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We describe the foundation of the metaprogramming language, Mœbius, which supports the generation of

polymorphic code and, more importantly, the analysis of polymorphic code via pattern matching.

Mœbius has two main ingredients: 1) we exploit contextual modal types to describe open code together

with the context in which it is meaningful. In Mœbius, open code can depend on type and term variables

(level 0) whose values are supplied at a later stage, as well as code variables (level 1) that stand for code

templates supplied at a later stage. This leads to a multi-level modal lambda-calculus that supports System-F

style polymorphism and forms the basis for polymorphic code generation. 2) we extend the multi-level modal

lambda-calculus to support pattern matching on code. As pattern matching on polymorphic code may refine

polymorphic type variables, we extend our type-theoretic foundation to generate and track typing constraints

that arise. We also give an operational semantics and prove type preservation.

Our multi-level modal foundation for Mœbius provides the appropriate abstractions for both generating

and pattern matching on open code without committing to a concrete representation of variable binding and

contexts. Hence, our work is a step towards building a general type-theoretic foundation for multi-staged

metaprogramming that, on the one hand, enforces strong type guarantees and, on the other hand, makes it

easy to generate and manipulate code. This will allow us to exploit the full potential of metaprogramming

without sacrificing the reliability of and trust in the code we are producing and running.
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1 INTRODUCTION
Metaprogramming is the art of writing programs that produce or manipulate other programs. This

opens the possibility to eliminate boilerplate code and exploit domain-specific knowledge to build

high-performance programs. Unfortunately, designing a language extension to support type-safe,

multi-staged metaprogramming remains very challenging.
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One widely used approach to metaprogramming going back to Lisp/Scheme is using quasiquota-
tion which allows programmers to generate and compose code fragments. This provides a simple

and flexible mechanism for generating and subsequently splicing in a code fragment. However, it

has been challenging to provide type safety guarantees about the generated code, and although

many statically typed programming languages such as Haskell [Sheard and Jones 2022], and even

dependently-typed languages such as Coq [Anand et al. 2018] or Agda [van der Walt and Swierstra.

2012] support a form of quasiquotation, they generate untyped code. Fundamentally, we lack a

type-theoretic foundation for quasiquotation that provides rich static type guarantees about the

generated code and allows programmers to analyze and manipulate it.

This is not to say that no advances have been made in the area of typed metaprogramming. Two

decades ago, MetaML[Taha and Nielsen 2003; Taha and Sheard 2000] pioneered the type-safe code

generation from a practical perspective. At the same time, Davies and Pfenning [2001] observed

that the necessity (box) modality allows us to distinguish the generated code from the programs that

are generating it providing a logical foundation for metaprogramming. For example, code fragments

like box(2 + 2) have boxed types such as ⌈nat⌉, while programs such as 6 * 3, which will evaluate

to 18 and have type nat. Nanevski et al. [2008] extend this idea to describe open code with respect

to a context in which it is meaningful using contextual types. For example, the code fragment

box(x. x + 2) has the contextual box type ⌈x:nat ⊢ nat⌉. To use a piece of code such as box(x. x + 2),

we bind x.x+2 to the contextual variable U of type (x:nat ⊢ nat) using a let-box expression. At the

site where we use U to eventually splice in (x.x+2), we associate U with a delayed substitution

giving a value to x. As soon as we know what U stands for, we can apply the substitution. For

example, let box (x.U) = box(x.x+2) in box(U with 3) will bind U to the code (x.x+2) during runtime,

and produce box(3 + 2) as a result where x in the code x+2 has been replaced by 3. We hence treat

contextual variables as closures consisting of a variable and a delayed substitution (written using

the keyword with, in this example). This allows us not only to instantiate open code fragments, but

also ensures that variables in code fragments are properly renamed when we splice them in. Using

closures and contextual types is in contrast to using functions and function types where we could

write a program let box U = box(fn x → x + 2) in box(U 3). Here, evaluation would produce the

code box ((fn x → x + 2) 3) containing an administrative redex, which is particularly undesirable

in Mœbius, where the program can inspect the code. Arguably, contextual types lead to more

compact generated code which is more in line with the programmer’s intention.

This line of work cleanly separates local variables (such as x) and global variables (i.e. variables

such as U, accessible at every stage) into two zones. This provides an alternative to the Kripke-

style view where a stack of contexts models the different stages of computation. While the latter

is appealing, since box (quote) and unbox (unquote) match common metaprogramming practice,

reasoning about context stacks and variable dependencies is difficult. The let box formulation of

the modal necessity leads to an arguably much simpler formulation of the static and operational

semantics, which we see as an advantage.

In this paper, we introduce a core metaprogramming language, Mœbius, which allows us to

generate and, importantly, analyze polymorphically-typed open code fragments using pattern

matching. Our starting point is the lambda-calculus presented by Nanevski et al. [2008] where they

distinguish between local and global variables. This formulation makes evaluation order explicit

using let box-expressions. This allows us to more clearly understand the behavior of multi-staged

metaprograms that work with open code. We extend their work in three main directions:

1) Generating polymorphic code. First, we generalize their language to support System F

style polymorphism and polymorphic code generation. In particular, ⌈'a:*, x:'a, f: 'a → 'a ⊢'a⌉

describes a polymorphic code fragment such as box('a, x, f. f (f x)). A context in our setting
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keeps track of both term and type variables, hence treating both assumptions uniformly. This

allows us to support code generation for polymorphic data structures such as polymorphic lists.

2) Generating code that depends on other code and type templates. Second, we generalize
contextual types to characterize code that depends itself on other code fragments and support a

composition of code fragments which avoids creating administrative redexes due to boxing. This is

achieved by generalizing the two-zone formulation by Davies and Pfenning [2001] and Nanevski

et al. [2008], which distinguishes between two levels, to an n-ary zone formulation and leads us to

a multi-level contextual modal lambda-calculus. The two-zone formulation by Davies, Pfenning, et.

al. is then a special case of our multi-level calculus. For example, ⌈c:(x:nat ⊢ nat), x:nat ⊢ nat⌉ can

describe a piece of code like box(c, x. x + c with x) that eventually computes a natural number,

but depends on the variable x:nat and on another piece of open code c:(x:nat ⊢ nat). Note that c

simply stands for a piece of open code and any reference to it will have to provide an x with which

to close it – this is in contrast to an assumption of type ⌈x:nat ⊢ nat⌉ which stands for the boxed

version of a piece of code. This allows us to elegantly and concisely combine code fragments:

let box (y. R) = box (y. y + 2) in

let box (c,x. U) = box (c,x. 3 * x + (c with (2 * x))) in

box (y. U with ((y. R with y), y))

which results in the code box(y. 3 * y + (2 * y + 2)). We say that ⌈c:(x:nat ⊢ nat), x:nat ⊢ nat⌉ is

a level 2 contextual type, as it depends on x:nat (level 0) and c:(x:nat ⊢ nat) (level 1) assumptions.

This view is in contrast to the two-level modal lambda-calculus described in Davies and Pfenning

[2001] or Nanevski et al. [2008], where we would need to characterize code depending on other

code using the type ⌈c: ⌈x:nat ⊢ nat⌉, x:nat ⊢ nat⌉. However, this would not allow us to splice in

(y. y + 2) for c in the code bound to U; instead, we would need to splice in box(y. y + 2) for c and

retrieve the code (y. y + 2) using a let-box-expression. The code bound to U in line 2 would need

to be written as: box (c,x. let box (y. R') = c in 3 * x + (R' with (2 * x))). This would then gen-

erate the code box(y. let box (y. R') = box(y. y + 2) in 3 * y + (R' with (2 * y))) which contains

an administrative redex. Our work avoids the generation of any administrative redexes and hence

generates code as intended and envisioned by the programmer.

We further extend this idea of code templates uniformly to type templates, i.e. we are able to

describe the skeleton and shape not only of code, but also of types themselves. As a consequence,

Mœbius sits between System F and System Fω where we support term and type-level computation.

3) Pattern matching on code. Third, we extend the multi-level contextual modal lambda-

calculus with support for pattern matching on code. This follows ideas in Beluga [Pientka 2008;
Pientka and Dunfield 2008] where pattern matching on higher-order abstract syntax (HOAS) trees

is supported. However, in Beluga, we separate the language in which we write programs from the

language that describes syntax. In Mœbius, such a distinction does not exist and meta-programs

can pattern match on code that represents another (meta-)program in the same language. We view

the syntax of code through the lenses of higher-order abstract syntax treating variables abstractly

and characterize pattern variables using multi-level contextual types. In fact, multi-level contextual

types are the key to characterizing pattern variables in code – especially code that may itself contain

box-expressions and let box expressions!

Pattern matching on polymorphic code may refine type variables, as is typical in indexed or

dependently typed systems. For example, when we pattern match on a piece of code of type

⌈x:'a ⊢ 'a⌉, then one of the branches may have the pattern box(x. 0), which has type ⌈x:int ⊢ int⌉.

Hence, we need to use the constraint 'a = int to type check the body of the branch. We, therefore,

extend our multi-level contextual modal lambda calculus to generate and track type constraints,

and type-check a given expression modulo constraints. Despite the delicate issues that arise in
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supporting System F style polymorphism and pattern matching on code, our operational semantics

and the accompanying type preservation proof is surprisingly compact and clean.

We view our work as a step towards building a general type-theoretic foundation for multi-

staged metaprogramming, which enforces strong type guarantees and makes it easy to generate

and manipulate code. This will allow us to exploit the full potential of metaprogramming without

sacrificing the reliability of and trust in the code we are producing and running.

2 MOTIVATION
To illustrate the design and capabilities of Mœbius, we discuss several examples below.

2.1 Example: Generating Open Polymorphic Code
First, we implement the function nth which generates the code to look up the i-th element in a

polymorphic list v where v is supplied at a later (next) stage.

nth : int → ⌈'a:*, v:'a list ⊢ 'a ⌉

nth n = if n <= 0 then

box('a,v. hd v )

else

let box ('a,v. X) = nth (n - 1) in box('a,v. X with 'a, tl v) )

The result of the computation has the contextual type ⌈'a:*, v:'a list ⊢'a⌉. This type describes

open code at level 1 that has type 'a and depends on variables from level 0, namely 'a:*, v:'a list.

In general, a contextual type ⌈Ψ ⊢n T⌉ characterizes a code template at level n of type T. This code

template may depend on locally bound variables in Ψ which contains variables at levels strictly

lower than n. The code template may also refer to outer variables that are greater or equal to n
and whose values are computed during run-time. This principle is what underlies the design of the

multi-level modal lambda-calculus and is worth highlighting:

Mantra: a code template ⌈Ψ ⊢n T ⌉ at level n, can depend on locally bound variables Ψ
from levels less than n and outer variables that have levels greater or equal to n.

In the above example, the result that we return in the recursive case is box('a,v. X with 'a, tl v).

The code inside the box, depends on the locally bound variables 'a and v (all of which have level 0)

and uses the outer variable X (which has level 1). During runtime, X will be bound to the result of

the recursive call nth (n-1). Given an n, the program nth will recursively build up the code

box('b, v. hd (tl (.. (tl︸      ︷︷      ︸
n

v))))

Ultimately producing a code template that depends only on variables at level 0.

Subsequently, we write ⊢n in a contextual type, if we want to make explicit the level at which a

term is well-typed, but we will mostly omit the levels when they can be easily inferred.

2.2 Example: Combining Code Templates
Next, we generate code that depends on two other code templates, c and d, both of which have

the contextual type (x:int ⊢1 int). The type of these templates is at level 1, as they depend on the

variable x:int, which is at level 0. Hence, the overall generated code template lives at level 2.

