
Semantical Analysis of Contextual Types

Brigitte Pientka1 and Ulrich Schöpp2(B)

1 McGill University, Montreal, Canada, bpientka@cs.mcgill.ca
2 fortiss GmbH, Munich, Germany, schoepp@fortiss.org

Abstract. We describe a category-theoretic semantics for a simply typed
variant of Cocon, a contextual modal type theory where the box modal-
ity mediates between the weak function space that is used to represent
higher-order abstract syntax (HOAS) trees and the strong function space
that describes (recursive) computations about them. What makes Co-
con different from standard type theories is the presence of first-class
contexts and contextual objects to describe syntax trees that are closed
with respect to a given context of assumptions. Following M. Hofmann’s
work, we use a presheaf model to characterise HOAS trees. Surprisingly,
this model already provides the necessary structure to also model Cocon.
In particular, we can capture the contextual objects of Cocon using a
comonad [that restricts presheaves to their closed elements. This gives
a simple semantic characterisation of the invariants of contextual types
(e.g. substitution invariance) and identifies Cocon as a type-theoretic syn-
tax of presheaf models. We express our category-theoretic constructions
by using a modal internal type theory that is implemented in Agda-Flat.

1 Introduction

A fundamental question when defining, implementing, and working with languages
and logics is: How do we represent and analyse syntactic structures? Higher-order
abstract syntax [19] (or lambda-tree syntax [17]) provides a deceptively simple
answer to this question. The basic idea to represent syntactic structures is to
map uniformly binding structures in our object language (OL) to the function
space in a meta-language thereby inheriting α-renaming and capture-avoiding
substitution. In the logical framework LF [10], for example, we can define a small
functional programming language consisting of functions, function application,
and let-expressions using a type tm as follows:

lam : (tm → tm) → tm. letv: tm → (tm → tm) → tm.

app : tm → tm → tm.

The object-language term (lam x. lam y. let w = x y in w y) is then encoded as
lam λx.lam λy.letv (app x y) λw.app w y using the LF abstractions to model
binding. Object-level substitution is modelled through LF application; for instance,
the fact that ((lam x.M)N) reduces to [N/x]M in our object language is expressed
as (app (lam M) N) reducing to (M N).

This approach is elegant and can offer substantial benefits: we can treat objects
equivalent modulo renaming and do not need to define object-level substitution.

2 B. Pientka and U. Schöpp

However, we not only want to just construct HOAS trees, but also to analyse
them and to select sub-trees. This is challenging, as sub-trees are context sensitive.
For example, the term letv (app x y) λw.app w y only makes sense in a context
x:tm,y:tm. Moreover, one cannot simply extend LF to allow syntax analysis. If
one simply added a recursion combinator to LF, then it could be used to define
many functions M: tm → tm for which lam M would not represent an object-level
syntax term [12].

Contextual types [18,20] offer a type-theoretic solution to these problems by
reifying the typing judgement, i.e. that letv (app x y) λw.app w y has type tm in
the context x:tm,y:tm, as a contextual type dx:tm, y:tm ` tme. The contextual type
dx:tm, y:tm ` tme describes a set of terms of type tm that may contain variables
x and y. In particular, the contextual object dx, y ` letv (app x y) λw.app w ye
has the given contextual type. By abstracting over contexts and treating contexts
as first-class, we can now recursively analyse HOAS trees [20,25,21]. Recently,
[23] further generalised these ideas and presented a contextual modal type
theory, Cocon, where we can mix HOAS trees and computations, i.e. we can use
(recursive) computations to analyse and traverse (contextual) HOAS trees and we
can embed computations within HOAS trees. This line of work provides a syntactic
perspective to the question of how to represent and analyse syntactic structures
with binders, as it focuses on decidability of type checking and normalisation.
However, its semantics remains not well-understood. What is the semantic
meaning of a contextual type? Can we semantically justify the given induction
principles? What is the semantics of a first-class context?

While a number of closely related categorical models of abstract syntax with
bindings [12,8,9] were proposed around 2000, the relationship of these models
to concrete type-theoretic languages for computing with HOAS structures was
teneous. In this paper, we give a category-theoretic semantics for Cocon (for
simply-typed HOAS). This provides semantic perspective of contextual types
and first-class contexts. Maybe surprisingly, the presheaf model introduced by
Hofmann [12] already provides the necessary structure to also model contextual
modal type theory. Besides the standard structure of this model, we only need two
additional concepts: a [-modality and a cartesian closed universe of representables.
For simplicity and lack of space, we focus on the special case of Cocon where
the HOAS trees are simply-typed. Concentrating on the simply-typed setting
allows us to introduce the main idea without the additional complexity that type
dependencies bring with them. We outline the dependently-typed case in Sec. 6.

Our work provides a semantic foundation to Cocon and can serve as a starting
point to investigate connections to similar work. First, our work connects Cocon
to other work on internal languages for presheaf categories with a [-modality,
such as spatial type theory [27] or crisp type theory [16]. Second, it may help
to understand the relations of Cocon to type theories that use a modality for
metaprogramming and intensional recursion, such as [15]. While Cocon is built
on the same general ideas, a main difference seems to be that Cocon distinguishes
between HOAS trees and computations, even though it allows mixed use of them.
We hope to clarify the relation by providing a semantical perspective.

Semantical Analysis of Contextual Types 3

2 Presheaves for Higher-Order Abstract Syntax

Our work begins with the presheaf models for HOAS of [12,8]. The key idea of
those approaches is to integrate substitution-invariance in the computational
universe in a controlled way. For the representation of abstract syntax, one wants
to allow only substitution-invariant constructions. For example, lam M represents
an object-level abstraction if and only if M is a function that uses its argument in
a substitution-invariant way. For computation with abstract syntax, on the other
hand, one wants to allow non-substitution-invariant constructions too. Presheaf
categories allow one to choose the desired amount of substitution-invariance.

Let D be a small category. The presheaf category D̂ is defined to be the
category SetD

op

. Its objects are functors F : Dop → Set, which are also called
presheaves. Such a functor F is given by a set F (Ψ) for each object Ψ of D
together with a function F (σ) : F (Φ)→ F (Ψ) for any object Φ and σ : Ψ → Φ in
D, subject to the functor laws. The intuition is that F defines sets of elements in
various D-contexts, together with a D-substitution action. A morphism f : F → G
is a natural transformation, which is a family of functions fΨ : F (Ψ)→ G(Ψ) for
any Ψ . This family of functions must be natural, i.e. commute with substitution
fΨ ◦ F (σ) = F (σ) ◦ fΦ.

For the purposes of modelling higher-order abstract syntax, D will typically
be the term model of some domain-level lambda-calculus. By domain-level, we
mean the calculus that serves as the meta-level for object-language encodings. It
is the calculus that contains constants like lam and app from the Introduction. We
call it domain-level to avoid possible confusion between different meta-levels later.
For simplicity, let us for now use a simply-typed lambda-calculus with functions
and products as the domain language. It is sufficient to encode the example from
the Introduction and allows us to explain the main idea underlying our approach.

The term model of the simply-typed domain-level lambda-calculus forms a
cartesian closed category D. The objects of D are contexts x1:A1, . . . , xn:An
of simple types. We use Φ and Ψ to range over such contexts. A morphism
from x1:A1, . . . , xn:An to x1:B1, . . . , xm:Bm is a tuple (t1, . . . , tm) of terms
x1:A1, . . . , xn:An ` ti : Bi for i = 1, . . . ,m. A morphism of type Ψ → Φ in D
thus amounts to a (domain-level) substitution that provides a (domain-level)
term in context Ψ for each of the variables in Φ. Terms are identified up to
αβη-equality. One may achieve this by using a de Bruijn encoding, for example,
but the specific encoding is not important for this paper. The terminal object is
the empty context, which we denote by 1, and the product Φ× Ψ is defined by
context concatenation. It is not hard to see that any object x1:A1, . . . , xn:An
is isomorphic to an object that is given by a context with a single variable,
namely x1: (A1 × · · · ×An). This is to say that contexts can be identified with
product types. In view of this isomorphism, we shall allow ourselves to consider
the objects of D also as types and vice versa. The category D is cartesian closed,
the exponential of Φ and Ψ being given by the function type Φ→ Ψ (where the
objects are considered as types).

The presheaf category D̂ is a computational universe that both embeds the
term model D and that can represent computations about it. Note that we cannot

4 B. Pientka and U. Schöpp

just enrich D with terms for computations if we want to use HOAS. In a simply-
typed lambda-calculus with just the constant terms app: tm → tm → tm and
lam: (tm → tm) → tm, each term of type tm represents an object-level term. This
would not be the true anymore, if we were to allow computations in the domain
language, since one could define M to be something like (λx. if x represents

an object-level application then M1 else M2) for distinct M1 and M2. In this
case, lam M would not represent an object-level term anymore. If we want to
preserve a bijection between the object-level terms and their representations
in the domain-language, we cannot allow case-distinction over whether a term
represents an object-level an application.

The category D̂ unites syntax with computations by allowing one to enforce
various degrees of substitution-invariance. By choosing objects with different sub-
stitution actions, one can control the required amount of substitution-invariance.

In one extreme, a set S can be represented by the constant presheaf ∆S with
∆S(Ψ) = S and ∆S(σ) = id for all Ψ and σ. The substitution action is trivial.
As a consequence, a morphism ∆S → ∆T amounts to a function from set S to
set T , since the trivial choice of the substitution action makes the naturality
condition vacuous.

The Yoneda embedding represents the other extreme. For any object Φ of D,
the presheaf y(Φ) : Dop → Set is defined by y(Φ)(Ψ) = D(Ψ, Φ), which is the set of
morphisms from Ψ to Φ in D. The functor action is pre-composition. The presheaf
y(Φ) should be understood as the type of all domain-level substitutions with
codomain Φ. An important example is Tm := y(tm). In this case, Tm(Ψ) is the set
of all morphisms of type Ψ → tm in D. By the definition of D, these correspond
to domain-level terms of type tm in context Ψ . In this way, the presheaf Tm

represents the domain-level terms of type tm.

The Yoneda embedding does in fact embed D into D̂ fully and faithfully. The
Yoneda embedding becomes a functor y : D → D̂ if one defines the morphism
action to be post-composition. This means that y maps a morphism σ : Ψ → Φ
in D to the natural transformation y(σ) : y(Ψ)→ y(Φ) that is defined by post-

composing with σ. This definition makes y into a functor y : D → D̂ that is
moreover full and faithful: its action on morphisms is a bijection from D(Ψ, Φ)

to D̂(y(Ψ), y(Φ)) for any Ψ and Φ. This is because a natural transformation
f : y(Ψ) → y(Φ) is, by naturality, uniquely determined by fΨ (id), where id ∈
D(Ψ, Ψ) = y(Ψ)(Ψ), and fΨ (id) is an element of y(Φ)(Ψ) = D(Ψ, Φ).

Since D embeds into D̂ fully and faithfully, the term model of the domain
language is available in D̂. Consider for example Tm = y(tm). Since y is full and

faithful, the morphisms from Tm to Tm in D̂ are in one-to-one correspondence with
the morphisms from tm to tm in D. These, in turn, are defined to be substitutions
and correspond to simply-typed (domain-level) lambda terms with one free
variable. This shows that substitution invariance cuts down the morphisms from
Tm to Tm in D̂ just as much as one would like for HOAS encodings.

But D̂ contains not just a term model of the domain language. It can also
represent computations about the domain-level syntax and computations that
are not substitution-invariant. For example, arbitrary functions on terms can

Semantical Analysis of Contextual Types 5

be represented as morphisms from the constant presheaf ∆(Tm(1)) to Tm. Recall
that 1 is the empty context, so that Tm(1) is the set D(1, tm), by definition, which
is isomorphic to the set of closed domain-level terms of type tm. The morphisms
from ∆(Tm(1)) to Tm in D̂ correspond to arbitrary functions from closed terms to
closed terms, without any restriction of substitution invariance.

The restriction to the constant presheaf of closed terms can be generalised to
arbitrary presheaves. Define a functor [: D̂→ D̂ by letting [F be the constant
presheaf ∆(F (1)), i.e. [F (Ψ) = F (1) and [F (σ) = id. Thus, [restricts any
presheaf to the set of its closed elements. The functor [defines a comonad
where the counit εF : [F → F is the obvious inclusion and the comultiplication
νF : [F → [[F is the identity. The latter means that the comonad [is idempotent.

3 Internal Language

To explain how D̂ models higher-order abstract syntax and contextual types, we
need to expose more of its structure. Most of this structure is standard. Defining
it directly in terms of functors and natural transformations is somewhat laborious
and the technical details may obscure the basic idea of our approach.

We therefore use the internal type theory of D̂ as a meta-language for working
with its structure. The structure of D̂ furnishes a model of a dependent type theory
that supports dependent products, dependent sums and extensional identity types,
among others, in a standard way [11]. We use Agda notation for the types and
terms of this internal type theory. We write (x:S)→ T for a dependent function
type and write hx:S.m and m n for the associated lambda-abstractions and
applications. As usual, we will sometimes also write S → T for (x:S)→ T if x
does not appear in T . However, to make it easier to distinguish the function
spaces at various levels, we will write (x:S)→ T by default even when x does
not appear in T . We use let x = m in n as an abbreviation for (hx:T.n) m,
as usual. For two terms m:T and n:T , we write m =T n or just m = n for the
associated identity type. Our notation is similar to Agda’s, since the internal type
theory can be seen as a fragment of Agda’s type theory. Agda has been useful as
a tool for type-checking our constructions in the internal type theory [1].

In the spirit of Martin-Löf type theory, we will define basic types and terms
successively as they are needed. In the Agda development this corresponds to
postulating constants that are justified by the interpretation in D̂. In the following
sections, we will expose the structure of D̂ step by step until we have enough to
interpret contextual types.

While much of the structure of D̂ can be captured by adding rules and con-
stants to standard Martin-Löf type theory, for the comonad [such a formulation
would not be very satisfactory. The issues are discussed by Shulman [27, p.7], for
example. To obtain a more satisfactory syntax for the comonad, we refine the
internal type theory into a modal type theory in which [appears as a necessity
modality. This approach goes back to [3,4,6] and is also used by recent work of
Shulman [27], Licata et al. [16] and others on working with the [-modality in
type theory. Agda has recently gained support for such a [-modality [29].

6 B. Pientka and U. Schöpp

We summarise here the typing rules for the [-modality which we will rely on.
To control the modality, one uses two kinds of variables. In addition to standard
variables x:T , one has a second kind of so-called crisp variables x::T . Typing
judgements have the form ∆ | Θ ` m:T , where ∆ collects the crisp variables
and Θ collects the ordinary variables. In essence, a crisp variable x::T represents
an assumption of the form x: [T . The syntactic distinction is useful, since it leads
to a type theory that is well-behaved with respect to substitution, see [6,27].

The typing rules are closely related to those in modal type systems [6,18],
where ∆ is the typing context for modal (global) assumptions and Θ for (local)
assumptions, and type systems for linear logic [4], where ∆ is the typing context
for non-linear assumptions and Θ for linear assumptions.

∆,u::T,∆′ | Θ ` u:T ∆ | Θ, x:T,Θ′ ` x:T

∆ | · ` m : T

∆ | Θ ` box m : [T

∆ | Θ ` m : [T ∆, x::T | Θ ` n : S

∆ | Θ ` let box x = m in n : S

Given any term m : T which only depends on modal variable context ∆, we can
form the term box m : [T . We have a let-term let box x = m in n that takes
a term m : [T and binds it to a variable x::T . The rules maintain the invariant
that the free variables in a type [T or a term box m are all crisp variables from
the crisp context ∆.

The other typing rules do not modify the crisp context. For examples, the
rules for dependent products are:

∆ | Θ, x:T ` m:S

∆ | Θ ` hx:T.m : (x:T)→ S

∆ | Θ ` m: (y:T)→ S ∆ | Θ ` n:T

∆ | Θ ` m n: [n/y]S

When ∆ is empty, we shall write just Θ ` m:T for ∆ | Θ ` m:T .

4 From Presheaves to Contextual Types

Armed with the internal type theory, we can now explore the structure of D̂.

4.1 A Universe of Representables

For our purposes, the main feature of D̂ is that it embeds D fully and faithfully via
the Yoneda embedding. In the type theory for D̂, we may capture this embedding
by means of a Tarski-style universe. Such a universe is defined by a type of codes
for types together with a decoding function that maps codes to actual types.

The type of codes Obj represents the set of objects of D in the internal type

theory of D̂. We have seen above that any set can be represented as a presheaf
with trivial substitution action, and Obj is one such example. Particular objects
of D then appear as terms of type Obj. The cartesian closed structure of D gives
us terms unit, times, arrow for the terminal object 1, finite products × and the
exponential (function type). We also have a term for the domain-level type tm.

` Obj type ` tm : Obj ` times : (a: Obj)→ (b: Obj)→ Obj

` unit : Obj ` arrow : (a: Obj)→ (b: Obj)→ Obj

Semantical Analysis of Contextual Types 7

Subsequently, we sometimes talk about objects of D when we intend to describe
terms of type Obj (and vice versa).

The morphisms of D could similarly be encoded as a constant presheaf with
many term constants, but this is in fact not necessary. Instead, we can use the
Yoneda embedding as a function that decodes elements of Obj into actual types.

x: Obj ` Elx type

The function El is almost direct syntax for the Yoneda embedding. The interpre-
tation in D̂ is such that, for any object A of D, the type ElA is interpreted by
the presheaf y(A). Such a presheaf is called representable. One can think of ElA
as the type of all morphisms of type Ψ → A in D for arbitrary Ψ . Recall from
above that a morphism of type Ψ → A in D amounts to a domain-level term of
type A that may refer to variables in Ψ . In this sense, one should think of ElA
as a type of domain-level terms of type A, both closed and open ones.

We get all morphisms of D, and no more, in this way, since the Yoneda
embedding is full and faithful, recall Sec. 2. In our case, this means that the type
(x: ElA)→ ElB represents the morphisms of type A→ B in D. Any closed term
of type (x : ElA)→ ElB corresponds to such a morphism and vice versa. This

is because the naturality requirements in D̂ enforce substitution-invariance, as
outlined in Sec. 2. The type (x : ElA)→ ElB thus does not represent arbitrary
functions from terms of type A to terms of type B, but only substitution-invariant
ones. If a function of this type maps a domain-level variable x:A (encoded as an
element of ElA) to some term M :B (encoded as an element of ElB), then it
must map any other N :A to [N/x]M .

We note that the type dependency in El is easy to work with. A term of
type (a: Obj) → (b: Obj) → (x: El a) → El b corresponds to a family of terms
(x: ElA)→ ElB indexed by objects A and B in D. This is because Obj is just a

set, so that the naturality constraints of D̂ are vacuous for functions out of Obj.

To summarise, we get access to D in the internal type theory of D̂ simply by
considering the Yoneda embedding as the decoding function El of a universe á la
Tarski. Since is consists of the representable presheaves, we call it the universe of
representables. The following lemmas state that the embedding preserves terminal
object, binary products and the exponential.

Lemma 1. The internal type theory of D̂ has a term ` terminal : El unit, such
that x = terminal holds for any x : El unit.

Lemma 2. The internal type theory of D̂ justifies the terms below, such that
fst (pair x y) = x, snd (pair x y) = y, z = pair (fst z) (snd z) for all x, y, z.

c: Obj, d: Obj ` fst : (z : El (times c d))→ El c
c: Obj, d: Obj ` snd : (z : El (times c d))→ El d
c: Obj, d: Obj ` pair : (x : El c)→ (y : El d)→ El (times c d)

Lemma 3. The internal type theory of D̂ justifies the terms below such that
arrow-i (arrow-e f) = f and arrow-e (arrow-i g) = g for all f, g.

c: Obj, d: Obj ` arrow-e : (x: El (arrow c d))→ (y: El c)→ El d
c: Obj, d: Obj ` arrow-i : (y: (El c→ El d))→ El (arrow c d)

8 B. Pientka and U. Schöpp

4.2 Higher-Order Abstract Syntax

The last lemma in the previous section states that ElA → ElB is isomorphic
to El (arrow A B). This is particularly useful to lift HOAS-encodings from D
to D̂. For instance, the domain-level term constant lam: (tm → tm) → tm gives
rise to an element of El (arrow (arrow tm tm) tm). But this type is isomorphic
to (El tm→ El tm)→ El tm, by the lemma.

This means that the higher-order abstract syntax constants lift to D̂:

app : (m: El tm)→ (n: El tm)→ El tm lam : (m: (El tm→ El tm))→ El tm

Once one recognises ElA as y(A), the adequacy of this higher-order abstract

syntax encoding lifts from D to D̂ as in [12]. For example, an argument M to
lam has type El tm→ El tm, which is isomorphic to El (arrow tm tm). But this
type represents (open) domain-level terms t : tm→ tm. The term lam M : El tm
then represents the domain-level term lam t : tm, so it just lifts the domain-level.

4.3 Closed Objects

One should think of [T as the type of ‘closed’ elements of T . In particular,
[(ElA) represents morphisms of type 1→ A in D, recall the definition of [from
Sec. 2 and that ElA corresponds to yA. In the term model D, the morphisms
1→ A correspond to closed domain-language terms of type A. Thus, while ElA
represents both open and closed domain-level terms, [(ElA) represents only the
closed ones.

This applies also to the type ElA→ ElB. We have seen above that ElA→
ElB is isomorphic to El (arrow A B) and may therefore be thought of as
containing the terms of type B with a distinguished variable of type A. But, these
terms may contain other free domain language variables. The type [(ElA→ ElB),
on the other hand, contains only terms of type B that may contain (at most)
one variable of type A.

Restricting to closed object with the modality is useful because it disables
substitution-invariance. For example, the internal type theory for D̂ justifies
a function is-lam : (x:[(El tm)) → bool that returns true if and only if the
argument represents a domain language lambda abstraction. We shall define it
in the next section. Such a function cannot be defined with type El tm→ bool,
since it would not be invariant under substitution. Its argument ranges over
terms that may be open; which particularly includes domain-level variables. The
function would have to return false for them, since a domain-level variable is
not a lambda-abstraction. But after substituting a lambda-abstraction for the
variable, it would have to return true, so it could not be substitution-invariant.

We note that the type Obj consists only of closed elements and that Obj

and [Obj happen to be definitionally equal types (an isomorphism would suffice,
but equality is more convenient).

Semantical Analysis of Contextual Types 9

4.4 Contextual Objects

Using function types and the modality, it is now possible to work with contextual
objects that represent domain level terms in a certain context, much like in [20,21].
A contextual type dΨ ` Ae is a boxed function type of the form [(ElΨ → ElA). It
represents domain-level terms of type A with variables from Ψ . Here, we consider
the domain-level context Ψ as a term that encodes it. The interpretation will
make this precise.

For example, domain-level terms with up to two free variables now appear
as terms of type [(El ((times (times unit tm) tm) → El tm), as the following
example illustrates.

box (hu: El ((times (times unit tm) tm). let x1 = snd (fst u) in
let x2 = snd u in

app (lam (hx: El tm. app x1 x)) x2)

The context variables x1 and x2 are bound at the meta level.
This representation integrates substitution as usual. For example, given crisp

variables m::El (times c tm) → tm and n::El c → tm for contextual terms, the
term box (hu: El c.m (pair u (n u))) represents substitution of n for the last
variable in the context of m.

For working with contextual objects, it is convenient to lift the constants app
and lam to contextual types.

c: Obj ` app′ : [(El c→ El tm)→ [(El c→ El tm)→ [(El c→ tm)
c:Obj ` lam′ : [(El (times c tm)→ El tm)→ [(El c→ El tm)

These terms are defined by:

app′ := hm,n. let box m′ = m in let box n′ = n in

box (hu: El c. app (m′ u) (n′ u))
lam′ := hm. let box m′ = m in box (hu: El c. lam (hx: El tm. m′ (pair u x)))

A contextual type for domain-level variables (as opposed to arbitrary terms)
can be defined by restricting the function space in [(ElΨ → ElA) to consist
only of projections. Projections are functions of the form snd ◦ fstk, where
we write fstk for the k-fold iteration fst ◦ · · · ◦ fst. Let us write S →v T
for the subtype of S → T consisting only of projections. The contextual type
[(ElΨ →v ElA) is then a subtype of [(ElΨ → ElA).

With these definitions, we can express a primitive recursion scheme for
contextual types. We write it in its general form where the result type A can
possibly depend on x. This is only relevant for the dependently typed case; in
the simply typed case, the only dependency is on c.

Lemma 4. Let c: Obj, x: [(El c→ El tm) ` A c x type and define:

Xvar := (c: Obj)→ (x: [(El c→v El tm))→ A c x
Xapp := (c: Obj)→ (x, y: [(El c→ El tm))→ A c x→ A c y → A c (app′ x y)
Xlam := (c: Obj)→ (x: [(El (times c tm)→ El tm))→ A (times c tm) x→ A c (lam′ x)

10 B. Pientka and U. Schöpp

Then, D̂ justifies a term

` rec : Xvar → