
Programming with Proofs and Explicit Contexts

– Revisited –

Brigitte Pientka

McGill University, Montreal

Joint work with J. Dunfield (Queens University, Kingston)

How to program and reason with formal

systems and proofs?

How to program and reason with formal systems?

• Formal systems (given via axioms and inference rules) play an

important role when designing and implementing software.

Type systems; Evaluation; Program Transformations;Logics; etc.

• Mechanizing properties about formal systems establishes trust

and avoids flaws. Type preservation; Compiler correctness;

Cut-elimination; Church-Rosser property; etc.

1

Underlying Motivation

• Abstract over common operations

• Support common features uniformly

“The motivation behind the work in very-high-level languages is to ease the

programming task by providing the programmer with a language containing

primitives or abstractions suitable to his problem area. The programmer is

then able to spend his effort in the right place” B. Liskov [1974]

2

Back in the 80s...

1987 • R. Harper, F. Honsell, G. Plotkin: A Framework for

Defining Logics, LICS’87

1988 • F. Pfenning and C. Elliott: Higher-Order Abstract

Syntax, PLDI’88

1989 • F. Pfenning: Elf: A language for Logic Definition and

Verified Meta-Programming, LICS’89

• Dependently Typed Lambda Calculus (λΠ) serves as a

Meta-Language for representing formal systems

• Higher-order Abstract Syntax (HOAS) :

Uniformly model binding structures in Object Language with

(intensional) functions in LF

3

Uniformly handle:

– Bound Variables,

– Hypothetical and Parametric Assumptions

Step 1: Representing Types and Terms in LF

Types A,B ::= nat | A⇒ B Terms M ::= x | lam x :A.M | app M N

LF Representation

tp: type.

nat: tp.

arr: tp → tp → tp.

tm: type.

lam: tp → (tm → tm) → tm.

app: tm → tm → tm.

On Paper (Object Language) In LF (Meta Language)

lam x :nat.x (Identity) lam nat λx.x

lam x :nat. lam x :nat⇒nat.x lam nat λx.lam (arr nat nat) λx.x

lam x :nat. lamt f :nat⇒nat.app f x lam nat λx.lam (arr nat nat) λf.app f x

• Higher-order Abstract Syntax (HOAS) :

Uniformly model binding structures in Object Language with

(intensional) functions in LF

• Inherit α-renaming and single substitutions

4

Step 1: Representing Types and Terms in LF

Types A,B ::= nat | A⇒ B Terms M ::= x | lam x :A.M | app M N

LF Representation

tp: type.

nat: tp.

arr: tp → tp → tp.

tm: type.

lam: tp → (tm → tm) → tm.

app: tm → tm → tm.

On Paper (Object Language) In LF (Meta Language)

lam x :nat.x (Identity) lam nat λx.x

lam x :nat. lam x :nat⇒nat.x lam nat λx.lam (arr nat nat) λx.x

lam x :nat. lamt f :nat⇒nat.app f x lam nat λx.lam (arr nat nat) λf.app f x

• Higher-order Abstract Syntax (HOAS) :

Uniformly model binding structures in Object Language with

(intensional) functions in LF

• Inherit α-renaming and single substitutions
4

Step 2: Representation of Typing Rules in LF

Typing Rules

M : A⇒ B N : A
app M N : B

T-App

x : A
u

...
M : B

lam x :A.M : A⇒ B
T-Lamx,u

LF Representation

of: tm → tp → type.

t_app: of M (arr A B) → of N A

→ of (app M N) B.

t_lam:(Πx:tm.of x A → of (M x) B)

→ of (lam A M) (arr A B).

• Hypothetical derivations are represented as LF functions (simple type)

• Parametric derivations are represented as LF functions (dependent type)

On Paper (Object Language) In LF (Meta Language)

x : nat
u

y : nat
v

D
y : nat

(lam y :nat.y) : (nat⇒ nat)
t lamy,v

(lam x :nat.lam y :nat.y) : (nat⇒ nat⇒ nat)
t lamx,u t_lam λx.λu.t_lam λy.λv.D

5

Step 2: Representation of Typing Rules in LF

Typing Rules

M : A⇒ B N : A
app M N : B

T-App

x : A
u

...
M : B

lam x :A.M : A⇒ B
T-Lamx,u

LF Representation

of: tm → tp → type.

t_app: of M (arr A B) → of N A

→ of (app M N) B.

t_lam:(Πx:tm.of x A → of (M x) B)

→ of (lam A M) (arr A B).