In this simple example, we combine the two templates c and d in different ways depending on

whether the input to the function combine is true or false. From a computational view, if the input

evaluates to true, then we generate code that, during runtime, will first evaluate the template d

and subsequently pass its result to the template c. If the input evaluates to false, then we do the

opposite, i.e., we will first evaluate the template c and then pass its result to d.
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combine : bool → ⌈c:(x:int ⊢ 1 int) , d:(x:int ⊢ 1 int), x:int ⊢ 2 int ⌉

combine p = if p then

box(c,d,x. (fun y → c with y) (d with x))

else

box(c,d,x. (fun y → d with y) (c with x))

One might wonder whether we could have generated the code box(c,d,x. c with (d with x))

instead of box(c,d,x. (fun y → c with y) (d with x)). To understand the difference in the runtime

behaviour, we use the following instantiation: (x. x+2*x) for c, (x. x*3) for d, and 3 for x.

When we use the code box(c,d,x. (fun y → c with y) (d with x)) with (x. x+2*x), (x. x*3), 3,

then we run the code (fun y → y + 2*y) (3*3), which will first evaluate 3*3 to 9 and then compute

9 + 2*9, which returns 27. When we use box(c,d,x. c with (d with x)) with the same instantiation,

we will evaluate the code 3*3 + 2*(3*3), i.e. we will evaluate the code 3*3, which we obtain by

instantiating d with x twice! Effectively, we are using a call-by-name evaluation strategy, as the

execution of 3*3 gets delayed. This example hence illustrates yet another difference between closures

and function applications. Last, this example also highlights the difference between levels and

stages. The result for combine is a contextual type at level 2, since it depends on other code templates.

However, we are generating the code in one stage.

The difference between levels and stages can also be understood from a logical perspective:

stages characterize when code is generated; as such they describe a property of a boxed type in a

positive position. Levels express a property of the assumptions (i.e. negative occurrences) that are

used in a boxed type, namely that how code is used. In particular, levels allow us to express directly

and accurately the fact that code may depend not only on closed values, but also on open code.

This allows us to describe code that may itself depend on other code.

2.3 Example: Type Templates
Mœbius supports System-F style polymorphism. Hence, we may not only want to describe open

code, but also types that are open (i.e. type templates). For example, consider the contextual type

⌈'a:('c:* ⊢ *), f: ∀'b. 'b → ('a with 'b) → int ⊢ int ⌉

This describes a piece of code that relies on the polymorphic function f, which computes an int.

Here 'a describes a type template – it stands for some type that has one free type variable. We again

associate 'a with a substitution which, in this example, renames the variable 'c in the type template

to be 'b. As a consequence, f in fact stands for a family of functions! If we instantiate 'a with the

type template 'c.'c, then f has type ∀ 'b. 'b → 'b → int. If we instantiate it with 'c. 'c → c', then

f stands for a function of type ∀ b'. b' → (b' → b') → int. In System Fω , we would have declared

this type as: ⌈'a: * → *, f:∀ 'b. 'b → 'a 'b → int ⊢int⌉

The support of type templates that have contextual kinds means that Mœbius sits between

System Fω where we have type level functions and System F. Using type variables that have a

contextual kind brings a distinct advantage over System Fω : as we apply the substitution associated

with the type variable 'a as soon as we know its instantiation, we can compare two types simply

by structural equality, and we do not need to reason about type-level computation.

The ability to characterize holes in types and terms is particularly important when we con-

sider pattern matching on code. In our setting, polymorphic programs may contain explicit type

applications, and hence, we not only pattern match on terms but also on types.

2.4 Example: Lift Polymorphic Data Structures
In Mœbius, as in other similar frameworks, we need to lift values explicitly to the next stage. Lifting

integers is done by simply traversing the input and turning it into its syntax representation. This
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is straightforward. We write here ⌈int⌉ as an abbreviation for ⌈ ⊢ 1 int⌉, which describes a closed

integer at level 1, i.e. the minimum level that generated code can have.

lift_int : int → ⌈int ⌉

lift_int n = if n = 0 then box (0) else let box(X) = lift_int (n - 1) in box(X + 1)

To lift polymorphic lists, we need to lift values of type 'a to their syntactic representations and

then lift lists themselves. This generic lifting function for values of type 'a will intuitively have the

type 'a → ⌈'a⌉. But how can we ensure that the type variable 'a can be used inside a contextual

type at level 1? – To put it differently, how can we guarantee that the type variable persists when

we transition inside the contextual box type? We again use the intuition that code and types at
stage n, have locally bound variables from levels less than n, but they may depend on outer variables
that have levels greater or equal to n. For ⌈'a⌉ to be a well-formed type, the type variable 'a must be

declared at level 1 or higher.

Hence, we declare the type variable 'a as a type template 'a: ( ⊢ *). We omit here again the level

1, since it can be inferred from the surrounding context.

lift_list : ('a:( ⊢ *)) → 'a list → ('a → ⌈'a ⌉ ) → ⌈'a list ⌉

lift_list l lift = match l with

| [] → box([])

| x::xs → let box X = lift x in let box XS = lift_list xs lift in box(X::XS)

For terms, we have a natural interpretation of running and evaluating code. This rests on the

idea that a term at stage 1 can always be used at stage 0.

eval_int : ⌈int ⌉ → int

eval_int x = let box X = x in X

eval_list : ('a:( ⊢ *)) → ⌈'a list ⌉ → 'a list

eval_list v = let box V = v in V

Similarly, we can run and evaluate polymorphic code. Again we rely on the idea that the type

variable a is describing types at level 1 or below.

This concept also allows us to lift the result of a function rev ('a:*) → 'a list → 'a list. In the

code below, we simply call rev with 'a (or more precisely with 'a with .).

lift_rev_list : ('a:( ⊢ *)) → 'a list → ('a → ⌈'a ⌉ ) → ⌈'a list ⌉

lift_rev_list l = lift_list (rev l)

2.5 Example: Multi-Staged Polymorphic Code
We now give an example of multi-staged polymorphic code generation. Here, names l and liftA in

the function type are to help the understanding, and are not part of our syntax. It is a multi-staged

version of map_reduce. We annotate all the contextual types and kinds with their level, although the

level can be inferred from where the type variable is used. It serves as another illustration that the

level manages variable dependencies and cross-stage persistence[Taha and Sheard 2000], while the

stagingmanageswhen code is generated. In the code below, we omit writing the identity substitution

that is associated with variables writing for example simply R instead of (R with 'b,f,liftB).

map_reduce : ('a:( ⊢ 2 *)) → (l:'a list) → (liftA:'a → ⌈ ⊢ 2 'a ⌉ )

→ ⌈'b:( ⊢ 1 *), f:'a → 'b, liftB:'b → ⌈ ⊢ 2 'b ⌉

⊢ 2 ⌈'c:*, g:'b → 'c → 'c, base:'c ⊢ 1 'c ⌉ ⌉

map_reduce l liftA = match l with

| [] → box ('b,f,liftB. box('c,g,base. base) )

| x::xs →

let box ('b,f,liftB. R) = map_reduce xs liftA in
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let box A = liftA x in box ('b,f,liftB.

let box ('c,g,base. M) = R in

let box X' = liftB (f A) in box ('c,g,base. M with 'c, g, (g X' base )))

Multi-stage code generation generates code incrementally in several stages. For example, map_reduce

generates the final code in 2 stages. This is evident, since the return type has a boxed type nested

inside another boxed type.

In the function declaration of map_reduce, we declare ('a:( ⊢2 *)), as we want to use a at any stage

2 or below. However, the other declarations l and liftA are declared at level 0 – they will be inaccessi-

ble inside a box-expression. Therefore, this forces us to lift the head of the list (liftA x) first before we

build our result, as when we enter the scope of 'b:( ⊢1 *); f:'a → 'b, liftB:'b → ⌈⊢2 'b⌉ we only

keep the declaration ('a:( ⊢2 *)), but the outer declarations at level 0 get dropped as they become in-

accessible. Similarly, whenwe enter the inner contextual box ⌈'c:*, g:'b → 'c → 'c, base:'c ⊢1 'c⌉,

we will drop all the outer assumptions at level 0 (as they get overwritten by the new local context

'c:*, g:'b → 'c → 'c, base:'c, but assumptions at levels higher than 0 remain accessible. The

levels, therefore, manage scope dependencies – especially as we cross different stages.

2.6 Example: Working with Church Encodings and Pattern Matching
The last example illustrates the benefits of generating code as intended by programmers and the

use of pattern matching. We represent the type of natural numbers using Church encoding as

⌈'a:*, x:'a, f:'a → 'a ⊢'a⌉. However, unlike the usual Church encoding where we use functions

and function application, we exploit the power of contextual types instead. This then allows for

elegant implementations of addition or other arithmetic operations. We will again omit writing the

identity substitutions, i.e. for example, writing simply N instead of (N with 'a,x,f).

gen_church: int → ⌈'a:*,x:'a, f:'a → 'a ⊢ 'a ⌉

gen_church n = if n = 0 then box('a,x,f. x)

else let box('a,x,f. N) = gen_church (n-1) in box('a,x,f. f N)

add: ⌈'a:*,x:'a, f:'a → 'a ⊢ 'a ⌉ → ⌈'a:*,x:'a, f:'a → 'a ⊢ 'a ⌉

→ ⌈'a:*,x:'a, f:'a → 'a ⊢ 'a ⌉

add n m = let box ('a,x,f. N) = n in

let box ('a,x,f. M) = m in box('a,x,f. N with 'a, M, f)

Working with the Church encoding directly as syntactic representations again allows us to

generate code as the programmer intended. For example adding the Church encoding of 2 and the

Church encoding of 3 will yield the Church encoding of 5 – not some program that will evaluate to

5 when we run the result. As we know the structure of the Church encoding for numbers, we can

also inspect it via pattern matching. This opens new possibilities to implement the predecessor

function directly via pattern matching instead of the usual more painful solution when we work

with functions and function applications.

pred n = case n of

| box('a,x,f. x) → box('a,x,f. x)

| box('a,x,f. f X) → box('a,x,f. X)

The first case captures the fact that the input n is a representation of 0, and we simply return it.

In the second case, we know that it is an application f X where X is the pattern variable denoting a

code template of type ('a:*,x:'a,f:'a → 'a ⊢'a). We hence simply strip off the f.

We delay a more in-depth discussion of pattern matching on code to Sec. 4.
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3 A MULTI-LEVEL MODAL LAMBDA-CALCULUS WITH POLYMORPHISM
We describe first a modal polymorphic lambda-calculus where we use multi-level contextual types

to characterize open code. This calculus serves as a foundation to generate polymorphic open code.

We then extend this calculus to support pattern matching on polymorphic code in Sec. 4.

Types T , S ::= α[σ ] | T1 → T2 | (α :(Ψ ⊢
n ∗)) → T | ⌈Ψ ⊢n T ⌉

Terms e ::= x[σ ] | fn x → e | e1 e2 | Fn αn → e | e (Ψ̂n .T ) |

box (Γ̂n . e ) | let box (Γ̂n .u) = e1 in e2

Substitution σ ::= · | σ , Ψ̂n .e | σ ;xn | σ , Ψ̂n .T | σ ;αn

Context Γ,Ψ,Φ ::= · | Γ,x :(Ψ ⊢n T ) | Γ,α :(Ψ ⊢n ∗)

Erased context Γ̂, Ψ̂, Φ̂ ::= · | Γ̂,xn | Γ̂,αn

Fig. 1. Syntax of Multi-Level Modal Lambda-Calculus

3.1 Syntax
We describe the syntax of Mœbius in Fig. 1. Central to Mœbius are multi-level contextual types

and kinds that describe code and type templates together with the context in which they are

meaningful. A multi-level contextual type (Ψ ⊢n T ) describes code of type T in a context Ψ where

all assumptions in Ψ are themselves at levels below n. Variables at level n or above are viewed as

global variables whose values will be computed during run-time. Similarly, a multi-level contextual

kind (Ψ ⊢n ∗) describes a type fragment in a context Ψ.
We treat all variable declarations in our context uniformly; hence our typing context keeps track

of variable declarations x : (Ψ ⊢n T ) and type declarations α : (Ψ ⊢n ∗). If n = 0, then we recover

our ordinary bound variables of type T from x : (· ⊢0 T ). As there are no possible declarations at

a level below 0, this context is necessarily empty (in fact it doesn’t even exist). Similarly, a type

declaration α : (· ⊢0 ∗) denotes simply a type variable α .
A contextual type or term variable is associated with a substitution, written here as α[σ ] and

x[σ ]. Intuitively, if a contextual variable x : (Ψ ⊢n _) is declared in some context Φ, then the

substitution σ provides instantiations for variables in Ψ in terms of Φ. As soon as we know the

instantiation for x , we apply the substitution σ . We previously wrote (x with σ) as concrete source

syntax in our code examples in Sec. 2.

