Programming with Proofs and Explicit Contexts

- Revisited -

Brigitte Pientka

McGill University, Montreal

Joint work with J. Dunfield (Queens University, Kingston)

How to program and reason with formal

systems and proofs?

How to program and reason with formal systems?

- Formal systems (given via axioms and inference rules) play an important role when designing and implementing software.
 Type systems; Evaluation; Program Transformations; Logics; etc.
- Mechanizing properties about formal systems establishes trust and avoids flaws. Type preservation; Compiler correctness; Cut-elimination; Church-Rosser property; etc.

Underlying Motivation

- Abstract over common operations
- Support common features uniformly

"The motivation behind the work in very-high-level languages is to ease the programming task by providing the programmer with a language containing primitives or abstractions suitable to his problem area. The programmer is then able to spend his effort in the right place"

B. Liskov [1974]

Back in the 80s...

1987 R. Harper, F. Honsell, G. Plotkin: A Framework for Defining Logics, LICS'87
 1988 F. Pfenning and C. Elliott: Higher-Order Abstract Syntax, PLDI'88
 1989 F. Pfenning: Elf: A language for Logic Definition and Verified Meta-Programming, LICS'89

- Dependently Typed Lambda Calculus (λ^{Π}) serves as a Meta-Language for representing formal systems
- Higher-order Abstract Syntax (HOAS):
 Uniformly model binding structures in Object Language with (intensional) functions in LF

Uniformly handle:

- Bound Variables,

- Hypothetical and Parametric Assumptions

Step 1: Representing Types and Terms in LF

Types
$$A, B ::= nat \mid A \Rightarrow B$$

Types $A, B ::= nat \mid A \Rightarrow B$ Terms $M ::= x \mid lam x:A.M \mid app M N$

Step 1: Representing Types and Terms in LF

Types $A, B ::= nat \mid A \Rightarrow B$

Terms $M ::= x \mid \text{lam } x:A.M \mid \text{app } M N$

LF Representation

```
\begin{array}{lll} \text{tp: type.} & & \text{tm: type.} \\ \text{nat: tp.} & & \text{lam: tp} \rightarrow \text{tm} \rightarrow \text{tm.} \\ \text{arr: tp} \rightarrow \text{tp} \rightarrow \text{tp.} & & \text{app: tm} \rightarrow \text{tm.} \end{array}
```

On Paper (Object Language)	In LF (Meta Language)	
lam x:nat.x (Identity)	lam nat λ x.x	
$lam x:nat. lam x:nat \Rightarrow nat.x$	lam nat λ x.lam (arr nat nat) λ x.x	
$lam x:nat. lamt f:nat \Rightarrow nat.app f x$	lam nat λ x.lam (arr nat nat) λ f.app f x	

- Higher-order Abstract Syntax (HOAS):
 Uniformly model binding structures in Object Language with (intensional) functions in LF
- Inherit α -renaming and single substitutions

Step 2: Representation of Typing Rules in LF

Step 2: Representation of Typing Rules in LF

$$\frac{M: A \Rightarrow B \quad N: A}{\mathsf{app} \ M \ N: B} \ \mathsf{T-App}$$

 $\frac{\overline{x : A} \quad u}{\vdots}$ $\frac{M : B}{\text{lam } x : A . M : A \Rightarrow B} \quad \text{T-LAM}^{x,u}$

LF Representation

```
\begin{array}{lll} \mbox{of: tm} \ \to \ \mbox{tp} \ \to \ \mbox{type.} \\ \mbox{t_app: of M (arr A B)} \ \to \ \mbox{of N A} \\ \ \ \to \ \mbox{of (app M N) B.} \end{array}
```

```
t_lam:(\Pi x:tm.of x A \rightarrow of (M x) B)
\rightarrow of (lam A M) (arr A B).
```

- Hypothetical derivations are represented as LF functions (simple type)
- Parametric derivations are represented as LF functions (dependent type)

```
On Paper (Object Language)

\frac{x : \mathsf{nat}}{v} \quad \frac{u}{y : \mathsf{nat}} \quad v

\frac{y : \mathsf{nat}}{(\mathsf{lam} \ y : \mathsf{nat}.y) : (\mathsf{nat} \Rightarrow \mathsf{nat})} \quad \mathsf{t\_lam}^{y,v}

\frac{\mathsf{t\_lam}^{x,u}}{(\mathsf{lam} \ x : \mathsf{nat}.\mathsf{lam} \ y : \mathsf{nat}.y) : (\mathsf{nat} \Rightarrow \mathsf{nat} \Rightarrow \mathsf{nat})} \quad \mathsf{t\_lam}^{x,u}

\frac{\mathsf{t\_lam}^{x,u}}{\mathsf{t\_lam} \ \lambda x . \lambda u . \mathbf{t\_lam} \ \lambda y . \lambda v . D}
```

How to reason inductively?