• Hypothetical derivations are represented as LF functions (simple type)

• Parametric derivations are represented as LF functions (dependent type)

On Paper (Object Language) In LF (Meta Language)

x : nat
u

y : nat
v

D
y : nat

(lam y :nat.y) : (nat⇒ nat)
t lamy,v

(lam x :nat.lam y :nat.y) : (nat⇒ nat⇒ nat)
t lamx,u t_lam λx.λu.t_lam λy.λv.D

5

How to reason inductively?

– LF definitions are not inductive

– We must handle “open” objects

Preservation: If M : A and M −→ N then N : A.

Uniqueness: If Γ `M :A and Γ `M :B then A=B.

Back in the 90s ...

1997 • R. McDowell and D. Miller:A Logic for Reasoning

with Higher-Order Abstract Syntax. LICS 1997

(Reason about HOAS indirectly; closed HOAS objects)

1998 • C. Schürmann and F. Pfenning: Automated Theorem

Proving in a Simple Meta-Logic for LF, CADE’98

(No proof witnesses)

1999 • F. Pfenning and C. Schürmann: Twelf — A

Meta-Logical Framework for Deductive Systems,

CADE’99 (Regular worlds; proofs as relations with LF.)

“the whole HOAS approach by its very nature disallows a

feature that we regard of key practical importance: the ability

to manipulate names of bound variables explicitly in

computation and proof. ” [Pitts, Gabbay’97]
6

Back in 2008

2008 • A. Nanevski, F. Pfenning, B. Pientka: Contextual Modal

Type Theory, ACM TOCL 2008

2008 • B. Pientka: A type-theoretic foundation for programming

with higher-order abstract syntax and first-class

substitutions, POPL’08 simply-typed

2008 • B. Pientka and J. Dunfield: Programming with proofs and

explicit contexts, PPDP’08 dependently-typed

Key Observation: Characterize LF object together with the LF context

• lam nat λx.lam (arr nat nat)λf. app f x

app f x has LF type tm in the LF context x:tm, f:tm

• t_lam λx.λu. D

D has LF type of (lam nat λy.x) (arr nat nat) in LF context x:tm,u:of x nat.

7

Back in 2008

2008 • A. Nanevski, F. Pfenning, B. Pientka: Contextual Modal

Type Theory, ACM TOCL 2008

2008 • B. Pientka: A type-theoretic foundation for programming

with higher-order abstract syntax and first-class

substitutions, POPL’08 simply-typed

2008 • B. Pientka and J. Dunfield: Programming with proofs and

explicit contexts, PPDP’08 dependently-typed

Key Observation: Characterize LF object together with the LF context

• lam nat λx.lam (arr nat nat)λf. app f x

app f x has contextual LF type [x:tm, f:tm ` tm]

• t_lamλx.λu. D

D has contextual LF type [x:tm,u:of x nat ` of (lam nat λy.x) (arr nat nat)].

Key Observation: Abstract over LF contexts to enable recursion

8

Back in 2008

2008 • A. Nanevski, F. Pfenning, B. Pientka: Contextual Modal

Type Theory, ACM TOCL 2008

2008 • B. Pientka: A type-theoretic foundation for programming

with higher-order abstract syntax and first-class

substitutions, POPL’08 simply-typed

2008 • B. Pientka and J. Dunfield: Programming with proofs and

explicit contexts, PPDP’08 dependently-typed

Key Observation: Characterize LF object together with the LF context

• lam nat λx.lam (arr nat nat)λf. app f x

app f x has contextual LF type [x:tm, f:tm ` tm]

• t_lamλx.λu. D

D has contextual LF type [x:tm,u:of x nat ` of (lam nat λy.x) (arr nat nat)].

