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Abstract
We consider the normalization proof for a simply-typed lambda
calculus with Mendler-style recursion using logical relations. This
language is powerful enough to encode total recursive functions us-
ing recursive types. A key feature of our proof is the semantic inter-
pretation of recursive types, which requires higher-kinded polymor-
phism in the reasoning language. We have implemented the proof
in Coq due to this requirement. However, we believe this proof can
serve as a challenge problem for other proof environments, espe-
cially those supporting binders, since our mechanization in Coq
requires proofs of several substitution properties.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords Logical relations, Recursive types, Mendler recursion,
Proof assistants

1. Introduction
Recursive types are crucial in functional programming languages
for defining common data types and proof languages for support-
ing inductive reasoning and deriving induction principles. How-
ever, even in the simplest setting of the simply typed lambda cal-
culus with recursive types, one can easily express well-typed non-
normalizing terms, i.e. terms that are not guaranteed to terminate.
There are different approaches to tackle this problem. Many proof
languages such as Coq (Bertot and Castéran 2004) or Agda (Norell
2007) restrict recursive types to those in which type variables only
occur in positive positions. This enforces monotonicity of unrolling
inductive definitions. A similar approach is adopted in proof theo-
retic foundations that support (co)fix point definitions (see for ex-
ample (Baelde 2012)). These foundations usually correspond to
programs that use iteration instead of general recursion. Another
approach is to use Mendler-style recursion (Mendler 1988). Here
we enforce in the typing rule for recursion that all recursive calls
must be on structurally smaller arguments, i.e. must be a direct sub-
term.

In this paper we concern ourselves with a normalization proof
for a simply-typed lambda calculus with Mendler-style recursion
using logical relations and a set-based semantics. This is an in-
teresting benchmark for mechanizing the meta-theory of formal
systems for several reasons: first, we must model bindings on the
level of terms and types. More importantly, our logical relation
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that characterizes reducible terms must be defined on open types.
And finally, defining reducible terms of recursive type is elegantly
achieved via a semantic interpretation using set intersections. As a
consequence, mechanizing such proofs is challenging. The use of a
set-based semantics also necessitates higher-kinded polymorphism
in our meta-language. In fact proving normalization for the simply-
typed lambda-calculus with Mendler-style recursion is similar to
proving normalization for System F and has similar challenges.

We have mechanized the normalization proof of the simply-
typed lambda-calculus with Mendler-style recursion in Coq1. One
of the main reasons for this choice is that current proof environ-
ments that support encoding variable bindings and substitutions
based on higher-order abstract syntax, such as Abella (Baelde et al.
2014) and Beluga (Pientka and Cave 2015), currently do not sup-
port higher-kinded polymorphism. Hence normalization proofs for
System F or the one we consider in this paper are out of reach for
such systems.

We model our term and type language using de Bruijn indices in
Coq. However, we avoid term-level substitutions in our operational
semantics by adapting an environment-based semantics. Instead of
eagerly replacing a variable with a value, we keep the relation be-
tween variables and values explicit in the environment. This turns
out to be a powerful and elegant tool not only in saving proof ef-
fort, but also in formulating the normalization theorem elegantly.
Compared to existing normalization proofs for calculi supporting
Mendler-recursion that rely on ordinals in defining the reducibility
candidates for recursive types, our reducibility candidates can be
formulated solely in second-order logic. Our proof retains the ele-
gance of the logical relations technique despite involving a couple
of short yet intricate set theoretic lemmas. The result is a concise
and compact mechanization in Coq, just under 1400 lines of proof
script.

This paper shares some lessons about effectively mechanizing
such proofs. We hope that our tutorial-style description of the proof
and mechanization can serve as a footprint for other similar styles
of proofs in Coq or Agda. Moreover, it provides a useful benchmark
for systems that support higher-order abstract syntax encodings and
we hope this example makes a case for extending the power of such
systems to support higher-kinded polymorphism.

2. Overview
In this section we give a brief overview of our normalization proof
for a simply-typed lambda calculus with recursive types and a
recursion construct. To make the recursive type constructor useful,
we also include the unit type, sums and products as is conventional.

Our normalization proof uses the technique of logical relations,
in the style of Tait (1967) and Girard et al. (1989). We give a se-
mantic interpretation of each type in our language, denoting the
set of values of each type. Our semantic interpretation of recursive

1 Publicly available at https://github.com/rohanjr/mendler-recursion.



∆; Γ ` t : T Term t has type T in the context Γ with type variables from ∆.

∆; Γ ` () : unit
t-unit

x : T ∈ Γ
∆; Γ ` x : T

t-var
∆; Γ, x : R ` s : S

∆; Γ ` λx. s : R→ S
t-lam

∆; Γ ` r : S → T ∆; Γ ` s : S

∆; Γ ` r s : T
t-app

∆; Γ ` r : R ∆; Γ ` s : S

∆; Γ ` (r, s) : R× S
t-pair

∆; Γ ` r : T × S
∆; Γ ` fst r : T

t-fst
∆; Γ ` r : S × T
∆; Γ ` snd r : T

t-snd

∆; Γ ` r : R

∆; Γ ` inl r : R+ S
t-inl

∆; Γ ` s : S

∆; Γ ` inr s : R+ S
t-inr

∆; Γ ` t : R+ S ∆; Γ, xl:R ` s1 : T ∆; Γ, xr:S ` s2 : T

∆; Γ ` case t of inlxl ⇒ s | inrxr ⇒1 s2 : T
t-case

∆; Γ ` t : T [µX. T/X]

∆; Γ ` t : µX. T
t-fold

∆, X; Γ, f :X → R ` s : T → R

∆; Γ ` rec f. s : µX. T → R
t-rec

Figure 1. Typing Rules for Simply-Typed Lambda Calculus with Mendler-style Recursion

types mirrors the least fixed point semantics using an intricate set
intersection. To our knowledge our particular semantic interpreta-
tion and logical relation definition for recursive types is new, as it
is solely expressed in second-order logic. We then show that given
a term M of type A the resulting value of evaluating M is in the
semantic interpretation of that typeA. Our normalization statement
is hence a kind of “semantic type preservation”, because it shows
that well-typed terms must evaluate to values of the corresponding
semantic type.

