Tabled higher-order logic programming

Brigitte Pientka

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Thesis Committee:

Frank Pfenning, Carnegie Mellon University, Chair
Robert Harper, Carnegie Mellon University

Dana Scott, Carnegie Mellon University

David Warren, University of New York at Stony Brook

Copyright 2003 Brigitte Pientka



Summary

A logical framework is a general meta-language for specifying and implementing de-
ductive systems, given by axioms and inference rules. Examples of deductive systems
are plentiful in computer science. In computer security, we find authentication and
security logics to describe access and security criteria. In programming languages, we
use deductive systems to specify the operational semantics, type-systems or other as-
pects of the run-time behavior of programs. Recently, one major application of logical
frameworks has been in the area of “certified code”. To provide guarantees about the
behavior of mobile code, safety properties are expressed as deductive systems. The
code producer then verifies the program according to some predetermined safety pol-
icy, and supplies a binary executable together with its safety proof (certificate). Before
executing the program, the host machine then quickly checks the code’s safety proof
against the binary. The safety policy and the safety proofs can be expressed in the
logical framework thereby providing a general safety infrastructure.

There are two main variants of logical frameworks which are specifically designed
to support the implementation of deductive systems. AProlog and Isabelle are based
on hereditary Harrop formulas, while the Twelf system [14] is an implementation of
the logical framework LF, a dependently typed lambda calculus. In this thesis, we
will mainly focus on the latter. By assigning a logic programming interpretation to
types [12], we obtain a higher-order logic programming language. Higher-order logic
programming in Twelf extends traditional first-order logic programming in three ways:
First, we have a rich type system based on dependent types, which allows the user to
define her own higher-order data-types and supports higher-order abstract syntax [13].
Variables in the object language can be directly represented as variables in the meta-
language thereby directly inheriting capture-avoiding substitution and bound variable
renaming. Second, we not only have a static set of program clauses, but clauses may be
introduced dynamically and used within a certain scope during proof search. Third, we
have an explicit notion of proof, i.e. the logic programming interpreter does not only
return an answer substitution for the free variables in the query, but also the actual
proof of the query as a term in the dependently typed lambda-calculus. This stands in

sharp contrast to higher-order features supported in many traditional logic program-



ming languages (see for example [3]) where we can encapsulate predicate expressions
within terms to later retrieve and invoke such stored predicates. Twelf’s higher-order
logic programming interpreter is complemented by a meta-theorem prover, which com-
bines generic proof search based on higher-order logic programming with inductive
reasoning [14, 20].

The Twelf system has been successfully used to implement, execute and reason
about a wide variety of deductive systems. However, experience with real-world appli-
cations in different projects on certified code [2, 4, 1] have increasingly demonstrated
the limitations of T'welf’s higher-order logic programming proof search. To illustrate,
let us briefly consider the foundational proof-carrying code project at Princeton. As
part of this project, the researchers at Princeton have implemented between 70,000
and 100,000 lines of Twelf code, which includes data-type definitions and proofs. The
higher-order logic program, which is used to execute safety policies, consists of over
5,000 lines of code, and over 600 — 700 clauses. Such large specifications have put to
test implementations of logical frameworks and exposed several problems. First, per-
formance of the higher-order logic programming interpreter may be severely hampered
by redundant computation, leading to long response times and slow development of
formal specifications. Second, many straightforward specifications of formal systems,
for example recognizers and parsers for grammars, rewriting systems, type systems
with subtyping or polymorphism, are not executable, thus requiring more complex
and sometimes less efficient implementations. Thirdly, redundancy severely hampers
the reasoning with and about deductive systems in general, limiting the use of the
meta-theorem prover.

In applications to certified code, efficient proof search techniques not only play an
important role to execute safety polices and generate a certificate that a given program
fulfills a specified safety policy, but it also can be used to check the correctness of a
certificate [10]. Necula and Rahul [10] propose as a certificate a bit-string of the
non-deterministic choices in the proof. Hence, a proof can be checked by guiding the
higher-order logic programming interpreter with the bit-string and reconstructing the
actual proof. As pointed out by Necula and Lee, typical safety proof in the context
of certified code commonly have repeated sub-proofs that should be hoisted out and

proved only once. The replication of common sub-proofs leads to redundancy in the

3



bit-strings representing the safety proof and it may take longer to reconstruct the safety
proof using a guided higher-order logic programming interpreter.

In this thesis, we develop different techniques which improve the overall performance
and the expressive power of the higher-order logic programming interpreter. We also
apply these ideas in the meta-theorem prover to overcome existing limitations when
reasoning about deductive systems. These optimizations taken together constitute a
significant step toward exploring the full potential of logical frameworks in real-world
applications. Some of the work in this thesis has been previously published in different
forms [15, 16, 17, 18, 9]

Contributions

The contributions in this thesis are in three main areas: First, we introduce tabled
higher-order logic programming, a novel execution model where some redundant in-
formation is eliminated using selective memoization. This forms the basis of the
tabled higher-order logic programming interpreter. Second, we develop efficient data-
structures and algorithms for higher-order proof search. These optimizations are cru-
cial to make tabled higher-order logic programming successful in practice. Although
we develop these techniques in the context of tabled logic programming, they are
also independently useful and important to other areas such as higher-order rewrit-
ing, higher-order theorem proving and higher-order proof checking. Third, we use
memoization-based proof search in the meta-theorem prover, to reason efficiently with
and about deductive systems. This demonstrates the importance of memoization in

general. Next, we will discuss briefly each of these contributions.

1. Tabled higher-order logic programming

Tabled first-order logic programming has been successfully applied to solve complex
problems such as implementing recognizers and parsers for grammars [21], representing
transition systems CCS and writing model checkers [5]. The idea behind it is to elim-
inate redundant computation by memoizing sub-computation and re-using its results

later. The resulting search procedure is complete and terminates for programs with

4



the bounded-term size property. The XSB system [19], a tabled logic programming
system, demonstrates impressively that tabled together with non-tabled programs can
be executed efficiently in the first-order setting.

The success of memoization in first-order logic programming strongly suggests that
memoization may also be valuable in higher-order logic programming. In fact, Necula
and Lee point out in [11] that typical safety proofs in the context of certified code
commonly have repeated sub-proofs that should be hoisted out and proved only once.
Memoization has potentially three advantages. First, proof search is faster thereby
substantially reducing the response time to the programmer. Second, the proofs them-
selves are more compact and smaller. This is especially important in applications to
secure mobile code where a proof is attached to a program, as smaller proofs take up less
time to check and transmit to another host. Third, substantially more specifications,
for example recognizers and parser for grammars, evaluators based on rewriting or type
systems with subtyping, are executable under the new paradigm thereby extending the
power of the existing system.

Using memoization in higher-order logic programming poses several challenges,
since we have to handle type dependencies and may have dynamic assumptions which
are introduced during proof search. This is unlike tabling in XSB, where we have no
types and it suffices to memoize atomic goals. Moreover, most descriptions of tabling
in the first-order setting are closely oriented on the WAM (Warren Abstract Machine)
making it hard to transfer tabling techniques and design extensions to other logic
programming interpreters.

In this thesis, we introduce a novel execution model for logical frameworks based

on selective memoization.

Proof-theoretic characterization of uniform proofs and memoization We give
a proof-theoretic characterization of tabling based on uniform proofs, and show
soundness of the resulting interpreter. This provides a high-level description of a
tabled logic programming interpreter and separates logical issues from procedural

ones leaving maximum freedom to choose particular control mechanisms.

Implementation of a tabled higher-order logic programming interpreter We

give a high-level description of a semi-functional implementation for adding tabling



to a higher-order logic programming interpreter. We give an operational interpre-
tation of the uniform proof system and discuss some of the implementation issues
such as suspending and resuming computation, retrieving answers, and trailing.
Unlike other description, it does not require an understanding or modifications,
and extensions to the WAM (Warren abstract machine). It is intended as a high-
level explanation and guide for adding tabling to an existing logic programming
interpreter. This is essential for rapidly prototyping tabled logic programming
interpreters, even for linear logic programming and other higher-order logic pro-

gramming systems.

Case studies We discuss three case studies to illustrate the use of memoization in the
higher-order setting. We consider a parser and recognizer for first-order formulas
into higher-order abstract syntax. To model left and right associativity of the
different connectives, we mix left and right recursion in the specification of the
parser. Although this closely models the grammar, it leads to an implementation
which is not executable with traditional logic programming interpreters which

are based on depth-first search.

The second case study is an implementation of a bi-directional type-checker
by Davies and Pfenning [6]. The type-checker is executable with the original
logic programming interpreter, which performs a depth-first search. However, re-
dundant computation may severely hamper its performance as there are several

derivations for proving that a program has a specified type.

2. Efficient data-structures and algorithms

Efficient data-structures and implementation techniques play a crucial role in utilizing
the full potential of a reasoning environment in large scale applications. Although
this need has been widely recognized for first-order languages, efficient algorithms for

higher-order languages are still a central open problem.

Proof-theoretic foundation for existential variables based on modal logic
We give a dependent modal lambda calculus, which extends the theory of the

logical framework LF [7, 8] conservatively with modal variables. Modal variables

6



can be interpreted as existential variables, thereby clearly distinguishing them
from ordinary bound variables. This is critical to achieve a simplified account of
higher-order unification and allows us to justify different optimizations such as
as lowering, raising, and linearization [18, 9]. Tt also serves as a foundation for

designing higher-order term indexing strategies.

Optimizing unification Unification lies at the heart of logic programming, theorem
proving, and rewriting systems. Thus, its performance affects in a crucial way
the global efficiency of each of these applications. Higher-order unification is
in general undecidable, but decidable fragments, such as higher-order patterns
unification, exist. Unfortunately, the complexity of this algorithm is still at best
linear, which is impractical for any useful programming language or practical
framework. In this thesis, we present an assignment algorithm for linear higher-
order patterns which factors out unnecessary occurs checks. Experiments show
that we get a speed-up by to a factor 2 — 5 making the execution of some examples
feasible. This is a significant step toward efficient implementation of higher-order

reasoning systems in general [18].

Higher-order term indexing Proof search strategies, such as memoization, can only
be practical if we can access the memo-table efficiently. Otherwise, the rate of
drawing new conclusions may degrade sharply both with time and with an in-
crease of the size of the memo-table. Term indexing aims at overcoming pro-
gram degradation by sharing common structure and factoring common opera-
tions. Higher-order term indexing has been a central open problem, limiting
the application and the potential impact of higher-order reasoning systems. In
this thesis, we develop and implemented higher-order term indexing techniques.
They improve performance by up to a factor of 10, illustrating the importance
of indexing [17].

3. Meta-theorem proving based on memoization

The traditional approach for supporting theorem proving in these frameworks is to

guide proof search using tactics and tacticals. Tactics transform a proof structure

7



with some unproven leaves into another. Tacticals combine tactics to perform more
complex steps in the proof. Tactics and tacticals are written in ML or some other
strategy language. To reason efficiently about some specification, the user implements
specific tactics to guide the search. This means that tactics have to be rewritten for
different specifications. Moreover, the user has to understand how to guide the prover
to find the proof, which often requires expert knowledge about the systems. Proving
the correctness of the tactic is itself a complex theorem proving problem.

The approach taken in the Twelf system is to endow the framework with the oper-
ational semantics of logic programming and design general proof search strategies for
it. Twelf’s meta-theorem prover combines general proof search based on higher-order
logic programming with inductive reasoning. Using the proof-theoretic characteriza-
tion of tabling, we develop a general memoization-based proof search strategy which
is incorporated in Twelf’s meta-theorem prover. As experiments demonstrate, elimi-
nating redundancy in meta-theorem proving is critical to prove properties about larger
and more complex specifications. We discuss several examples including type preserva-
tion proofs for type-system with subtyping, several inversion lemmas about refinement
types, and reasoning in classical natural deduction calculus. These examples include
several lemmas and theorems which were not previously provable. Moreover, we show
that in many cases no bound is needed on memoization-based search. As a conse-
quence, if a sub-case is not provable, the user knows, that in fact no proof exists. This
in turn helps the user to revise the formulation of the theorem or the specification.
Overall the benefits of memoization are an important step towards a more robust and

more efficient meta-theorem prover.



Bibliography

[1]

W. Appel and Amy P. Felty. A semantic model of types and machine instruc-
tions for proof-carrying code. In 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’00), pages 243-253, Jan. 2000.

Andrew Bernard and Peter Lee. Temporal logic for proof-carrying code. In Pro-
ceedings of the 18th International Conference on Automated Deduction (CADE-
18), volume 2392 of Lecture Notes in Artificial Intelligence, pages 31-46, Copen-
hagen, Denmark, July 2002.

Weidong Chen, Michael Kifer, and David Scott Warren. HILOG: A foundation for
higher-order logic programming. Journal of Logic Programming, 15(3):187-230,
1993.

Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical frame-
work. In 19th International Conference on Automated Deduction, Miami, Florida,
USA, 2003. Extended version published as CMU technical report CMU-CS-03-108.

B. Cui, Y. Dong, X. Du, K. N. Kumar, C.R. Ramakrishnan, [.V. Ramakrishnan,
A. Roychoudhury, S.A. Smolka, and D.S. Warren. Logic programming and model
checking. In Hugh Glaser Catuscia Palamidessi and Karl Meinke, editors, Prin-
ciples of Declarative Programming (Proceedings of PLILP/ALP’98), volume 1490
of Lecture Notes in Computer Science, pages 1-20. Springer-Verlag, 1998.

Rowan Davies and Frank Pfenning. Intersection types and computational effects.
In Proceedings of the International Conference on Functional Programming (ICFP
2000), Montreal, Canada, pages 198-208. ACM Press, 2000.

9



[7]

[10]

[12]

[13]

[14]

Robert Harper and Frank Pfenning. On equivalence and canonical forms in 1f type
theory. Technical Report CMU-CS-00-148, School of Computer Science, Carnegie
Mellon University, 2000.

Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF
type theory. Transactions on Computational Logic, 2003. To appear. Preliminary
version available as Technical Report CMU-CS-00-148.

Aleksander Nanevski, Brigitte Pientka, and Frank Pfenning. A modal foundation
for meta-variables. In 2nd ACM SIGPLAN Workshop on Mechanized Reason-
ing about Languages with variable binding (Merlin), Uppsala, Sweden. to appear,
August 2003.

G. Necula and S. Rahul. Oracle-based checking of untrusted software. In 28th ACM
Symposium on Principles of Programming Languages (POPL’01), pages 142-154,
2001.

George C. Necula and Peter Lee. Safe, untrusted agents using proof-carrying code.
In Giovanni Vigna, editor, Mobile Agents and Security, pages 61-91. Springer-
Verlag LNCS 1419, August 1998.

Frank Pfenning. EIf: A language for logic definition and verified meta-
programming. In Fourth Annual Symposium on Logic in Computer Science, pages
313-322, Pacific Grove, California, June 1989. IEEE Computer Society Press.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings
of the ACM SIGPLAN ’88 Symposium on Language Design and Implementation,
pages 199-208, Atlanta, Georgia, June 1988.

Frank Pfenning and Carsten Schiirmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction (CADE-16), pages
202-206, Trento, Italy, July 1999. Springer-Verlag Lecture Notes in Artificial In-
telligence (LNAI) 1632.

10



[15]

[16]

[17]

[18]

[20]

[21]

Brigitte Pientka. Memoization-based proof search in LF: an experimental evalua-
tion of a prototype. In Third International Workshop on Logical Frameworks and
Meta-Languages (LFM’02), Copenhagen, Denmark, Electronic Notes in Theoret-
ical Computer Science (ENTCS), 2002.

Brigitte Pientka. A proof-theoretic foundation for tabled higher-order logic pro-
gramming. In P. Stuckey, editor, 18th International Conference on Logic Program-
ming, Copenhagen, Denmark, Lecture Notes in Computer Science (LNCS), 2401,
pages 271 —286. Springer-Verlag, 2002.

Brigitte Pientka. Higher-order substitution tree indexing. In C. Palamidessi, edi-
tor, 19th International Conference on Logic Programming, Mumbai, India, Lecture

Notes in Computer Science (LNCS), to appear. Springer-Verlag, 2003.

Brigitte Pientka and Frank Pfennning. Optimizing higher-order pattern unifica-
tion. In F. Baader, editor, 19th International Conference on Automated Deduction,
Miami, USA, Lecture Notes in Computer Science (LNCS), to appear. Springer-
Verlag, 2003.

Konstantinos Sagonas and Terrance Swift. An abstract machine for tabled execu-
tion of fixed-order stratified logic programs. ACM Transactions on Programming
Languages and Systems, 20(3):586-634, 1998.

Carsten Schiirmann. Automating the meta theory of deductive systems. PhD
thesis, Department of Computer Sciences, Carnegie Mellon University, Available
as Technical Report CMU-CS-00-146, 2000.

David S. Warren. Programming in tabled logic programming. draft available from
http://www.cs.sunysb.edu/Wwarren/xsbbook /book.html, 1999.

11



