eq A B] =

12



Step 2b: Proofs as Programs

rec unique:[ly:ctx. I A:[tp].M B:[tp].M M:[y + tm].
[y of MA[1] — [y +F of MB[1] - [+ eq A B] =
fn d = fn ¢ = case d of

12



Step 2b: Proofs as Programs

rec unique:[ly:ctx. I A:[tp].M B:[tp].M M:[y + tm].
[y of MA[1] — [y +F of MB[1] - [+ eq A B] =

fn d = fn ¢ = case d of
| [y + t_app D1 D2] =
let[y + t_app C1 C2] = ¢ in
let[ F ref] = unique [y - D1] [y + C1] in
[ F ref]

% Application Case

12



Step 2b: Proofs as Programs

rec unique:[ly:ctx. I A:[tp].M B:[tp].M M:[y + tm].
[y of MA[1] — [y +F of MB[1] - [+ eq A B] =
fn d = fn ¢ = case d of
| [y - t_app D1 D2] = % Application Case

let[vy F t_app C1 C2] = ¢ in
let[ F ref] = unique [y - D1] [y + C1] in
[ F ref]

| [v F t_lam Ax.Au. D] = % Abstraction Case
let[y F t_lam Ax.Au.C] = c in
let[ - ref] = unique [y,b:block x:tm;u:of x _ - D[b.x, b.ull
[v,b: _ F Clb.x, b.u]]l in
[ F refl

12



Step 2b: Proofs as Programs

rec unique:[ly:ctx. I A:[tp].M B:[tp].M M:[y + tm].
[y of MA[1] — [y +F of MB[1] - [+ eq A B] =
fn d = fn ¢ = case d of
| [y - t_app D1 D2] = % Application Case
let[y + t_app C1 C2] = ¢ in
let[ F ref] = unique [y - D1] [y + C1] in
[ F ref]

| [v F t_lam Ax.Au. D] = % Abstraction Case
let[y F t_lam Ax.Au.C] = c in
let[ - ref] = unique [y,b:block x:tm;u:of x _ - D[b.x, b.ull
[v,b: _ F Clb.x, b.u]]l in

[ F ref]
| [y F #q.ul = % d : of #g9.x A % Assumption Case
let[y - #r.u]l =c in ) c : of #r.x B
[ F ref] ;

Compact encoding of proofs about derivations as total functions.
12



Step 2b: Proofs as Programs

rec unique:[ly:ctx. I A:[tp].M B:[tp].M M:[y + tm].
[y of MA[1] — [y +F of MB[1] - [+ eq A B] =
fn d = fn ¢ = case d of
| [y - t_app D1 D2] = % Application Case
let[y + t_app C1 C2] = ¢ in
let[ F ref] = unique [y - D1] [y + C1] in
[ F ref]

| [v F t_lam Ax.Au. D] = % Abstraction Case
let[y F t_lam Ax.Au.C] = c in
let[ - ref] = unique [y,b:block x:tm;u:of x _ - D[b.x, b.ull
[v,b: _ F Clb.x, b.u]]l in

[ F ref]
| [y F #q.ul = % d : of #g9.x A % Assumption Case
let[y - #r.u]l =c in ) c : of #r.x B
[ F ref] ;

Compact encoding of proofs about derivations as total functions.
12



Contribution of PPDP’08

e Lays the foundation for viewing inductive proofs about
derivations as recursive programs

On paper ‘ In BELUGA

Case Analysis ‘ Case Analysis using pattern patching
Inversion ‘ Case Analysis using pattern patching
IH ‘ Recursive Call

Contextual LF: Extends LF with meta-variables, parameter

variables, variable projections, and first-class context variables.

Bi-directional type system for contextual LF

Bi-directional type system for BELUGA(computations)

Dependently type pattern matching using refinements

Type safety: Preservation and progress

13



Since 2008: Beluga has grown up

Theory:

e Normalization proof for BELUGA[TLCA'15,FSCD'18]

e Extension to indexed recursive and stratified types
[POPL'12,FSCD'18]

e Extensions to indexed cocrecursive types [ICFP’16]
Implementation:

e First prototype [IJCAR'10]
e Total BELUGA[CADE'15]
e Interactive BELUGA [ongoing, Tutorial at ICFP'18]

Case studies: Certified compiler, Howe's method (coinductive
proof), Logical relations proofs (see POPLMark Reloaded [CPP'18])

14



What'’s to come?

CocoN: Type theory with contextual types and first-class contexts
— Martin Lof Style —




	How to program and reason with formal systems and proofs?
	Uniformly handle: – Bound Variables, – Hypothetical and Parametric Assumptions
	How to reason inductively? 1) LF definitions are not inductive 2) We must handle ``open'' objects   Preservation: If M : A and M -3muN then N : A.Uniqueness: If orange M : A and orangeM : B then A = B.  