As usual, the proof requires a generalization to open terms,
i.e. terms that are well-typed with respect to a typing context,
and a semantic interpretation of typing contexts described by a
grounding well-typed value substitutions. In addition, as our types
may be open as well, we also require a semantic interpretation
of type variable context described by a grounding substitution for
types. Our main theorem then uses these definition to say that
every closed term evaluates to a value in the semantic set of its
particular type. The proof is by induction on the typing derivation.
The interesting cases of the proof are those involving Mendler-
recursion and recursive types. As we use a set-based semantics,
we rely on a couple of abstract set-theoretic lemmas in those cases
of the proof. Though we do not prove it here, our language is type
safe and deterministic.

3. Language
3.1 Syntax
We consider here an extension of the simply-typed lambda calculus
with unit, pairs, disjoint sums and recursion. We write () for unit,
(t, s) for pairs, and the injections inl t and inr t into sums. In
addition, we include fst t and snd t which project from a pair, and
the case statement which analyzes a term of sum type. Crucially,
we have an explicit recursion term rec f. t which builds a term
f which may refer to itself in its definition t. To write recursive
functions we typically combine recursion with function abstraction.
While we allow arbitrary recursive programs to be written in our
syntax, our typing rules will guarantee that all functions are total.

Types T, S ::= unit | T → S | X | µX. T |
T × S | T + S

Terms t, s ::= () | x | λx. t | rec f. t | t s |
(t, s) | fst t | snd t | inl t | inr t |
(case t of inlxl ⇒ s1 | inrxr ⇒ s2)

The type language includes the unit type, function types, and
product and sum types as we mentioned. We also have recursive
types of the form µX. T , where µ binds a type variable X in the

body T . For example, we can define natural numbers and lists over
a fixed type A as follows:

Nat = µX. unit +X
List A = µX. unit +A×X

We take the equirecursive view of recursive types, with no ex-
plicit introduction form for terms of recursive types. As a conse-
quence, we simply write for the empty list inl () and for the num-
ber 2 simply inr (inr (inl ())).

3.2 Typing
We define typing of terms (Fig. 1) using two separate contexts: Γ
for typing assumptions about term-level variables, and ∆ to keep
track of type variables that are in scope.

Contexts Γ ::= · | Γ, x : T
Type Variable Contexts ∆ ::= · | ∆, X

The typing rules for functions, function application, pairs, pro-
jections, injections and case-expressions are straightforward. We
concentrate on the typing rules for recursive types, namely t-fold
and t-rec.

The t-fold rule implements the equirecursive view of recur-
sive types, in which a term can type check against both a recursive
type and its unfolded form. There is no explicit constructor around
the term in the conclusion of the rule, as there is in the isorecursive
view. As is usual in equirecursive systems, we lose type unique-
ness, since for example inl () can be interpreted both as zero and
the empty list.

The Mendler-style typing rule t-rec specifies recursive func-
tions on a recursive type µX. T , producing a result of type R. The
trick to the rule is that, in checking the body of the function s, the
typing assumption says that f works only on inputs of the type
variable X . The only data of type X possibly appearing in s is
the recursive data exactly one layer less than the argument of type
µX. T . For example when we recurse over Nat, then the only re-
cursive calls we can make are those on the predecessor of the input
number. Hence, the recursive call can only be made on structurally
smaller data, guaranteeing termination.

To illustrate, consider the program that computes the length of
a list and has type List→ Nat.

rec len.
λ l. case l of inlxl ⇒ inl () | inrxr ⇒ inr (len (sndxr))

Note that the inl and inr constructors appear both in analyz-
ing the list and in constructing the new natural number that will be
the length. Further, observe that sndxr refers to the tail of the list
we are analyzing, as we ignore the head of the list.



t[ρ] ⇓ v Term t under environment ρ evaluates to v.

(λx. t)[ρ] ⇓ (λx. t)[ρ]
e-lam

(rec f. t)[ρ] ⇓ (rec f. t)[ρ]
e-rec

r[ρ] ⇓ c s[ρ] ⇓ u c · u ⇓ v
(r s)[ρ] ⇓ v

e-app

r[ρ] ⇓ u s[ρ] ⇓ w
(r, s)[ρ] ⇓ (u,w)

e-pair
t[ρ] ⇓ (v, w)

(fst t)[ρ] ⇓ v e-fst
t[ρ] ⇓ (u, v)

(snd t)[ρ] ⇓ v e-snd

t[ρ] ⇓ v
(inl t)[ρ] ⇓ inl v

e-inl
t[ρ] ⇓ v

(inr t)[ρ] ⇓ inr v
e-inr

t[ρ] ⇓ inlu s1[ρ, u/xl] ⇓ v
(case t of inlxl ⇒ s | inrxr ⇒1 s2)[ρ] ⇓ v e-case-inl

()[ρ] ⇓ ()
e-unit

v/x ∈ ρ
x[ρ] ⇓ v

e-var
t[ρ] ⇓ inru s2[ρ, u/xr] ⇓ v

(case t of inlxl ⇒ s | inrxr ⇒1 s2)[ρ] ⇓ v e-case-inr

c · u ⇓ v Closure c applied to value u evaluates to v.

t[ρ, u/x] ⇓ v
(λx. t)[ρ] · u ⇓ v

e-app-lam
t[ρ, (rec f. t)[ρ]/f ] ⇓ c c · u ⇓ v

(rec f. t)[ρ] · u ⇓ v
e-app-rec

Figure 2. Environment-based Big-step Semantics for Lambda Calculus with Mendler-style Recursion

Let us see how this example type checks using the typing rule
t-rec. To see why the recursive call to len is allowed in this case,
we show the typing assumptions generated along the way to type
checking the application of len:

len : X → Nat, l : unit +A×X, xl : unit, xr : A×X

Hence sndxr has type X , which means we are allowed to pass
it to the function len to compute the length of the tail of the list.
Note that this is actually the only way we could have used len: the
only data of type X is the list exactly one constructor smaller. This
ensures that recursive calls are made only on structurally smaller
data, and hence that recursive functions must terminate.

