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Abstract. We present a multi-context focused sequent calculus whose
derivations are in bijective correspondence with normal natural deduc-
tions in the propositional fragment of the intuitionistic modal logic IS4.
This calculus, suitable for the enumeration of normal proofs, is the start-
ing point for the development of a sequent calculus-based bidirectional
decision procedure for propositional IS4. In this system, relevant de-
rived inference rules are constructed in a forward direction prior to
proof search, while derivations constructed using these derived rules
are searched over in a backward direction. We also present a variant
which searches directly over normal natural deductions. Experimental
results show that on most problems, the bidirectional prover is compet-
itive with both conventional backward provers using loop-detection and
inverse method provers, significantly outperforming them in a number of
cases.

1 Introduction

Intuitionistic modal logics are constructive logics incorporating operators of ne-
cessity (2) and possibility (3). Fitch [7], Prawitz [16], Satre [18], and more
recently Simpson [19], Bierman and de Paiva [1], and Pfenning and Davies [15]
have investigated a broad range of proof-theoretical properties of various log-
ics of this kind. Recently, such logics have also found applications in hardware
verification [6] and proposed type systems for staged computation [3] and dis-
tributed computing [13]. A logic frequently used in these settings is either the
intuitionistic variant of the classical modal logic S4, which we will call IS4, or a
logic that can be expressed through IS4, such as Fairtlough and Mendler’s lax
logic [6] (see for instance [15] for the relationship between IS4 and lax logic).

In this light, it is surprising that proof search in IS4 has not received more
attention. Howe has investigated proof enumeration and theorem proving in lax
logic [12] and, coming closer to our work, has presented a backward decision
procedure for the fragment of propositional IS4 without the possibility modal-
ity [11]. His system performs loop-detection using a history mechanism, but is
encumbered by a large number of rules and related provisos (21 axioms and in-
ference rules). It would only grow with the addition of the possibility modality,
which would also require a different loop-detection mechanism.
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Our contributions begin with a sequent calculus for propositional IS4 suit-
able for the enumeration of normal proofs. This forms the basis for the de-
velopment of a sequent calculus-based bidirectional IS4 decision procedure, in
which derived inference rules relevant to the query are constructed in a for-
ward direction prior to proof search, while derivations constructed using these
derived rules are searched over in a backward direction. We also demonstrate
that this approach corresponds very closely to an elegant bidirectional decision
procedure that searches directly over normal natural deductions. The key to our
theoretical justification of both of these decision procedures is a refinement of
the well-known subformula property, which we use to restrict nondeterminism
in focused proof search in the presence of multiple contexts. To evaluate our
approach empirically, we have put together a set of 50 benchmark formulas for
IS4. Experimental results show that on most problems, the bidirectional prover
is competitive with both conventional backward provers using loop-detection
and inverse method provers, significantly outperforming them in a number of
cases. Although we concentrate on propositional IS4 in this paper, we believe
that the techniques presented are general enough to find applications in other
constructive logics, such as the contextual modal logic of Nanevski, Pfenning,
and Pientka [14]. Finally, while this paper contains only proof sketches of many
of our results, we provide the full proofs in the accompanying technical report
[10].

In Sect. 2 we summarize the relevant background and introduce our core
natural deduction formalism, while Sect. 3 presents corresponding sequent calculi
for proof search in both backward and forward directions, followed by a more
detailed discussion of some of the intricacies of focused forward proof search.
In Sects. 4 and 5 we describe our bidirectional decision procedure in both a
sequent calculus and a natural deduction setting. Experimental results are given
in Sect. 6, while Sect. 7 concludes with related and future work.

2 Natural Deduction

Formulas in the propositional fragment of IS4 are given by the grammar

A ::= P | ⊥ | A ⊃ A | A ∧ A | A ∨ A | 2A | 3A

where P is taken from a countable set of atomic propositional constants and
negation and truth are defined notationally in the usual way. Our starting point
is a multi-context natural deduction formulation for IS4 similar to ones pro-
posed by Pfenning and Davies [15] and Bierman and de Paiva [1], except that
we impose a restriction that only natural deductions in normal form can be
constructed. This is achieved by annotating judgements with their intended di-
rection of reasoning:

∆; Γ ⊢ A ↑ A has a normal proof under hypotheses ∆ and Γ ,

∆; Γ ⊢ A ↓
A can be extracted from hypotheses in ∆ and Γ using
only elimination rules,
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∆; Γ1, A, Γ2 ⊢ A ↓
hyp