Mœbius is a generalization of the modal lambda-calculus described by Davies and Pfenning

[2001] or Nanevski et al. [2008] which separates the global assumptions in a meta-context from the

local assumptions. This gives us a two-zone representation of the modal lambda-calculus. Mœbius

generalizes this work to an n-ary zone representation. If n = 1, then we obtain the two-zone

representation from the previous work. Variables at level 1 correspond to the meta-variables which

live in the global meta-context, and variables at level 0 correspond to the ordinary bound variables.

Our notion of multi-level contextual types is also similar to the work by Boespflug and Pien-

tka [2011]. However, this work was concerned with developing a multi-level contextual logical

framework. We adopt the ideas to polymorphic multi-staged programming.

Mœbius supports boxed contextual types, ⌈Ψ ⊢n T ⌉ which describe a code template of type T in

the context Ψ. The level n enforces that the given template can only depend locally on variables at

levels below n. This will allow us to cleanly manage variable dependencies between stages and will

serve as a central guide in the design of Mœbius. In addition, we support function types (written as

T1 → T2) and polymorphic function (α :(Ψ ⊢n ∗)) → T which abstract over type variables α . The
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ordinary polymorphic function space is a special case where n = 0. As a type variable α stands in

general for a type-level template, we associate it with a substitution σ , written as α[σ ]. As soon as

we know what type variable α stands for, we splice it in and apply σ . This ensures that the type
makes sense in the context where it is used. When n = 1, we can model types in System Fω . For

example, in System Fω , we might define: (α :∗ → ∗) → (β : ∗) → α β . In Mœbius, we declare it

instead as: (α :(_:∗ ⊢1 ∗)) → (β : ∗) → α[β] avoiding type-level functions and creating a type-level

function application.

Our core language of Mœbius includes functions (fn x → e), function application (e1 e2), type
abstractions (Fn αn → e) and type application (e (Ψ̂n .T )). We carry the level n of α as an annotation;

this is needed for technical reasons when we define simultaneous substitution operations. Further,

we include box and let box expressions to generate code and use code. In particular, box (Γ̂n . e )
describes code e together with the list of (local) variables Γ̂n which may be used in e . The level n
states again that these bound variables are below level n and we ensure that n here is greater than

0 during typing, as an expression e at level 0 is an ordinary expression, not a code fragment. To

use a program e1 that generates a code template, we bind a contextual variable u to the result of

evaluation of e1 and use the result in a body e2. This is accomplished via let box (Γ̂n .u) = e1 in e2.
A substitution is formed by extending a given substitution with a contextual term (Ψ̂n .e ), a

contextual type (Ψ̂n .T ), a term variable x , or a type variable α . The latter extensions are necessary
to allow us to treat substitutions as simultaneous substitutions. In particular, when pushing a

substitution σ inside a function Fn αn → e , we need to extend it with a mapping for α . However,
we would need to eta-expand α based on its type to obtain a proper contextual object, as α by itself

would not be a legitimate type. Therefore, we allow extensions of substitutions with an identity

mapping, which is written as σ ;αn . Similarly, if we push the substitution inside box (Γ̂n . e ) then we

may need to extend the simultaneous substitution with mappings for the variables listed in Γ̂, but
we lack the type information to expand a term variable x to a proper contextual term. This issue is

not new and is handled similarly in Nanevski et al. [2008] in a slightly different setting.

In contrast to the two-zone formulation of the modal lambda-calculus in Nanevski et al. [2008],

which has different substitution operations for ordinary bound variables (variables at level 0) and

meta-variables (variables at level 1), our substitution encompasses both kinds of substitutions.

Remark 1: We define the level of a context: level(Ψ) = n iff for all declarations x :(_ ⊢k _) in Ψ
have k < n. In other words, the level of context Ψ ensures that all variables in Ψ are at strictly

smaller levels. We often make the level explicit as a superscript, Ψn
, which describes a context Ψ

where level(Ψ) = n. Note that we abuse the functional notation here, since level does not have a
unique result for a given context Ψ.

Remark 2: The erasure of type annotations from the context Ψn
drops all the type and kind

declarations from Ψ, but retains the level to obtain Ψ̂n
. Abusing notation, we often simply write

Ψ̂n
for the erasure of type annotations from the context Ψn

.

Remark 3: We write id(Φ̂) for the identity substitution that has domain Φ. It is defined as fol-

lows:

id(·) = ·

id(Φ̂, xn ) = id(Φ̂);xn

id(Φ̂, αn ) = id(Φ̂);αn

Before moving to the typing rules, we take a closer look first at our typing contexts and then at

our substitutions, because they are both key parts of the design of our language and they hopefully

give a good general intuition about the way the system works.
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Merging contexts: Ψ ⊕ Φ = Γ
· ⊕ Φ = Φ
Ψ ⊕ · = Ψ
Ψ,x :(Γ ⊢n K ) ⊕ Φ,y:(Γ′ ⊢k K ′) = (Ψ,x :(Γ ⊢n K ) ⊕ Φ),y:(Γ′ ⊢k K ′) if k ≤ n
Ψ,x :(Γ ⊢n K ) ⊕ Φ,y:(Γ′ ⊢k K ′) = (Ψ ⊕ Φ,y:(Γ′ ⊢k K ′)),x :(Γ ⊢n K ) otherwise

Chopping lower context: Ψ|n = Φ
(·) |n = ·

(Ψ,x :(Φ ⊢k K ) |n = Ψ|n if k < n
(Ψ,x :(Φ ⊢k K )) |n = Ψ,x :(Φ ⊢k K ) otherwise

Fig. 2. Merging and chopping of contexts

3.2 Context operations
First, we note that we maintain order in a context and hence contexts must be sorted according to

the level of assumptions x :(Ψ ⊢n T ). One should conceptualize this ordered context as a stack of sub-
contexts, one for each level of variables. Let Ψ(k ) be the subcontext of Ψn

with only assumptions

of level k . Then, Ψn = Ψ(n − 1),Ψ(n − 2), . . . ,Ψ(1),Ψ(0). Slightly abusing notation we write

Ψ(i ),Ψ(i − 1) for appending the context Ψ(i ) and the context Ψ(i − 1). Note that Ψ(0) contains only
declarations of type (· ⊢0 T ) and we recover our ordinary typing context which simply contains

variable declarations x :T . The context Ψn
is essentially an n-ary zone generalization of the two-

zone context present in Davies and Pfenning [2001] work. We can recover their two zones when

n = 1. We opt here for a flattened presentation of the n-ary zones of contexts in order to simplify

operations on contexts. Keeping the context sorted not only provides conceptual guidance, but also

helps us to handle cleanly the dependencies among variable declarations.

Keeping the context sorted comes at a cost: extending a context must preserve this invariant.

However, restricting a context, which is necessary as we move up one stage, i.e. we move inside

a box, is simpler. We therefore define and explain two main operations on context: restricting a

context and merging two contexts. To chop off all variables below level n from an ordered context

Γ, we write Γ |n . To merge two ordered contexts Γ and Ψ we write Γ ⊕ Ψ. With merging defined,

insertion of a new assumption into a context is a special case. For compactness, we write K for a

type or a kind in the definition of the context operations in Fig. 2.

The chopping operation for the lower context allows us to drop all variable assumptions below

the given level from a context. If k ≤ n, then (Ψk ) |n = ·.
Merging of two independent, sorted contexts is akin to the merge step of the merge-sort algorithm

and therefore inherits many of its properties. In particular, the merge of two sorted independent

contexts is again a sorted context. It is also stable, in the sense that the relative positions of any

two assumptions in Ψn
or in Φk

is preserved in Ψn ⊕ Φk
.

When we merge two sorted contexts Ψ and Φ, i.e. when for every declaration x :(_ ⊢n _) in Ψ,
we have level(Φ) ≤ n + 1, we simply write Ψ,Φ (see [Jang et al. 2021] for the definition). While

defining a separate append operation on sorted contexts is not necessary, it is often conceptually

easier to read and use. It is also more concise.

3.3 Simultaneous Substitution Operation
We concentrate here on the simultaneous substitution operation, but the single substitution opera-

tion follows similar ideas.
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In our grammar, simultaneous substitutions are defined without their domain. However, when

applying a simultaneous substitution σ , we can always recover its domain Ψ̂. The idea is that σ
provides instantiations for all variables in Ψ̂ where level(Ψ̂) = n. All variables at levels greater or
equal to n are treated as global variables and are untouched by the substitution operation. We note

that since contexts are ordered, simultaneous substitutions are also ordered.

We describe here in detail applying a substitution to a type [σ/Φ̂]T . Note that the substitution
operation is written in prefix. This is in contrast to the closure of a variable with a substitution

which is written in postfix (see x[σ ] and α[σ ] resp.). Due to space, we omit the definition for

[σ/Φ̂]e which applies the substitution σ to a term e , composing substitutions, and applying a

substitution to a context. They can be found in [Jang et al. 2021]. In the definition of these substitution

operations, we rely on chopping, merging, and appending simultaneous substitutions, written

(σ/Φ̂) |k , (σ/Φ̂) ⊕ (σ ′/Ψ̂) and (σ/Φ̂), (σ ′/Ψ̂). Those operations correspond to the equivalent context
operations and are also defined in [Jang et al. 2021].

[σ/Ψ̂](α[σ ′]) = α[σ ′′] α < Ψ̂ and [σ/Ψ̂]σ ′ = σ ′′

[σ/Ψ̂](α[σ ′]) = T ′ lkp(σ/Ψ̂) α = (Φ̂n .T ) and level(Ψ̂) > n

and [σ/Ψ̂]σ ′ = σ ′′ and [σ ′′/Φ̂]T = T ′

[σ/Ψ̂](α[σ ′]) = β[σ ′′] lkp(σ/Ψ̂) α = βn and level(Ψ̂) > n and [σ/Ψ̂]σ ′ = σ ′′

[σ/Ψ̂](T → S ) = T ′ → S ′ [σ/Ψ̂]T = T ′ and [σ/Ψ̂]S = S ′

[σ/Ψ̂]((α :(Φ ⊢n ∗)) → T ) = ((α :(Φ ⊢n ∗)) → T ′) level(Ψ̂) > n and [(σ/Ψ̂) ⊕ (α/αn )]T = T ′

[σ/Ψ̂]((α :(Φ ⊢n ∗)) → T ) = ((α :(Φ ⊢n ∗)) → T ′) level(Ψ̂) ≤ n and [σ/Ψ̂]T = T ′

[σ/Ψ̂](⌈Φ ⊢n T ⌉) = ⌈Φ′ ⊢n T ′⌉ level(Ψ̂) ≥ n and (σ/Ψ̂) |n = σ ′/Ψ̂′ and

[σ ′/Ψ̂′]Φ = Φ′ and [(σ ′/Ψ̂), (id(Φ̂)/Φ̂)]T = T ′

[σ/Ψ̂](⌈Φ ⊢n T ⌉) = ⌈Φ ⊢n T ⌉ level(Ψ̂) < n

Fig. 3. Simultaneous Substitution Operation for Types: [σ/Ψ̂]T = S

The substitution operation [σ/Ψ̂]T is then mostly straightforward and applied recursively to T .
In the variable case α[σ ′], we distinguish between three cases:

If α is not in Ψ̂, then α denotes a “global” variable; we leave α untouched and only apply σ to σ ′.
If α is in Ψ̂, then we have either a corresponding instantiation (Φ̂n .T )/αn or simply βn for α

in σ/Ψ̂ (see [Jang et al. 2021] for the definition of the lookup operation, lkp((σ/Ψ̂)) α ). In both

cases, we apply the simultaneous substitution σ to σ ′ giving us some substitution σ ′′. In the former

case (where (Φ̂n .T )/αn), we now apply the substitution σ ′′ to T . Applying the substitution will

terminate, as σ ′′ provides instantiations for variables at lower levels than n. In the latter case (where

βn/αn ), we simply pair β with σ ′′ creating a new closure.

