
235

Mechanizing Session-Types using a Structural View:
Enforcing Linearity without Linearity

CHUTA SANO,McGill University, Canada

RYAN KAVANAGH,McGill University, Canada

BRIGITTE PIENTKA,McGill University, Canada

Session types employ a linear type system that ensures that communication channels cannot be implicitly

copied or discarded. As a result, many mechanizations of these systems require modeling channel contexts

and carefully ensuring that they treat channels linearly. We demonstrate a technique that localizes linearity

conditions as additional predicates embedded within type judgments, which allows us to use structural

typing contexts instead of linear ones. This technique is especially relevant when leveraging (weak) higher-

order abstract syntax to handle channel mobility and the intricate binding structures that arise in session-

typed systems.

Following this approach, we mechanize a session-typed system based on classical linear logic and its type

preservation proof in the proof assistant Beluga, which uses the logical framework LF as its encoding language.

We also prove adequacy for our encoding. This shows the tractability and effectiveness of our approach in

modelling substructural systems such as session-typed languages.

CCS Concepts: • Theory of computation→ Logic and verification; Process calculi.

Additional Key Words and Phrases: linear logic, concurrency, session types, verification, logical framework

ACM Reference Format:
Chuta Sano, Ryan Kavanagh, and Brigitte Pientka. 2023. Mechanizing Session-Types using a Structural View:

Enforcing Linearity without Linearity. Proc. ACM Program. Lang. 7, OOPSLA2, Article 235 (October 2023),
26 pages. https://doi.org/10.1145/3622810

1 INTRODUCTION
The 𝜋-calculus [Milner 1980] is a well-studied formalism formessage passing concurrency. Although

there have been many efforts to mechanize variants of the 𝜋-calculus by encoding their syntax

and semantics in proof assistants, mechanization remains an art. For example, process calculi often

feature rich binding structures and semantics such as channel mobility, and these must be carefully

encoded to respect 𝛼-equivalence and to avoid channel name clashes.

Even harder to mechanize are session-typed process calculi, in part because they treat com-

munications channels linearly. Session types [Honda 1993; Honda et al. 1998] specify interactions

on named communication channels, and linearity ensures that communication channels are not

duplicated or discarded. As a result, session types can be used to statically ensure safety properties

such as session fidelity or deadlock freedom. However, mechanizing linear type systems adds

another layer of complexity; most encodings of linear type systems encode contexts explicitly: they

Authors’ addresses: Chuta Sano, School of Computer Science, McGill University, 3480 rue University, Montréal, QC, H3A 0E9,

Canada, chuta.sano@mail.mcgill.ca; Ryan Kavanagh, School of Computer Science, McGill University, 3480 rue University,

Montréal, QC, H3A 0E9, Canada, rkavanagh@cs.mcgill.ca; Brigitte Pientka, School of Computer Science, McGill University,

3480 rue University, Montréal, QC, H3A 0E9, Canada, bpientka@cs.mcgill.ca.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART235

https://doi.org/10.1145/3622810

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

HTTPS://ORCID.ORG/0000-0001-9497-4276
HTTPS://ORCID.ORG/0000-0002-2549-4276
https://doi.org/10.1145/3622810
https://orcid.org/0000-0001-9497-4276
https://orcid.org/0000-0002-2549-4276
https://doi.org/10.1145/3622810

235:2 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

develop some internal representation of a collection of channels, for example, a list, implement

relevant operations on it, and then prove lemmas such as 𝛼-equivalence and substitution. Though

explicit encodings have led to successful mechanizations [Castro-Perez et al. 2020; Jacobs et al. 2022;

Thiemann 2019; Zalakain and Dardha 2021], they make it cumbersome to formalize metatheoretic

results like subject reduction.

Higher-order abstract syntax [Pfenning and Elliott 1988] (HOAS) relieves us from the bureaucracy

of explicitly encoded contexts.With this approach, variable abstractions are identifiedwith functions

in the proof assistant or the host language. Thus, we can obtain properties of bindings in the

host language for free, such as the aforementioned 𝛼-equivalence and substitution lemmas. This

technique had been studied in process calculi without modern linear session types by Röckl,

Hirschkoff, and Berghofer [Röckl et al. 2001] in Isabelle/HOL and by Despeyroux [Despeyroux

2000] in Coq. However, HOAS has rarely been used to encode linear systems, and it has not yet

been applied to mechanize session-typed languages. This is because most HOAS systems treat

contexts structurally while session-typed systems require linear contexts. Consequently, naively

using HOAS to manage channel contexts would not guarantee that channels are treated linearly.

This would in turn make it difficult or impossible to prove metatheoretic properties that rely on

linearity, such as deadlock freedom.

In our paper, we develop a technique to bridge the gap between structural and linear contexts.

We use this technique to mechanize a subset of Wadler’s Classical Processes (CP) [Wadler 2012]. CP

is a well-studied foundation for investigating the core ideas of concurrency due to its tight relation

with linear logic. For our mechanization, we first introduce Structural Classical Processes (SCP),
a system whose context is structural. This calculus encodes linearity using a technique heavily

inspired by the one Crary [2010] used to give a HOAS encoding of the linear 𝜆-calculus. The key

idea is to define a predicate

lin(𝑥, 𝑃)
for some process 𝑃 that uses a channel 𝑥 . This predicate can informally be read as “channel 𝑥 is used

linearly in 𝑃 ,” and it serves as a localized well-formedness predicate on the processes. We embed

these additional proof obligations within type judgments for rules that introduce channel bindings.

Thus, well-typed processes use all of their internally bound names linearly, and we further give a

bijection between CP and SCP typing derivations to show that these linearity predicates precisely

capture the notion of linear contexts.

We then mechanize SCP in Beluga [Pientka and Dunfield 2010] using weak HOAS. The mech-

anization is mostly straightforward due to the strong affinity SCP has with LF, and we prove

adequacy of our encoding with respect to SCP. This adequacy result is compatible with our prior

bijection result between CP and SCP, meaning our encoding is also adequate with respect to CP.

Finally, we mechanize type preservation in our encoding in a very elegant manner, taking advantage

of the various properties we obtain for free from a HOAS encoding such as renaming, variable

dependencies that are enforced via higher-order unification, etc.

Contributions. We describe a structural approach to mechanizing session-types and their metathe-

ory without relying on the substructural properties of the session type system, by using explicit

linearity check for processes. In particular:

• We introduce an on-paper system equivalent to a subset of Wadler’s Classical Processes

(CP) [Wadler 2012], which we call Structural Classical Processes (SCP). This system uses a

structural context as opposed to a linear context but still captures the intended properties

of linearity using linearity predicates. SCP is well-suited to a HOAS-style encoding as we

demonstrate in this paper, but it is also well-suited to other styles of mechanizations given

that it does not require any context splits.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:3

• We define a linearity predicate inspired by Crary [2010] for the linear 𝜆-calculus. By doing

so, we demonstrate the scalability of Crary’s technique to richer settings.

• We encode processes and session types using weak HOAS in the logical framework LF. Our

encoding illustrates how we leverage HOAS/LF and its built-in higher-order unification to

model channel bindings and hypothetical session type derivations as intuitionistic functions.

• We prove the equivalence of CP and SCP and then show that our encoding of SCP in Beluga

is adequate, i.e., that there exist bijections between all aspects of SCP and their encodings.

We therefore show that our encoding of SCP is adequate with respect to CP as well. Given

that adequacy for session typed systems is quite difficult, we believe that the techniques

presented in SCP is a useful baseline for more complex systems.

• We encode and mechanize SCP in Beluga and prove (on paper) that the encoding is adequate.

We further mechanize a subject reduction proof of SCP to illustrate how metatheoretic proofs

interact with our linearity predicates.

The full mechanization of SCP in Beluga is available as an artifact [?].

2 CLASSICAL PROCESSES (CP)
We present a subset of Wadler’s Classical Processes (CP), making minor syntactic changes to better

align with our later development. CP is a proofs-as-processes interpretation of classical linear logic.

It associates to each proof of a classical, linear (one-sided) sequent

⊢ 𝐴1, . . . , 𝐴𝑛

a process 𝑃 that communicates over channels 𝑥1, . . . , 𝑥𝑛 :

𝑃 ⊢ 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 .

We interpret linear propositions𝐴1, . . . , 𝐴𝑛 as session types that specify the protocol that 𝑃 must fol-

low when communicating on channels 𝑥1, . . . , 𝑥𝑛 , respectively. Table 1 summarizes the operational

interpretation of the standard linear connectives without exponentials and quantifiers:

Type Action

1 Send a termination signal and then terminate

⊥ Receive a termination signal

𝐴 ⊗ 𝐵 Send a channel of type 𝐴 and proceed as 𝐵

𝐴 ` 𝐵 Receive a channel of type 𝐴 and proceed as 𝐵

𝐴 ⊕ 𝐵 Send a “left” or “right” and then proceed as 𝐴 or 𝐵 accordingly

𝐴 & 𝐵 Receive a “left” or “right” and then proceed as 𝐴 or 𝐵 accordingly

Table 1. Interpretation of propositions in linear logic as session types on channels in CP

Logical negation induces an involutory notion of duality on session types, where two types are

dual if one can be obtained from the other by exchanging sending and receiving. This duality will

be used in process composition: we can safely compose a process 𝑃 communicating on 𝑥 : 𝐴 with a

process 𝑄 communicating on 𝑥 : 𝐵 whenever 𝐴 and 𝐵 are dual. We write 𝐴⊥
for the dual of 𝐴; it is

inductively defined on the structure of 𝐴:

1
⊥ = ⊥ ⊥⊥ = 1

(𝐴 ⊗ 𝐵)⊥ = 𝐴⊥ ` 𝐵⊥ (𝐴 ` 𝐵)⊥ = 𝐴⊥ ⊗ 𝐵⊥

(𝐴 & 𝐵)⊥ = 𝐴⊥ ⊕ 𝐵⊥ (𝐴 ⊕ 𝐵)⊥ = 𝐴⊥
& 𝐵⊥

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

235:4 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

2.1 Type Judgments
Since each inference rule in linear logic corresponds to a process construct, we define the syntax of

the processes alongside the type judgments.

Identity and process composition. The identity rule globally identifies two channels 𝑥 and 𝑦. The

duality between the types 𝐴 and 𝐴⊥
ensures that this identification only occurs between channels

with compatible protocols.

fwd 𝑥 𝑦 ⊢ 𝑥 : 𝐴,𝑦 : 𝐴⊥ (Id)

The process composition 𝜈𝑥 :𝐴.(𝑃 ∥ 𝑄) spawns processes 𝑃 and 𝑄 that communicate along a

bound private channel 𝑥 . Its endpoints in 𝑃 and 𝑄 have type 𝐴 and 𝐴⊥
, respectively. Linearity

ensures that no other channels are shared between 𝑃 and 𝑄 .

𝑃 ⊢ Δ1, 𝑥 : 𝐴 𝑄 ⊢ Δ2, 𝑥 : 𝐴⊥

𝜈𝑥 :𝐴.(𝑃 ∥ 𝑄) ⊢ Δ1,Δ2

(Cut)

Channel transmission. The two multiplicative connectives ⊗ and ` correspond to sending and

receiving a channel, respectively. The process out 𝑥 𝑦; (𝑃 ∥ 𝑄) sends a channel name 𝑦 across the

channel 𝑥 , and spawns concurrent processes 𝑃 and 𝑄 that provide 𝑥 and 𝑦, respectively.

𝑃 ⊢ Δ1, 𝑦 : 𝐴 𝑄 ⊢ Δ2, 𝑥 : 𝐵

out 𝑥 𝑦; (𝑃 ∥ 𝑄) ⊢ Δ1,Δ2, 𝑥 : 𝐴 ⊗ 𝐵
(⊗)

The process inp 𝑥 𝑦; 𝑃 receives a channel over 𝑥 , binds it to a fresh name 𝑦, and proceeds as 𝑃 .

𝑃 ⊢ Δ, 𝑥 : 𝐵,𝑦 : 𝐴

inp 𝑥 𝑦; 𝑃 ⊢ Δ, 𝑥 : 𝐴 ` 𝐵
(`)

Internal and external choice. The two additive connectives ⊕ and & respectively specify inter-

nal and external choice. Internal choice is implemented by processes 𝑥 [inl]; 𝑃 and 𝑥 [inr]; 𝑃 that

respectively send a “left” and “right” choice across 𝑥 .