1 ∆1, A,∆2; Γ ⊢ A ↓
hyp

2

∆; Γ ⊢ ⊥ ↓

∆; Γ ⊢ C ↑
⊥E

∆; Γ, A1 ⊢ A2 ↑

∆; Γ ⊢ A1 ⊃ A2 ↑
⊃I

∆; Γ ⊢ A1 ⊃ A2 ↓ ∆; Γ ⊢ A1 ↑

∆; Γ ⊢ A2 ↓
⊃E

∆; Γ ⊢ A1 ↑ ∆; Γ ⊢ A2 ↑

∆; Γ ⊢ A1 ∧ A2 ↑
∧I

∆; Γ ⊢ A1 ∧ A2 ↓

∆; Γ ⊢ Aj ↓
∧Ej

∆; Γ ⊢ Aj ↑

∆; Γ ⊢ A1 ∨ A2 ↑
∨Ij

∆; Γ ⊢ A1 ∨ A2 ↓ ∆; Γ, A1 ⊢ C ↑ ∆; Γ, A2 ⊢ C ↑

∆; Γ ⊢ C ↑
∨E

∆; · ⊢ A ↑

∆; Γ ⊢ 2A ↑
2I

∆; Γ ⊢ 2A ↓ ∆, A; Γ ⊢ C ↑

∆; Γ ⊢ C ↑
2E

∆; Γ ⊢ A ↑

∆; Γ ⊢ 3A ↑
3I

∆; Γ ⊢ 3A ↓ ∆; A ⊢ 3C ↑

∆; Γ ⊢ 3C ↑
3E

∆; Γ ⊢ A ↓ A is atomic

∆; Γ ⊢ A ↑
↑↓

j ∈ {1, 2}

Fig. 1. NJN

IS4

where Γ = A1, . . . , An is a context of true hypotheses and ∆ = B1, . . . , Bm is a
modal context of valid hypotheses. Valid hypotheses are hypotheses whose truth
does not depend on the truth of other formulas, that is, hypotheses that are in
some sense “always” or necessarily true. The resulting system, which we will call
NJN

IS4
, is shown in Fig. 1. Although the contexts of this system are formally

ordered lists, we can afford to be flexible with them, as NJN

IS4
has the usual

structural properties of weakening, contraction, and exchange for both contexts.
For convenience, we will generally think of contexts in NJN

IS4
as multisets.

The inference rules of NJN

IS4
are largely standard, but to glean some intuition

about the modal rules and the two contexts, it is useful to think of the modalities
as quantifying truth over worlds in some universe, with some reachability relation
defined on the worlds. To say that 2A is true is to say that A is true in all worlds
reachable from the current one, while to say that 3A is true is to say that A is
true in some world reachable from the current one. The current world represents
the environment in which the provability of the succedent is to be established.
Under this interpretation, the hypotheses in the modal context can be used in
all reachable worlds, while those in the regular context can only be used in the
current world.

Note that while NJN

IS4
defines the normal forms that we are interested in

during proof search, an unrestricted variant NJIS4 can be obtained by dropping
the arrow annotations and the rule ↑↓. In the accompanying technical report
[10], we show that the two systems NJIS4 and its “normalized” cousin NJN

IS4

are equivalent in terms of provability. For the interested reader, we also provide
a common Hilbert-style axiomatization of IS4 in [10], along with a proof that
the unrestricted system NJIS4 and the axiomatization are equivalent. This lends
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support to the claim that we are indeed dealing with the intuitionistic variant
of S4. Finally, we would like to point out that the separation between modal
and ordinary hypotheses is not strictly necessary. Building on work by Bierman
and de Paiva [1], we obtain a faithful embedding into a single-context system
simply by providing every valid hypothesis with a 2 operator and merging the
two contexts. The details of this embedding are beyond the scope of this paper,
but are presented in [10].

While Girard, Lafont, and Taylor suggest that we should think of natural
deductions as the “true ‘proof’ objects” [9], natural deduction systems have
traditionally not seen much use as formalisms for proof search, mainly as a
result of their lack of syntax-directedness. Although we will ultimately return
to natural deduction in our search for bidirectional decision procedures, the
relationship between backward and forward proof search is perhaps most vividly
demonstrated in a sequent calculus setting, which we turn to next.

3 Sequent Calculi

Following the approach of Dyckhoff and Pinto [5], we can construct a focused
sequent calculus for propositional IS4 whose derivations are in bijective cor-
respondence with normal natural deductions. This system, which we will call
MJIS4, is shown in Fig. 2 and involves two forms of sequents:

∆; Γ → C C can be proved from assumptions ∆, Γ ,

∆; Γ ⊲ A → C
C can be proved from assumptions ∆, Γ, A, focusing on
the assumption A.

If a sequent is focused on a formula A, then the only applicable rules are those
with A as a principal formula. Following Girard [8], we will call the position of the
focused formula the stoup. As in the natural deduction formulations, contexts
in MJIS4 are technically ordered lists, but the usual structural properties of
weakening, exchange, and contraction hold here as well, so an interpretation of
contexts as multisets is reasonable. The following key result establishes the close
correspondence between MJIS4 and NJN

IS4
. The soundness and completeness of

MJIS4 with respect to NJN

IS4
follow from it.

Theorem 1 (Bijection between MJIS4 and NJN

IS4
derivations). Deriva-

tions of unfocused sequents in MJIS4 correspond bijectively to derivations of ↑
judgements in NJN

IS4
.