For polymorphically quantified types, we push the substitution inside and extend the substitution

with the identity, if its level n satisfies n < level(Ψ̂). Although we quantify over (contextual) type

variables that have type (Φ ⊢n ∗), we do not have to apply the substitution to Φ itself, as Φ is a

context containing only type variable declarations
1
. For boxed types such as ⌈Φ ⊢n T ⌉, we push

σ inside the box, if level(Ψ̂) ≥ n. To do this, we first drop all the mappings for variables below n
from the substitution σ , since those variables will be replaced by Φ. Then, we apply σ ′/Ψ̂′ to Φ (see

1
Generalizing this to contain both type and term variable declarations is straightforward and follows the similar principle

as in the boxed type case where we apply to Φ the substitution (σ /Ψ̂) |n .
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[Jang et al. 2021]for the definition). Further, we extend σ ′ with the identity mapping for variables

in Φ before applying it to T . If level(Ψ̂) ≤ n, then we do not apply the substitution to Φ or T , since
it concerns variables that will be replaced by Φ and those variables are locally bound.

Theorem 3.1 (Termination). The substitution operation [σ/Φ̂]T , [σ/Φ̂]e , and [σ/Φ̂]σ ′ termi-
nates.

Proof. By induction on the level(Φ̂) and structure of T and e and σ ′. Either level(Φ̂) stays the
same and T (resp. e or σ ) is decreasing or level(Φ̂) is decreasing. □

3.4 Typing Rules
With the context and substitution operations in place, we can now define the typing rules for the

multi-level contextual modal lambda-calculus in an elegant way. The levels provide us with enough

structure to keep track of the scope of variables, terms and types.

To distinguish the notation for contextual types, written as ⌈Ψ ⊢n T ⌉ from the typing judgment,

we use ⊢⊢ for all the typing judgments.

We begin with defining well-formed contexts. A context Γ,x :(Φ ⊢n T ) is well-formed, if Γ is

well-formed, Φ is well-formed with respect to Γ |n , and T is well-kinded in the context (Γ |n ,Φ).

Well-formed contexts: ⊢⊢ Γ

⊢⊢ Γ level(Φ) ≤ n ⊢⊢ Γ |n ,Φ Γ |n ,Φ ⊢⊢ T

⊢⊢ Γ,x :(Φ ⊢n T )

⊢⊢ Γ level(Φ) ≤ n ⊢⊢ Γ |n ,Φ

⊢⊢ Γ,α :(Φ ⊢n ∗) ⊢⊢ ·

With the context operations in place, the kinding rules for types are straightforward.

Kinding rules for types: Γ ⊢⊢ T Γ(α ) = (Φ ⊢n ∗) Γ ⊢⊢ σ : Φ

Γ ⊢⊢ α[σ ]

Γ ⊢⊢ S Γ ⊢⊢ T
Γ ⊢⊢ S → T

⊢⊢ Γ |n ,Φ Γ ⊕ α :(Φ ⊢n ∗) ⊢⊢ T

Γ ⊢⊢ (α :(Φ ⊢n ∗)) → T

⊢⊢ Γ |n ,Φ Γ |n ,Φ ⊢⊢ T

Γ ⊢⊢ ⌈Φ ⊢n T ⌉
n > 0

Type variables α[σ ] where α : (Φ ⊢n ∗) in Γ are well-kinded, if the associated substitution σ
maps variables from Φ to the present context Γ. Function types, S → T are well-kinded, if both

S and T are well-kinded. When we check that (α :(Φ ⊢n ∗)) → T is well-kinded in a context Γ,
we ensure that Φ is well-formed with respect to Γ |n , as the local context Φ will replace all the

variables at levels below n in the original Γ; this is accomplished by ⊢⊢ Γ |n ,Φ. We then check that T
is well-formed, in the context Γ extended with the assumption α :(Φ ⊢n ∗) where the assumption is

inserted at the appropriate position in Γ. For the kinding of ⌈Φ ⊢n T ⌉, we proceed similarly. We

again replace all the variables at levels below n in the original Γ with Φ using the previously defined

context operations.

Using the context operations for restricting and extending contexts, the typing rules for expres-

sions (Fig. 4) are mostly straightforward and follow the general principle that we have seen before.

To show that a function fn x → e has type S → T , we extend the context Γ with the declaration

x :(· ⊢0 S ) and check that the body e has type T . As we remarked before, no typing context with

assumptions below level 0 exists, and this declaration can be viewed as x :T . However, giving it level
0 allows for a uniform treatment. To show that a type abstraction, Fn αn → e , has the appropriate
type, we extend the context with type variable declaration for α .
Applications, e1 e2 are defined as expected. For type applications, e (Φ̂n .T ), we need to be a bit

more careful: in addition to verifying that e has type (α :(Φ ⊢n ∗)) → S , we again verify that T is

well-kinded in a new context, where we replace the assumptions at level below n in Γ with the
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Γ(x ) = (Φ ⊢n T ) Γ ⊢⊢ σ : Φ

Γ ⊢⊢ x[σ ] : [σ/Φ̂]T

Γ,x :(· ⊢0 S ) ⊢⊢ e : T

Γ ⊢⊢ fn x → e : S → T
Γ ⊢⊢ e1 : S → T Γ ⊢⊢ e2 : S

Γ ⊢⊢ e1 e2 : T

Γ ⊕ α :(Φ ⊢n ∗) ⊢⊢ e : T

Γ ⊢⊢ Fn αn → e : (α :(Φ ⊢n ∗)) → T

Γ ⊢⊢ e : (α :(Φ ⊢n ∗)) → S Γ |n ,Φ ⊢⊢ T

Γ ⊢⊢ e (Φ̂n .T ) : [Φ̂n .T /αn]S

Γ |n ,Φ ⊢⊢ e : T

Γ ⊢⊢ box (Φ̂n . e ) : ⌈Φ ⊢n T ⌉

Γ ⊢⊢ e1 : ⌈Φ ⊢
n S⌉ Γ ⊕ u:(Φ ⊢n S ) ⊢⊢ e2 : T

Γ ⊢⊢ let box (Φ̂n .u) = e1 in e2 : T

Fig. 4. Typing rules for expressions Γ ⊢⊢ e : T

Γ ⊢⊢ · : ·

Γ ⊢⊢ σ : Γ′ (σ/Γ̂′) |n = (σ ′/Γ̂′′) Γ |n , [σ
′/Γ̂′′]Ψ ⊢⊢ e : [(σ ′/Γ̂′′), (id(Ψ̂)/Ψ̂)]T

Γ ⊢⊢ (σ , Ψ̂n .e ) : (Γ′,x :(Ψ ⊢n T ))

Γ ⊢⊢ σ : Γ′ (σ/Γ̂′) |n = (σ ′′/Γ̂′′) Γ(x ) = ([σ ′′/Γ̂′′]Ψ ⊢n [σ ′′/Γ̂′′]T )

Γ ⊢⊢ (σ ;x ) : (Γ′,x :(Ψ ⊢n T ))

Fig. 5. Typing rules for substitutions Γ ⊢⊢ σ : Φ

declarations from Φ. To accomplish this, we again rely on our context operations, first restricting Γ
and then appending Φ. As the type of e will be polymorphic, namely (α :(Φ ⊢n ∗)) → S , we return
as the type of e (Φ̂n .T ) the type S where we have replaced α with (Φ̂n .T ).

The rules for box and letbox again appropriately restrict and extend Γ based on the level where

n > 0. This side condition simply allows us to distinguish between code, i.e. terms that are boxed

and represent syntax, and programs, i.e. terms that will be evaluated and run.

A substitution (σ , Ψ̂n .e ) provides a mapping from (Γ′,x :(Ψ ⊢n T )) to the context Γ, if σ maps

variables from Γ′ to Γ and if e is well-typed. As the type (Ψ ⊢n T ) is well-formed with respect to Γ′,
we will need to transport both Ψ and T to Γ. Since Ψ depends only on Γ′ |n , we only need to apply

the restricted substitution (σ/Γ̂′) |n = (σ ′′/Γ̂′′) to Ψ. Since we work with simultaneous substitution,

we need to extend this restricted substitution with the identity mapping for Ψ, before we can apply

it to the type T and effectively move the type to the new context (Γ |n , [σ
′′/Γ̂′′]Ψ) in which e will

be well-typed. The cases where we extend a substitution with a variable (i.e. σ ;xn ) is a special case
of the previous cases. The extension of a substitution with a type (Ψ̂n .T ) or a type variable αn

follows the similar idea and are a special case of handling the term extension. We omit them here

due to space, but their definition is given in [Jang et al. 2021].

3.5 Substitution properties
Wenow establish substitution properties. Recall that a contextΨk = Ψ(k−1),Ψ(k−2), . . . ,Ψ(1),Ψ(0)
where Ψ(j ) is the subcontext of Ψk

with only assumptions of level j. For easier readability, we will
simply write Γ1,α :(Φ ⊢

n ), Γ0 for a context where all assumptions in Γ1 are at level n or above and all

assumptions in Γ0 are at level n or below.

We first state that the generation of identity substitutions yields well-typed substitutions.

Lemma 3.2 (Identity Substitution). Γ,Φ ⊢⊢ id(Φ̂) : Φ

Proof. By induction on Φ. □
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Next, we generalize a property that already exists in Nanevski et al. [2008] and Pientka [2003].

In this previous work, it states that the substitution for locally bound variables and the substitution

operation for meta-variables commute. Here we state more generally that substitution for a variable

with levelm and substitution for a variable with level n commute, as long asm is greater or equal

to n.

Lemma 3.3 (Commuting Substitutions).

(1) Ifm ≥ n, then [(Ψ̂m .S2)/β
m
][(Φ̂n .S1)/α

n
]T = [(Φ̂n .[(Ψ̂m .S2)/β

m
]S1)/α

n
][(Ψ̂m .S2)/β

m
]T .

(2) Ifm ≥ n, then [(Ψ̂m .e2)/y
m
][(Φ̂n .e1)/x

n
]e0 = [(Φ̂n .[(Ψ̂m .e2)/y

m
]e1)/x

n
][(Ψ̂m .e2)/y

m
]e0.

Proof. By induction on T and e0. □

Last, we state the substitution properties for type variables, term variables and simultaneous

substitutions. Since the single substitution operation relies on simultaneous substitution, we prove

them all mutually. However, for clarity, we state them separately.

Lemma 3.4 (Type Substitution Lemma). Assuming ⊢⊢ Γ1,α :(Φ ⊢n ∗), Γ0 and Γ1,Φ ⊢⊢ T .

(1) Then ⊢⊢ Γ1, [(Φ̂n .T )/αn]Γ0.
(2) If Γ1,α :(Φ ⊢n ∗), Γ0 ⊢⊢ S then Γ1, [(Φ̂

n .T )/αn]Γ0 ⊢⊢ [(Φ̂
n .T )/αn]S .