𝑃 ⊢ Δ, 𝑥 : 𝐴

𝑥 [inl]; 𝑃 ⊢ Δ, 𝑥 : 𝐴 ⊕ 𝐵
(⊕1)

𝑃 ⊢ Δ, 𝑥 : 𝐵

𝑥 [inr]; 𝑃 ⊢ Δ, 𝑥 : 𝐴 ⊕ 𝐵
(⊕2)

External choice is implemented by a case analysis on a received choice:

𝑃 ⊢ Δ, 𝑥 : 𝐴 𝑄 ⊢ Δ, 𝑥 : 𝐵

case 𝑥 (𝑃, 𝑄) ⊢ Δ, 𝑥 : 𝐴 & 𝐵
(&)

Contrary to previous rules, the context Δ in the conclusion is not split between premisses. This

does not violate linearity because only one of the branches will be taken.

Termination. The multiplicative units 1 and ⊥ specify termination and waiting for termination,

respectively.

close 𝑥 ⊢ 𝑥 : 1

(1)
𝑃 ⊢ Δ

wait 𝑥 ; 𝑃 ⊢ Δ, 𝑥 : ⊥ (⊥)

2.2 Reductions and Type Preservation
Cut elimination in classical linear logic corresponds to reduction rules for CP processes and therefore

reduces parallel compositions of form 𝜈𝑥 :𝐴.(𝑃 ∥ 𝑄). For example, if 𝑃 = fwd 𝑥 𝑦, then we have the

reduction rule

𝜈𝑥 :𝐴.(fwd 𝑥 𝑦 ∥ 𝑄) ⇒𝐶𝑃 [𝑦/𝑥]𝑄 (𝛽fwd)

Other reduction rules are categorized into principal reductions, where both 𝑃 and𝑄 are attempting

to communicate over the same channel, commuting conversions, where we can push the cut inside

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:5

𝑃 , and congruence rules. We treat all other processes, e.g., inp 𝑥 𝑦; 𝑃 , as stuck processes waiting to

communicate with an external agent.

An example of a principal reduction occurs with the composition of 𝑃 = 𝑥 [inl]; 𝑃 ′
and 𝑄 =

case 𝑥 (𝑄1, 𝑄2). After communication, the left process continues as 𝑃 ′
and the right process as 𝑄1,

since the “left” signal was sent by 𝑃 .

𝜈𝑥 :𝐴 ⊕ 𝐵.(𝑥 [inl]; 𝑃 ′ ∥ case 𝑥 (𝑄1, 𝑄2)) ⇒𝐶𝑃 𝜈𝑥 :𝐴.(𝑃 ′ ∥ 𝑄1)
(𝛽inl)

An example of a commuting conversion occurs when 𝑃 = 𝑥 [inl]; 𝑃 ′
and the abstracted channel

is some 𝑧 such that 𝑥 ≠ 𝑧. In this case, we push the cut inside 𝑃 .

𝜈𝑧:𝐶.(𝑥 [inl]; 𝑃 ′ ∥ 𝑄) ⇒𝐶𝑃 𝑥 [inl];𝜈𝑧:𝐶.(𝑃 ′ ∥ 𝑄) (𝜅inl)

Finally, the congruence rules enable reduction under cuts. We follow Wadler’s formulation and

do not provide congruence rules for other process constructs. Such rules would eliminate internal

cuts and do not correspond to the intended notion of computation, analogously to not permitting

reduction under 𝜆-abstractions.

𝑃 ⇒𝐶𝑃 𝑃 ′

𝜈𝑥 :𝐴.(𝑃 ∥ 𝑄) ⇒𝐶𝑃 𝜈𝑥 :𝐴.(𝑃 ′ ∥ 𝑄) (𝛽cut1)
𝑄 ⇒𝐶𝑃 𝑄 ′

𝜈𝑥 :𝐴.(𝑃 ∥ 𝑄) ⇒𝐶𝑃 𝜈𝑥 :𝐴.(𝑃 ∥ 𝑄 ′) (𝛽cut2)

We close these rules under structural equivalences 𝑃 ≡ 𝑄 , which says that parallel composition

is commutative and associative:

𝜈𝑥 :𝐴.(𝑃 ∥ 𝑄) ≡ 𝜈𝑥 :𝐴⊥ .(𝑄 ∥ 𝑃) (≡comm)

𝜈𝑦:𝐵.(𝜈𝑥 :𝐴.(𝑃 ∥ 𝑄) ∥ 𝑅) ≡ 𝜈𝑥 :𝐴.(𝑃 ∥ 𝜈𝑦:𝐵.(𝑄 ∥ 𝑅)) (≡assoc)

For (≡assoc), it is implicit that the process 𝑃 does not depend on the channel 𝑦.

For later developments, we define the closure explicitly as a reduction rule:

𝑃 ≡ 𝑄 𝑄 ⇒𝐶𝑃 𝑅 𝑅 ≡ 𝑆

𝑃 ⇒𝐶𝑃 𝑆
(𝛽≡)

which also requires adding reflexitivity and transitivity to ≡.

Theorem 2.1 (Type Preservation of CP). If 𝑃 ⊢ Δ and 𝑃 ⇒𝐶𝑃 𝑄 , then 𝑄 ⊢ Δ.

3 STRUCTURAL CLASSICAL PROCESSES (SCP)
We introduce Structural Classical Processes (SCP). SCP is a reformulation of Classical Processes

using a structural context, i.e., in which weakening and contraction hold. The property we would

like to enforce is that the context can only grow as we move upwards in a typing derivation. This

property makes SCP well-suited for mechanizations and in particular HOAS encodings since no

complex operations such as context splitting are necessary. Of course, simply adopting structural

rules on top of CP is insufficient because linearity is needed to prove its safety theorems. Instead,

we use local linearity predicates to enforce linearity on a global level. These linearity checks are

given by a judgment lin(𝑥, P) that informally means “𝑥 occurs linearly in the process P”.
SCP’s syntax is similar to CP’s. In particular, we use the same syntax for session types and the

same notion of duality. However, SCP’s process syntax explicitly tracks the continuation channels

that are left implicit in CP’s typing rules (and other on-paper systems). To illustrate, contrast the CP

process 𝑥 [inl]; 𝑃 with the corresponding SCP process inl 𝑥 ; 𝑤.P and their associated typing rules:

𝑃 ⊢ Δ, 𝑥 : 𝐴

𝑥 [inl]; 𝑃 ⊢ Δ, 𝑥 : 𝐴 ⊕ 𝐵
(⊕1)

P ⊩ Γ, 𝑥 : 𝐴 ⊕ 𝐵,𝑤 : 𝐴

inl 𝑥 ; 𝑤.P ⊩ Γ, 𝑥 : 𝐴 ⊕ 𝐵
[⊕1]

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

235:6 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

In (⊕1), the assumption 𝑥 : 𝐴 ⊕ 𝐵 in the conclusion is replaced by 𝑥 : 𝐴 in the premise, violating our

principle that we may only grow contexts. SCP respects the principle thanks to two changes. First,

the syntax inl 𝑥 ; 𝑤.P binds a name𝑤 in 𝑃 for the continuation channel of 𝑥 . This in turn lets us

grow the context in the premise of [⊕1] with an assumption𝑤 : 𝐴, while keeping the assumption

𝑥 : 𝐴 ⊕ 𝐵. Our linearity predicate ensures that the continuation channel𝑤 is used instead of 𝑥 in 𝑃 ,

making these modifications safe. We explain SCP typing judgments below.

SCP is a faithful structural encoding of CP: we give a bijection between well-typed CP processes

and well-typed linear SCP processes. Accordingly, we encode SCP instead of CP in LF, and we rely

on our equivalence proof to mediate between CP and our LF mechanization of SCP.

3.1 Type Judgments
Wewrite P ⊩ Γ for SCP typing judgments to differentiate them fromCP typing judgments 𝑃 ⊢ Δ. The
context Γ is structural: it enjoys the weakening, contraction, and exchange properties. Intuitively,

it represents the ambient LF context.

Identity and Cut. Axioms use arbitrary contexts Γ to allow for weakening:

fwd 𝑥 𝑦 ⊩ Γ, 𝑥 : 𝐴,𝑦 : 𝐴⊥ [Id]

We write 𝜈𝑥 :𝐴.(P ∥ Q) for the composition of P and Q along a private, bound channel 𝑥 . Contrary

to the typing rule (Cut) in CP, the cut rule in SCP does not split contexts. This is because contexts

can only grow as we move upwards in SCP typing derivations.

P ⊩ Γ, 𝑥 : 𝐴 lin(𝑥, P) Q ⊩ Γ, 𝑥 : 𝐴⊥ lin(𝑥, Q)
𝜈𝑥 :𝐴.(P ∥ Q) ⊩ Γ

[Cut]

This rule illustrates a general design principle of SCP: we must check that any channel introduced

in the continuation of a process is used linearly. In particular, [Cut] checks that P and Q use the
free channel 𝑥 linearly.

Choices. The choice rules explicitly track continuation channels. In particular, the processes

inl 𝑥 ; 𝑤.P and inr 𝑥 ; 𝑤.P bind the name𝑤 in P. This name stands in for the continuation channel

of 𝑥 after it has transmitted a left or right label. The rules [⊕1] and [⊕2] grow the context and

ensure that 𝑤 has the appropriate type in P. We remark that these two rules do not preclude 𝑥

and𝑤 from both appearing in P. However, this will be ruled out by our linearity predicate, which

checks that 𝑥 and its continuation channels are used linearly in inl 𝑥 ; 𝑤.P or inr 𝑥 ; 𝑤.P. The
treatment of continuation channels in the rule [&] is analogous.

P ⊩ Γ, 𝑥 : 𝐴 ⊕ 𝐵,𝑤 : 𝐴

inl 𝑥 ; 𝑤.P ⊩ Γ, 𝑥 : 𝐴 ⊕ 𝐵
[⊕1]

P ⊩ Γ, 𝑥 : 𝐴 ⊕ 𝐵,𝑤 : 𝐵

inr 𝑥 ; 𝑤.P ⊩ Γ, 𝑥 : 𝐴 ⊕ 𝐵
[⊕2]

P ⊩ Γ, 𝑥 : 𝐴 & 𝐵,𝑤 : 𝐴 Q ⊩ Γ, 𝑥 : 𝐴 & 𝐵,𝑤 : 𝐵

case 𝑥 (𝑤.P, 𝑤 .Q) ⊩ Γ, 𝑥 : 𝐴 & 𝐵
[&]

Channel Transmission. The channel transmission rules follow the same principles as the identity

and cut rules. In particular, they do not split channel contexts between processes, and they check that

freshly introduced channels are used linearly. The names 𝑦 and𝑤 are bound in out 𝑥 ; (𝑦.P ∥ 𝑤.Q)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:7

and in inp 𝑥 (𝑤.𝑦.P).
P ⊩ Γ, 𝑥 : 𝐴 ⊗ 𝐵,𝑦 : 𝐴 lin(𝑦, P) Q ⊩ Γ, 𝑥 : 𝐴 ⊗ 𝐵,𝑤 : 𝐵

out 𝑥 ; (𝑦.P ∥ 𝑤.Q) ⊩ Γ, 𝑥 : 𝐴 ⊗ 𝐵
[⊗]

P ⊩ Γ, 𝑥 : 𝐴 ` 𝐵,𝑤 : 𝐵,𝑦 : 𝐴 lin(𝑦, P)
inp 𝑥 (𝑤.𝑦.P) ⊩ Γ, 𝑥 : 𝐴 ` 𝐵

[`]

Termination. The rules for termination are analogous:

close 𝑥 ⊩ Γ, 𝑥 : 1

[1] P ⊩ Γ
wait 𝑥 ; P ⊩ Γ, 𝑥 : ⊥ [⊥]

3.2 Linearity Predicate
We now define the predicate lin(𝑥, P). It syntactically checks that a free channel 𝑥 and its continu-

ations occur linearly in P. This judgment is generic relative to an implicit context of channel names

that can be freely renamed, and we assume that this implicit context contains the free names fn(P)
of the process P. The linearity predicate lin(𝑥, P) is inductively defined by the following rules,

which we informally group into two categories. The first category specifies when a process uses its

principal channels linearly. The axioms in this category are:

lin(𝑥, fwd 𝑥 𝑦) 𝐿fwd1 lin(𝑦, fwd 𝑥 𝑦) 𝐿fwd2 lin(𝑥, close 𝑥) 𝐿close
𝑥 ∉ fn(P)

lin(𝑥, wait 𝑥 ; P) 𝐿wait

For process constructs whose principal channel 𝑥 would persist in CP, we must check that its

continuation channel𝑤 is used linearly in its continuation process and that the original channel 𝑥

does not appear in the continuation, thereby capturing the property that𝑤 is the continuation of 𝑥 .

lin(𝑤, Q) 𝑥 ∉ fn(P) ∪ fn(Q)
lin(𝑥, out 𝑥 ; (𝑦.P ∥ 𝑤.Q)) 𝐿out

lin(𝑤, P) 𝑥 ∉ fn(P)
lin(𝑥, inp 𝑥 (𝑤.𝑦.P))

𝐿inp

lin(𝑤, P) 𝑥 ∉ fn(P)
lin(𝑥, inl 𝑥 ; 𝑤.P) 𝐿inl

lin(𝑤, P) 𝑥 ∉ fn(P)
lin(𝑥, inr 𝑥 ; 𝑤.P) 𝐿inr

lin(𝑤, P) lin(𝑤, Q) 𝑥 ∉ fn(P) ∪ fn(Q)
lin(𝑥, case 𝑥 (𝑤.P, 𝑤 .Q)) 𝐿case

These rules do not check the linearity of freshly bound channels, for example, of the channel 𝑦 in

channel output or channel input. This is because the predicate only checks the linearity of free

channels and their continuations. Although this predicate does not check the linearity of fresh

channels such as 𝑦, our type system ensures their linear use in well-typed processes.