- LF definitions are not inductive
- We must handle "open" objects

Preservation: If M:A and $M\longrightarrow N$ then N:A.

Uniqueness: If $\Gamma \vdash M : A$ and $\Gamma \vdash M : B$ then A=B.

Back in the 90s ...

1997 • R. McDowell and D. Miller: A Logic for Reasoning with Higher-Order Abstract Syntax. LICS 1997 (Reason about HOAS indirectly; closed HOAS objects)

1998 • C. Schürmann and F. Pfenning: Automated Theorem Proving in a Simple Meta-Logic for LF, CADE'98 (No proof witnesses)

1999 F. Pfenning and C. Schürmann: Twelf — A

Meta-Logical Framework for Deductive Systems,

CADE'99 (Regular worlds; proofs as relations with LF.)

"the whole HOAS approach by its very nature disallows a feature that we regard of key practical importance: the ability to manipulate names of bound variables explicitly in computation and proof."

[Pitts, Gabbay'97]

Back in 2008

A. Nanevski, F. Pfenning, B. Pientka: Contextual Modal Type Theory, ACM TOCL 2008
 B. Pientka: A type-theoretic foundation for programming with higher-order abstract syntax and first-class substitutions, POPL'08 simply-typed
 B. Pientka and J. Dunfield: Programming with proofs and explicit contexts, PPDP'08 dependently-typed

Key Observation: Characterize LF object together with the LF context

- ullet lam nat $\lambda x.$ lam (arr nat nat) $\lambda f.$ app f x app f x has LF type tm in the LF context x:tm, f:tm
- \bullet t_lam λ x. λ u.
 - D has LF type of (lam nat $\lambda y.x$) (arr nat nat) in LF context x:tm,u:of x nat.

Back in 2008

A. Nanevski, F. Pfenning, B. Pientka: Contextual Modal Type Theory, ACM TOCL 2008
 B. Pientka: A type-theoretic foundation for programming with higher-order abstract syntax and first-class substitutions, POPL'08 simply-typed
 B. Pientka and J. Dunfield: Programming with proofs and explicit contexts, PPDP'08 dependently-typed

Key Observation: Characterize LF object together with the LF context

- lam nat λx .lam (arr nat nat) λf .app f x app f x has contextual LF type [x:tm, f:tm \vdash tm]
- t_lam λ x. λ u.
 - bas contextual LF type [x:tm,u:of x nat \vdash of (lam nat λ y.x) (arr nat nat)].

Back in 2008

```
    A. Nanevski, F. Pfenning, B. Pientka: Contextual Modal Type Theory, ACM TOCL 2008
    B. Pientka: A type-theoretic foundation for programming with higher-order abstract syntax and first-class substitutions, POPL'08 simply-typed
    B. Pientka and J. Dunfield: Programming with proofs and explicit contexts, PPDP'08 dependently-typed
```

Key Observation: Characterize LF object together with the LF context

- lam nat λx .lam (arr nat nat) λf .app f x app f x has contextual LF type [x:tm, f:tm \vdash tm]
- t_lam λ x. λ u.

bas contextual LF type [x:tm,u:of x nat \vdash of (lam nat λ y.x) (arr nat nat)].

Key Observation: Abstract over LF contexts to enable recursion

The tip of the iceberg: Beluga

"We may think of [the] proof as an iceberg. In the top of it, we find what we usually consider the real proof; underwater, the most of the matter, consisting of all mathematical preliminaries a reader must know in order to understand what is going on."

S. Berardi [1990]

Step 2a: Theorem as Type

Theorem: Type Uniqueness

If $\mathcal{D} :: \Gamma \vdash M : A$ and $\mathcal{C} :: \Gamma \vdash M : B$ then $\mathcal{E} :: A = B$.