(3) If Γ1,α :(Φ ⊢n ∗), Γ0 ⊢⊢ e2 : S then Γ1, [(Φ̂
n .T )/αn]Γ0 ⊢⊢ [(Φ̂

n .T )/αn]e2 : [(Φ̂
n .T )/αn]S .

(4) If Γ1,α :(Φ ⊢n ∗), Γ0 ⊢⊢ σ : Ψ then Γ1, [(Φ̂
n .T )/αn]Γ0 ⊢⊢ [(Φ̂

n .T )/αn]σ : [(Φ̂n .T )/αn]Ψ.

Lemma 3.5 (Term Substitution Lemma). Assuming ⊢⊢ Γ1,u:(Φ ⊢n T ), Γ0 and Γ1,Φ ⊢⊢ e : T .

(1) If Γ1,u:(Φ ⊢n T ), Γ0 ⊢⊢ e2 : S then Γ1, Γ0 ⊢⊢ [(Φ̂
n .e )/u]e2 : S .

(2) If Γ1,u:(Φ ⊢n T ), Γ0 ⊢⊢ σ : Ψ then Γ1, Γ0 ⊢⊢ [(Φ̂
n .e )/u]σ : Ψ.

Lemma 3.6 (Simultaneous Substitution Lemma). Assuming Γ1,Φ ⊢⊢ σ : Γ0.

(1) If ⊢⊢ Γ1, Γ0,Ψ then ⊢⊢ Γ1,Φ, ([σ/Γ̂0]Ψ).
(2) If Γ1, Γ0 ⊢⊢ S then Γ1,Φ ⊢⊢ [σ/Γ̂0]S .
(3) If Γ1, Γ0 ⊢⊢ e : S then Γ1,Φ ⊢⊢ [σ/Γ̂0]e : [σ/Γ̂0]S .
(4) If Γ1, Γ0 ⊢⊢ σ2 : Ψ then Γ1,Φ ⊢⊢ [σ/Γ̂0]σ2 : [σ/Γ̂0]Ψ.

Proof. By induction on the first derivation. For more details, see [Jang et al. 2021]. □

3.6 Local Soundness and completeness
With the substitution properties in place, we establish local soundness and completeness properties

of our calculus. Local soundness guarantees that our typing rules are not too strong, i.e. they do

not allow us to infer more than we should. Dually, local completeness guarantees that the rules are

sufficiently strong.

The local soundness property also gives natural rise to reduction rules in our operational

semantics and can be viewed as showing that types are preserved during reduction.

Function type. For local soundness, we refer to the term substitution lemma 3.5 to obtain D ′.

Local Soundness:
D

Γ,x :(· ⊢0 T ) ⊢⊢ e
E

Γ ⊢⊢ e ′ : T

Γ ⊢⊢ (fn x → e ) e ′ : T → S =⇒

D ′

Γ ⊢⊢ [(·.e ′)/x0]e : S

Local completeness derivation follows directly from the given typing rules.
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Local Completeness:

D

Γ ⊢⊢ e : T → S =⇒

D

Γ,x :(· ⊢0 T ) ⊢⊢ e : T → S

Γ,x :(· ⊢0 T ) ⊢⊢ · : ·

Γ,x :(· ⊢0 T ) ⊢⊢ x[·] : T

Γ,x :(· ⊢0 T ) ⊢⊢ e x[·] : S

Γ ⊢⊢ fn x → e x[·] : T → S

Polymorphic type. Local soundness and completeness for the polymorphic type are similar.

Local Soundness:
D

Γ ⊕ α :(Φ ⊢n ∗) ⊢⊢ e : S

Γ ⊢⊢ Fn αn → e : (α :(Φ ⊢n ∗)) → S
E

Γ |n ,Φ ⊢⊢ T

Γ ⊢⊢ (Fn αn → e ) (Φ̂n .T ) : [Φ̂n .T /αn]S =⇒

D ′

Γ ⊢⊢ [(Φ̂n .T )/αn]e : [Φ̂n .T /αn]S

We note that Γ ⊕ α :(Φ ⊢n ∗) results in an ordered context of the form Γ1,α :(Φ ⊢
n ∗), Γ0 where all

declarations in Γ1 are at level n or above and all declarations in Γ0 are below n. The derivationD ′ is
then obtained using the type substitution lemma 3.4.

Local Completeness:

D

Γ ⊢⊢ e : (α :(Φ ⊢n ∗)) → S =⇒

D

Γ ⊕ α :(Φ ⊢n ∗) ⊢⊢ e : (α :(Φ ⊢n ∗)) → S

Γ |n ,Φ ⊢⊢ id(Φ̂) : Φ

Γ |n ,Φ ⊢⊢ α[id(Φ̂)]

Γ ⊕ α :(Φ ⊢n ∗) ⊢⊢ e (Φ̂n .α[id(Φ̂)]) : S

Γ ⊢⊢ Fn αn → e (Φ̂n .α[id(Φ̂)]) : (α :(Φ ⊢n ∗)) → S

We use the identity substitution lemma 3.2 to justify the derivation Γ |n ,Φ ⊢⊢ α[id(Φ̂)] and exploit
the fact that [(Φ̂n .α[id(Φ̂)])/αn]S = S .

Multi-level contextual type. Local soundness and completeness follows similar ideas. For local

soundness, we note that Γ ⊕ u:(Φ ⊢n T ) results in an ordered context Γ′ where the declaration

u:(Φ ⊢n T ) is inserted at the appropriate level. The derivation D ′ is then obtained by referring to

the term substitution lemma 3.5 using (Φ̂n .e ) for u, E, and D.

Local Soundness:
E

Γ |n ,Φ ⊢⊢ e : T

Γ ⊢⊢ box (Φ̂n . e ) : ⌈Φ ⊢n T ⌉
D

Γ ⊕ u:(Φ ⊢n T ) ⊢⊢ e2 : S

Γ ⊢⊢ let box (Φ̂n .u) = box (Φ̂n . e ) in e2 : S =⇒

D ′

Γ ⊢⊢ [(Φ̂n .e )/un]e2 : S

For local completeness, we again use Lemma 3.2 for identity substitutions to justify the derivation

(Γ ⊕ u:(Φ ⊢n T )) |n ,Φ ⊢⊢ u[id(Φ̂)] : T .

Local Completeness:

D

Γ ⊢⊢ e : ⌈Φ ⊢n T ⌉ =⇒

D

Γ ⊢⊢ e : ⌈Φ ⊢n T ⌉

(Γ ⊕ u:(Φ ⊢n T )) |n ,Φ ⊢⊢ id(Φ̂) : Φ

(Γ ⊕ u:(Φ ⊢n T )) |n ,Φ ⊢⊢ u[id(Φ̂)] : T

Γ ⊕ u:(Φ ⊢n T ) ⊢⊢ box (Φ̂.u[id(Φ̂)]) : ⌈Φ ⊢n T ⌉

Γ ⊢⊢ let box (Φ̂n .u) = e in box (Φ̂.u[id(Φ̂)]) : ⌈Φ ⊢n T ⌉

4 EXTENSION TO PATTERN MATCHING
We now extend the multi-level programming foundation to support pattern matching on code,

i.e. expressions of type ⌈Γ ⊢n T ⌉. This generalizes the expressions let box (Γ̂n .u) = e1 in e2 to
support not only binding of code to a variable u, but also inspecting this piece of code by pattern

matching. In general, one may view the expression let box (Γ̂n .u) = e1 in e2, as a match on e1 where
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the pattern consists only of a pattern variable u and e2 is the branch of the case-expressions. We

view code patterns as higher-order abstract syntax trees; this abstraction allows us to choose any

encoding internally in the implementation.

Adding pattern matching on code in a type-safe manner has been a challenge for two reasons:

1) Representation of Code and Refinement of Types. In general, we want to pattern match on

⌈Γ ⊢n α⌉ (where we omit the identity substitution that is associated with the type variable α for

better readability). As a consequence, a pattern may impose some constraints on α . For example,

a code pattern box (Γ̂. fn x → p) which has type ⌈Γ ⊢n β1 → β2⌉ generates the constraint that
α := β1 → β2. A similar situation exists in dependently typed systems. Hence, it is not surprising

that constraints arise.

2) Characterizing pattern variables at different stages. A key question is what type to assign to

pattern variables in code and type patterns. When we capture a code pattern box (Γ̂. fn x → p), it
seems natural that we assign p the type β2 in the context Γ extended with the declaration for x of

type β1. This follows, for example, the approach taken in the proof environment Beluga[Pientka
2008; Pientka and Cave 2015; Pientka and Dunfield 2010] where the pattern variable p depends

on the bound variables from Γ̂ extended with x . However, in our setting, we want to also allow

code patterns of the form box (Γ̂. let box (Φ̂k .u) = p in q). As a consequence, we need to capture

the type of q, which may depend not only on the variables from Γ̂, but also on the variable u. Or we
might want to allow code patterns that themselves contain code! For example, box (Γ̂. box (Φ̂.p)).
This is where our multi-level context approach pays off. Since we associate every variable with a

level, we simply view q in the extended context with the variable u where u has been inserted at

the appropriate position. Similarly, in the code pattern box (Γ̂k . box (Φ̂n .p)), the levels associated
with Γ̂ and Φ̂ give us the structure to determine in which context p is making sense.

These two considerations lead us to generalize our term language and our contexts. In particular,

we track two kinds of constraints: the first one α := (Ψ ⊢n T ) refines a type declaration α : (Ψ ⊢∗)
and the second one # denotes an inconsistent set of constraints. The latter allows for elegant

handling of impossible cases that may arise. We note that these constraints arise only during typing,

and programmers will write only pure contexts, i.e. contexts without any constraints.

Terms e,p,q ::= . . . | case ⌈Φ⊢kT ⌉ e of
−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(Ψi .(Φ̂i .pi ) : (Φi ⊢

k Ti ) → ei )

Context Γ,Ψ,Φ ::= . . . | Γ,α := (Ψ̂n .T ) : (Ψ ⊢n ∗) | Γ, #

For simplicity and clarity, we define pattern matching and branches in a case-expression in

such a way that all pattern variables are explicitly listed as part of the branch in the context Ψi .
The context Φi contains all the locally bound variables that may be used in the pattern pi . We

concentrate here on patterns that are terms, but not case-expressions themselves to explain the

main ideas. In practice, we would infer the type associated with those pattern variables. We note

that for all variables x :(_ ⊢n _) in Ψi , we have that n > level(Φi ), since pattern variables abstract

over holes/variables in a code pattern. Further, these pattern variables themselves may depend on

the context Φi where all variables in Φi denote bound variables within the code pattern and hence

are variables defined at levels higher than n + 1. We also add a type annotation (Φi ⊢
k Ti ) to each

pattern which states that the pattern pi has type Ti in the context Ψi ,Φi .

Last but not least, we add a type annotation to the case-expression itself. It describes the type of

the scrutinee e . This is used during run-time where we first find the compatible branch by matching

the type of the scrutinee against one of type annotations in branches and subsequently match the

scrutinee against the pattern in the selected branch. Before giving a more detailed explanation

of the static and dynamic semantics for case-expressions and turning our previous kinding and
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typing rules from Sec. 3.4 into shallow pattern rules (see Sec. 4.4), we consider the generation and

handling of type constraints next.

4.1 Typing modulo
To handle constraints during type checking, we extend our definition of well-formed contexts s.t.

Γ,α := (Ψ ⊢n T ) is a well-formed context if Γ is well-formed, and the type T is well-formed in

Γ |n ,Ψ. We also must ensure that there are no circularities in Γ. A context Γ, # which contains a

contradiction marked by # is well-formed, if Γ is.