Proof. We define functions mapping derivations from NJN

IS4
to MJIS4 and vice

versa. Inductive arguments on the structures of the argument derivations show
that the functions are bijections. ⊓⊔

Although MJIS4 is suitable for proof search in a backward direction, a naive
approach still requires loop-detection to achieve a decision procedure. We will
not pursue this direction further here, but instead concentrate on forward proof
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A is atomic
∆; Γ ⊲ A → A

init
∆; Γ ⊲ ⊥ → C

⊥L

∆; Γ1, A, Γ2 ⊲ A → C

∆; Γ1, A, Γ2 → C
ch1

∆1, A, ∆2; Γ ⊲ A → C

∆1, A, ∆2; Γ → C
ch2

∆; Γ, A1 → A2

∆; Γ → A1 ⊃ A2

⊃R
∆; Γ → A1 ∆; Γ ⊲ A2 → C

∆; Γ ⊲ A1 ⊃ A2 → C
⊃L

∆; Γ → A1 ∆; Γ → A2

∆; Γ → A1 ∧ A2

∧R
∆; Γ ⊲ Aj → C

∆; Γ ⊲ A1 ∧ A2 → C
∧Lj

∆; Γ → Aj

∆; Γ → A1 ∨ A2

∨Rj

∆; Γ, A1 → C ∆; Γ, A2 → C

∆; Γ ⊲ A1 ∨ A2 → C
∨L

∆; · → A

∆; Γ → 2A
2R

∆, A; Γ → C

∆; Γ ⊲ 2A → C
2L

∆; Γ → A

∆; Γ → 3A
3R

∆; A → 3C

∆; Γ ⊲ 3A → 3C
3L

j ∈ {1, 2}

Fig. 2. MJIS4

search, and on how we can combine ideas from backward and forward search to
perform bidirectional proof search.

Constructing MJIS4 proofs in a forward direction — from the top down —
is complicated by the presence of multiple contexts, making MJIS4 less than
ideal for forward proof search. All MJIS4 derivations begin, at the leaves, with
focused sequents of the form ∆; Γ ⊲ A → A, with A atomic. After a sequence
of (possibly zero) left-rule applications, the stoup formula is dropped from the
stoup into one of the contexts by an application of ch1 or ch2. In a focused
forward calculus used as the basis for the inverse method [4], we would proceed
in a similar way, but it is not clear which context a stoup formula should be
dropped into.

To address this uncertainty, we refine the idea of focusing and develop the
system MJF

IS4
, which is suitable for forward proof search and features sequents

of three kinds, involving both modal and nonmodal stoups:

∆; Γ 7→ C C can be proved using all assumptions in ∆, Γ ,

∆; Γ ⊲ A 7→ C
C can be proved using all assumptions in ∆, Γ, A, with
A assumed true,

∆; Γ ⊲ ⊲A 7→ C
C can be proved using all assumptions in ∆, Γ, A, with
A assumed valid.

Note that the forms of the focused sequents reveal which context the stoup
formula will drop into. For brevity, we write ∆; Γ ⊲i A 7→ C, i ∈ {1, 2} for either
form of focused sequent.
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A is atomic

·; · ⊲i A 7→ A
initi

·; · ⊲i ⊥ 7→ C
⊥Li

∆; Γ ⊲ A 7→ C

∆; Γ, A 7→ C
ch1

∆; Γ ⊲ ⊲A 7→ C

∆, A; Γ 7→ C
ch2

∆; Γ, A1 7→ A2

∆; Γ 7→ A1 ⊃ A2

⊃R1

∆; Γ 7→ A2

∆; Γ 7→ A1 ⊃ A2

⊃R2

∆1; Γ1 7→ A1 ∆2; Γ2 ⊲i A2 7→ C

∆1, ∆2; Γ1, Γ2 ⊲i A1 ⊃ A2 7→ C
⊃Li

∆1; Γ1 7→ A1 ∆2; Γ2 7→ A2

∆1, ∆2; Γ1, Γ2 7→ A1 ∧ A2

∧R
∆; Γ ⊲i Aj 7→ C

∆; Γ ⊲i A1 ∧ A2 7→ C
∧Li,j

∆; Γ 7→ Aj

∆; Γ 7→ A1 ∨ A2

∨Rj

∆1; Γ1, A1 7→ C ∆2; Γ2, A2 7→ C

∆1, ∆2; Γ1, Γ2 ⊲i A1 ∨ A2 7→ C
∨Li

∆; · 7→ A

∆; · 7→ 2A
2R

∆, A; Γ 7→ C

∆; Γ ⊲i
2A 7→ C

2Li
∆; Γ 7→ A

∆; Γ 7→ 3A
3R

∆; A 7→ 3C

∆; · ⊲i
3A 7→ 3C

3Li

i, j ∈ {1, 2}

Fig. 3. MJF

IS4

The inference rules of MJF

IS4
, shown in Fig. 3, are obtained by reinterpreting

the rules of MJIS4 in a forward fashion and by defining the chi rules to behave
as sketched above. The contexts of MJF

IS4
, however, are interpreted differently,

in that sequents ∆; Γ 7→ C and ∆; Γ ⊲i A 7→ C, i ∈ {1, 2} assert that all
assumptions in ∆ and Γ , as well as A if the sequent is focused, are needed to
prove C. General weakening, which holds in MJIS4, is thus disallowed, but local
weakening is incorporated in the rule ⊃R2. Contexts in MJF

IS4
are treated as

sets rather than multisets, and we write Γ1, Γ2 and Γ, A for Γ1∪Γ2 and Γ ∪{A},
respectively.