Step 2a: Theorem as Type

Theorem: Type Uniqueness

```
If \mathcal{D} :: \Gamma \vdash M : A and \mathcal{C} :: \Gamma \vdash M : B then \mathcal{E} :: A = B.
```

is represented as

Computation Level Type for function unique

```
\Pi\gamma \colon \mathsf{ctx} \ldotp [\gamma \vdash \mathsf{of} \,\, \mathsf{M} \,\, \mathsf{A} \,\,] \,\,\to\,\, [\gamma \vdash \mathsf{of} \,\, \mathsf{M} \,\, \mathsf{B} \,\,] \,\,\to\,\, [\,\,\vdash \,\, \mathsf{eq} \,\, \mathsf{A} \,\, \mathsf{B}]
```

- Parameterize over and distinsuigh between contexts
- Contexts are structured sequences
- Contexts are classified by context schemas
 schema ctx = some [t:tp] block x:tm, u:of x t;

Step 2a: Theorem as Type

Theorem: Type Uniqueness

```
If \mathcal{D} :: \Gamma \vdash M : A and \mathcal{C} :: \Gamma \vdash M : B then \mathcal{E} :: A = B.
```

is represented as

Computation Level Type for function unique

```
\Pi \gamma : \mathsf{ctx.} [\gamma \vdash \mathsf{of} \ \mathsf{M} \ \mathsf{A}] \to [\gamma \vdash \mathsf{of} \ \mathsf{M} \ \mathsf{B}] \to [\vdash \mathsf{eq} \ \mathsf{A} \ \mathsf{B}]
```

- Parameterize over and distinsuigh between contexts
- Contexts are structured sequences
- Contexts are classified by context schemas
 schema ctx = some [t:tp] block x:tm, u:of x t;
- M is a term that depends on γ ; it has type [$\gamma \vdash tm$]
 A and B are types that are closed; they have type [$\vdash tp$]

Fact: All meta-variables are associated with a substitution.

- \rightsquigarrow M is implicitely associated with the identity substitution
- → A and B are associated with a weakening substitution

Intrinsic Support for Contexts

```
schema ctx = some [t:tp] block x:tm, u:of x t;
```

- The context x: nat, y: nat ⇒ nat is represented as b1:block(x:tm,u:of x nat),
 b2:block(y:tm,v:of y (arr nat nat))
- Well-formedness: b1:block (x:tm,u:of y nat) is ill-formed.
 x:tm, y:tm, u:of x nat is ill-formed.
- Projections (b1.1 or b1.x) to access components of a block
- Declarations are unique: b1 is different from b2
 b1.x is different from b2.x
- Later declarations overshadow earlier ones
- Support Weakening and Substitution lemmas

```
rec unique:\Pi\gamma:ctx. \Pi A:[tp].\Pi B:[tp].\Pi M:[\gamma \vdash tm].

[\gamma \vdash of M A[]] \rightarrow [\gamma \vdash of M B[]] \rightarrow [\vdash eq A B] = fn d \Rightarrow fn c \Rightarrow case d of
```

```
rec unique:\Pi\gamma:ctx. \Pi A:[tp].\Pi B:[tp].\Pi M:[\gamma \vdash tm]. [\gamma \vdash \text{ of M A}[]] \rightarrow [\gamma \vdash \text{ of M B}[]] \rightarrow [\vdash \text{ eq A B}] =
fn d \Rightarrow fn c \Rightarrow case d of [\gamma \vdash \text{ t\_app D1 D2}] \Rightarrow \qquad \qquad \text{``Application Case}
let[\gamma \vdash \text{ t\_app C1 C2}] = \text{c in}
let[\vdash \text{ ref}] = \text{ unique } [\gamma \vdash \text{ D1}] [\gamma \vdash \text{ C1}] \text{ in}
[\vdash \text{ ref}]
```

```
rec unique: \Pi \gamma: ctx. \Pi A: [tp]. \Pi B: [tp]. \Pi M: [\gamma \vdash tm].
                 [\gamma \vdash \text{ of M A}[]] \rightarrow [\gamma \vdash \text{ of M B}[]] \rightarrow [\vdash \text{ eq A B}] =
fn d \Rightarrow fn c \Rightarrow case d of
\mid [\gamma \vdash t_app D1 D2] \Rightarrow
                                                                           % Application Case
   let[\gamma \vdash t_app C1 C2] = c in
   let[\vdash ref] = unique [\gamma \vdash D1] [\gamma \vdash C1] in
        [ ⊢ ref]
\mid [\gamma \vdash t_{\text{lam }} \lambda x. \lambda u. D] \Rightarrow
                                                                           % Abstraction Case
   let[\gamma \vdash t_{lam} \lambda x. \lambda u. C] = c in
   let[\vdash ref] = unique [\gamma, b:block x:tm; u:of x \_ \vdash D[b.x, b.u]]
                                        [\gamma, b: \_ \vdash C[b.x, b.u]] in
```

```
rec unique: \Pi \gamma: ctx. \Pi A: [tp]. \Pi B: [tp]. \Pi M: [\gamma \vdash tm].
                [\gamma \vdash \text{ of M A}[]] \rightarrow [\gamma \vdash \text{ of M B}[]] \rightarrow [\vdash \text{ eq A B}] =
fn d \Rightarrow fn c \Rightarrow case d of
\mid [\gamma \vdash t_app D1 D2] \Rightarrow
                                                                       % Application Case
   let[\gamma \vdash t_app C1 C2] = c in
   let[\vdash ref] = unique [\gamma \vdash D1] [\gamma \vdash C1] in
        [ ⊢ ref]
\mid [\gamma \vdash t_{\text{lam }} \lambda x. \lambda u. D] \Rightarrow
                                                                        % Abstraction Case
   let[\gamma \vdash t_{lam} \lambda x. \lambda u. C] = c in
   let[\vdash ref] = unique [\gamma, b:block x:tm; u:of x \_ \vdash D[b.x, b.u]]
                                      [\gamma, b: \_ \vdash C[b.x, b.u]] in
        | [\gamma \vdash \#q.u] \Rightarrow
                         % d : of #q.x A % Assumption Case
   let[\gamma \vdash \#r.u] = c \quad in \quad \% \quad c : of \#r.x \quad B
        [ ⊢ refl :
```

Compact encoding of proofs about derivations as total functions.

```
rec unique: \Pi \gamma: ctx. \Pi A: [tp]. \Pi B: [tp]. \Pi M: [\gamma \vdash tm].
                [\gamma \vdash \text{ of M A}[]] \rightarrow [\gamma \vdash \text{ of M B}[]] \rightarrow [\vdash \text{ eq A B}] =
fn d \Rightarrow fn c \Rightarrow case d of
\mid [\gamma \vdash t_app D1 D2] \Rightarrow
                                                                       % Application Case
   let[\gamma \vdash t_app C1 C2] = c in
   let[\vdash ref] = unique [\gamma \vdash D1] [\gamma \vdash C1] in
        [ ⊢ ref]
\mid [\gamma \vdash t_{\text{lam }} \lambda x. \lambda u. D] \Rightarrow
                                                                        % Abstraction Case
   let[\gamma \vdash t_{lam} \lambda x. \lambda u. C] = c in
   let[\vdash ref] = unique [\gamma, b:block x:tm; u:of x \_ \vdash D[b.x, b.u]]
                                      [\gamma, b: \_ \vdash C[b.x, b.u]] in
        | [\gamma \vdash \#q.u] \Rightarrow
                         % d : of #q.x A % Assumption Case
   let[\gamma \vdash \#r.u] = c \quad in \quad \% \quad c : of \#r.x \quad B
        [ ⊢ refl :
```

Compact encoding of proofs about derivations as total functions.

Contribution of PPDP'08

 Lays the foundation for viewing inductive proofs about derivations as recursive programs

On paper	In Beluga
Case Analysis	Case Analysis using pattern patching
Inversion	Case Analysis using pattern patching
IH	Recursive Call

- Contextual LF: Extends LF with meta-variables, parameter variables, variable projections, and first-class context variables.
- Bi-directional type system for contextual LF
- Bi-directional type system for Beluga (computations)
 Dependently type pattern matching using refinements
- Type safety: Preservation and progress

Since 2008: Beluga has grown up

Theory:

- Normalization proof for Beluga[TLCA'15,FSCD'18]
- Extension to indexed recursive and stratified types [POPL'12,FSCD'18]
- Extensions to indexed cocrecursive types [ICFP'16]

Implementation:

- First prototype [IJCAR'10]
- Total Beluga[CADE'15]
- Interactive Beluga[ongoing, Tutorial at ICFP'18]

Case studies: Certified compiler, Howe's method (coinductive proof), Logical relations proofs (see POPLMark Reloaded [CPP'18])

What's to come?

 ${\bf Cocon:} \ \, {\bf Type \ theory \ with \ contextual \ types \ and \ first-class \ contexts} \\ - \ {\bf Martin \ L\"{o}f \ Style} \ - \\$