The second category of rules are congruence cases in which we check the linearity of non-

principal channels. We implicitly assume throughout that 𝑧 is distinct from any bound name:

lin(𝑧, P)
lin(𝑧, wait 𝑥 ; P) 𝐿wait2

lin(𝑧, P) 𝑧 ∉ fn(Q)
lin(𝑧, out 𝑥 ; (𝑦.P ∥ 𝑤.Q)) 𝐿out2

lin(𝑧, Q) 𝑧 ∉ fn(P)
lin(𝑧, out 𝑥 ; (𝑦.P ∥ 𝑤.Q)) 𝐿out3

lin(𝑧, P)
lin(𝑧, inp 𝑥 (𝑤.𝑦.P))

𝐿inp2
lin(𝑧, P)

lin(𝑧, inl 𝑥 ; 𝑤.P) 𝐿inl2
lin(𝑧, P)

lin(𝑧, inr 𝑥 ; 𝑤.P) 𝐿inr2

lin(𝑧, P) lin(𝑧, Q)
lin(𝑧, case 𝑥 (𝑤.P, 𝑤 .Q)) 𝐿case2

lin(𝑧, P) 𝑧 ∉ fn(Q)
lin(𝑧, 𝜈𝑥 :𝐴.(P ∥ Q)) 𝐿𝜈1

lin(𝑧, Q) 𝑧 ∉ fn(P)
lin(𝑧, 𝜈𝑥 :𝐴.(P ∥ Q)) 𝐿𝜈2

When checking that 𝑧 appears linearly in processes whose context would be split by the typing

rules in CP, namely, in channel output and parallel composition, we ensure that 𝑧 appears in at

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

235:8 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

most one of the subprocesses. This lets us use our linearity predicate to mimic context splitting in

the presence of structural ambient contexts.

Example 3.1. There exists a well-typed SCP process that is not linear, to wit,

close 𝑥 ⊩ 𝑥 : 1, 𝑦 : ⊥ [1]

wait 𝑦; close 𝑥 ⊩ 𝑥 : 1, 𝑦 : ⊥ [⊥]

wait 𝑦; wait 𝑦; close 𝑥 ⊩ 𝑥 : 1, 𝑦 : ⊥ [⊥]

However, it is not the case that lin(𝑦, wait 𝑦; wait 𝑦; close 𝑥). Indeed, the only rule with a

conclusion of this form is 𝐿wait, but it is subject to the side condition 𝑦 ∉ fn(wait 𝑦; close 𝑥).

3.3 Equivalence of CP and SCP
We establish a correspondence between CP and SCP typing derivations. Because CP and SCP use

slightly different process syntax, we first define an encoding 𝜀 (𝑃) and a decoding 𝛿 (P) that maps a

process in CP to SCP and SCP to CP respectively. We give several representative cases:

𝜀 (fwd 𝑥 𝑦) = fwd 𝑥 𝑦 𝛿 (fwd 𝑥 𝑦) = fwd 𝑥 𝑦

𝜀 (𝜈𝑥 :𝐴.(𝑃 ∥ 𝑄)) = 𝜈𝑥 :𝐴.(𝜀 (𝑃) ∥ 𝜀 (𝑄)) 𝛿 (𝜈𝑥 :𝐴.(P ∥ Q)) = 𝜈𝑥 :𝐴.(𝛿 (P) ∥ 𝛿 (Q))
𝜀 (inp 𝑥 𝑦; 𝑃) = inp 𝑥 (𝑥 .𝑦.𝜀 (𝑃)) 𝛿 (inp 𝑥 (𝑤.𝑦.P)) = inp 𝑥 𝑦; [𝑥/𝑤]𝛿 (P)
𝜀 (𝑥 [inl]; 𝑃) = inl 𝑥 ; 𝑥 .𝜀 (𝑃) 𝛿 (inl 𝑥 ; 𝑤.P) = 𝑥 [inl]; [𝑥/𝑤]𝛿 (P)

The bijection between well-typed processes is subtle because we must account for different

structural properties in each system and slight differences in the process syntax. For example, the

judgment close 𝑥 ⊩ Γ, 𝑥 : 1 is derivable in SCP for any Γ, whereas the judgment close 𝑥 ⊢ Γ, 𝑥 : 1 is

derivable in CP only if Γ is empty. The key insight is that the bijection holds only if the SCP process

uses each channel in its context linearly. This restriction to linear SCP processes is unproblematic

because we only ever consider such processes in our development.

Before stating the equivalence theorem, we introduce two lemmas that we use in its proof. Both

lemmas are proved by induction on the derivation of the typing judgment.

Lemma 3.2 (Weakening). If P ⊩ Γ, then P ⊩ Γ, 𝑥 : 𝐴.

Lemma 3.3 (Strengthening). If P ⊩ Γ, 𝑥 : 𝐴 and 𝑥 ∉ fn(P), then P ⊩ Γ.

Notation. We write lin(Δ, P) as shorthand for ∀𝑥 ∈ dom(Δ).lin(𝑥, P).
The equivalence theorem shows that we can not only faithfully embed CP processes in SCP but

also their typing derivations. Indeed, Theorem 3.4 states that each CP derivation determines the

typing derivation of a linear SCP process and that each typing derivation of a linear SCP process

can be obtained by weakening a CP typing derivation. This structure-preserving embedding of CP

derivations in SCP is given by induction on the derivation. The general strategy is that we interleave

the CP derivation with the appropriate linearity checks. We give a more detailed overview of the

encoding and decoding maps alongside the proof of the following theorem in Appendix A of an

extended version of this paper [?].

Theorem 3.4 (Adeqacy). The function 𝛿 is left inverse to 𝜀, i.e., 𝛿 (𝜀 (𝑃)) = 𝑃 for all CP processes 𝑃 .
The syntax-directed nature of 𝜀 and 𝛿 induces functions between CP typing derivations and typing
derivations of linear SCP processes:

(1) If D is a derivation of 𝑃 ⊢ Δ, then there exists a derivation 𝜀 (D) of 𝜀 (𝑃) ⊩ Δ, and lin(Δ, 𝜀 (𝑃))
and 𝛿 (𝜀 (D)) = D.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:9

(2) If D is a derivation of P ⊩ Γ,Δ where fn(P) = dom(Δ) and lin(Δ, P), then there exists a
derivation 𝛿 (D) of 𝛿 (P) ⊢ Δ, and 𝜀 (𝛿 (P)) = P. Moreover, D is the result of weakening the
derivation 𝜀 (𝛿 (D)) of P ⊩ Δ by Γ.

3.4 Reduction and Type Preservation
The dynamics of SCP is given by translation to and from CP. In particular, we write P ⇒𝑆𝐶𝑃 Q
whenever 𝛿 (P) ⇒𝐶𝑃 𝑄 and 𝜀 (𝑄) = Q for some CP process 𝑄 . This translation satisfies the usual

type-preservation property:

Lemma 3.5. If P ⊩ Δ and lin(Δ, P), then fn(P) = dom(Δ).

Proof. By induction, lin(𝑥, P) implies 𝑥 ∈ fn(P), so lin(Δ, P) implies dom(Δ) ⊆ fn(P). For the
opposite inclusion, P ⊩ Δ implies dom(Δ) ⊇ fn(P) by induction, so fn(P) = dom(Δ). □

Theorem 3.6 (Subject Reduction). If P ⊩ Δ, lin(Δ, P), and P ⇒𝑆𝐶𝑃 Q, then Q ⊩ Δ and lin(Δ, Q).

Proof. Assume P ⊩ Δ, lin(Δ, P), and P ⇒𝑆𝐶𝑃 Q. Then fn(P) = dom(Δ) by Lemma 3.5. Adequacy

(Theorem 3.4) implies 𝛿 (P) ⊢ Δ. By the assumption P ⇒𝑆𝐶𝑃 Q, there exists a𝑄 such that 𝛿 (P) ⇒𝐶𝑃 𝑄

and 𝜀 (𝑄) = Q. Subject reduction for CP (Theorem 2.1) implies 𝑄 ⊢ Δ, so Q ⊩ Δ and lin(Δ, Q) by
adequacy again. □

We could instead directly prove Theorem 3.6 by induction on the reduction. This direct proof is

mechanized as Theorem 6.4.

Since we mechanize SCP, it is convenient to have the reduction and equivalence rules expressed

directly in SCP. We show some such rules below. They are obtained by translating the rules in

section 2.2 (the second congruence rule for cut omitted).

𝜈𝑥 :𝐴.(fwd 𝑥 𝑦 ∥ Q) ⇒𝑆𝐶𝑃 [𝑦/𝑥]Q [𝛽fwd]
P ⇒𝑆𝐶𝑃 P′

𝜈𝑥 :𝐴.(P ∥ Q) ⇒𝑆𝐶𝑃 𝜈𝑥 :𝐴.(P′ ∥ Q) [𝛽cut1]

𝜈𝑥 :𝐴 ⊕ 𝐵.(inl 𝑥 ; 𝑤.P ∥ case 𝑥 (𝑤.Q1, 𝑤 .Q2)) ⇒𝑆𝐶𝑃 𝜈𝑤 :𝐴.(P ∥ Q1)
[𝛽inl1]

𝜈𝑧:𝐶.(inl 𝑥 ; 𝑤.P ∥ Q) ⇒𝑆𝐶𝑃 inl 𝑥 ; 𝑤.𝜈𝑧:𝐶.(P ∥ Q) [𝜅inl]

We obtain SCP’s structural equivalence in a similar manner: P ≡ Q whenever 𝛿 (P) ≡ 𝛿 (Q). We show

two cases of this direct translation.

𝜈𝑥 :𝐴.(P ∥ Q) ≡ 𝜈𝑥 :𝐴⊥ .(Q ∥ P) [≡comm]
𝜈𝑦:𝐵.(𝜈𝑥 :𝐴.(P ∥ Q) ∥ R) ≡ 𝜈𝑥 :𝐴.(P ∥ 𝜈𝑦:𝐵.(Q ∥ R)) [≡assoc]

4 ENCODING SCP IN LF
We now encode each component of SCP in the logical framework LF. Throughout this section, we

make liberal modifications to the working code for presentation/readability purposes.

4.1 Types
We encode session types in LF by defining the LF type tp: type. The type constants for this type

correspond to the type constructors in SCP.

1 : tp. % termination ("provider")

⊥ : tp. % termination ("client")

⊗ : tp → tp → tp. % channel output

` : tp → tp → tp. % channel input

& : tp → tp → tp. % receive choice

⊕ : tp → tp → tp. % send choice

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

235:10 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

We use the LF type family dual: tp → tp → type to represent duality as a relation between

two types. The constants of this type family correspond to the equational definition of duality. In

particular, dual A A' encodes 𝐴 = 𝐴⊥
(where 𝐴⊥ = 𝐴′

).

D1 : dual 1 ⊥.
D⊥ : dual ⊥ 1.

D⊗ : dual A A' → dual B B'

→ dual (A ⊗ B) (A' ` B').

D` : dual A A' → dual B B'

→ dual (A ` B) (A' ⊗ B').

D& : dual A A' → dual B B'

→ dual (A & B) (A' ⊕ B').

D⊕ : dual A A' → dual B B'

→ dual (A ⊕ B) (A' & B').

4.2 Processes
We give an encoding of processes by interpreting all channel bindings as intuitionistic functions in

LF. First, we define channel names as the type family name. Unlike in the functional setting where

everything is an expression, in the process calculus setting, channels and processes are distinct.