Additional rules for context well-formedness : ⊢⊢ Γ

⊢⊢ Γ ⊢⊢ (Γ |n ,Ψ) (Γ |n ,Ψ) ⊢⊢ T

⊢⊢ Γ,α := (Ψ̂n .T ) : (Ψ ⊢n ∗)
⊢⊢ Γ
⊢⊢ Γ, #

We also revisit the typing rules for substitutions. To ensure that σ , (Ψ̂k .T ) is a well-typed

substitution for a context Φ,α :=(Ψ̂k .S ) : (Ψ ⊢k ∗), we check in addition to the fact that σ andT are

well-typed, that T and S are equal in the range of the substitution. We also note that, if the domain

of a substitution contains a contradiction, then the range must also contain a contradiction.

Additional rules for well-typed substitutions: Γ ⊢⊢ σ : Φ

Γ ⊢⊢ σ : Φ Γ |k ,Ψ ⊢⊢ T = [((σ/Φ̂) |k ), (id(Ψ̂)/Ψ̂)]S Γ |k ,Ψ ⊢⊢ T

Γ ⊢⊢ σ , (Ψ̂k .T ) : Φ,α :=(Ψ̂k .S ) : (Ψ ⊢k ∗)
# ∈ Γ Γ ⊢⊢ σ : Φ

Γ ⊢⊢ σ : Φ, #

Last, we add a type conversion rule that lets us prove that two types are equal modulo the constraints.

Ψ ⊢⊢ e : S Ψ ⊢⊢ S = T
Ψ ⊢⊢ e : T

4.2 Type equality modulo constraints
Since we accumulate equality constraints in our context Ψ during type checking, declarative

equality is not purely structural – it can also exploit the equality constraints. Structural equality on

types modulo constraints is defined using the judgment: Ψ ⊢⊢ T = S .
Most structural equality rules are as expected, and we omit them for brevity. To, for example,

compare two function types for equality, we simply compare their components. For polymorphic

types, we similarly compare their components and make sure to extend the context with the

declaration for α when comparing the result types. If Ψ contains a contradiction, then we simply

succeed. The only interesting case is : α[σ ] = T where α :=(Φ̂n .S ) : (Φ ⊢n ∗) ∈ Ψ. In this case, we

continue to compare T with [σ/Φ̂]S . The complete set of structural equality rules can be found in

[Jang et al. 2021].

4.3 Typing Rule for Case-Expressions
We now discuss the typing rule for case-expressions which is the centrepiece of supporting typed

code analysis.

Ψ ⊢⊢ e : ⌈Φ ⊢k T ⌉ Ψ ⊢⊢ ⌈Φ ⊢k T ⌉

For all i

{
⊢⊢ (Ψi ,Φi ) Ψi ; (Φi )

k ⊢⊢ Ti Ψi ; (Φi )
k ⊢⊢ pi : Ti

⊢⊢ (Ψi ⊕ Ψ|k ) (Ψi ⊕ Ψ|k ) ⊢⊢ (Φ ⊢
k T ) = (Φi ⊢

k Ti ) ↘ Γi Γi ,Ψ|
k ⊢⊢ ei : S

Ψ ⊢⊢ case ⌈Φ⊢kT ⌉ e of
−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(Ψi .(Φ̂i .pi ) : (Φi ⊢

k Ti ) → ei ) : S
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We first check that the guard e has type ⌈Φ ⊢k T ⌉ and that the given type annotation is a

well-kinded type. For each branch, we then check the following conditions:

(1) The type annotation in the pattern is well-kinded. This entails verifying that the context

Ψi ,Φi is well-formed and that the type Ti is well-kinded. Recall that Ψi ,Φi is only defined,

when all declarations in Ψi are at higher levels than k , i.e. the level of Φi .

(2) The pattern pi has typeTi in the context Ψi ,Φi . In fact, we ensure something stronger, namely

that Ψi contains the pattern variables and the code pattern box (Φ̂i .pi ) has type ⌈Φi ⊢
k Ti ⌉.

This is accomplished by the judgment Ψi ;Φi ⊢⊢ pi : Ti (see Sec. 4.4).
(3) We match the type of the pattern, (Φi ⊢

k Ti ) against the type of the scrutinee (Φ ⊢
k T ) using

the judgment

(Ψi ⊕ Ψ|k ) ⊢⊢ (Φ ⊢
k T ) = (Φi ⊢

k Ti ) ↘ Γi

This generates a new context Γi which constrains some type variables in Ψ|k . Recall that all
variables in Ψ which are below k will be replaced by Φi , and hence only the declarations

in Ψ|k matter. Further, Ψi ⊕ Ψ|k only contains variable declarations at levels above k and

therefore also Γi contains only variables above k .
Last, we ensure that the resulting context Γi is well-formed, by starting with the joint context

(Ψi ⊕ Ψ|k ). The order will in fact ensure that type variables in Ψ|k (the type of the scrutinee)

can be constrained by variables in Ψi (the type of the pattern). We describe matching and the

generation of constraints in Sec. 4.5.

(4) Finally, we check that the body ei of the branch has type S in the constrained context Γi
extended with the Ψ|k where we remove all assumptions that are at level k or higher. Note

that all removed assumptions are in fact present in Γi and have possibly been refined in the

previous step.

We now describe pattern typing and constraint generation.

4.4 Pattern Typing
Pattern kinding and typing rules are derived from kinding and typing rules for types and terms in

Sec. 3.4. They are a special case of those rules. In all the pattern typing judgments, we separate the

pattern variables Ψ from the bound variables Γ, writing Ψ; Γn instead of Ψ, Γ where level(Γ) = n
and for every declaration x :(_ ⊢j _) in Ψ, we have j > n. Although this separation is not strictly

necessary for ensuring that a pattern is well-typed, it is necessary when we define unification

on code and types, since only pattern variables in Ψ can be instantiated, while bound variables

in Γ remain fixed. Further, to ensure that unification falls into the decidable higher-order pattern

fragment (see Miller [1991]), pattern variables must be associated with a variable substitution. For

simplicity, we choose here the identity substitution, which we in fact omit for better readability.

We first consider type patterns (see Fig. 6). For type variables, we distinguish two cases. When

the type variable α is in Ψ, it must have type (Γ ⊢n ∗) and describes a pattern type variable. A

bound variable occurrence, α[σ ], is well-kinded, if α is declared in Γ to have kind (Φ ⊢k ∗) and σ
is a substitution mapping variables from Φ to Ψ; Γ. Pattern kinding for function types β → α is

straightforward: each pattern variable must be declared in Ψ with kind (Γ ⊢n ∗). For polymorphic

type patterns, (α :(Φ ⊢k ∗)) → β , we note that β is the pattern variable that makes sense in the

extended context (Γ ⊕ α :(Φ ⊢k ∗)). Note that in general, k could be greater than level(Γ) = n. Hence,
the type variable α can increase the overall level of the extended context, if k > n, and the extended
context has level max(n,k ). Therefore, the pattern type variable β must be declared in Ψ with kind

((Γ ⊕ α :(Φ ⊢k ∗)) ⊢max(n,k ) ∗). Last, we consider the contextual type pattern, ⌈Φ ⊢k β⌉, where β is

the pattern type variable. It is meaningful in the context (Γ |k ,Φ). The level of this resulting context
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α : (Φ ⊢k ∗) ∈ Γ Ψ; Γ ⊢⊢ σ : Φ

Ψ; Γn ⊢⊢ α[σ ]

α : (Γ ⊢n ∗) ∈ Ψ

Ψ; Γn ⊢⊢ α

k > 0 ⊢⊢ (Γ |k ,Φ) β : ((Γ |k ,Φ) ⊢
max(n,k ) ∗) ∈ Ψ

Ψ; Γn ⊢⊢ ⌈Φ ⊢k β⌉

β : (Γ ⊢n ∗) ∈ Ψ α : (Γ ⊢n ∗) ∈ Ψ

Ψ; Γn ⊢⊢ β → α

⊢⊢ Ψ, Γ |k ,Φ β : ((Γ ⊕ α :(Φ ⊢k ∗)) ⊢max(n,k ) ∗) ∈ Ψ

Ψ; Γn ⊢⊢ (α :(Φ ⊢k ∗)) → β

Fig. 6. Type Pattern rules: Ψ; Γn ⊢⊢ T

x : (Φ ⊢k T ) ∈ Γ Ψ; Γn ⊢⊢ σ : Φ

Ψ; Γn ⊢⊢ x[σ ] : [σ/Φ̂]T

x : (Γ ⊢n T ) ∈ Ψ

Ψ; Γn ⊢⊢ x : T

p:(Γ,x :(· ⊢0 S ) ⊢n T ) ∈ Ψ

Ψ; Γn ⊢⊢ fn x → p : S → T

p:(Γ ⊢n S → T ) ∈ Ψ q:(Γ ⊢n S ) ∈ Ψ

Ψ; Γn ⊢⊢ p q : T

p:(Γ ⊕ α :(Φ ⊢k ∗) ⊢max(n,k ) T ) ∈ Ψ

Ψ; Γn ⊢⊢ Fn αk → p : (α :(Φ ⊢k ∗)) → T

p : (Γ ⊢n (α :(Φ ⊢k ∗)) → S ) ∈ Ψ β :(Γ |k ,Φ ⊢
max(n,k ) ∗) ∈ Ψ

Ψ; Γn ⊢⊢ p (Φ̂k .β ) : [Φ̂k .β[id(Φ̂)]/αk ]S

k > 0 p:(Γ |k ,Φ ⊢
max(n,k ) T ) ∈ Ψ

Ψ; Γn ⊢⊢ box (Φ̂k .p) : ⌈Φ ⊢k T ⌉

p:(Γ ⊢n ⌈Φ ⊢k S⌉) ∈ Ψ q:(Γ ⊕ u:(Φ ⊢k S ) ⊢max(n,k ) T ) ∈ Ψ

Ψ; Γn ⊢⊢ let box (Φ̂k .u) = p in q : T

Fig. 7. Code Pattern Typing Ψ; Γn ⊢⊢ p : T

is max(n,k ) depending on whether n is greater or less than k . Hence, it must be declared in Ψ with

kind ((Γ |k ,Φ) ⊢
max(n,k ) ∗).

We describe code pattern typing in Fig. 7. A code pattern p is the sub-term in box (Γ̂n .p) which
has type ⌈Γ ⊢n T ⌉. Our code pattern typing rules follow the typing rules for terms given earlier,

and we assume that ⌈Γ ⊢n T ⌉ is a well-formed pattern type. We again separate the pattern variables

(declared in Ψ) from the bound variables (declared in Γ) (see Fig. 7). A pattern variable x of typeT is

implicitly associated with the identity substitution and hence must be declared in Ψ with the type

(Γ ⊢n T ). A bound variable occurrence, written as a closure x[σ ], is well-typed, if x is declared to

have type (Φ ⊢k T ) in Γ and σ is a substitution pattern that maps variables from Φ to Ψ; Γ. In code

patterns for functions, fn x → p, of type S → T , the pattern variable p is meaningful in the extended

context Γ,x :(· ⊢0 S ). It hence must be declared in Ψ with type (Γ,x :(· ⊢0 S ) ⊢n )T . Code patterns for
applications, p q are straightforward given that we adapt a declarative formulation. Polymorphic

code patterns, Fn αk → p, and type application patterns, p (Φ̂k .β ), follow the same principles as

in polymorphic type patterns discussed earlier; similarly, boxed code patterns, box (Φ̂k .p), follow
the same principles as for contextual type patterns. In each of these cases, the pattern variable

is declared in the extended context at level max(n,k ). For let box (Φ̂k .u) = p in q, we follow

the typing rules given earlier: p must be declared with type (Γ ⊢n ⌈Φ ⊢k S⌉) and q with type

(Γ ⊕ u:(Φ ⊢k S ) ⊢max(n,k ) T ) in Ψ.
Last, we describe typing rules for substitution patterns (Fig. 8) which follow the corresponding

typing rules for simultaneous substitutions.
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Ψ; Γn ⊢⊢ · : ·