Theorem 2 (Soundness and completeness of MJF

IS4
with respect to

MJIS4).

1. (Soundness)

(a) If ∆; Γ 7→ C, then ∆; Γ → C.
(b) If ∆; Γ ⊲i A 7→ C, i ∈ {1, 2}, then ∆; Γ ⊲ A → C.

2. (Completeness)

(a) If ∆; Γ → C, then ∆′; Γ ′ 7→ C for some ∆′ ⊆ ∆, Γ ′ ⊆ Γ .
(b) If ∆; Γ ⊲ A → C and A is a subformula of a formula in Γ , then either

∆′; Γ ′ 7→ C or ∆′; Γ ′ ⊲ A 7→ C for some ∆′ ⊆ ∆, Γ ′ ⊆ Γ .
(c) If ∆; Γ ⊲ A → C and A is a subformula of a formula in ∆, then either

∆′; Γ ′ 7→ C or ∆′; Γ ′ ⊲ ⊲A 7→ C for some ∆′ ⊆ ∆, Γ ′ ⊆ Γ .

Proof. In both cases by simultaneous induction on the structure of the given
derivation, using weakening in MJIS4 where necessary. ⊓⊔
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Note that the more fine-grained focusing mechanism of MJF

IS4
could just as

well have been introduced in a sequent calculus suitable for backward reasoning,
such as MJIS4. Indeed, the single type of focused sequent in MJIS4 has the role
of both types of focused sequents in MJF

IS4
, making the focusing mechanism of

MJIS4 in some sense “overloaded”.
The forward calculus MJF

IS4
suggests itself immediately as a basis for an

implementation of the inverse method [4], fundamental to which is the classifi-
cation of the subformulas of a query formula into positive and negative classes.
The sign of a subformula determines where in a sequent it may occur (for in-
stance as a goal formula or in the context) and restricts nondeterminism during
proof search. We will refine this notion by classifying subformulas as either

1. positive (+) subformulas, which may occur as goal formulas,
2. negative (−) subformulas, which may occur in the nonmodal context,
3. negative focused (∼) subformulas, which may occur in the nonmodal stoup,
4. valid (=) subformulas, which may occur in the modal context, or
5. valid focused (≈) subformulas, which may occur in the modal stoup.

With this intended interpretation, it is straightforward to read the formal defi-
nition of refined signed subformulas directly from the inference rules of MJF

IS4
.

Definition 1 (Signed subformulas). A signed subformula A∗ is a formula
A with a sign ∗ ∈ {+,−,∼, =,≈}. The subformula relation ≤ is the smallest
reflexive and transitive relation between signed subformulas satisfying the follow-
ing.

A−

1 , A+

2 ≤ (A1 ⊃ A2)
+ A+

i ≤ (A1 ∧ A2)
+ A+

i ≤ (A1 ∨ A2)
+

A+ ≤ (2A)+ A+ ≤ (3A)+ A∼ ≤ A−

A+
1 , A∼

2 ≤ (A1 ⊃ A2)
∼ A∼

i ≤ (A1 ∧ A2)
∼ A−

i ≤ (A1 ∨ A2)
∼

A= ≤ (2A)∼ A− ≤ (3A)∼ A≈ ≤ A=

A+
1 , A≈

2 ≤ (A1 ⊃ A2)
≈ A≈

i ≤ (A1 ∧ A2)
≈ A−

i ≤ (A1 ∨ A2)
≈

A= ≤ (2A)≈ A− ≤ (3A)≈

i ∈ {1, 2}

Note that for every negative subformula A− of a signed formula C∗, C∗ also
has, as a subformula, the corresponding negative focused subformula A∼. The
converse, however, is not true in general. A similar relation holds for valid and
valid focused subformulas. Also, the usual signed subformula property extends to
encompass our refined signing scheme, where we write Γ− and ∆= for contexts
of signed subformulas of the forms A−

1 , . . . , A−

n and B=
1 , . . . , B=

m, respectively.

Theorem 3 (Signed subformula property). Every sequent in an MJF

IS4

derivation of

∆=; Γ− 7→ C+ or ∆=; Γ− ⊲i A∗ 7→ C+, i ∈ {1, 2}

where ∗ is ∼ or ≈ if i = 1 or i = 2, respectively, is of the form
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1. D=
1 , . . . , D=

n ; E−

1 , . . . , E−

m 7→ F+,

2. D=
1 , . . . , D=

n ; E−

1 , . . . , E−

m ⊲ E∼ 7→ F+, or

3. D=
1 , . . . , D=

n ; E−

1 , . . . , E−

m ⊲ ⊲D≈ 7→ F+,

where all D=
j , E−

k , and E∼, D≈, and F+ are signed subformulas of ∆=, Γ−,
C+, and A∗.

Proof. By simultaneous induction on the structure of the given derivation. ⊓⊔

Theorem 3 guarantees, for instance, that in any MJF

IS4
derivation of the

sequent ∆=; Γ− 7→ C+, all leaves are of the forms

A is atomic

·; · ⊲i A∗ 7→ A+
initi or ·; · ⊲i ⊥∗ 7→ B+

⊥Li i ∈ {1, 2}

where ∗ is ∼ or ≈ if i = 1 or i = 2, respectively, and A∗, A+, ⊥∗, and B+

must be signed subformulas of ∆=, Γ−, and C+. In general, every rule applica-
tion considered by an implementation of the inverse method must abide by the
conditions set forth by the extended signed subformula property. This provides
a foundation for a focused inverse method prover for IS4 with nondeterminism
restricted more strongly than by the usual subformula property.

However, pure forward proof search techniques such as the inverse method
also have shortcomings. For instance, the existence of two ⊃R rules is a con-
cession to the need for localized weakening, something usually handled more
elegantly in backward decision procedures by general weakening. Also, the re-
fined focusing we have introduced strongly restricts what rules are applicable,
something that a decision procedure should be able to exploit in order to gener-
ate fewer intermediate sequents. These issues are addressed in the next section
by combining ideas from forward and backward proof search.

4 Bidirectional Proof Search in Sequent Calculus

The idea behind the bidirectional sequent calculus method is that given a query
formula A, we can, by exploiting forward proof search techniques, but before per-
forming proof search itself, construct a set of derived inference rules for MJIS4

which conceal all left-rule applications that could be needed in a proof of A. We
then carry out backward proof search over these relevant derived rules and the
usual right-rules of MJIS4. By design, our derived inference rules will correspond
exactly to the notion of focused threads in MJF

IS4
derivations, defined as follows.

Definition 2 (Focused threads). A focused thread of an MJF

IS4
derivation

is a segment of the derivation that begins, at the top, with an application of initi,
⊥Li, ∨Li, 2Li, or 3Li, i ∈ {1, 2} (raising a formula into a stoup), includes only
focused sequents, and ends with an application of chi (dropping a formula from
the stoup).
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In any MJF

IS4
derivation of an unfocused sequent, left-rule applications must

occur in focused threads, so we can think of derivations as consisting of focused
threads strung together using right-rule applications. The key insight is that
all focused threads possibly needed in an MJF

IS4
proof of a formula A can be

deterministically constructed prior to proof search by inspecting the structure
of A. To justify this claim, we will use our refined subformula property.

First note that it is straightforward to uniquely label subformula occurrences
of a formula to be proved, and that the definition of signed subformulas, the
signed subformula property, and the inference rules of MJF

IS4
can be adjusted to

operate on labels rather than formulas, thus differentiating between subformula
occurrences.

To give some intuition as to how to construct all the focused threads possibly
needed for a proof of a formula, we will illustrate the approach on the following
small example:

L
+

0

︷ ︸︸ ︷

L
−

1
,L∼

1

︷ ︸︸ ︷

2(

L=
2 ,L≈

2

︷ ︸︸ ︷

L
+

3

︷︸︸︷

A ⊃

L≈

4

︷︸︸︷

B ) ⊃

L
+

5

︷ ︸︸ ︷

3(

L
+

6

︷ ︸︸ ︷

L
−

7
,L∼

7

︷︸︸︷

A ⊃

L
+

8

︷︸︸︷

B )

with subformulas

L+

0 , L+

3 , L+

5 , L+

6 , L+

8 , L−

1 , L−

7 , L∼

1 , L∼

7 , L=
2 , and L≈

2 , L≈

4 .

The signed subformula property guarantees that in a proof of the sequent ·; · 7→
L+

0 , the only axioms we require are

·; · ⊲ L∼

7 7→ L+

3

init1 and ·; · ⊲ ⊲L≈

4 7→ L+

8

init2

Consider the first of these axioms. Every left-rule either drops the stoup formula
into a context or expands it. The immediate parent of L∼

7 in the subformula
hierarchy is L−

7 , indicating that dropping L7 into the context is a permissible
operation. In fact, it is the only operation permitted by the signed subformula
property operating on labels. We can collapse this short focused thread into a
single derived inference rule:

·; · ⊲ L∼

7 7→ L+
3

init1

·; L−

7 7→ L+

3

ch1
; ·; L−

7 7→ L+

3

(1)

Considering the second axiom, we notice that the parent subformula of L≈

4 is
L≈

2 , also a focused subformula. The next rule application should then be ⊃L2,
with L≈

2 as the principal formula. In fact, it is not difficult to see that since every
subformula occurrence has a unique parent subformula, the signed subformula
property operating on labels always uniquely dictates which rule may be applied.
This game continues until the end of the focused thread. In the case of the second
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axiom, the immediate parent of L≈

2 is L=
2 , signalling an application of ch2 and

the end of the thread:

∆; Γ 7→ L+
3 ·; · ⊲ ⊲L≈

4 7→ L+
8

init2

∆; Γ ⊲ ⊲L≈

2 7→ L+

8

⊃L2

∆, L=
2 ; Γ 7→ L+

8

ch2

;
∆; Γ 7→ L+

3

∆, L=
2 ; Γ 7→ L+

8

(2)

Note that this thread, unlike the one concealed by (1), has open premises and
is parametric in the contexts ∆ and Γ . Finally, the signed subformula property
allows one more focused thread, starting with

∆, L=
2 ; Γ 7→ M+

∆; Γ ⊲ L∼

1 7→ M+
2L1

The immediate parent subformula of L∼

1 is L−

1 , so this thread ends here, yielding
the derived rule

∆, L=
2 ; Γ 7→ M+

∆; Γ ⊲ L∼

1 7→ M+
2L1

∆; Γ, L−

1 7→ M+
ch1

;
∆, L=

2 ; Γ 7→ M+

∆; Γ, L−

1 7→ M+
(3)

Notice that this big step rule is schematic not only in the contexts ∆ and Γ , but
also in the goal formula M+. Since the signed subformula property allows no
other focused threads, the remainder of the proof, if one exists, may only chain
the derived rules (1), (2), and (3) together with right-rule applications. In this
case, completing the proof is straightforward:

·; L−

7 7→ L+
3

(1)

L=
2 ; L−

7 7→ L+

8

(2)

L=
2 ; · 7→ L+

6

⊃R

L=
2 ; · 7→ L+

5

3R

·; L−

1 7→ L+

5

(3)

·; · 7→ L+
0

⊃R

In general, to cover all focused threads, the construction of derived rules must
begin with focused sequents of the following kinds, where ∗ is ∼ or ≈, depending
on whether i = 1 or i = 2:

1. ·; · ⊲i L∗

j 7→ L+

k , where Lj and Lk denote the same atomic formula,

2. ·; · ⊲i L∗

j 7→ M+, where Lj denotes ⊥ and M is schematic,

3. ∆; Γ ⊲i L∗

j 7→ M+, where Lj denotes some A1 ∨ A2 and M is schematic,

4. ∆; Γ ⊲i L∗

j 7→ M+, where Lj denotes some 2A and M is schematic, and

5. ∆; Γ ⊲i L∗

j 7→ M+, where Lj denotes some 3A and M denotes some 3C, C

being schematic.
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Moreover, the constructed derived rules must end with a stoup formula being
dropped into one of the contexts.

The question now is how these forward-constructed derived rules can comple-
ment backward proof search. The key observation is that every focused thread of
an MJF

IS4
derivation can be converted into a focused thread of an MJIS4 deriva-

tion by applying weakening, reducing valid focused sequents to focused sequents,
and omitting the now unnecessary signs of subformula labels. For instance,

∆; Γ 7→ L+

3 ·; · ⊲ ⊲L≈

4 7→ L+

8

init2

∆; Γ ⊲ ⊲L≈

2 7→ L+
8

⊃L2

∆, L=
2 ; Γ 7→ L+

8

ch2

can be converted into the MJIS4 derivation segment

∆1, L2, ∆2; Γ → L3 ∆1, L2, ∆2; Γ ⊲ L4 → L8
init

∆1, L2, ∆2; Γ ⊲ L2 → L8

⊃L

∆1, L2, ∆2; Γ → L8

ch2

This makes it possible to construct derived rules for MJIS4. The benefit of per-
forming backward proof search over these derived rules and the remaining right
rules is that it requires no conventional loop-detection. However, some bookkeep-
ing is still required, since our bidirectional decision procedure has one important
termination requirement: that every derived rule instance — characterized by
the identity of the schematic derived rule and the concrete goal formula, if ap-
plicable — is used at most once along every branch of the proof, from root to
leaf. The following result of MJIS4 guarantees that this requirement does not
cost us completeness.

Theorem 4 (Uniqueness of stoup and goal formula occurrences on
branches). If a sequent ∆; Γ → L is derivable, then it has a derivation with the
property that no branch (from root to leaf) contains more than one application
of chi, i ∈ {1, 2} with the same stoup and goal formula occurrences.

Proof. A derivation with loops of this kind can be shortened by collapsing seg-
ments between repeated applications of chi, i ∈ {1, 2}. ⊓⊔

Since the identity of a focused thread depends on the identities of the focused
formula occurrences it contains, and on its goal formula occurrence, we obtain
the following important corollary.

Corollary 1. If a sequent ∆; Γ → L is derivable, then it has a derivation with
the property that no focused thread instance occurs more than once along a
branch.

The consequence of this result is that if a sequent is provable in MJIS4,
then it is provable without using any derived rule instance more than once along

11



a branch. With the observation that every right rule of MJIS4 reduces the
complexity of the goal formula, this means that every rule application during
backward proof search in MJIS4 with derived rules either reduces the number of
available derived rule instances along the current branch, or leaves the number
of available derived rule instances unchanged but reduces the complexity of the
goal formula. This measure gives an immediate termination guarantee without
the need for conventional loop-detection. All that is needed is a way of keeping
track of which derived rule instances have been applied along a branch. While
this bookkeeping apparatus is reminiscent of a history mechanism, we expect it
to be far more lightweight than maintaining histories of previously encountered
sequents or goal formulas, as is common in standard loop-detection schemes. Our
expectations will, for the most part, be vindicated by our experimental results.

Note that the idea of constructing relevant derived rules prior to proof search
can also be exploited in forward proof search, where the derived rules described
above can take the place of left rules in the inverse method. The main advan-
tages here are that the derived rules are more relevant to proof search for the
given query formula, and that the number of intermediate sequents added to the
knowledge base during proof search is reduced, since no focused sequents need
to be maintained.

5 Bidirectional Proof Search in Natural Deduction

In the backward bidirectional sequent calculus method, we construct derived
rules to conceal all required focused threads. Notice that the focused threads of
MJF

IS4
correspond naturally to segments of NJN

IS4
proofs consisting of elimina-

tion rule applications, that is, ↓ judgements. The beginnings of focused threads,
where formulas are placed into the stoup, correspond to reversing rules in NJN

IS4
.

These are the ↑↓ rule, as well as all elimination rules with ↑ judgements as their
conclusions. The ends of focused threads, on the other hand, where the stoup
formula is dropped into a context, correspond to using a hypothesis with appli-
cations of hyp1 or hyp2.

This means that the process of building a derived MJF

IS4
rule in a top-down

way corresponds to building a natural deduction derived rule by beginning with
an application of a reversing rule, and growing it upwards until we reach a leaf.
Just as the construction of derived rules in the sequent calculus is determined
uniquely by the form of the query formula, so these natural deduction derived
rules can be deterministically constructed before proof search even begins.

This approach is best demonstrated by an example such as the one given in
Sect. 4. For instance, given the pair L≈

4 and L+
8 from that example, we begin

with the coercion
∆; Γ ⊢ L≈

4 ↓

∆; Γ ⊢ L+
8 ↑

↑↓

Since the immediate parent of L≈

4 in the signed subformula hierarchy is L≈

2 ,
denoting A ⊃ B, the rule application above this coercion must be an application
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of ⊃E:
∆; Γ ⊢ L≈

2 ↓ ∆; Γ ⊢ L+
3 ↑

∆; Γ ⊢ L≈

4 ↓
⊃E

∆; Γ ⊢ L+

8 ↑
↑↓

The focused thread continues along the first premise, but the parent of L≈

2 is
L=

2 , indicating the end of this focused thread by an application of hyp2:

L=
2 ∈ ∆

∆; Γ ⊢ L≈

2 ↓
hyp2 ∆; Γ ⊢ L+

3 ↑

∆; Γ ⊢ L≈

4 ↓
⊃E

∆; Γ ⊢ L+

8 ↑
↑↓

;
∆1, L

=
2 , ∆2; Γ ⊢ L+

3 ↑

∆1, L
=
2 , ∆2; Γ ⊢ L+

8 ↑
(2)

In similar constructions, the pair L∼

7 , L+

3 and L∼

1 , the latter denoting 2(A ⊃ B),
produce, respectively, the natural deduction derived rules

L−

7 ∈ Γ

∆; Γ ⊢ L∼

7 ↓
hyp1

∆; Γ ⊢ L+

3 ↑
↑↓

; ∆; Γ1, L
−

7 , Γ2 ⊢ L+
3 ↑

(1)

and

L−

1 ∈ Γ

∆; Γ ⊢ L∼

1 ↓
hyp1 ∆, L=

2 ; Γ ⊢ M+ ↑

∆; Γ ⊢ M+ ↑
2E

;
∆, L=

2 ; Γ1, L
−

1 , Γ2 ⊢ M+ ↑

∆; Γ1, L
−

1 , Γ2 ⊢ M+ ↑
(3)

The rest of the proof then uses only these derived rules and introduction rules:

L=
2 ; L−

1 , L−

7 ⊢ L+

3 ↑
(1)

L=
2 ; L−

1 , L−

7 ⊢ L+

8 ↑
(2)

L=
2 ; L−

1 ⊢ L+

6 ↑
⊃I

L=
2 ; L−

1 ⊢ L+

5 ↑
3I

·; L−

1 ⊢ L+

5 ↑
(3)

·; · ⊢ L+
0 ↑

⊃I

In general, the approach for constructing natural deduction derived rules is anal-
ogous to the method for the backward bidirectional sequent calculus, only turned
upside-down, in the sense that the rule at the beginning of an MJF

IS4
focused

thread determines the reversing rule at the bottom of the natural deduction fo-
cused thread, while the final application of hypi dictates the “principal formula”
of the ensuing derived natural deduction rule.