Key Observation: Abstract over LF contexts to enable recursion
8

The tip of the iceberg: Beluga

Main Proof

Eigenvariables

Hypothesis
Context

Variables

Renaming

Derivation TreeSubstitution

Scope Binding

Contextual
Logical Framework LF

Proofs as Functional Programs

“We may think of [the] proof as an iceberg. In the top of it, we find

what we usually consider the real proof; underwater, the most of the matter,

consisting of all mathematical preliminaries a reader must know in order to

understand what is going on.” S. Berardi [1990]

9

Step 2a: Theorem as Type

Theorem: Type Uniqueness

If D :: Γ `M : A and C :: Γ `M : B then E :: A = B.

is represented as

Computation Level Type for function unique

Πγ:ctx.[γ ` of M A[]] → [γ ` of M B[]] → [` eq A B]

• Parameterize over and distinsuigh between contexts

• Contexts are structured sequences

• Contexts are classified by context schemas
schema ctx = some [t:tp] block x:tm, u:of x t;

• M is a term that depends on γ; it has type [γ ` tm]

A and B are types that are closed; they have type [` tp]

Fact: All meta-variables are associated with a substitution.

 M is implicitely associated with the identity substitution

 A and B are associated with a weakening substitution

10

Step 2a: Theorem as Type

Theorem: Type Uniqueness

If D :: Γ `M : A and C :: Γ `M : B then E :: A = B.

is represented as

Computation Level Type for function unique

Πγ:ctx.[γ ` of M A] → [γ ` of M B] → [` eq A B]

• Parameterize over and distinsuigh between contexts

• Contexts are structured sequences

• Contexts are classified by context schemas
schema ctx = some [t:tp] block x:tm, u:of x t;

• M is a term that depends on γ; it has type [γ ` tm]

A and B are types that are closed; they have type [` tp]

Fact: All meta-variables are associated with a substitution.

 M is implicitely associated with the identity substitution

 A and B are associated with a weakening substitution

10

Step 2a: Theorem as Type

Theorem: Type Uniqueness

If D :: Γ `M : A and C :: Γ `M : B then E :: A = B.

is represented as

Computation Level Type for function unique

Πγ:ctx.[γ ` of M A[]] → [γ ` of M B[]] → [` eq A B]

• Parameterize over and distinsuigh between contexts

• Contexts are structured sequences

• Contexts are classified by context schemas
schema ctx = some [t:tp] block x:tm, u:of x t;

• M is a term that depends on γ; it has type [γ ` tm]

A and B are types that are closed; they have type [` tp]

Fact: All meta-variables are associated with a substitution.

 M is implicitely associated with the identity substitution

 A and B are associated with a weakening substitution 10

Intrinsic Support for Contexts

schema ctx = some [t:tp] block x:tm, u:of x t;

• The context x : nat, y : nat⇒ nat is represented as

b1:block(x:tm,u:of x nat),

b2:block(y:tm,v:of y (arr nat nat))

• Well-formedness: b1:block (x:tm,u:of y nat) is ill-formed.

x:tm, y:tm, u:of x nat is ill-formed.

• Projections (b1.1 or b1.x) to access components of a block

• Declarations are unique: b1 is different from b2

b1.x is different from b2.x

• Later declarations overshadow earlier ones

• Support Weakening and Substitution lemmas

11

Step 2b: Proofs as Programs

rec unique:Πγ:ctx. Π A:[tp].Π B:[tp].Π M:[γ ` tm].

[γ ` of M A[]] → [γ ` of M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case

let[γ ` t_app C1 C2] = c in

let[` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case

let[γ ` t_lam λx.λu.C] = c in

let[` ref] = unique [γ,b:block x:tm;u:of x _ ` D[b.x, b.u]]

[γ,b: _ ` C[b.x, b.u]] in

[` ref]

| [γ ` #q.u] ⇒ % d : of #q.x A % Assumption Case

let[γ ` #r.u] = c in % c : of #r.x B

[` ref] ;

Compact encoding of proofs about derivations as total functions.

12

Step 2b: Proofs as Programs

rec unique:Πγ:ctx. Π A:[tp].Π B:[tp].Π M:[γ ` tm].

[γ ` of M A[]] → [γ ` of M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case

let[γ ` t_app C1 C2] = c in

let[` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case

let[γ ` t_lam λx.λu.C] = c in

let[` ref] = unique [γ,b:block x:tm;u:of x _ ` D[b.x, b.u]]

[γ,b: _ ` C[b.x, b.u]] in

[` ref]

| [γ ` #q.u] ⇒ % d : of #q.x A % Assumption Case

let[γ ` #r.u] = c in % c : of #r.x B

[` ref] ;

Compact encoding of proofs about derivations as total functions.

12

Step 2b: Proofs as Programs

rec unique:Πγ:ctx. Π A:[tp].Π B:[tp].Π M:[γ ` tm].

[γ ` of M A[]] → [γ ` of M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case

let[γ ` t_app C1 C2] = c in

let[` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case

let[γ ` t_lam λx.λu.C] = c in

let[` ref] = unique [γ,b:block x:tm;u:of x _ ` D[b.x, b.u]]

[γ,b: _ ` C[b.x, b.u]] in

[` ref]

| [γ ` #q.u] ⇒ % d : of #q.x A % Assumption Case

let[γ ` #r.u] = c in % c : of #r.x B

[` ref] ;

Compact encoding of proofs about derivations as total functions.

12

Step 2b: Proofs as Programs

rec unique:Πγ:ctx. Π A:[tp].Π B:[tp].Π M:[γ ` tm].

[γ ` of M A[]] → [γ ` of M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case

let[γ ` t_app C1 C2] = c in

let[` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case

let[γ ` t_lam λx.λu.C] = c in

let[` ref] = unique [γ,b:block x:tm;u:of x _ ` D[b.x, b.u]]

[γ,b: _ ` C[b.x, b.u]] in

[` ref]

| [γ ` #q.u] ⇒ % d : of #q.x A % Assumption Case

let[γ ` #r.u] = c in % c : of #r.x B

[` ref] ;

Compact encoding of proofs about derivations as total functions.

12

Step 2b: Proofs as Programs

rec unique:Πγ:ctx. Π A:[tp].Π B:[tp].Π M:[γ ` tm].

[γ ` of M A[]] → [γ ` of M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case

let[γ ` t_app C1 C2] = c in

let[` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case

let[γ ` t_lam λx.λu.C] = c in

let[` ref] = unique [γ,b:block x:tm;u:of x _ ` D[b.x, b.u]]

[γ,b: _ ` C[b.x, b.u]] in

[` ref]

| [γ ` #q.u] ⇒ % d : of #q.x A % Assumption Case

let[γ ` #r.u] = c in % c : of #r.x B

[` ref] ;

Compact encoding of proofs about derivations as total functions.

12

Step 2b: Proofs as Programs

rec unique:Πγ:ctx. Π A:[tp].Π B:[tp].Π M:[γ ` tm].

[γ ` of M A[]] → [γ ` of M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case

let[γ ` t_app C1 C2] = c in

let[` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case

let[γ ` t_lam λx.λu.C] = c in

let[` ref] = unique [γ,b:block x:tm;u:of x _ ` D[b.x, b.u]]

[γ,b: _ ` C[b.x, b.u]] in

[` ref]

| [γ ` #q.u] ⇒ % d : of #q.x A % Assumption Case

let[γ ` #r.u] = c in % c : of #r.x B

[` ref] ;

Compact encoding of proofs about derivations as total functions.

12

Contribution of PPDP’08

• Lays the foundation for viewing inductive proofs about

derivations as recursive programs

On paper In Beluga

Case Analysis Case Analysis using pattern patching

Inversion Case Analysis using pattern patching

IH Recursive Call

• Contextual LF: Extends LF with meta-variables, parameter

variables, variable projections, and first-class context variables.

• Bi-directional type system for contextual LF

• Bi-directional type system for Beluga(computations)

Dependently type pattern matching using refinements

• Type safety: Preservation and progress

13

Since 2008: Beluga has grown up

Theory:

• Normalization proof for Beluga[TLCA’15,FSCD’18]

• Extension to indexed recursive and stratified types

[POPL’12,FSCD’18]

• Extensions to indexed cocrecursive types [ICFP’16]

Implementation:

• First prototype [IJCAR’10]

• Total Beluga[CADE’15]

• Interactive Beluga[ongoing, Tutorial at ICFP’18]

Case studies: Certified compiler, Howe’s method (coinductive

proof), Logical relations proofs (see POPLMark Reloaded [CPP’18])

14

What’s to come?

Cocon: Type theory with contextual types and first-class contexts

– Martin Löf Style –

15

	How to program and reason with formal systems and proofs?
	Uniformly handle: – Bound Variables, – Hypothetical and Parametric Assumptions
	How to reason inductively? 1) LF definitions are not inductive 2) We must handle ``open'' objects Preservation: If M : A and M -3muN then N : A.Uniqueness: If orange M : A and orangeM : B then A = B.