Ψ; Γn ⊢⊢ σ : Φ′ p:(Γ |k , [σ/Φ̂
′
]Φ ⊢max(n,k )

[σ/Φ̂′, id(Φ̂)/Φ̂]T ) ∈ Ψ

Ψ; Γn ⊢⊢ σ , (Φ̂k .p) : (Φ′,x :(Φ ⊢k T ))

Ψ; Γn ⊢⊢ σ : Φ′ α :(Γ |k ,Φ ⊢
max(n,k ) ∗) ∈ Ψ

Ψ; Γn ⊢⊢ σ , (Φ̂k .α ) : (Φ′,α :(Φ ⊢k ∗))

Fig. 8. Substitution Pattern Typing Ψ; Γn ⊢⊢ σ : Φ

α :(Φ ⊢k ∗) ∈ Γ

Γ;Φ ⊢⊢ α = α ↘ Γ

Γ = Γ1,α :(Φ ⊢
k ∗), Γ0 Γ;Φ ⊢⊢ α ∈ T

Γ;Φ ⊢⊢ α = T ↘ Γ, #

Γ = Γ1,α :(Φ ⊢
k ∗), Γ0 Γ1,Φ ⊢⊢ T Γ;Φ ⊢⊢ α < T Γ′ = Γ1,α :=(Φ̂.T ) : (Φ ⊢

k ∗), Γ0
Γ;Φ ⊢⊢ α = T ↘ Γ′

Γ = Γ1,α :=(Φ̂.T
′) : (Φ ⊢k ∗), Γ0 Γ;Φ ⊢⊢ α < T Γ;Φ ⊢⊢ T ′ = T ↘ Γ′

Γ;Φ ⊢⊢ α = T ↘ Γ′

α :(Ψ ⊢k ∗) ∈ Φ Γ;Φ ⊢⊢ σ = σ ′ : Ψ ↘ Γ′

Γ;Φ ⊢⊢ α[σ ] = α[σ ′]↘ Γ′
Γ;Φ|n ⊢⊢ Ψ = Ψ′ ↘ Γ′ Γ′; (Φ|n ,Ψ) ⊢⊢ T = S ↘ Γ′′

Γ;Φ ⊢⊢ ⌈Ψ ⊢n T ⌉ = ⌈Ψ′ ⊢n S⌉ ↘ Γ′′

Γ;Φ ⊢⊢ T1 = S1 ↘ Γ1 Γ1;Φ ⊢⊢ T2 = S2 ↘ Γ0
Γ;Φ ⊢⊢ T1 → T2 = S1 → S2 ↘ Γ0

Γ;Φ|n ⊢⊢ Ψ = Ψ′ Γ;Φ ⊕ (α :(Ψ ⊢n ∗)) ⊢⊢ T = S ↘ Γ′

Γ;Φ ⊢⊢ (α :(Ψ ⊢n ∗)) → T = (α :(Ψ′ ⊢n ∗)) → S ↘ Γ′

Fig. 9. Type Unification: Γ;Φ ⊢⊢ T = S ↘ Γ′

Whenever a pattern is well-typed using the pattern kinding and typing rules, the pattern is also

well-typed when viewed as an expression.

Lemma 4.1 (Pattern Reflection). Let ⊢⊢ Ψ, Γn .
(1) If Ψ; Γn ⊢⊢ T then Ψ ⊢⊢ ⌈Γ ⊢n T ⌉
(2) If Ψ; Γn ⊢⊢ p : T then Ψ ⊢⊢ box (Γ̂n .p) : ⌈Γ ⊢n T ⌉
(3) If Ψ; Γn ⊢⊢ σ : Φ then Ψ, Γn ⊢⊢ σ : Φ

Proof. For (3), by induction on the first derivation. For others, by case analysis. □

4.5 Unification on Types: constraint generation
We define the refinement of types using unification via the judgment

Ψ ⊢⊢ (Φ ⊢k T ) = (Φi ⊢
k Ti ) ↘ Γ

Without loss of generality, we assume that Ψ is a context that contains variables at levels higher

than k . In particular, it contains the pattern variables.

Γ; · ⊢⊢ Φ = Φi ↘ Γ1 Γ1;Φ ⊢⊢ T = Ti ↘ Γ2

Γ ⊢⊢ (Φ ⊢k T ) = (Φi ⊢
k Ti ) ↘ Γ2

To unify a contextual type (Φ ⊢k T ) against (Φi ⊢
k Ti ), we first unify Φ against Φi and subse-

quently unify T against Ti given the (bound) variable context Φ. To separate between the bound

variables Φ that are fixed and bound and pattern variables Γ that can be refined and instantiated,
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Γ; Γ0 ⊢⊢ · = · ↘ Γ

Γ; Γ0 ⊢⊢ Ψ = Φ↘ Γ′ Γ′; Γ0,Ψ|n ⊢⊢ Ψ
′ = Φ′ ↘ Γ′′

Γ; Γ0 ⊢⊢ (Ψ,α :(Ψ
′ ⊢n ∗)) = (Φ, β :(Φ′ ⊢n ∗)) ↘ Γ′′

Γ; Γ0 ⊢⊢ Ψ = Φ↘ Γ′ Γ′; Γ0,Ψ|n ⊢⊢ Ψ
′ = Φ′ ↘ Γ′′ Γ′′; Γ0,Ψ|n ,Ψ

′ ⊢⊢ T ′ = S ′ ↘ Γ′′′

Γ; Γ0 ⊢⊢ (Ψ,x :(Ψ
′ ⊢n T ′)) = (Φ,y:(Φ′ ⊢n S ′)) ↘ Γ′′′

[All other cases yield Γ, #]

Fig. 10. Context Unification: Γ; Γ0 ⊢⊢ Ψ = Φ↘ Γ′

we again use the symbol ; and write Γ;Φ. Context and type unification are then defined in Fig. 9

and Fig. 10 using the judgments Γ;Φk ⊢⊢ T = S ↘ Γ′ and Γ; Γ0 ⊢⊢ Ψ = Φ↘ Γ′.
We only unify well-kinded types T and S ; in particular, if T and S are well-typed in Γ,Φk

, then

they remain well-typed in Γ′,Φk
where Γ′ is a refinement of Γ, i.e. some type variable declarations

that occur in T and in S are constrained s.t. Γ′,Φ ⊢⊢ T = S .
We write Γ′ ⪰ Γ to describes context refinement where a declaration α :(Φ ⊢n ∗) in Γ has been

updated to α :=(Φ̂n .T ) : (Φ ⊢n ∗) and all variable declarations present in Γ are also present in Γ′.
Unification is defined recursively based on the type T and S . In particular, if T = T1 → T2 and

S = S1 → S2, we first match T1 against S1 which returns a refined context Γ1 and we subsequently

match T2 against S2 yielding a further refinement Γ2. We similarly proceed to match ⌈Ψ ⊢n T ⌉
against ⌈Ψ′ ⊢n S⌉ given the pattern variable context Γ and the bound variable context Φ. Since
⌈Ψ ⊢n T ⌉ is well-kinded type pattern in Γ;Φ, we know that T is a well-kinded type pattern in

Γ;Φ|n ,Ψ. We therefore first match Ψ against Ψ′ in Γ;Φ|n . This returns an updated context Γ′. Next,
we match T against S in the context Γ′;Φ|n ,Ψ.

To unify two polymorphic types, (α :(Ψ ⊢n ∗)) → T against (α :(Ψ′ ⊢n ∗)) → S , we first match Ψ
against Ψ′ and subsequently match T against S . The first context match is not strictly necessary in

our setting, as Ψ and Ψ′ are type variable contexts and hence do not themselves contain any pattern

variables themselves. Nevertheless, we keep the general form, as it highlights how one would

extend it to a fully dependently typed system where types could also depend on term variables.

For pattern variables, where we match α against a type T , there are three cases. Note that we
again omit writing the identity substitution that is associated with the pattern type variable α .
1) if T contains α (occur’s check), then we return a context where we add a contradiction. The

constraints are unsatisfiable, and hence, we can conclude anything.

2) if α is not yet constrained, we add (Φ̂k .T ) as a constraint, making sure that T is well-typed in

Γ1,Φ. This will ensure that the resulting constrained context is well-formed.

3) if α was associated with a constraint α := (Φ̂k .S ), then we continue to match S against T .
We omit here the symmetric variable cases where T = α for compactness and lack of space, but

they follow the same principle. Further, we mostly concentrate here on the cases where unification

succeeds; the omitted cases, where T is not a pattern type variable and T and S do not share the

top-level type constructor, lead to a contradiction. This is reflected in returning the context Γ, #.
In practice, we use the given unification algorithm for bi-directional matching where both sides

T andTi have distinct unification variables. During type-checking, we matchTi (type of the pattern)
against T (the type of the scrutinee), and we instantiate meta-variables in T . During runtime, the

typeT is concrete, and we matchT againstTi to select the appropriate branch in the case-expression.
As a consequence, our unification algorithm is biased. For example, if β occurs before α in Γ,

and we encounter a unification problem α = β , we will instantiate α . If α → α is the type of the
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pattern and β is the type of the scrutinee, the algorithm will fail. This is in line with our intuition

that the pattern refines the type of the scrutinee, but not vice versa.

Unification on contexts proceeds recursively using the judgment Γ; Γ0 ⊢⊢ Ψ = Φ ↘ Γ′. Here Γ
denote the pattern variables. The context Γ0,Ψ and Γ0,Φ are well-formed, i.e., all declarations in

Γ are at higher levels than declarations in Γ0, and all declarations in Γ0 are at higher levels than
declarations in Ψ and Φ. We maintain these criteria during unification, which helps us to cleanly

manage variable dependencies.

Lemma 4.2. If Γ′ ⪰ Γ and Γ ⊢⊢ T = T ′ then Γ′ ⊢⊢ T = T ′.

We next state and prove some properties of unification.

Lemma 4.3 (Well-defined Unification). Assume ⊢⊢ Γ, Γ0,Ψ.
(1) If ⊢⊢ Γ, Γ0,Φ then there is a Γ′ s.t. Γ; Γ0 ⊢⊢ Ψ = Φ↘ Γ′.
(2) If Γ,Ψ ⊢⊢ T Γ,Ψ ⊢⊢ S then there is a Γ′ s.t. Γ;Ψ ⊢⊢ T = S ↘ Γ′

Lemma 4.4 (Soundness of Unification).

(1) If Γ; Γ0 ⊢⊢ Φ = Ψ ↘ Γ′ then Γ′, Γ0 ⊢⊢ Φ = Ψ and Γ′ ⪰ Γ.
(2) If ⊢⊢ Γ,Φ and Γ;Φ ⊢⊢ T = S ↘ Γ′ then ⊢⊢ Γ′ and Γ′,Φ ⊢⊢ T = S and Γ′ ⪰ Γ.

Lemma 4.5 (Unification is stable under substitution).

If Γ,Ψ ⊢⊢ T and Γ,Ψ ⊢⊢ S and Γ;Φ ⊢⊢ T = S ↘ Γ′ and Γ1 ⊢⊢ σ : Γ then there is Γ′
1
such that

Γ1; [σ/Γ̂]Φ ⊢⊢ [(σ/Γ̂), (id(Φ̂)/Φ̂)]T = [(σ/Γ̂), (id(Φ̂)/Φ̂)]S ↘ Γ′
1
and Γ′

1
⊢⊢ σ : Γ′

Proof. By induction on the structure of Γ;Φ ⊢⊢ T = S ↘ Γ′. Note that if Γ′
1
contains #, Γ′

1
⊢⊢ σ : Γ′

becomes trivial with Γ1 ⊢⊢ σ : Γ. □

Lemma 4.6 (Unification is Compatible with Structural Eqality).