This leads to a so-called weak-HOAS encoding [Despeyroux et al. 1995]. We then introduce the

predicate proc, standing for processes.

name : type. % channel names

proc : type. % process

We first encode fwd 𝑥 𝑦, close 𝑥, and wait 𝑥 ; P, which introduce no channel bindings. The

former requires two names and the latter two require one name.

fwd : name → name → proc. % fwd x y

close : name → proc. % close x

wait : name → proc → proc. % wait x; P

The processes inl 𝑥 ; 𝑤.P, inr 𝑥 ; 𝑤.P, and case 𝑥 (𝑤.P, 𝑤 .Q) first require some name 𝑥 . They

then bind a fresh continuation channel 𝑤 to the continuation processes 𝑃 and 𝑄 . We therefore

encode the continuation processes as intuitionistic functions name → proc.

inl : name → (name → proc) → proc. % x.inl; w.P

inr : name → (name → proc) → proc. % x.inr; w.P

choice : name → (name → proc) → (name → proc) → proc. % case x (w.P, w.Q)

Channel output out 𝑥 ; (𝑦.P ∥ 𝑤.Q) binds the channel 𝑦 to the process P and the continuation

channel𝑤 to the process Q. We therefore encode𝑦.P and𝑤.Q as intuitionistic functions name → proc:

out : name → (name → proc) → (name → proc) → proc. % out x y; (y.P || w.Q)

Similarly, channel input inp 𝑥 (𝑤.𝑦.P) binds two channels to P: the continuation channel𝑤 and

the received channel 𝑦. We therefore encode P as a function with two channel names as input.

inp : name → (name → name → proc) → proc. % inp x; (w.y.P)

Parallel composition 𝜈𝑥 :𝐴.(P ∥ Q) takes some session type 𝐴 and binds a fresh 𝑥 to both P and Q,
so we encode both processes as functions.

pcomp : tp → (name → proc) → (name → proc) → proc. % 𝜈x:A. (P || Q)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:11

4.3 Linearity Predicate
On paper, we inductively defined a predicate lin(𝑥, P) that checks if 𝑥 occurs “linearly” in a process

P. This predicate clearly respects renaming – if lin(𝑥, P) and 𝑦 is fresh with respect to P, then
lin(𝑦, [𝑦/𝑥]P). We encode this predicate in LF as a type family over functions from names 𝑥 to

processes P. Inhabitants of this family correspond to functions that produces a process that treats

its input channel linearly.

linear : (name → proc) → type.

Unlike our encodings of types and duality, processes can depend on assumptions of the form

x1:name , ..., xn:name that are stored in the so-called ambient context. In fact, in Beluga, we

always consider an object with respect to the context in which it is meaningful. In the on-paper

definition of linearity (see section 3.2) we left this context implicit and only remarked that the set

of free names fn(P) of a process P is a subset of this ambient context of channel names. However,

when we encode the linearity predicate in LF, we need to more carefully quantify over channel

names as we recursively analyze the linearity of a given process.

Intuitively, we define the constructors for linearity by pattern matching on various process con-

structors. By convention, we will use capital letters for metavariables that are implicitly quantified

at the outside. These metavariables describe closed LF terms; in particular when the metavariables

stand for processes, it requires that the processes not depend on any local, internal bindings. We

heavily exploit this feature in our encoding to obtain side conditions of the form 𝑥 ∉ fn(𝑃) for free.
We begin by translating the axioms in section 3.2:

l_fwd1 : linear (𝜆x. fwd x Y).

l_fwd2 : linear (𝜆x. fwd Y x).

l_close : linear (𝜆x. close x).

l_wait : linear (𝜆x. wait x P).

lin(𝑥, fwd 𝑥 𝑦) 𝐿fwd1 lin(𝑦, fwd 𝑥 𝑦) 𝐿fwd2

lin(𝑥, close 𝑥) 𝐿close
𝑥 ∉ fn(P)

lin(𝑥, wait 𝑥 ; P) 𝐿wait

Here, Y:name in both l_fwd1 and l_fwd2 are implicitly quantified at the outside and cannot depend

on the input channel i.e.. 𝑥 ≠ 𝑌 . Similarly, the metavariable P:proc in l_wait cannot depend on

the input channel 𝑥 , satisfying the condition that 𝑥 ∉ fn(P).
The remaining principal cases must continue to check for linearity in the continuation process.

Consider the principal case for channel output:

% where Q : (name → proc)

l_out : linear Q → linear (𝜆x. out x P Q).

lin(𝑤, Q) 𝑥 ∉ fn(P) ∪ fn(Q)
lin(𝑥, out 𝑥 ; (𝑦.P ∥ 𝑤.Q)) 𝐿out

The premise lin(𝑤, Q) corresponds to the input linear Q for this constructor because we encode

Q as a function name → proc. The additional condition that 𝑥 does not appear in P and Q follows
because P and Q are metavariables, meaning they cannot depend on the internally bound x:name.

The encoding of the principal case for channel input requires a bit more care. Recall the on-paper

rule:

lin(𝑤, P) 𝑥 ∉ fn(P)
lin(𝑥, inp 𝑥 (𝑤.𝑦.P))

𝐿inp

Following the strategy for channel output, we would like to continue checking that the continuation

channel𝑤 appears linearly in P by requiring it as an input in our encoding. But since we encode P
as a two argument function name → name → proc, we cannot simply say

l_inp : linear P

→ linear (𝜆x. inp x P). % WRONG

Instead, what we need as our premise is the fact that P is linear with respect to some input𝑤 given

any 𝑦. To check this, we universally quantify over y using the syntax {y:name}:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

235:12 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

l_inp : ({y:name} linear (𝜆w. P w y))

→ linear (𝜆x. inp x P).

The condition that 𝑥 does not appear in P again follows from the fact that P must be closed.

The other principal cases are standard translations, which we present in a less verbose manner.

The continuation channels are checked in the same style as in channel output.

l_inl : linear P → linear (𝜆x. inl x P).

l_inr : linear P → linear (𝜆x. inr x P).

l_choice : linear P → linear Q

→ linear (𝜆x. choice x P Q).

lin(𝑤, P) 𝑥 ∉ fn(P)
lin(𝑥, inl 𝑥 ; 𝑤.P) 𝐿inl

lin(𝑤, P) 𝑥 ∉ fn(P)
lin(𝑥, inr 𝑥 ; 𝑤.P) 𝐿inr

lin(𝑤, P) lin(𝑤, Q) 𝑥 ∉ fn(P) ∪ fn(Q)
lin(𝑥, case 𝑥 (𝑤.P, 𝑤 .Q)) 𝐿case

The congruence cases follow similar ideas except with complex bindings as in the principal case

for input. The simplest case is the encoding of wait:

l_wait2 : linear P → linear (𝜆z. wait X (P z)). lin(𝑧, P)
lin(𝑧, wait 𝑥 ; P) 𝐿wait2

Here, it is important to recognize that (P z) is of type proc according to the wait constructor,

meaning P is of type name → proc. Therefore, requiring linear P corresponds to checking lin(𝑧, P).
The congruence case for input is perhaps the most extreme instance of this complex binding:

l_inp2 : ({w:name}{y:name} linear (𝜆z. P z w y))

→ linear (𝜆z. inp X (P z)).

lin(𝑧, P)
lin(𝑧, inp 𝑥 (𝑤.𝑦.P))

𝐿inp2

Here, (P z) is of type name → name → proc, so we check for linearity of z by requiring it to be

linear with any w and y.

Next, we consider the congruence cases for parallel composition.

l_pcomp1 : ({x:name} linear (𝜆z. P x z))

→ linear (𝜆z. (pcomp A (𝜆x. P x z) Q)).

l_pcomp2 : ({x:name} linear (𝜆z. Q x z))

→ linear (𝜆z. pcomp A P (𝜆x. Q x z)).

lin(𝑧, P) 𝑧 ∉ fn(Q)
lin(𝑧, 𝜈𝑥 :𝐴.(P ∥ Q)) 𝐿𝜈1

lin(𝑧, Q) 𝑧 ∉ fn(P)
lin(𝑧, 𝜈𝑥 :𝐴.(P ∥ Q)) 𝐿𝜈2

Since Q is a metavariable in l_pcomp1 , it must be closed with respect to z, so it satisfies the

condition 𝑧 ∉ fn(Q). The condition 𝑧 ∉ fn(P) in l_pcomp2 is satisfied for the same reason.

We summarize the remaining cases below.

l_out2 : ({y:name} linear (𝜆z. P z y))

→ linear (𝜆z. out X (P z) Q).

l_inl2 : ({x':name} linear (𝜆z. P z x'))

→ linear (𝜆z. inl X (P z)).

l_choice2 : ({x':name} linear (𝜆z. P z x'))

→ ({x':name} linear (𝜆z. Q z x'))

→ linear (𝜆z. choice X (P z) (Q z)).

l_out3 : ({x':name} linear (𝜆z. Q z x'))

→ linear (𝜆z. out X P (Q z)).

l_inr2 : ({x':name} linear (𝜆z. P z x'))

→ linear (𝜆z. inr X (P z)).

4.4 Type Judgments
To encode session typing, we follow the encoding for the sequent calculus in the logical framework

LF (see for example [Harper et al. 2009]). Since type judgments depend on assumptions of the form

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:13

𝑥 : 𝐴, we introduce the type family hyp : name → tp → type to associate a channel namewith a ses-

sion type. We then encode the type judgment 𝑃 ⊩ Γ as a judgment on a process: wtp : proc → type

with ambient assumptions of the form x1:name ,h1:hyp x1 A1, ..., xn:name ,hn:hyp xn An

which represent Γ. Note that the use of these assumptions is unrestricted, but the linearity predicate

ensures that if an assumption is used, then it is used linearly. As an example, we could encode the

rule

close 𝑥 ⊩ Γ, 𝑥 : 1

[1]

in an obvious manner:

wtp_close : {X:name}hyp X 1 → wtp (close X).

To establish wtp (close X), we must have an assumption hyp X 1. While it is not strictly necessary

to explicitly quantify over the channel name X, doing so makes encoding the metatheory easier.

Forwarding requires two channels of dual type:

wtp_fwd : dual A A'

→ {X:name} hyp X A → {Y:name} hyp Y A'

→ wtp (fwd X Y).

fwd 𝑥 𝑦 ⊩ Γ, 𝑥 : 𝐴,𝑦 : 𝐴⊥ [Id]

We encode this rule by requiring a duality relation between two session types 𝐴 and 𝐴′
alongside

corresponding hypotheses that 𝑋 and 𝑌 are of type 𝐴 and 𝐴′
respectively.

The encoding of parallel composition requires a similar trick for duality.

wtp_pcomp : dual A A'

→ ({x:name} hyp x A → wtp (P x))

→ ({x:name} hyp x A' → wtp (Q x))

→ linear P → linear Q

→ wtp (pcomp A P Q).

P ⊩ Γ, 𝑥 : 𝐴 lin(𝑥, P) Q ⊩ Γ, 𝑥 : 𝐴⊥ lin(𝑥, Q)
𝜈𝑥 :𝐴.(P ∥ Q) ⊩ Γ

[Cut]

We encode the premise P ⊩ Γ, 𝑥 : 𝐴 as a function that takes some x:name and assumption hyp x A

to prove that (P x) is well-typed. A different reading of this premise is simply as “for all x:name,

assuming hyp x A, we show that wtp (P x)”. The premise lin(𝑥, P) corresponds to linear P since

P is of type name → proc, and the remaining two premises follow the same idea.

Continuation channels are simply treated as bindings in the same way we treat cut. For instance:

wtp_inl : {X:name} hyp X (A ⊕ B)

→ ({w:name} hyp w A → wtp (P w))

→ wtp (inl X P).

P ⊩ Γ, 𝑥 : 𝐴 ⊕ 𝐵,𝑤 : 𝐴

inl 𝑥 ; 𝑤.P ⊩ Γ, 𝑥 : 𝐴 ⊕ 𝐵
[⊕1]

The first two inputs to the constructor is a name X and a hypothesis that X is of type A ⊕ B. The

next input is that the continuation process (P w) is well-typed given an assumption w:name and

hyp w A, corresponding to the premise of the [⊕1] rule.

The remaining cases follows a similar pattern. Linearity is checked for the freshly bound channels

on channel output and input as in the typing for parallel composition. We defer the full encoding

to the attached artifact.

4.5 Reductions and Structural Equivalence
We model both reductions P ⇒𝑆𝐶𝑃 Q and structural equivalences P ≡ Q as relations.

step : proc → proc → type.

equiv : proc → proc → type.

The encoding is fairly simple. For example, consider

𝛽fwd : step (pcomp A (𝜆x. fwd x Y) Q) (Q Y).
𝜈𝑥 :𝐴.(fwd 𝑥 𝑦 ∥ Q) ⇒𝑆𝐶𝑃 [𝑦/𝑥]Q [𝛽fwd]

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

235:14 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

Since Y:name and Q:name → proc, we rely on the LF application (Q Y) to accomplish the object-level

substitution [𝑦/𝑥]Q.
We write congruence rules by requiring the inner process to step under some arbitrary x:name:

𝛽cut1 : ({x:name} step ((P x) (P' x)))

→ step (pcomp A P Q) (pcomp A P' Q).