Proof search over natural deductions can then be performed in a backward
direction. The only nondeterminism is in whether to apply a derived rule or an
introduction rule, the premises of which are uniquely determined by their con-
clusions. Note that to guarantee termination, we again disallow using a derived
rule instance more than once along any branch of a proof.
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Table 1. Selection of experimental results

Histories Inverse Bidirectional

Formula Size Modalities Provable Time Time Rules Time Rules

32 49 0 N > 1000 1.36 33 0.01 33
36 175 0 Y 0.08 > 1000 159 > 1000 592
37 68 9 Y 84.79 1.18 60 < 0.01 28
39 42 3 N 8.46 1.83 31 < 0.01 15
44 49 14 Y 75.13 > 1000 51 37.11 21
50 44 7 Y 7.38 > 1000 49 48.76 25

6 Experimental Results

While benchmark formulas are available for intuitionistic propositional logic and
classical modal logics, we are not aware of any benchmark libraries specific to
propositional IS4. In order to evaluate the performance of our bidirectional
approach, we put together a benchmark set of 50 formulas for IS4, mostly prob-
lems from Raths et al.’s Intuitionistic Logic Theorem Proving (ILTP) library
[17] to which we introduced modalities. Our full benchmark set is provided as
an appendix to the accompanying technical report [10].

We implemented three IS4 decision procedures in SML: (1) an MJIS4-based
backward prover with a history mechanism for loop-detection, (2) an MJF

IS4
-

based inverse method prover without derived rules, and (3) our bidirectional
natural deduction prover. The loop-detection prover maintains two histories to
detect repeated modal and nonmodal rule applications, respectively. This ap-
proach is a generalization of Howe’s decision procedure [11] extended to full
IS4. Note that the behaviour of our backward bidirectional sequent calculus
prover corresponds exactly to that of the bidirectional natural deduction prover,
so we have only implemented the more elegant natural deduction prover.

On many of the smaller problems, there was little measurable difference in
the performance of the provers, but some of the problems that did elicit notice-
ably different performances are highlighted in Table 1. The size column shows
the complexity of each formula, computed inductively in the usual way, while
the modalities column shows the number of modal operators. Times are in sec-
onds.1 For the inverse method and bidirectional provers, we show the number of
inference rules generated (derived rules in the case of the bidirectional prover).

As the results demonstrate, the bidirectional natural deduction prover is a
competitive alternative to the more conventional provers, equalling or outper-
forming them on most problems. Comparing the average proving time for prob-
lems that were solved, it is noticeably superior, although we found two formulas
on which it was significantly outperformed (formulas 36 and 50 in Table 1). In-
terestingly, there is not always a clear connection between the number of derived

1 All timing results were obtained on a Pentium III 850 MHz with 256 MB of RAM,
running SML/NJ version 110.60.
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rules generated and the time required to solve a problem. Presumably, the prob-
lematic cases were those whose derived rules where the shortest and least useful.
Note also that as derived rules are associated with subformula occurrences, those
formulas with many repeated subformulas (e.g. formula 36) caused a very large
number of duplicate derived rules to be generated.

7 Related and Future Work

Although IS4 has undergone thorough proof-theoretical studies, there has been
little work in developing proof search strategies specific to it. We have presented a
comprehensive study of proof search formalisms for IS4, highlighting the duality
between backward and forward search. Moreover, we have demonstrated how to
combine the benefits of both to yield bidirectional decision procedures based
on sequent calculi and natural deduction. Our experimental results reveal that
combining the two traditionally disparate paradigms can be fruitful. Although
our implementations are naive and unoptimized, we hope that our results might
encourage further study of bidirectional proof search, particularly in other logics.

For instance, in the contextual modal logic of Nanevski, Pfenning, and Pien-
tka [14], structural modality is generalized by relativizing the validity judge-
ment and the modal operators. The techniques discussed in this paper extend
very naturally to contextual modal logic, yielding sequent calculi suitable for
backward and forward proof search, but the exact nature of how such a gener-
alization affects proof search is yet to be explored. The reconciliation of forward
and backward proof search has recently also been investigated by Chaudhuri
and Pfenning [2], who, in the context of linear logic, propose a focusing inverse
method prover incorporating derived rules constructed in a backward way and
searched over in a forward direction, precisely opposite to our approach.

In the future, we plan to explore extensions to the first-order case. Although
the idea of derived rules extends, in principle, to first-order quantifiers, the con-
structed derived rules become parametric in terms. The useful property of MJIS4

that eliminated the need for conventional loop-detection in our bidirectional
method now only holds for particular instantiations of the terms of the para-
metric derived rules. Unfortunately, requiring the storage of rule instantiations
introduces another layer of bookkeeping. How to efficiently overcome this prob-
lem and what the proof-theoretical relationship between first-order bidirectional
decision procedures and natural deduction provers is remains to be investigated.

Acknowledgements. We would like to thank Daniel Pomerantz for discussions
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and the reviewers for their insightful comments and suggestions.
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