For pure context Ψ, if Ψ ⊢⊢ T and Ψ ⊢⊢ S and D : Φ ⊢⊢ T = S and E : ·;Φ ⊢⊢ T = S ↘ Γ′ then Γ′ = ·

Proof. By induction on the structure of D and case analysis on the structure of E. □

4.6 Operational Semantics for Case-expressions
We define here the operational semantics of case-expressions and show that types are preserved.

Together with the reduction rules for our core multi-level lambda-calculus that emerge from Sec. 3.6

this provides an operational semantics for Mœbius.

(fn x → e ) v =⇒ [( .v )/x0]e

(Fn αn → e ) (Φ̂n .T ) =⇒ [(Φ̂n .T )/αn]e

let box Φ̂n .u = box (Φ̂n . e ) in e ′ =⇒ [(Φ̂n .e )/un]e ′

· ⊢⊢ σi : Ψi · ⊢⊢ [σi/Ψ̂i ]⌈Φi ⊢
k Ti ⌉ = ⌈Φ ⊢

k T ⌉ · ⊢⊢ [σi/Ψ̂i ]box (Φ̂i .qi ) = box (Φ̂k . e )

case ⌈Φ⊢kT ⌉ (box (Φ̂
k . e )) of

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(Ψi .(Φ̂i .qi ) : (Φi ⊢

k Ti ) → e ′i ) =⇒ [σi/Ψ̂i ]e
′
i

Fig. 11. Operational Semantics: e =⇒ e ′

Last, we prove type preservation. In the proof below, we only concentrate on case-expressions;

the remaining cases follow the arguments for local soundness given in Sec. 3.6.

Theorem 4.7 (Type preservation). If ⊢⊢ e : T and e =⇒ e ′ then ⊢⊢ e ′ : T .

Proof. By case analysis on the second derivation. We show below only the case where e is a
case expression.
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Case. case ⌈Φ⊢kT ⌉ (box (Φ̂
k . e )) of

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(Ψi .(Φ̂i .qi ) : (Φi ⊢

k Ti ) → e ′i ) =⇒ [σi/Ψ̂i ]e
′
i

· ⊢⊢ case ⌈Φ⊢kT ⌉ (box (Φ̂
k . e )) of

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(Ψi .(Φ̂i .qi ) : (Φi ⊢

k Ti ) → e ′i ) : S by assumption

Ψi ⊢⊢ ⌈Φi ⊢
k Ti ⌉ = ⌈Φ ⊢

k T ⌉ ↘ Ψ′i by inversion

Ψ′i ⊢⊢ ei : S by inversion

there exists ⊢⊢ σi : Ψi by reduction rule for case
· ⊢⊢ [σi/Ψ̂i ]⌈Φi ⊢

k Ti ⌉ = ⌈Φ ⊢
k T ⌉ ↘ Γ

Γ ⊢⊢ σi : Ψ
′
i by unification stability under substitution lemma 4.5

· ⊢⊢ [σi/Ψ̂i ]⌈Φi ⊢
k Ti ⌉ = ⌈Φ ⊢

k T ⌉ by reduction rule for case
Γ = · by unification compatibility with structural equality 4.6

Ψ′i ⪰ Ψi and therefore Ψ̂′i = Ψ̂i by soundness of unification lemma 4.4 and inversion on ⊢⊢ σi : Ψ
′
i

· ⊢⊢ [σi/Ψ̂
′
i ]ei : S by simultaneous substitution lemma 3.6 and the fact that · ⊢⊢ S

· ⊢⊢ [σi/Ψ̂i ]ei : S since Ψ̂′i = Ψ̂i
□

5 RELATEDWORK
Early staged computation systems. Davies and Pfenning [2001] first observed that the necessity

modality of the S4 modal logic is ideally suited to distinguish between closed code which has type

□τ and programs, which have type τ in the multi-staged programming setting. To characterize

open code fragments, Davies [1996] proposed λ⃝ which corresponds to linear temporal logic. Open

code is characterized by the type ⃝τ . While this logical foundation provides an explanation for

generating and splicing in open code, we cannot distinguish open from closed code and the type

system of λ⃝ does not provide guarantees for its safe evaluation. The reason is exactly in the

openness: it is not sound to evaluate an open expression before all of its free variables are bound.

This openness also makes it difficult to support pattern matching on (open) code.

The desire to combine the advantages of λ□ and λ⃝ has inspired a long line of research on type

systems for staged computation, most notable being MetaML [Taha and Sheard 2000] and the

work of Taha and Nielsen [2003] on environment classifiers which allows manipulation of open

code and supports type inference. Environment classifiers give names for typing environments

to specify when exactly its eval function can correctly insert code, but unlike contextual types it

does not list the variables that may occur in an environment (or context) concretely. Instead, we

reason about environments and their extensions abstractly. Inherent in the nature of that work is

that we do not reason about the concrete variables that occur in a given piece of code. It seems

hence less expressive than using contextual types, and, in particular, it seems difficult to extend

to support pattern matching on code. As Taha [2000] observed, adding intensional analysis to

MetaML would make many optimizations unsound. Environment classifiers also seem too coarse

to characterize the dependencies that exist within the context of assumptions. This however seems

critical when adding System F style polymorphism, as we do in this work, or extending such a

system to dependent types.

Reflecting contexts in types. Subsequent work by Kim et al. [2006] characterizes open code

using typing environments (using extensible records). Since their goal is to extend ML with Lisp’s

ability to write both hygienic (via capture-avoiding substitution) and unhygienic (via capturing

substitution) templates, variables are treated symbolically, unlike with contextual types. As a result,

code templates are not guaranteed to be lexically well-scoped.

Kiselyov et al. [2016] describes a staged calculus <NJ> that safely permits open code movements

across different binding environments. The key to ensuring hygiene and type safety when ma-

nipulating open code is reflecting free variables of a code fragment in its type, which evokes
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contextual modal type theory. However, unlike CMTT, that work uses environment classifiers with

the argument that a type does not need to know exactly in which order free variables are bound.

We would disagree. Especially when moving to a richer type system where we track dependencies

among assumptions, we do need to know the order. Contextual types provide a more exact and

general approach to model and reason about variable dependencies.

Rhiger [2012] shows a typed Kripke-style calculus for staged computation λ[], supporting evalu-

ation under binders in future stages, manipulation of open code, and mutable state. It uses its own

notion of contextual modal types, which models linear time (the typing judgment tracks all future

stages), rather than the branching time of our contextual modal types. As in the work on MetaML,

the context is still represented abstractly, and we hence lack the ability to express dependencies

among assumptions.

Inspecting code. Closely related to using contextual types to model typed code fragments, Chen

and Xi [2003, 2005] characterize typeful code representations pairing the list of value types that

may appear in a given code together with the type of the code itself. This is reminiscent of what

contextual types accomplish, but fundamentally uses a de Bruijn representation to model bound

variables occurring in code. This is also a popular approach when modeling object languages in

proof assistants and supporting mechanizing meta-theory (see for example [Benton et al. 2012]).

In Chen and Xi [2005], the authors sketch how to add pattern matching on code, but it remains

unclear how to exploit the full potential of pattern matching. In particular, the refinement of types,

which happens when pattern matching on polymorphic code, is omitted.

One of the few works that support code analysis via pattern matching in typed multi-staged

programming is Viera and Pardo [2006]. Similar to contextual types, the type of code fragments is

annotated with a typing environment. However, unlike Mœbius, the type of the code fragment

itself is not tracked, and hence we cannot fully reason about the type of open code. Instead, type-

checking of evaluated code fragments is deferred to runtime. The complexity that arises from

pattern matching on typed code fragments is hence sidestepped.

Parreaux et al. [2018] describe Squid, a Scala macro library which supports code generation and

code inspection using a rewrite primitive. This allows programmers to define code transformations

without extra code for the traversal through the program itself. This is very convenient in practice.

Yet, from a theoretical point of view, it remains unclear how these rewrite rules are applied (i.e. in

what context is a rule applied) and what conditions the rewrite rules must satisfy (i.e. should these

rules be non-overlapping, deterministic in how they are applied, etc.).

Beside multi-staged programming: Typed Self-Interpreter. Many popular languages have a self-

interpreter, that is, an interpreter for the language written in itself. The idea is to represent programs

within the language and then recover a program from its representation. Most recently, Brown and

Palsberg [2016] show that System Fω is capable of representing a self-interpreter, a program that

recovers a program from its representation and is implemented in the language itself. To circumvent

the limits of the type language, they encode types and type-level functions extensionally as an

instantiation function. Our work, which sits between System Fω and System F, faced a similar

problem and choses an intensional encoding instead. While we do not literally support type-level

computation as in System Fω , we do support contextual kinds and view contextual type variables

as a closure. This simplifies the equational theory compared to System Fω . Further, our notion of

levels gives us the appropriate structure to describe type and code patterns in case-expressions

enabling intensional analysis of code.

Modal Dependent Type Theory. Recently, there has been also interest in developing a dependently

typed modal type theory that includes the box-modality. In particular, Gratzer et al. [2019] describe

such a type theory which, in principle, allows us to describe the generation of dependently typed
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and polymorphic code using box and unbox. Their modal dependent type theory exploits a Fitch-

style system where locks are added to the context of assumptions. Those locks manage access

to variables in a similar fashion as context stacks in Kripke-style modal type systems. Intuitively

existing assumptions are locked when we enter a new stage and go under a box expression. But in

that work, all prior assumptions are unlocked. This essentially removes the ability to reason about

different stages, as all prior stages are treated the same; the system also has no ability to run code.

Hence, this work lacks the ability to reason about multi-staged code and run it. It also does not

support reasoning about open code nor pattern matching on code, which raise independent issues.

Pientka et al. [2019] present a Martin Löf type theory that uses the box modality. This work

allows the generation and analysis of code using pattern matching. However code is represented in

the logical framework LF and only a subset of the computation language can be directly embedded

into LF. As such, the system is not a homogeneous programming language and not rich enough to

generally model code that contains nested boxed and let box expressions. It also does not allow us

to model multi-staged metaprogramming, as the system is fundamentally restricted to two stages.

Kawata and Igarashi [2019] develop a dependently typed multi-stage calculus based on the logical

framework LF that supports execution of code and cross-stage persistence, but does not handle

pattern matching or polymorphism. Their approach based on environment classifiers provides less

fine-grained control compared to the use of contextual types and level annotations.

6 CONCLUSION
This paper describes a multi-staged metaprogramming foundation that, for the first time, supports

the generation of typed polymorphic code and its analysis via pattern matching. This is accom-

plished by generalizing contextual types to a multi-level contextual type system. This allows us

to disentangle the notions of levels and stages. While a stage refers to when at run-time code is

generated vs executed, levels are annotations on code and the variables that appear inside the code.

These level annotations on variables allow us to cleanly distinguish between holes whose value is

supplied at runtime (global variables) and holes (local variables) that will be instantiated when the

code is spliced into another code fragment.

The multi-level contextual types are the key to define pattern matching on code and type

fragments and unlocking the full potential of typed meta-programming. More specifically, the

multiple levels are crucial to support generating and inspecting code which itself generates code.

An important benefit of multi-level contextual types is that they allow us to work with high-level

type and code pattern abstractions where we neither expose nor commit to a concrete representation

of variable bindings and contexts. We see our work as a step towards building a general type-

theoretic foundation for multi-staged metaprogramming that, on the one hand, enforces strong

type guarantees and, on the other hand, makes it easy to generate and manipulate code. This will

allow us to exploit the full potential of metaprogramming without sacrificing the reliability of and

trust in the code we are producing and running.

In the immediate future, we aim to add context abstraction to Mœbius following the approach

taken in Beluga. Abstracting over contexts is an orthogonal issue, which, we believe, is compatible

with the foundation of Mœbius. In the longer term, we aim to generalize the foundations to

dependent types. This would provide the first dependently-type meta-programming language.
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