P ⇒𝑆𝐶𝑃 P′

𝜈𝑥 :𝐴.(P ∥ Q) ⇒𝑆𝐶𝑃 𝜈𝑥 :𝐴.(P′ ∥ Q) [𝛽cut1]

Principal rules, such as

𝜈𝑥 :𝐴 ⊕ 𝐵.(inl 𝑥 ; 𝑤.P ∥ case 𝑥 (𝑤.Q1, 𝑤 .Q2)) ⇒𝑆𝐶𝑃 𝜈𝑤 :𝐴.(P ∥ Q1)
[𝛽inl1]

can be encoded straightforwardly:

𝛽inl : step (pcomp (A ⊕ B) (𝜆x. inl x P) (𝜆x. choice x Q R))

(pcomp A P Q).

The names of the bound channels 𝑥 and𝑤 are not explicit since the metavariables P, Q, and R are

all functions name → proc and can take an arbitrary name.

The remaining reduction rules and structural equivalences are similarly encoded. Since there are

no interesting cases to discuss, we defer the complete presentation to the included artifact.

5 ADEQUACY OF THE ENCODING
In this section we prove adequacy for each component of our encoding of SCP. Since the proofs are

verbose, we mainly focus on stating the right adequacy lemmas while giving a high-level overview

on the proof strategy for the more complex lemmas. We give more details of the proof in Appendix

B of an extended version of this paper [?].

5.1 Notation
We use the sequent Γ ⊢𝐿𝐹 𝑀 : 𝜏 to refer to judgments within LF. For instance, ⊢𝐿𝐹 𝑀 : tp asserts

that the LF term𝑀 is of type tp under no assumptions. Similarly, Γ ⊢𝐿𝐹 𝐷 : wtp 𝑃 asserts that the

LF term 𝐷 is of type wtp 𝑃 where 𝑃 is some LF term of type proc. Informally, 𝐷 in this context

would correspond to a typing derivation. We also work with LF canonical forms, essentially the 𝛽𝜂

normal forms of a given type, as is standard in adequacy statements.

5.2 Session Types and Duality
Adequacy for the encoding of session types can be shown with the obvious translation function

⌜−⌝ that maps session types 𝐴 to LF terms
⌜𝐴⌝ of type tp.

Lemma 5.1 (Adeqacy of tp). There exists a bijection between the set of session types and canonical
LF terms𝑀 such that ⊢𝐿𝐹 𝑀 : tp.

Adequacy of duality is also easy to show once stated properly. Since there is a slight difference

between the on-paper definition of duality as a unary function and the LF encoding of duality as a

relation, we state adequacy for the encoding of duality as follows.

Lemma 5.2 (Adeqacy of dual).

(1) For any session type𝐴, there exists a unique LF canonical form𝐷 such that ⊢𝐿𝐹 𝐷 : dual
⌜𝐴⌝ ⌜𝐴⊥⌝ .

(2) For any LF canonical form 𝐷 such that ⊢𝐿𝐹 𝐷 : dual
⌜𝐴⌝ ⌜𝐴′⌝ , 𝐴′ = 𝐴⊥.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:15

5.3 Processes
Adequacy of the process encoding also follows naturally from our encoding. In particular, all

channel bindings, which we encode as intuitionistic functions, precisely match the process syntax

of SCP. We can therefore define a translation
⌜−⌝ from processes in SCP to LF normal forms and its

decoding ⌊−⌋ in the obvious manner.

Definition 5.3. The encoding of name sets to an LF context is given as follows:

⌜𝑥1, . . . , 𝑥𝑛
⌝ = 𝑥1:name, . . . , 𝑥𝑛 :name

Lemma 5.4 (Adeqacy of proc). For each SCP process P, there exists a unique canonical LF form
⌜
fn(P)⌝ ⊢𝐿𝐹 ⌜P⌝ : proc and

⌊
⌜P⌝

⌋
= P. Conversely, if Γ ⊢𝐿𝐹 𝑀 : proc is a canonical LF form, then

⌊𝑀⌋ is an SCP process, ⌜ ⌊𝑀⌋⌝ = 𝑀 , and ⌜fn(⌊𝑀⌋)⌝ ⊆ Γ.

The context
⌜
fn(P)⌝ captures the required assumptions to construct a LF term corresponding to

a given process. For example, an encoding of fwd 𝑥 𝑦 corresponds to the LF term

𝑥 :name, 𝑦:name ⊢𝐿𝐹 fwd 𝑥 𝑦 : proc. Indeed,
⌜
fn(fwd 𝑥 𝑦)⌝ = 𝑥 :name, 𝑦:name, allowing the fwd con-

structor to be applied with the assumptions 𝑥 :name and 𝑦:name.
Unfortunately, we cannot give a clean bijection result due to weakening in LF derivations. For

example, there is a derivation of Γ, 𝑥 :name, 𝑦:name ⊢𝐿𝐹 fwd 𝑥 𝑦 : proc for any Γ, and such derivations
all correspond to the SCP process fwd 𝑥 𝑦. Therefore, we only require that the overall context include
the free names for the converse direction. This weaker statement does not affect later developments

since weakening in LF does not change the structure of the derivation. This phenomenon repeats

for later adequacy results due to weakening.

5.4 Linearity
We define an encoding

⌜−⌝ that maps derivations of linearity predicates in SCP of form lin(𝑥, P)
to LF canonical forms of type linear (𝜆𝑥 .⌜P⌝). Similarly, we define a decoding ⌊−⌋ that maps LF

canonical forms of type linear𝑀 , where𝑀 is of type name → proc, to derivations of lin(𝑥, ⌊𝑀 𝑥⌋).

Lemma 5.5 (Adeqacy of linear). For each derivation D of lin(𝑥, P), there exists a unique
canonical LF term 𝐿 = ⌜D⌝ such that ⌜fn(P) \ 𝑥 ⌝ ⊢𝐿𝐹 𝐿 : linear 𝜆𝑥.⌜P⌝ and ⌊𝐿⌋ = D. Conversely,
if Γ ⊢𝐿𝐹 𝐿 : linear 𝑀 is a canonical LF form, then ⌊𝐿⌋ is a derivation of lin(𝑥, ⌊𝑀 𝑥⌋) and
⌜
fn(⌊𝑀 𝑥⌋) \ 𝑥 ⌝ ⊢𝐿𝐹 ⌜ ⌊𝐿⌋⌝ : linear 𝑀 where ⌜fn(⌊𝑀 𝑥⌋)⌝ ⊆ Γ.

Here, the encoding of the context is slightly tricky because we define the linearity predicate on

paper using the syntax lin(𝑥, P), meaning 𝑥 ∈ fn(P). In LF however, since we encode the linearity

predicate linear: (name → proc) → type over intuitionistic functions taking some name 𝑥 , we

must use the context
⌜
fn(P) \ 𝑥 ⌝ when encoding an on-paper derivation of some linearity predicate.

More informally, we establish a correspondence between derivations of lin(𝑥, P) and LF canonical

forms of linear (𝜆𝑥.⌜P⌝) under an LF context without the assumption 𝑥 :name.
At a high level, the proof of this lemma mostly involves ensuring that the various 𝑥 ∉ fn(P)

conditions are fulfilled by our higher-order encoding and vice versa. For example, the encoding of

lin(𝑤, P) 𝑥 ∉ fn(P)
lin(𝑥, inl 𝑥 ; 𝑤.P) 𝐿inl

is l_inl: linear M → linear (𝜆x.inl x M), and in particular, M is a metavariable, meaning it

cannot depend on the internally bound 𝑥 , satisfying the side condition of 𝑥 ∉ fn(P).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

235:16 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

5.5 Type Judgments
To establish a relation between SCP type judgments P ⊩ Γ and LF derivations of wtp⌜P⌝ , we must

define a context mapping of typing assumptions Γ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 .

Definition 5.6. A context encoding
⌜Γ⌝ is defined by introducing LF assumptions𝑥 :name, ℎ:hyp𝑥 ⌜𝐴⌝

for each typing assumption in Γ:
⌜𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛

⌝ = 𝑥1:name, ℎ1:hyp 𝑥1
⌜𝐴1

⌝, . . . , 𝑥𝑛 :name, ℎ𝑛 :hyp 𝑥𝑛
⌜𝐴𝑛

⌝

We define an encoding
⌜−⌝ and decoding ⌊−⌋ of type derivations in our adequacy statement.

Lemma 5.7 (Adeqacy of wtp). There exists a bijection between typing derivations in SCP of form
P ⊩ Γ and LF canonical forms 𝐷 such that ⌜Γ⌝ ⊢𝐿𝐹 𝐷 : wtp

⌜P⌝

The proof mostly involves appealing to previous adequacy lemmas and is otherwise fairly

straightforward. In fact, the proof for the linearity predicate is more involved due to the implicit

implementation of the free name side-conditions using higher-order encoding. This is not too

surprising: the design of SCP was heavily motivated by a desire for a system more amenable to

mechanization in LF. Furthermore, we have a bijection for type judgments because type judgments

in SCP also have weakening, making the adequacy statement very clean.

5.6 Reductions and Structural Equivalences
Adequacy of reductions is easy to show; most rules are axioms, so we simply appeal to the adequacy

of the underlying processes. The congruence cases are very simple and follows from the appropriate

induction hypotheses. Adequacy of structural equivalence is similarly easy to show.

The adequacy statements are unfortunately slightly cumbersome for the same reason as Lemma 5.4

and Lemma 5.5 since weakening in LF does not allow for a clean bijection. Again, we want to

emphasize that this does not change the structure of the derivations of both step and equiv .

Lemma 5.8 (Adeqacy of step). For each SCP reduction 𝑆 of P ⇒𝑆𝐶𝑃 Q, there exists a unique canon-
ical LF derivation ⌜fn(P)⌝ ⊢𝐿𝐹 ⌜𝑆⌝ : step ⌜P⌝ ⌜Q⌝ and

⌊
⌜𝑆⌝

⌋
= 𝑆 . Conversely, if Γ ⊢𝐿𝐹 𝐷 : step 𝑀 𝑁

is a canonical LF form, then ⌊𝐷⌋ is a derivation of a reduction ⌊𝑀⌋ ⇒𝑆𝐶𝑃 ⌊𝑁 ⌋, ⌜ ⌊𝐷⌋⌝ = 𝐷 , and
⌜
fn(⌊𝑀⌋)⌝ ⊆ Γ.

Lemma 5.9 (Adeqacy of eqiv). For each SCP structural equivalence 𝑆 of P ≡ Q, there exists
a unique canonical LF derivation ⌜fn(P)⌝ ⊢𝐿𝐹 ⌜𝑆⌝ : equiv ⌜P⌝ ⌜Q⌝ and

⌊
⌜𝑆⌝

⌋
= 𝑆 . Conversely, if

Γ ⊢𝐿𝐹 𝐷 : equiv 𝑀 𝑁 is a canonical LF derivation, then ⌊𝐷⌋ is a derivation of a structural equivalence
⌊𝑀⌋ ≡ ⌊𝑁 ⌋, ⌜ ⌊𝐷⌋⌝ = 𝐷 , and ⌜fn(⌊𝑀⌋)⌝ ⊆ Γ.

5.7 Adequacy With Respect to CP
Since we establish a bijection between SCP and our encoding and there exists a bijection between

CP and SCP when restricted to well-typed and linear processes, we also conclude that our encoding

is adequate with respect to CP when restricted to well-typed and linear processes (in the encoding).

Definition 5.10. An encoding map 𝜀◦ of processes and typing derivations in CP to LF is defined by

the composition of the encoding 𝜀 of CP to SCP with the encoding
⌜−⌝ of SCP to LF, i.e., 𝜀◦ = ⌜𝜀 (−)⌝ .