We briefly explain here why the usual construction of a nonter-
minating program using negative recursive types is not possible in
our language. In languages with unrestricted recursive types and a
definable “unfold” function, one can define a nonterminating pro-
gram even without recursion. The simplest way to do this is by
indirectly constructing a program of the type T ≡ µX.X → X .
The first step of the construction is to define an unfold function of
type T → (T → T ). One might try this using a term of the form
rec f. λ x. t for some t, such as rec f. λ x. f x. However, as we
begin to type check this term using the t-rec and t-lam rules, we
see that we cannot use either f or x in t.

X; f : X → (T → T ), x : X → X ` t : T → T

X; f : X → (T → T ) ` λx. t : (X → X)→ (T → T )
t-lam

·; · ` rec f. λ x. t : T → (T → T )
t-rec

The problem is that both f and x take inputs of type X , which is
a freshly created type variable. This gives an idea why we are un-
able to produce nonterminating terms, even with negative recursive
types.

We remark that this form of Mendler recursion is very restrictive
for a couple of reasons. Firstly, we cannot directly encode recursive
calls on data more than one layer smaller. Second, we cannot use
structurally smaller data, such as the tail of the list, for anything
other than a recursive call! For more expressive forms of Mendler-
style recursion, we refer the reader to for example Abel (2010).
However, it is worth noting that even for those extended systems the
overall structure and challenges in the normalization proof remain.

3.3 Evaluation
We describe evaluation of our language using a big-step operational
semantics with value environments that keep track of variable –
value bindings. To understand the evaluation judgements, we need
to define values and environments.

Closures c ::= (λx. t)[ρ] | (rec f. t)[ρ]
Values v ::= () | (v, u) | inl v | inr v | c
Environments ρ ::= · | ρ, v/x

Each value corresponds to an introduction form of the language.
This is easy to see for the unit value, pairs and injections into sums.
The other two values are function closures, which are either lambda
terms or recursive terms that are closed under an environment ρ. An
environment is simply a list of values representing a simultaneous
substitution of variables with values. Hence a function term f can
be closed under an environment ρ if all of its free variables are
accounted for in ρ, and this pair f [ρ] is called a closure.

We describe the evaluation rules in Fig. 2. Note that the notation
t[ρ] used in defining the evaluation judgement for terms is over-
loaded – general closures of terms paired with their environments
are not part of the syntax of language. Rather the evaluation judg-
ment relates a term t in the environment ρ to the value v. The eval-
uation rules are mostly straightforward. In the rule for e-lam and
e-rec we return an actual closure. To evaluate r s, we first evalu-
ate r to a closure, i.e. either (λx. t)[ρ] or (rec f. t)[ρ], and s to a
value w. We then continue to extending the environment ρ. When
we encounter (λx. t)[ρ] we simply extend the environment ρ with
the value w. When we encounter (rec f. t)[ρ], we first continue to
unroll the recursive function and evaluate t[ρ, (rec f. t)[ρ]/f ] to
a closure before extending the runtime environment with w. This
models the usual functional interpretation of a fixed point or recur-
sion operator. Our typing rules guarantee that recursive calls are
only made on smaller arguments. The remaining rules are mostly
straightforward.

The key benefit of our use of environments is that it avoids
the notion of substitution on terms. This is very convenient during
mechanization, as we do not have to implement capture-avoiding
substitution nor prove properties about term-level substitutions. En-
vironments also help us formulate our semantics and our statement
of the normalization theorem, as we will see in the next sections.



4. Semantics
The main idea of the proof, following the method of logical rela-
tions, is to construct a semantic model of our syntactic language.
In this case, we define a set-theoretic interpretation of each type,
which we use in the statement of the normalization theorem. As
the proof is by induction on the typing derivation, this statement of
the theorem will give more powerful induction hypotheses to use in
each case of the proof.

Let Val be the set of all values allowed by our syntax. Before
we can give the set interpretation of types, we need to define a
semantic interpretation of type variable contexts. Assume a set
TpCtx containing all valid type variable contexts constructed from
our syntax, and a countably infinite set TpVar of type variables.
Then a type variable mapping is a function η : TpVar → P(Val),
mapping each type variable to a subset of values (possibly the
empty set). The function D gives the set of type variable mappings
associated with a given type variable context.

D : TpCtx → P(TpVar → P(Val))

D[·] = { 7→ ∅}
D[∆, X : ∗] = {η[X ← C] | η ∈ D[∆], C ∈ P(Val)}.

The definition says that a type variable mapping conforms to a
type variable context as long as it does not refer to type variables
outside that context. Though simple, it is necessary to describe how
to interpret type variables occurring in types.

The interpretation of types V is more interesting, describing the
set of values of a type under a type variable mapping. For that we
define some “semantic types”, which give set-theoretic analogues
of our syntactic type constructors. For A,B ∈ P(Val), define the
following sets.

A××B = {(v, w) | v ∈ A, w ∈ B}
A++B = {inl v | v ∈ A} ∪ {inrw | w ∈ B}
A→→→ B = {v ∈ Val | ∀u ∈ A. ∃w ∈ B. v · u ⇓ w}

The first two sets are set analogues of the product and sum type
constructors respectively, and we overload the connectives to reflect
this. The latter gives a semantic notion of function types, each
containing values which, when applied to any value in the first set,
evaluate to some value in the second set.

With this notation we define the semantic interpretation V , tak-
ing a type in Tp and a type variable mapping η to give a subset of
Val .

V : Tp → (TpVar → P(Val))→ P(Val)

V[unit](η) = {()}
V[T × S](η) = V[T ](η)××V[S](η)

V[T + S](η) = V[T ](η)++V[S](η)

V[T → S](η) = V[T ](η)→→→ V[S](η)

V[X](η) = η(X)

V[µX.F ](η) = µ̂(X 7→ V[F ](η[X ← X ]))

where for any F : P(Val)→ P(Val),

µ̂(F) =
⋂

∀X . X⊆C =⇒ F(X )⊆C

C.

We first explain the simple cases of the interpretation. The unit
case is clear, since () is the only possible value of type unit. The
product, sum and function type cases utilize our semantic types
over the interpretations of the component types. The case for a type
variable simply invokes the type variable mapping that is passed to
the function, looking up the set of values referenced by that type
variable. The difficult case is that of a recursive type.

The µ̂ operator is so named to evoke the notion of a semantic
fixed point operator, mirroring the syntactic µ construct. It trans-
forms a semantic function F on sets of values to its least fixed
point. This is achieved via the set intersection, which gets the small-
est set satisfying the closure property (appearing below the inter-
section symbol). Technically the closure property on C is not a fixed
point property, but rather a “pre-fixed point” property, stating that
subsetsX of C remain subsets underF . This gives us the least fixed
point operator that we want. In the interpretation of a recursive type,
we apply µ̂ to the semantic function that maps a set of values to the
semantic interpretation of the body of the recursive type under an
extended type variable mapping. This definition is inspired by en-
codings of recursive types into variants of System Fω (Abel et al.
2005), and is key to our proof.

Note that other semantic interpretations of recursive types, such
as in Abel (2010), use a formulation based on ordinals. This repre-
sentation is something of the form

µ̂F =
⋃
i∈ω1

F i(φ),

where ω1 is the first uncountable ordinal. We prefer our formulation
because it can be encoded directly in second-order logic. This is
particularly advantageous in the mechanization, as we do not rely
on a large proof library of ordinal properties.

The final piece of machinery we need is a semantic interpreta-
tion G of typing contexts, which describes the value substitutions,
i.e. environments, that are well-typed under a given context. As-
sume a set Ctx of well-formed typing contexts and a set Env of
environments. Then G takes a context fromCtx and a type variable
mapping to give the environments in Env that match the context.
That is, if ρ ∈ G[Γ](η), then every value in ρ is in the semantic
interpretation of the corresponding type in Γ. This is expressed in
the following definition.

G : Ctx → (TpVar → P(Val))→ P(Env)

G[·](η) = {·}
G[Γ, x : T ](η) = {ρ, v/x | ρ ∈ G[Γ](η), v ∈ V[T ](η)}.

With these formal semantics we are ready to state the normal-
ization theorem and describe the proof.

5. Normalization
5.1 Theorem Statement
The main theorem is stated using the semantic machinery we built
in the previous section. It is required to give us a sufficiently strong
induction hypothesis. The assumptions in the theorem are that we
have a well-typed term t under contexts ∆ and Γ, and we have a
type variable mapping and environment that conform to ∆ and Γ
respectively. The conclusion is that t evaluates to some value v in
the semantic interpretation of the type.

Theorem. If ∆; Γ ` t : T , η ∈ D[∆] and ρ ∈ G[Γ](η) then
t[ρ] ⇓ v for some v ∈ V[T ](η).

A simple statement of normalization for closed terms can be
recovered by considering the case in which ∆ and Γ are empty.
The empty type variable mapping and environment satisfy the latter
assumptions, giving the following corollary. We assume a natural
syntax for our judgements with empty contexts and environment.

Corollary. If t : T then t ⇓ v for some value v.

The proof of the main theorem is by induction on the typing
derivation D. This gives a case for each typing rule, which we
expain for the remainder of this section.



5.2 Simple Cases
To give a sense of the proof structure, we sketch some of the
simple cases here. As a warm-up, suppose the root of the typing
derivation is t-unit. In this case t = () and T = unit. By
e-unit, ()[ρ] ⇓ () and we observe that () is the sole member of
V [unit](η). This completes the unit case.

For the variable case, assume the root of the typing derivation
is t-var, so t = x and x : T ∈ Γ. We need to show that
∃v ∈ V [T ](η) such that v/x ∈ ρ. This is proved by induction
on the structure of Γ, though we omit the proof here. Using this
fact and e-var, we obtain that x[ρ] ⇓ v ∈ V [T ](η), completing
the variable case.

The last simple case we show is the lambda abstraction case.
Suppose the root of the typing derivation is t-lam, so t = λx. s
and T = R → S. We claim that v = (λx. s)[ρ] ∈ V[R → S](η),
since we know that (λx. s)[ρ] ⇓ (λx. s)[ρ] by e-lam. Unfolding
the definition of V[R → S](η), it remains to show that ∀u ∈
V[R](η), v · u ⇓ w for some w ∈ V[S](η). Assume u ∈ V[R](η).
Then ρ, u/x ∈ G[Γ, x:R](η), and ∆; Γ, x:R ` s : S by t-lam.
Using the induction hypothesis, we learn that ∃w ∈ V [S](η) such
that s[ρ, u/x] ⇓ w. Finally by e-app-lam we get that (λx. s)[ρ] ·
u ⇓ w, which is what we needed.

We omit the cases for t-app, t-pair, t-fst, t-snd, t-inl,
t-inr and t-case. They follow the structure we have shown
above and do not provide any novelty. The cases of interest in this
paper are the t-fold and t-rec cases, which involve recursive
types.

5.3 Fold Case
To prove the t-fold case, we will first need a lemma regarding
type substitutions. This is because recursive types are unrolled us-
ing type substitution. The lemma says that the semantic interpreta-
tion of a type under a substitution is equal to the type interpretation
under the appropriately extended type variable mapping.

Lemma (Semantics of type substitution). For types T and S and
a type variable mapping η,

V[T [S/X]](η) = V[T ](η[X ← V[S](η)]).

The proof of this lemma is by induction on the structure of T ,
using the definition of type substitutions. Though not complicated,
we will see later that this proof is not so straight-forward in the
mechanization. There, we will require a whole framework of sub-
stitution mechanisms and a suite of more general lemmas. We shall
omit the proof here and revisit it when we describe the mechaniza-
tion.

The other lemma we need for this case is a semantic one,
showing that the semantic fixed point operator µ̂ is really a (pre-
)fixed point.

Lemma (Pre-fixed point property). Let F ∈ P(V al) → P(V al)
and µ̂F be as defined in our semantics. Then F(µ̂F) ⊆ µ̂F .

This is not strictly a fixed point property because the result is a
set inclusion instead of an equality. Nevertheless the lemma will be
sufficient for proving this case of the theorem.

Proof. As the set on the right-hand side is an intersection, we can
show inclusion by showing inclusion in each set in the intersection.
So let C be an arbitrary set in the intersection, that is a subset of
Val satisfying the property that ∀X . X ⊆ C =⇒ F(X ) ⊆ C. We
need to show that F(µ̂F) ⊆ C. From the assumed property of C,
it suffices to show that µ̂F ⊆ C. We now have a set inclusion with
an intersection on the left. To prove it, we need just one set in the
intersection that is a subset of C. That is, we need a D ⊆ C such
that ∀X . X ⊆ D =⇒ F(X ) ⊆ D. However, C itself satisfies
this property from our original assumption.

To prove the t-fold case, we start by applying the induction
hypothesis to the typing subderivation. This says that there is a
v ∈ V[F [µX.F/X]](η) such that t[ρ] ⇓ v. DefineF : P(V al)→
P(V al) as F(X ) = V [F ](η[X ← X ]), so that V [µX.F ](η) =
µ̂F by definition. To finish the case we need to only show that
v ∈ V [µX.F ](η) = µ̂F . By the type substitution lemma, we have
V[F [µX.F/X]](η) = V[F ](η[X ← V[µX.F ](η)]). Rewriting
the right-hand set further using F gives V[F ](η[X ← µ̂F ]), and
using the definition once more yields F(µ̂F). However, by the
previous lemma we know this is a subset of µ̂F . Hence v ∈ µ̂F ,
completing the proof of this case.

5.4 Recursion Case
The only remaining case is the t-rec case. To prove it we will
need another semantic result regarding the semantic fixed point
µ̂. It gives a sufficient condition for membership in the semantic
function space from a fixed point.

Lemma (Function space from a fixed point). Suppose v ∈ Val ,
C ⊆ V al and F : P(V al)→ P(V al).

If ∀X ⊆ Val . v ∈ X →→→ C =⇒ v ∈ F(X ) →→→ C,
then v ∈ µ̂F →→→ C.

Proof. Let us define some useful notation. For v ∈ Val and B ⊆
Val , let Ev(B) = {u ∈ Val | ∃w ∈ B v · u ⇓ w}. Note that this
definition is closely related to that of a semantic function space,
as for A ⊆ Val , v ∈ A →→→ B ⇐⇒ A ⊆ Ev(B). Restating
the lemma using our E notation, it says that if ∀X ⊆ Val . X ⊆
Ev(C) =⇒ F(X ) ⊆ Ev(C) then µ̂F ⊆ Ev(C).

Assume the premise is true. Unfolding the definition of µ̂F , we
need to prove that ⋂

∀X . X⊆W =⇒ F(X )⊆W

W ⊆ Ev(C).

As in the last lemma, it suffices to show that just one W in the
intersection is included in Ev(C). However, Ev(C) itself is in the
intersection because of the assumption. Moreover it is a subset of
itself so we are done.

The final lemma we need is a form of backward closure for
recursive terms. It says that if the unrolling of a recursive term
evaluates to a function value, then the recursive term itself is a
function value.

Lemma (Backward closure). Let t be a term, ρ an environment
and A,B ⊆ Val .

If t[ρ, (rec f. t)[ρ]/f ] ⇓ v for some v ∈ A →→→ B,
then (rec f. t)[ρ] ∈ A→→→ B.

Proof. Assume the premise. By the definition of the semantic func-
tion space, we have ∀u ∈ A. ∃w ∈ B. v · u ⇓ w. Then by
e-app-rec we gain directly that (rec f. t)[ρ] · u ⇓ w, showing
that (rec f. t)[ρ] ∈ A→→→ B.

We can finally address the t-rec case. By e-rec, we know
(rec f. s)[ρ] ⇓ (rec f. s)[ρ], so we only need to show that

(rec f. s)[ρ] ∈ V[µX.F → R](η).

Simplifying the right-hand set using the semantics for function
types and recursive types, this is equivalent to showing

(rec f. s)[ρ] ∈ µ̂(X 7→ V[F ](η[X ← X ]))→→→ V[R](η).

By our semantic lemma for this case, it suffices to show that, for all
X ⊆ Val ,

(rec f. s)[ρ] ∈ X →→→ V [R](η) implies
(rec f. s)[ρ] ∈ V[F ](η[X ← X ])→→→ V[R](η).



So suppose X ⊆ Val such that (rec f. s)[ρ] ∈ X →→→ V[R](η). By
backward closure, it suffices to show that

∃v ∈ V[F ](η[X ← X ])→→→ V[R](η)

such that s[ρ, (rec f. s)[ρ]/f ] ⇓ v.
Now, the induction hypothesis says that

∀η′ ∈ D[∆, X]. ∀ρ′ ∈ G[Γ, f : X → R](η′).

∃v ∈ V[F → R](η′). s[ρ′] ⇓ v.

We have η[X ← X ] ∈ D[∆, X] since η ∈ D[∆] and X ⊆ V al.
Also, ρ, (rec f. s)[ρ]/f ∈ G[Γ, f : X → R](η′) because ρ ∈
G[Γ](η) implies ρ ∈ G[Γ](η′) and

(rec f. s)[ρ] ∈ V[X → R](η′) = X →→→ V[R](η).

Thus instantiating η′ = η[X ← X ] and ρ′ = ρ, (rec f. s)[ρ]/f in
the induction hypothesis means there is a

v ∈ V[F → R](η′) = V[F ](η[X ← X ])→→→ V[R](η)

such that s[ρ′] = s[ρ, (rec f. s)[ρ]/f ] ⇓ v. But this is exactly what
we were required to show! Hence we have completed the t-rec
case and the entire proof.

6. Mechanization
6.1 Overview
This section describes the implementation of our proof in the proof
assistant Coq. Most of the proof translates smoothly into the appro-
priate encodings in Coq. However, a substantial part of the proof
which is left implicit in the paper version is the treatment of substi-
tutions on types and the semantic properties that hold of them. In
the mechanization, we must deal with this explicitly so we use a de
Bruijn representation of type variables and a subtle framework of
parallel substitutions and renamings. In the following subsections
we describe how we encode the syntax of our language, our sub-
stitution framework, implementation of some set-theoretic notions,
lemmas about the semantics, and finally the main proof.

6.2 Representation of Syntax
We represent the syntax of our language using inductive data types
in Coq. Typing and evaluation are also represented using inductive
types, which allow us to reason about them inductively. In particu-
lar, we are able to perform induction on typing derivations, which
is the main proof strategy for the normalization theorem.

There is a subtle aspect to encoding syntax in a proof language,
which is how to represent variables and binding structures. Our
solution here is to use de Bruijn indices for both term- and type-
level variables. For term variables, this representation is convenient
because the only operations we perform on them are pushing onto
a typing context or environment, and looking them up in those
lists by index. We never need to implement substitutions on terms
due to our environment-based evaluation. Hence the de Bruijn
representation for term-level variables is ideal for our purposes.

However, the situation for type variables is quite different be-
cause we use syntactic substitutions during type checking. In par-
ticular, we perform a type substitution when unfolding recursive
types in the t-fold rule, and rename type variables when we in-
spect the body of a recursive type in the t-rec rule. Hence we need
an explicit definition of type substitutions and a lemma about the
semantics of types under such substitutions. The next subsection
describes the substitution framework we need for this.

6.3 Substitution Framework
We use the idea of parallel, or simultaneous, substitutions on types.
This means that substitutions can replace not just a single type

variable, but several at a time. This approach gives a general way
to compose and reason about substitutions.

One issue we must deal with is showing that our definitions
of type substitution and composition of substitutions are well-
founded, i.e. terminating. These mutual definitions are not struc-
turally recursive and so, using a naive approach to parallel substitu-
tions, not trivial to prove terminating in Coq. We favour a treatment
in which well-foundedness is checked automatically by Coq’s ter-
mination checking.

To do this we introduce the auxiliary notion of a renaming,
which is well described in (Benton et al. 2012). A renaming is very
similar to a substitution except that it only replaces variables with
other variables, as opposed to replacing them with arbitrary types.
With this notion we then define the composition of substitutions
with renamings instead of with other substitutions. This relies on
definitions of types under renamings as well as composition of
renamings. Through this extra layer of indirection, our definitions
will be evidently total according to Coq’s termination checker. The
cost of this approach, as in the previously referenced work, is a
bloated set of lemmas to prove about the interaction between these
definitions and our semantics.

Before we define this framework, let us restate the definition
of the type language using the de Bruijn representation of type
variables.

Types T, S ::= unit | T → S | Var k | µT | T × S | T + S

Note that variables are represented by natural numbers, and that
recursive types no longer bind a variable by name, but instead
introduce a variable of index 0, while “shifting” the other variables
up by one. To implement this in type checking, we require the
notion of substitutions and renamings as mentioned.

Substitutions and renamings consist either of a shift, which adds
to each of the indices representing free variables, or an extension
with a type (variable). We overload the notation for a shift to use it
in both syntactic categories.

Substitutions σ ::= ↑n| σ, T
Renamings π ::= ↑n| π, k

Observe that the only difference between the two constructs is
that substitutions are extended with types whereas renamings are
extended with natural numbers representing type variables.

In order to define type substitution we first need some more
primitive concepts, namely: composition of renamings, types under
renamings, and substitutions composed with renamings. In fact,
each of these operations is required to define the next one, resulting
in a chain of dependencies.

Building from the bottom up, the first operation we need is that
of composing renamings. The syntax π1[π2] refers to the renaming
obtained by composing the two renamings π1 and π2. The defini-
tion is by cases on the first renaming.

↑n [π] = popnπ

(π′, k)[π] = π′[π], π(k)

We rely on an auxiliary “pop” function that drops indices from a
renaming, or adds to the shift if the renaming is a shift. The other
operation used is that of a lookup π(k), which simply indexes into
the list. We will assume identical pop and lookup functions for
substitutions later.



Now we can define types under renamings, denoted T [π], this
time by cases on T .

unit[π] = unit

(T × S)[π] = T [π]× S[π]

(T + S)[π] = T [π] + S[π]

(T → S)[π] = T [π]→ S[π]

(Var k)[π] = Var(π(k))

(µT )[π] = µ(T [π[↑1], 0])

Most of the cases distribute the renaming π according to the struc-
ture of the type. In the variable case, we look up the renaming to
get the correct de Bruijn index. In the last case, we carry π under
the µ binder by introducing a new variable at index 0 and shifting
the variables in π up by one.

With this definition we can define substitutions composed with
renamings, in the form σ[π].

↑n [π] = 〈popnπ〉
(σ′, T )[π] = σ′[π], T [π]

Here we have denoted with angle brackets the conversion from
a renaming to a substitution, which is straight-forward (wrapping
each index with the variable constructor Var). In the second case
of an extended substitution, we rely on our previous operation of a
type under a renaming.

At the top of our chain of definitions, we finally have type
substitution.

unit[σ] = unit

(T × S)[σ] = T [σ]× S[σ]

(T + S)[σ] = T [σ] + S[σ]

(T → S)[σ] = T [σ]→ S[σ]

(Var k)[σ] = σ(k)

(µT )[σ] = µ(T [σ[↑1],Var 0])

This is extremely similar to the definition of types under renam-
ings. Again the first four cases are structural on the type, and the
variable case simply looks up the appropriate entry of the substitu-
tion. The final case carries σ under the binder by shifting the free
variables and adding a new type variable at index 0. This gives us
all the notions we need to prove semantic properties of types under
substitutions.

6.4 Modelling Sets and Semantics
In this subsection we take a brief detour to explain how we model
sets and some of our semantic structures in Coq. In particular, this is
enlightening as to why we rely on Coq’s support for higher-kinded
polymorphism.

Since our semantic interpretation yields mathematical sets in
our theory, we need a way to encode sets in Coq. We do so using
functions from a type S into Prop, the kind of propositions. In Coq
we define a type synonym as follows.

Definition set (S : Type) : Type := S -> Prop.

For example, a subset of values (a member of P(Val)) is repre-
sented by a function of type value -> Prop, indicating whether a
given value is in the subset or not. This representation works well
for implementing concepts such as set intersection, semantic func-
tion spaces, and even our semantic fixed point operator. We use
these set operations to define our semantic interpretation of types
V[T ](η).

Note that the definition of our fixed point operator µ̂ relies on
Coq’s support for higher-kinded polymorphism. One can see this
from its Coq definition given below.

Definition prefp (F : set value -> set value)
: set value :=
fun v => forall C : set value,

(forall X, subset X C -> subset (F X) C)
-> C v.

The key is that we quantify over type constructors C and X of type
value -> Prop. This requires not only ordinary polymorphism
which allows quantification over types, but higher-order or higher-
kinded polymorphism. This is the main reason we chose to use Coq
over other reasoning languages.

6.5 Semantics of Substitutions
To use the substitution framework we described, we need lemmas
that allow us to reason about them. For that we need semantic in-
terpretations of both substitutions and renamings. These interpreta-
tions will in fact produce type variable mappings.

Type variable mappings are modelled as lists of sets of values.
They are implemented using the following syntax, where χ repre-
sents a set of values.

Type Variable Mappings η ::= · | η, χ

This representation is sufficiently expressive because it takes ad-
vantage of our de Bruijn representation of type variables. Type vari-
able mappings refer to type variables implicitly by index in the list.

Now let us look at the semantic interpretation of renamings.

V∗∗[↑n](η) = popn η

V∗∗[π′, k](η) = V∗∗[π′](η), η(k)

Here we refer to a “pop” function which removes elements from a
type variable mapping, and a lookup function η(k) which retreives
the set at a given index. These are similar to the operations we used
earlier for renamings and substitutions. They are all defined in our
mechanization and we proved some composition properties about
them.

Next we see the interpretation of substitutions.

V∗[↑n](η) = popn η

V∗[σ′, T ](η) = V∗[σ′](η),V[T ](η)

The idea of both of these definitions is to capture the notion of a
shift and to bootstrap the semantic interpretation of types.

The V∗ and V∗∗ notation here is intentionally similar to the V
notation of semantic types. These semantic notions are all intended
to compose in a regular fashion. This is made precise in the fol-
lowing set of lemmas, which correspond to the four operations we
defined in Section 6.3.

V∗∗[π1[π2]](η) = V∗∗[π1](V∗∗[π2](η)) (1)

V[T [π]](η) = V[T ](V∗∗[π](η)) (2)

V∗[σ[π]](η) = V∗[σ](V∗∗[π](η)) (3)

V[T [σ]](η) = V[T ](V∗[σ](η)) (4)

We have proved all of these properties in our mechanization. As
with the definitions involving renamings and substitutions, each
one depends on the one before it.

6.6 Main Lemmas and Theorem
With our syntax modelled and the framework for substitutions
set up, we are able to address the main normalization theorem.
As in the paper version, the proof is by induction on the typing
derivation, which in Coq is encoded as a term of the inductive



type that represents the typing relation. Each case requires using
the induction hypotheses and the appropriate evaluation rules.

As in the paper version, it is the t-fold and t-rec cases that
are interesting. They use our abstract lemmas about the semantic
fixed point operator µ̂, the proofs of which are smoothly translated
using our encoding of sets from Section 6.4. In addition the t-fold
case uses the type substitution lemma (4) specialized to a single
substitution, as that is how recursive types are unfolded in t-fold
rule. Finally, hidden in the paper proof, the t-rec case uses the
type renaming lemma (2), as there are implicit shifts in the premise
of the t-rec rule which we model using renamings.

Another challenge of the proof we should mention is caused by
Coq’s notion of equality. Because Coq’s type theory is intensional,
there are times when we cannot directly rewrite terms using an
extensional equality. A common instance of this issue is when we
wish to rewrite a term involving a set to one involving a set with
exactly the same elements. Since sets are modelled as functions into
Prop, this is not directly possible because the sets are extensionally
equal but not definitionally equal. Our solution to this problem is to
define a separate notion of set equality and auxiliary lemmas that
allow us to rewrite terms using this equality.

An example where we need such auxiliary lemmas is the fol-
lowing. We would like to rewrite V[T ](η) to V[T ](η′) if we know η
and η′ are equal, but because sets and type variable mappings both
use custom notions of equality, we need to provide lemmas that ex-
plicitly justify this transformation. We prove a number of lemmas
regarding such preservation of equality under semantic structures.
We also need proofs of reflexivity, symmetry and transitivity of our
equality relations in order to use them effectively. Though techni-
cally easy, these proofs are tedious to write, and could perhaps be
avoided with richer facilities for proving equality in our reasoning
language.

7. Related and Future Work
Mechanizing logical relations proofs is not a new achievement,
with normalization proofs of System F having being mechanized
since the early 1990’s, described for example in (Altenkirch 1993)
or (Berardi 1990). Mendler discovered his recursion strategy even
earlier (Mendler 1988). However, we have not seen a mechanized
normalization proof for a total language with general recursive
types and this style of recursion. In doing this we have also given
a concise set-theoretic semantics, which we have not seen for re-
cursive types in this direct form. There are on the other hand en-
codings of recursive types into normalizing languages (Abel et al.
2005), namely System Fω , which were the inspiration for our inter-
pretation.

Our formulation of the normalization problem lends itself to a
relatively straight-forward mechanization, which could be instruc-
tive for those carrying out similar proofs in the community. Our
approach involving an environment-based evaluation and semanti-
cally interpreted substitutions can be adapted to other object lan-
guages and proof environments. These techniques are beneficial
because they allow us to avoid reasoning about term-level substi-
tutions and organize our proofs about type-level substitutions in a
modular structure.

A design decision we made during the mechanization was
whether to use an explicit substitution calculus (Abadi et al. 1990)
to handle substitutions on the type level. We did not take this route
because it slightly obscures the surface-level presentation of our
object language. However, we suspect the technique could simplify
our reasoning about type substitutions by avoiding the need for
renamings. Recall that renamings were an auxiliary notion to help
us pass Coq’s termination checking. With explicit substitutions,
equations about substitutions which are cases of functions in our
treatment become lemmas to prove, and vice versa. It may be that

some of our functions written in terms of renamings to be evidently
total can be proven without renamings in the alternative approach.
This is one that we can try in the future and see how it changes the
proof.

There are a number of ways in which one could extend our
proof as well. A straight-forward first extension would be that to
include polymorphism as in System F. We have formulated this
on paper already, although not yet in the Coq development. More
interestingly, we would like to consider how this proof extends
to richer type theories, namely dependent types or indexed types.
We believe that our proof framework is easily extensible to such
systems, which would allow a formalization of a rich total language
comparable to current proof languages such as Agda and Coq.
In particular, it would allow us to mechanize the meta-theory of
Beluga extending (Pientka and Abel 2015).

Finally we would like to extend our formalization to more
sophisticated forms of Mendler-style recursion, such as course-
of-value recursion (Abel 2010), which uses subtyping to permit a
wider range of programs. This would lead to the first mechanization
of such recursion schemes as far as we know.

8. Conclusion
We have given a tutorial-style introduction to the normalization
proof for the simply-typed lambda-calculus with Mendler-style re-
cursion. Compared to existing normalization proofs that rely on
ordinals, our reducibility candidates can be formulated solely in
second-order logic. This leads to a compact mechanization in Coq
despite the overhead of modelling type variables and type-level
substitutions due to the presence of recursive types. Such over-
head can be in principle eliminated when using proof environ-
ments that support higher-order abstract syntax (HOAS) encodings.
However, these proof environments are currently not supporting
higher-kinded polymorphism. We see our work as a case study to
understand the current limitations and strengths of current proof
environments. In particular, we believe it serves as a good chal-
lenge problem to proof environments that support HOAS encod-
ings. Adding support for higher-kinded polymorphism to these sys-
tems seems key to mechanizing semantic models of type systems or
logics to reason about concurrent, higher-order, and imperative lan-
guages (see for example (Ahmed 2004; Perconti and Ahmed 2014;
Sieczkowski et al. 2015)) and to broaden their application domain.
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In 17th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 31–46. ACM Press, 1990.

A. Abel. Termination checking with types. RAIRO - Theoretical Informatics
and Applications, 38(4):277–319, 3 2010.

A. Abel, R. Matthes, and T. Uustalu. Iteration and coiteration schemes for
higher-order and nested datatypes. Theoretical Computer Science, 333:
3–66, 2005. ISSN 03043975.

A. Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton
University, 2004.

T. Altenkirch. A formalization of the strong normalization proof for System
F in LEGO. In M. Bezem and J. F. Groote, editors, International Con-
ference on Typed Lambda Calculi and Applications (TLCA ’93), volume
664 of Lecture Notes in Computer Science, pages 13–28. Springer, 1993.
ISBN 3-540-56517-5.

D. Baelde. Least and greatest fixed points in linear logic. ACM Transactions
on Computational Logic, 13(1):2:1–2:44, 2012.

D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, and
Y. Wang. Abella: A system for reasoning about relational specifications.
Journal of Formalized Reasoning, 7(2):1–89, 2014.



N. Benton, C.-K. Hur, A. Kennedy, and C. McBride. Strongly typed term
representations in Coq. Journal of Automated Reasoning, 49(2):141–
159, 2012.

S. Berardi. Girard normalization proof in LEGO. In Proceedings of the
First Workshop on Logical Frameworks, pages 67–78, 1990.
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