Similarly, a decoding map 𝛿◦ of processes and typing derivation in LF to CP is defined by the

composition of the decoding ⌊−⌋ of LF to SCP with the decoding 𝛿 of SCP to CP, i.e., 𝛿◦ = 𝛿 (⌊−⌋).
Corollary 5.11. The encoding function 𝜀◦ is left inverse to 𝛿◦ and
(1) If D is a derivation of 𝑃 ⊢ Δ where Δ = 𝑥1:𝐴1, . . . , 𝑥𝑛 :𝐴𝑛 , then there exists a collection of LF

canonical forms {𝑊, 𝐿1, . . . , 𝐿𝑛} such that

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:17

• 𝑊 = 𝜀◦ (D) such that ⌜Δ⌝ ⊢𝐿𝐹 𝑊 : wtp 𝜀◦ (𝑃)
• ⌜fn(𝑃) \ 𝑥𝑖 ⌝ ⊢𝐿𝐹 𝐿𝑖 : linear 𝜆𝑥𝑖 .𝜀◦ (𝑃) for 1 ≤ 𝑖 ≤ 𝑛

• 𝛿◦ (𝜀◦ (D)) = D
(2) If {𝑊, 𝐿1, . . . , 𝐿𝑛} is a collection of LF derivations such that

• Γ ⊢𝐿𝐹 𝑊 : wtp 𝑀 where Γ = {𝑥1:name, ℎ1:hyp 𝑥1 ⌜𝐴1

⌝, . . . , 𝑥𝑛 :name, ℎ𝑛 :hyp 𝑥𝑛
⌜𝐴𝑛

⌝}
• Γ \ {𝑥𝑖 :name, ℎ𝑖 :hyp 𝑥𝑖 ⌜𝐴𝑖

⌝} ⊢𝐿𝐹 𝐿𝑖 : linear 𝜆𝑥𝑖 .𝑀 for 1 ≤ 𝑖 ≤ 𝑛

then there exists a derivation 𝛿◦ (𝑊) of 𝛿◦ (𝑀) ⊢ Δ and 𝜀◦ (𝛿◦ (𝑀)) = 𝑀 such that Γ = ⌜Δ⌝ .

6 MECHANIZING THE TYPE PRESERVATION PROOF
In the previous sections, we focused our attention to the encoding of SCP and its adequacy, which

were purely done in the logical framework LF. Now, we give a brief overview of our mechanization

of type preservation in the proof assistant Beluga. Mechanizations in Beluga involve encoding

the syntax and semantics of the object language in the LF Layer and then manipulating LF terms

in the Computational Layer using contextual types to characterize derivation trees together with

the context in which they make sense [Cave and Pientka 2012; Nanevski et al. 2008; Pientka 2008;

Pientka and Dunfield 2008]. The contextual types enable clean statements of various strengthening

statements, which comprise the majority of the lemmas used in the type preservation proof.

Since the computational layer in Beluga is effectively a functional programming language,

inductive proofs of metatheorems are (terminating) recursive functions that manipulate LF objects.

For presentation purposes, we assume no familiarity with the computational layer of Beluga and

explain the lemmas and theorems informally in words. We defer to the accompanying artifact for

the implementation details of all the lemmas and theorems below.

6.1 Lemmas of dual
Due to our encoding of duality as a relation between two types, we must prove symmetry and

uniqueness. The encoding of symmetry is a recursive function dual_sym that takes as input a closed

LF object of type dual 𝐴 𝐴′
and outputs a closed LF object of type dual 𝐴′ 𝐴. The encoding of

uniqueness takes two closed LF objects of type dual 𝐴 𝐴′
and dual 𝐴 𝐴′′

and outputs a proof

that 𝐴′ = 𝐴′′
. To encode the equality of session types 𝐴′ = 𝐴′′

, we follow the standard technique

of defining an equality predicate eq: tp → tp → type over session types with reflexivity as its

constructor.

% Symmetricity and Uniqueness

rec dual_sym : [⊢ dual A A'] → [⊢ dual A' A] =

/ total 1 /

fn d ⇒
case d of

| [⊢ D1] ⇒ [⊢ D⊥]
| [⊢ D⊗ Dl Dr] ⇒
let [⊢ l] = dual_sym [⊢ Dl] in

let [⊢ r] = dual_sym [⊢ Dr] in

[⊢ D` l r]

| ...

rec dual_uniq : [⊢ dual A A'] → [⊢ dual A A''] → [⊢ eq A' A''] = ...

The use of the contextual box with no assumptions [⊢ ...] captures closed objects. The contextual

variables (or metavariables) A and A' are implicitly quantified at the outside. The implementations

of the two functions pattern match on the input with appropriate recursive calls for the binary

type constructors, corresponding to the usual induction proofs for these lemmas. We show only

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

235:18 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

one base case and one recursive case to give the flavour of how proofs are written as recursive

programs. The totality annotation checks that the program is covering and that all recursive calls

on the first (explicit) argument are structurally smaller and decreasing.

6.2 Strengthening Lemmas
Next, we encode strengthening lemmas for contextual LF terms of various types. First, we present

them informally below using LF-like syntax, using ⊢ instead of ⊢𝐿𝐹 and omitting LF term names for

economical purposes:

Lemma 6.1 (Strengthening Lemmas).

(1) If Γ,z:name ,h:hyp z C ⊢ hyp X A and 𝑧 ≠ 𝑋 , then Γ ⊢ hyp X A.
(2) If Δ,z:name ⊢ linear 𝜆x.P and 𝑧 ∉ fn(𝑃), then Δ ⊢ linear 𝜆x.P.
(3) If Γ,z:name ,h:hyp z C ⊢ wtp P and 𝑧 ∉ fn(𝑃), then Γ ⊢ wtp P.
(4) If Δ,z:name ⊢ step P Q and 𝑧 ∉ fn(𝑃), then 𝑧 ∉ fn(𝑄) and Δ ⊢ step P Q.
(5) If Δ,z:name ⊢ equiv P Q and 𝑧 ∉ fn(𝑃), then 𝑧 ∉ fn(𝑄) and Δ ⊢ equiv P Q.

where Γ consists of assumptions of form x1:name ,h1:hyp x1 A1 ,..,xn:name ,hn:hyp xn An and Δ

consists of assumptions of form x1:name ,..,xn:name.

The use of different contexts Γ and Δ in these statementsmostly indicate the spirit of the judgments

that we strengthen. Linearity for instance should not depend on typing assumptions, so we use Δ.

In practice, picking the right kind of context to use proved immensely useful in simplifying the

final type preservation proof. In particular, we found that it is more convenient to weaken the final

two lemmas regarding step and equiv by stating them under the richer context Γ.

To encode Δ and Γ in Beluga, we first define context schemas. In our case, we are interested in

contexts containing assumptions of names, i.e., Δ, and assumptions of names alongside their types

for the typing judgments, i.e., Γ:

schema nctx = name;

schema ctx = some [A:tp] block x:name, h:hyp x A;

In the statement of our lemma, we exploit the full power of contextual variables to cleanly

state the strengthening lemmas. For instance, we encode the side-condition that 𝑧 ≠ 𝑋 in the

strengthening of hyp X A by requiring that X does not depend on z:

rec str_hyp : (Γ:ctx) [Γ, z:name, h:hyp z C[] ⊢ hyp X[..] A[]] → [Γ ⊢ hyp X A[]] = ...

We first implicitly abstract over the context Γ specifying what kind of context we are working in.

Further, contextual variables such as X or A are associated with a substitution. By default, they are

associated with the identity substitution which can be omitted by the user. However, Beluga also

allows us to associate contextual variables with more interesting substitutions. The weakening

substitution on the name X[..] ensures that X only depends on Γ and not z or h, which indeed

captures the requirement 𝑧 ≠ 𝑋 . The empty substitutions on the session types A[] and C[] indicate

that they do not depend on anything, i.e., they are closed. We encode the requirement that 𝑧 ∉ fn(𝑃)
in the strengthening lemmas for linearity and typing using a similar technique:

rec str_lin : (Δ:nctx) [Δ, z:name ⊢ linear 𝜆y. P[.., y]] → [Δ ⊢ linear 𝜆y. P] = ...

rec str_wtp : (Γ:ctx) [Γ, z:name, h:hyp z C[] ⊢ wtp P[..]] → [Γ ⊢ wtp P] = ...

The substitutions associated with the variable P in P[.., y] and P[..] encode that the process

P does not depend on the assumption z that we want to strengthen out, properly capturing the

side-condition of 𝑧 ∉ fn(𝑃) in both lemmas. Indeed, str_wtp turns out to be a mechanization of

Lemma 3.3. The proofs of these lemmas are straightforward and are given by pattern matching on

the input.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:19

The final two strengthening lemmas are a bit different because of the additional free-name

condition in the conclusions. Suppose we naively follow the prior attempts:

rec str_step : (Γ : ctx) [Γ, x:name ⊢ step P[..] Q] → [Γ ⊢ step P Q] = ...

Unfortunately, the conclusion Γ ⊢ step P Q is not well-typed since Q as used in the premise

depends on Γ, x:name whereas Q as used in the conclusion only depends on Γ. If we change the

premise to [Γ, x:name ⊢ step P[..] Q[..] to require that Q only depends on Γ, then the lemma

is not strong enough. Indeed, encoding the strengthening lemma actually requires an existential; we

must say that there exists some process Q' such that Γ ⊢ step P Q' and Q = Q'. However, since LF

does not have sigma types, we must further encode this existential using a data structure Result ,

whose only constructor takes the process Q', a proof that Q = Q', and a proof that step P Q'. As

before, we define equality of processes eq_proc as a relation with only the reflexivity constructor.

inductive Result : (Γ : ctx){P : [Γ ⊢ proc]}{Q : [Γ, x:name ⊢ proc]} → ctype =

| Res : {Q' : [Γ ⊢ proc]}
→ [Γ, x:name ⊢ eq_proc Q Q'[..]]

→ [Γ ⊢ step P Q']

→ Result [Γ ⊢ P] [Γ, x:name ⊢ Q];

We can now state the lemma using this data structure:

rec str_step : (Γ : ctx) [Γ, x:name ⊢ step P[..] Q] → Result [Γ ⊢ P] [Γ, x:name ⊢ Q] = ...

We follow an analogous procedure for strengthening structural equivalences and prove the two

lemmas simultaneously via mutual recursion.

6.3 Auxiliary Lemmas
We prove two additional lemmas to aid in the type preservation proof. The first lemma states that

lin(𝑥, P) implies 𝑥 ∈ fn(P). We however work with its contrapositive since we do not directly

encode fn(P).

Lemma 6.2 (Linearity reqires usage). If 𝑥 ∉ fn(P), then Γ ⊢ linear (𝜆x.P) is not derivable.

We encode the contradiction in the lemma using the standard LF technique of defining a type

imposs without any constructors. The encoding of the lemma is therefore a function that takes as

input [Δ ⊢ linear (𝜆x. P[..])] and outputs some imposs . The substitution P[..] indicates that

the process does not depend on the input name 𝑥 which properly captures the premise 𝑥 ∉ fn(P).
imposs : type.

% no constructor for imposs

rec lin_name_must_appear : (Δ : nctx) [Δ ⊢ linear (𝜆x. P[..])] → [⊢ imposs] = ...

Next, we show that structural equivalence preserves both linearity and typing. To state preserva-

tion for linearity, we have to reconcile the fact that linearity is defined parametric to some channel

name, so we must extend the context of equiv with an additional name.

Lemma 6.3 (Structural Eqivalence preserves linearity and typing).

(1) If Γ,x:name ⊢ equiv P Q and Γ ⊢ linear 𝜆x.P, then Γ ⊢ linear 𝜆x.Q.
(2) If Γ ⊢ equiv P Q and Γ ⊢ wtp P, then Γ ⊢ wtp Q.

Although the first lemma can in spirit be stated under a context of names Δ, we used the more

general context of names and types Γ to better suit our type preservation proof.

rec lin_s_equiv : (Γ : ctx) [Γ, x:name ⊢ equiv P Q]

→ [Γ ⊢ linear (𝜆x. P)]

→ [Γ ⊢ linear (𝜆x. Q)] = ...

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

235:20 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

rec wtp_s_equiv : (Γ : ctx) [Γ ⊢ equiv P Q]

→ [Γ ⊢ wtp P]

→ [Γ ⊢ wtp Q] = ...

Note that our proof shows that linearity is preserved for any given (free) channel 𝑥 , meaning that

the on-paper predicate lin(Δ, P) is also preserved by structural equivalence.

6.4 Type Preservation
Finally, we are ready to state the main theorem. To state preservation of linearity, we extend the

contexts of other judgments appropriately in the same manner as for equiv .

Theorem 6.4 (Type Preservation).

(1) If Γ,x:name ⊢ step P Q and Γ,x:name ,h:hyp x A ⊢ wtp P and
Γ ⊢ linear 𝜆x.P, then Γ ⊢ linear 𝜆x.Q.

(2) If Γ ⊢ step P Q and Γ ⊢ wtp P, then Γ ⊢ wtp Q.

The encodings for these statements are very similar to the encodings for Lemma 6.3:

rec lin_s : (Γ : ctx) [Γ, x:name, h:hyp x A[] ⊢ wtp P[..,x]]

→ [Γ, x:name ⊢ step P Q]

→ [Γ ⊢ linear (𝜆x. P)]

→ [Γ ⊢ linear (𝜆x. Q)] = ...

and rec wtp_s : (Γ : ctx) [Γ ⊢ wtp P]

→ [Γ ⊢ step P Q]

→ [Γ ⊢ wtp Q] = ...

The implementations for both functions proceed by case analysis on the term of type

[Γ, x:name ⊢ step P Q]. Preservation of linearity is perhaps the more interesting part of this

theorem. For instance, consider the case [𝛽inl1]:

𝜈𝑥 :𝐴 ⊕ 𝐵.(inl 𝑥 ; 𝑤.P ∥ case 𝑥 (𝑤.Q1, 𝑤 .Q2)) ⇒𝑆𝐶𝑃 𝜈𝑤 :𝐴.(P ∥ Q1)

To show that linearity of some free channel 𝑧 is preserved under this reduction, we must check

for the case where 𝑧 appears in the left process or in the right process by pattern matching on the

linearity assumption.

rec lin_s : (Γ : ctx) [Γ, x:name, h:hyp x A[] ⊢ wtp P[..,x]]

→ [Γ, x:name ⊢ step P Q]

...

=

/ total 2 /

fn tpP ⇒ fn sPQ ⇒ fn linP ⇒
case sPQ of

...

| [g, z:name ⊢ 𝛽inl1] ⇒
(case linP of

% z appears on the left – the linearity must be the congruence case for inl

| [g ⊢ l_pcomp1 (𝜆x. l_inl2 (𝜆w.linP'))] ⇒
[g ⊢ l_pcomp1 (𝜆w. linP'[..,w,w])]

% z appears on the right – the linearity must be the congruence case for the ’case’ construct

| [g ⊢ l_pcomp2 (𝜆x. l_choice2 (𝜆w. linP') (𝜆w._))] ⇒
[g ⊢ l_pcomp2 (𝜆w. linP'[..,w,w])]

)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:21

The first w in the substitution linP '[..,w,w] correspond to substituting𝑤 for 𝑥 , which may seem

like a violation of linearity. However, for well-typed processes, the linearity predicate for 𝑥 will

ensure that 𝑥 is no longer used in the inner process, meaning this substitution does not lead to

duplication of𝑤 and is safe.

The implementation for wtp_s is mostly bureaucratic and involves using many of the prior

strengthening lemmas to ensure that the communicated channel 𝑥 can be safely removed from the

context.

One interesting observation is that although preservation of typing does not require any assump-

tions about linearity, preservation of linearity does require the assumption that the original process

is well-typed. This is primarily due to the reduction rule [𝛽fwd]:

𝜈𝑥 :𝐴.(fwd 𝑥 𝑦 ∥ Q) ⇒𝑆𝐶𝑃 [𝑦/𝑥]Q

Here, if we want to show that the linearity of channel 𝑦 is preserved, we need to know that Q treats

𝑥 linearly, or lin(𝑥, Q). We can only obtain this from the assumption that the original process is

well-typed since 𝑥 in process Q is not a continuation channel of 𝑦 in P.

7 RELATEDWORK
The linearity predicate that we develop in this paper is based on Crary’s mechanization of the linear

𝜆-calculus in Twelf [Crary 2010]. Adapting his ideas to the session-typed setting was non-trivial

due to the many differences between the two systems, such as channel mobility, the distinction

between names and processes, and continuation channels. Our bijection proof between CP and

SCP is similar to Crary’s adequacy proof of his encoding, where he showed that typing derivations

of linear 𝜆-calculus expressions were in bijection with typing derivations in the encoding alongside

a proof of linearity for each free variable. Indeed, this side condition is analogous to our criterion

that lin(Δ, P).

7.1 HOAS Mechanizations
Röckl, Hirschkoff, and Berghofer [Röckl et al. 2001] encode the untyped 𝜋-calculus in Isabelle/HOL

and prove that their encoding is adequate. Much of their technical development concerns eliminating

exotic terms. To do so, they introduce local well-formedness conditions, similar in spirit to how

we use the linearity predicates to eliminate non-linear processes. In LF, such exotic terms do not

typically arise, as there is a bijection between the canonical representation in LF and its on-paper

counterpart. Moreover, they do not encode any process reductions or mechanize any metatheorems.

Despeyroux [2000] gives a HOAS encoding of a typed 𝜋-calculus in Coq and uses it to mechanize

a proof of subject reduction. This encoding is less involved than ours because their type system is

very simple and, in particular, does not involve linearity. Thus, they did not need to account for

complex operations on contexts. Furthermore, they do not discuss the adequacy of the encoding.

Tiu and Miller [2010] give a weak HOAS encoding of the finite 𝜋-calculus together with its

operational semantics using the late transition system within a logic that contains the ∇ quantifier

for encoding generic judgments and definitions. They then specify a bisimulation for late transition

systems and show that it is reflexive and transitive. Tiu and Miller prove that their encoding is

adequate. However, their system does need to deal with linearity and is also not typed and hence

does not face the same challenges as ours.

The closest existing literature to our work is by Zalakain [2019], who uses parametric HOAS [Chli-

pala 2008] tomechanize a session-typed process calculus in Coq. They use a global linearity predicate

as a well-formedness condition and directly encode the 𝑥 ∉ fn(𝑃) style side conditions as a predicate.
They further prove that linearity is preserved under all reductions except those using the structural

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

235:22 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

equivalence 𝑃 | 𝑄 ≡ 𝑄 | 𝑃 , which corresponds to [≡comm] in our setting. This equivalence is prob-

lematic in their setting because of interactions between their linearity predicate, scope expansion,

and parallel composition. They do not discuss the adequacy of their encoding. We instead localize

the linearity predicates within type judgments and leverage higher-order encoding to obtain some

side conditions “for free”. As in their setting, we prove subjection reduction for linearity but also

for typing, obtaining the usual type preservation result. Furthermore, the structural equivalence

rule 𝜈𝑥 :𝐴.(P ∥ Q) ≡ 𝜈𝑥 :𝐴⊥.(Q ∥ P) presents no notable difficulties in our setting.

7.2 Other Approaches to Mechanizing Session Types and Typed Process Calculi
Gay [2001] uses Isabelle/HOL to give one of the first mechanizations of a linearly typed process

calculus and its reduction relation. Bindings are handled via de Bruijn indexing and linearity

is enforced by modeling a linear context with relevant operations. Interestingly, he does not

directly encode processes in Isabelle/HOL. Instead, he mechanizes a 𝜆-calculus with constants as a

metalanguage and then encodes channel bindings in the process calculus through 𝜆-abstractions in

the metalanguage in a HOAS-like manner.

Thiemann [2019] mechanizes a functional language with session-typed communication in Agda.

He too uses de Bruijn indexing to handle binding and directly implements linear contexts. The

system is intrinsically typed, meaning subject reduction is obtained “for free”. However, the encoding

is operational in nature, and for example, the operational semantics depends on a “scheduler” that

globally identifies channels and performs communication. Showing adequacy of the encoding is

therefore quite complicated because of the disconnect between the on-paper theory and the actual

implementation, which the author mentions.

Zalakain and Dardha model contexts using leftover typing in Agda [Zalakain and Dardha 2021].

This technique avoids context splits by modifying type judgments to add an additional output

context, making explicit what resources are not used by a given process in a type judgment.

However, their approach still requires proving certain metatheorems about their leftover typing

and still embeds some form of linearity. It is therefore not well-suited for a HOAS-style encoding

in LF, although it is less clear what are the trade-offs between their approach and our approach in

non-HOAS settings. They also make no mention of adequacy.

Castro-Perez, Ferreira, and Yoshida [Castro-Perez et al. 2020] use a locally nameless representation

to develop a general framework of mechanizing session-typed process calculi in Coq. They observe

that a naïve usage of locally nameless representations cannot handle higher-order communication,

i.e., channel transmission. To encode such communications, they employ a strategy to syntactically

distinguish between different forms of channel bindings, working with four sets of channel names.

Our approach encodes all forms of channel bindings via intuitionistic functions over the same set

of names in LF and handles higher-order communication.

7.3 HOAS with Linearity
Perhaps one natural approach to a HOAS encoding of a linear system like session types is to use a

logical framework with direct support for linear implications. Unfortunately, these systems are far

less understood, and implementations of such systems are often preliminary.

Concurrent LF [Schack-Nielsen and Schürmann 2008] is an extension of the logical framework

LF to support the specification of linear and even concurrent formal systems. Its implementation,

Celf, has been used to encode systems such as the untyped 𝜋-calculus [Cervesato et al. 2002].

Although encoding a session-typed system certainly seems plausible in Celf, it remains unclear

how to encode metatheoretic proofs such as subject reduction.

LINCX [Georges et al. 2017] is a proof environment that follows in the footsteps of Beluga.

Instead of specifying formal systems in LF as in Beluga, one specifies formal systems in linear LF in

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:23

LINCX. Metatheoretic proofs are then implemented as recursive functions over linear contextual

objects. This framework should in principle be capable of representing session-type systems and

their metatheory more directly, but there is presently no implementation for it.

Linear Hybrid [Felty 2019; Felty et al. 2021] is designed to support the use of higher-order abstract

syntax for representing and reasoning about formal systems, and it is implemented in the Coq Proof

Assistant. To support representation of linear systems it implements a linear specification logic in

Coq. Felty and collaborators have used this framework to, for example, encode the type system of a

quantum 𝜆-calculus with linear typing and its metatheoretic properties. It would be interesting to

see how to use this framework to specify session types together with their metatheory.

8 CONCLUSION
We demonstrate a higher-order encoding and mechanization of CP, a session-typed process calculus.

Our main technique is using linearity predicates that act as well-formedness conditions on processes.

In particular, this lets us encode linearity without relying on linear contexts which are difficult

to work with in mechanizations and which are not well-suited for HOAS-style encodings. We

decomposed our encoding in two steps: an on-paper formulation of SCP using linearity predicates,

and a mechanization of SCP in Beluga.

Our development of SCP, which arose as a byproduct of our mechanization, provides a foundation

for mechanizing session-typed process calculi in settings with structural contexts. We prove that CP

is fully embedded in SCP and furthermore, that the restriction imposed by the linearity predicates

captures the fragment of SCP that correspond to CP. More precisely, we prove that there is a

structure-preserving bijection between the processes and typing derivations in CP and those in

SCP when we subject SCP to the condition that it treats its free names linearly.

We then mechanize SCP in Beluga and prove the adequacy of our encoding, thereby showing

that our encoding is adequate with respect to CP. As we demonstrate through our mechanization,

SCP particularly synergizes with a HOAS encoding over Beluga, which utilizes contextual type

theory, allowing for side-conditions related to free names to be encoded “for free”.

In general however, using an SCP-like presentation has the benefit of using intuitionistic contexts,

which are better understood and easier to work with in proof assistants. Whether the encoding

style implicitly uses an intuitionistic context like for LF is not particularly important; even an

encoding style that explicitly models a context can benefit from this approach. Our development of

SCP shows how to shift the work required for linear context management to local side conditions,

or linearity predicates, which we believe leads to a more tractable way to both encode and reason

with linearity. Although our approach is certainly heavily inspired by the constraints imposed by LF

and HOAS, SCP is still a promising system to mechanize over CP using other proof assistants and

encoding styles such as de Bruijn or locally nameless. In particular, Zalakain’s encoding [Zalakain

2019] of a similar session-typed system using parametric HOAS gives strong evidence that an

SCP-style calculus extends well to Coq.

It is however important to acknowledge that this approach comes at the cost of managing

linearity predicates and free names in processes. Although these were easy to work with in our

setting (in particular, managing free names was obtained for free from higher-order unification), it

would be interesting to understand more clearly the costs and benefits from the additional side

conditions compared to dealing with linear contexts in the context of other proof assistants and

encoding styles.

8.1 Towards More Complex Language Constructs
We illustrated how linearity predicates could be used to mechanize a fragment of Wadler’s

CP [Wadler 2012], and it is natural to ask whether this technique scales to the full system. It

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

235:24 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

is also natural to ask whether this technique scales to more complex extensions of session-typed

systems, such as notions of sharing [Balzer and Pfenning 2017; Rocha and Caires 2021], equi-

recursion [Gay and Hole 2005], and integrations with functional languages [Gay and Vasconcelos

2010; Toninho et al. 2013]. We believe that linearity predicates are a mechanization technique

that is sufficiently robust and scalable to handle these richer language constructs. To guide future

applications of our approach, we sketch the key patterns and principles for its application to new

program constructs:

(1) Determine if the construct binds any new linear channels. If so, then its typing judgments

must check their linearity. In our development, this is illustrated by the typing rules [`],
[⊗], and [Cut].

(2) Determine if the construct requires the absence of other linear assumptions. If so, then

there should be no congruence rules for the linearity predicate. In our development, this is

illustrated by the linearity predicates for close 𝑥 and fwd 𝑥 𝑦.

(3) Determine if the construct uses a continuation channel. If so, then the linearity predicate

should check that the continuation channel is used linearly. Otherwise, the linearity predicate

should be an axiom. These two cases are respectively illustrated by 𝐿inl and 𝐿wait.

(4) Determine if linear channels are shared between subterms composed by the construct. If

they are not shared, then the linearity predicate must ensure that no sharing occurs. This is

illustrated by 𝐿𝜈1 and 𝐿𝜈2.

With regard to extending our mechanization to the entirety of CP, we believe that its polymorphic

constructors ∀ and ∃ will pose no technical challenges. Indeed, they operationally correspond to

receiving and sending types, and types are treated in an unrestricted manner. Therefore, they do

not interact with linearity in an interesting way.

However, the exponentials ! and ? may be more challenging to mechanize. Channels of type

?𝐴 are not treated linearly: they may be dropped or copied. Intuitively, this means that we should

not check for linearity of channels of type ?𝐴. In Crary’s encoding of the linear 𝜆-calculus, there

was only one syntactical construct that bound assumptions of type ?𝜏 , making this easy to do.

In contrast, CP channels of type ?𝐴 can arise from many sources, such as inputs from channels

of form (?𝐴) ` 𝐵, as channel continuations of any connective such as ?𝐴 ⊕ ?𝐵. This means that

we cannot determine solely from the syntax of processes whether a bound channel is of type ?𝐴.

However, we only ever use the linearity predicate to check the linearity of channels whose type

is known. We believe that by using this type information and by making the linearity predicate

type aware, i.e., of the form lin(𝑥 :𝐴, P), we can give a sufficiently refined analysis of linearity to

support channels of type ?𝐴.

8.2 Future Work
Our work lays the groundwork for two main directions of future work. The first is to explore the

trade-offs encountered when encoding SCP in various proof assistants and mechanization styles.

Given that SCP was designed with an LF encoding in mind, it is not entirely clear whether the

overhead of linearity predicates and free name conditions is offset by the advantages of working

with unrestricted contexts in other settings. Nevertheless, we believe that SCP provides a scalable

basis for mechanizations with proofs of adequacy in mind.

The second direction is to extend SCP and its encoding to better understand the scalability of

our technique. Although we sketched the general roadmap for such extensions, it is interesting to

verify that our technique is indeed scalable and to also understand its limitations. Mechanizing

metatheory beyond subject reduction will further elucidate our technique’s scalability. For example,

we believe that our linearity predicate will be essential to mechanizing a progress theorem for

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

Mechanizing Session-Types using a Structural View: Enforcing Linearity without Linearity 235:25

SCP processes. Progress for SCP processes corresponds to top-level cut elimination. Well-typed

linear SCP processes support top-level cut elimination by their correspondence with CP processes

(Theorem 3.4) and the fact that CP processes enjoy this same property. This indirect proof sketch

is similar to our indirect proof of subject reduction (Theorem 3.6). A direct proof of progress is a

natural next metatheorem to mechanize and, based on our preliminary investigations, seems to be

relatively straightforward.

DATA-AVAILABILITY STATEMENT
The software containing the encoding of SCP (Section 4) and mechanization of the subject reduction

proof (Section 6) is available on Zenodo [?].

ACKNOWLEDGMENTS
This work was funded by the Natural Sciences and Engineering Research Council of Canada (grant

number 206263), Fonds de recherche du Québec - Nature et Technologies (grant number 253521),

a Tomlinson Doctoral Fellowship awarded to the first author, and Postdoctoral Fellowship from

Natural Sciences and Engineering Research Council of Canada awarded to the second author.

We also thank the anonymous reviewers for their valuable comments and feedback.

REFERENCES
Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with Session Types. In International Conference on Functional

Programming (ICFP). ACM, 37:1–37:29. Extended version available as Technical Report CMU-CS-17-106R, June 2017.

David Castro-Perez, Francisco Ferreira, and Nobuko Yoshida. 2020. EMTST: Engineering the Meta-theory of Session Types.

In Tools and Algorithms for the Construction and Analysis of Systems - 26th International Conference, TACAS 2020, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12079), Armin Biere and David Parker (Eds.). Springer,

278–285. https://doi.org/10.1007/978-3-030-45237-7_17

Andrew Cave and Brigitte Pientka. 2012. Programming with binders and indexed data-types. In 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’12). 413–424.

Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. 2002. A Concurrent Logical Framework II: Examples and
Applications. Technical Report CMU-CS-02-102. Department of Computer Science, Carnegie Mellon University. Revised

May 2003.

Adam J. Chlipala. 2008. Parametric higher-order abstract syntax for mechanized semantics. In 13th ACM SIGPLAN
International Conference on Functional Programming (ICFP’08), James Hook and Peter Thiemann (Eds.). ACM, 143–156.

Karl Crary. 2010. Higher-order Representation of Substructural Logics. In Proceedings of the 15th International Conference on
Functional Programming (ICFP 2010), P.Hudak and S.Weirich (Eds.). ACM, Baltimore, Maryland, 131–142.

Joëlle Despeyroux. 2000. A Higher-Order Specification of the 𝜋-Calculus. In Theoretical Computer Science: Exploring New
Frontiers of Theoretical Informatics, Jan van Leeuwen, Osamu Watanabe, Masami Hagiya, Peter D. Mosses, and Takayasu

Ito (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 425–439.

Joëlle Despeyroux, Amy P. Felty, and André Hirschowitz. 1995. Higher-Order Abstract Syntax in Coq. In 2nd International
Conference on Typed Lambda Calculi and Applications (TLCA ’95) (Lecture Notes in Computer Science (LNCS 902)),
Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin (Eds.). Springer, 124–138. https://doi.org/10.1007/BFb0014049

Amy P. Felty. 2019. A Linear Logical Framework in Hybrid (Invited Talk). In FSCD (LIPIcs, Vol. 131). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2:1–2:2.

Amy P. Felty, Carlos Olarte, and Bruno Xavier. 2021. A focused linear logical framework and its application to metatheory

of object logics. Math. Struct. Comput. Sci. 31, 3 (2021), 312–340.
Simon J. Gay. 2001. A Framework for the Formalisation of Pi Calculus Type Systems in Isabelle/HOL. In International

Conference on Theorem Proving in Higher Order Logics.
Simon J. Gay and Malcolm Hole. 2005. Subtyping for Session Types in the 𝜋-Calculus. Acta Informatica 42, 2–3 (2005),

191–225.

Simon J. Gay and Vasco T. Vasconcelos. 2010. Linear Type Theory for Asynchronous Session Types. Journal of Functional
Programming 20, 1 (Jan. 2010), 19–50.

Aina Linn Georges, Agata Murawska, Shawn Otis, and Brigitte Pientka. 2017. LINCX: A Linear Logical Framework with

First-Class Contexts. In 26th European Symposium on Programming (ESOP 2017) (Lecture Notes in Computer Science (LNCS

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

http://www.cs.cmu.edu/~fp/papers/CMU-CS-17-106R.pdf
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1007/BFb0014049

235:26 Chuta Sano, Ryan Kavanagh, and Brigitte Pientka

20201)), Hongseok Yang (Ed.). 530–555. https://doi.org/10.1007/978-3-662-54434-1_20

Robert Harper, Dan Licata, William Lovas, Chris Martens, and Robert Simmons. 2009. POPL Tutorial: Mechanizing

Metatheory with LF and Twelf. http://twelf.org/wiki/POPL_Tutorial/Saturday

Kohei Honda. 1993. Types for Dyadic Interaction. In 4th International Conference on Concurrency Theory (CONCUR 1993),
E. Best (Ed.). Springer LNCS 715, 509–523.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for Structured

Communication-Based Programming. In 7th European Symposium on Programming Languages and Systems (ESOP 1998),
C. Hankin (Ed.). Springer LNCS 1381, 122–138.

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022. Connectivity Graphs: A Method for Proving Deadlock Freedom

Based on Separation Logic. Proc. ACM Program. Lang. 6, POPL, Article 1 (Jan. 2022), 33 pages. https://doi.org/10.1145/

3498662

Robin Milner. 1980. A Calculus of Communicating Systems. Springer-Verlag LNCS 92.
Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual Modal Type Theory. Transactions on

Computational Logic 9, 3 (2008).
Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In Proceedings of the ACM SIGPLAN ’88 Symposium

on Language Design and Implementation. Atlanta, Georgia, 199–208.
Brigitte Pientka. 2008. A type-theoretic foundation for programming with higher-order abstract syntax and first-class

substitutions. In 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’08). 371–382.
Brigitte Pientka and Jana Dunfield. 2008. Programming with proofs and explicit contexts. In ACM SIGPLAN Symposium on

Principles and Practice of Declarative Programming (PPDP’08). 163–173.
Brigitte Pientka and Jana Dunfield. 2010. Beluga: A Framework for Programming and Reasoning with Deductive Systems

(System Description), Vol. 6173. 15–21. https://doi.org/10.1007/978-3-642-14203-1_2

Pedro Rocha and Luís Caires. 2021. Propositions-as-Types and Shared State. Proc. ACM Program. Lang. 5, ICFP, Article 79
(Aug. 2021), 30 pages. https://doi.org/10.1145/3473584

Christine Röckl, Daniel Hirschkoff, and Stefan Berghofer. 2001. Higher-Order Abstract Syntax with Induction in Isabelle/HOL:

Formalizing the Pi-Calculus and Mechanizing the Theory of Contexts. In Proceedings of the 4th International Conference
on Foundations of Software Science and Computation Structures (FOSSACS’01), F. Honsell and M. Miculan (Eds.). Springer

Verlag LNCS 2030, Genova, Italy, 364–378.

Anders Schack-Nielsen and Carsten Schürmann. 2008. Celf - A Logical Framework for Deductive and Concurrent Systems

(System Description). In IJCAR (Lecture Notes in Computer Science, Vol. 5195). Springer, 320–326.
Peter Thiemann. 2019. Intrinsically-Typed Mechanized Semantics for Session Types. In Proceedings of the 21st International

Symposium on Principles and Practice of Declarative Programming (PPDP ’19). Association for Computing Machinery,

New York, NY, USA, Article 19, 15 pages. https://doi.org/10.1145/3354166.3354184

Alwen Tiu and Dale Miller. 2010. Proof search specifications of bisimulation and modal logics for the pi-calculus. ACM
Trans. Comput. Log. 11, 2 (2010), 13:1–13:35.

Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic

Integration. In Proceedings of the European Symposium on Programming (ESOP’13), M. Felleisen and P. Gardner (Eds.).

Springer LNCS 7792, Rome, Italy, 350–369.

Philip Wadler. 2012. Propositions as Sessions. In Proceedings of the 17th International Conference on Functional Programming
(ICFP 2012). ACM Press, Copenhagen, Denmark, 273–286.

Uma Zalakain. 2019. Type-checking session-typed 𝜋-calculus with Coq. Masters Thesis. University of Glasgow. https:

//www.dcs.gla.ac.uk/~ornela/projects/Uma%20Zalakain.pdf

Uma Zalakain and Ornela Dardha. 2021. 𝜋 with Leftovers: A Mechanisation in Agda. In Formal Techniques for Distributed
Objects, Components, and Systems, Kirstin Peters and Tim A. C. Willemse (Eds.). Springer International Publishing, Cham,

157–174.

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 235. Publication date: October 2023.

https://doi.org/10.1007/978-3-662-54434-1_20
http://twelf.org/wiki/POPL_Tutorial/Saturday
https://doi.org/10.1145/3498662
https://doi.org/10.1145/3498662
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1145/3473584
https://doi.org/10.1145/3354166.3354184
https://www.dcs.gla.ac.uk/~ornela/projects/Uma%20Zalakain.pdf
https://www.dcs.gla.ac.uk/~ornela/projects/Uma%20Zalakain.pdf

	Abstract
	1 Introduction
	2 Classical Processes (CP)
	2.1 Type Judgments
	2.2 Reductions and Type Preservation

	3 Structural Classical Processes (SCP)
	3.1 Type Judgments
	3.2 Linearity Predicate
	3.3 Equivalence of CP and SCP
	3.4 Reduction and Type Preservation

	4 Encoding SCP in LF
	4.1 Types
	4.2 Processes
	4.3 Linearity Predicate
	4.4 Type Judgments
	4.5 Reductions and Structural Equivalence

	5 Adequacy of the Encoding
	5.1 Notation
	5.2 Session Types and Duality
	5.3 Processes
	5.4 Linearity
	5.5 Type Judgments
	5.6 Reductions and Structural Equivalences
	5.7 Adequacy with respect to CP

	6 Mechanizing the Type Preservation Proof
	6.1 Lemmas of magentadual
	6.2 Strengthening Lemmas
	6.3 Auxiliary Lemmas
	6.4 Type Preservation

	7 Related Work
	7.1 HOAS Mechanizations
	7.2 Other Approaches to Mechanizing Session Types and Typed Process Calculi
	7.3 HOAS with Linearity

	8 Conclusion
	8.1 Towards more complex language constructs
	8.2 Future Work

	Acknowledgments
	References

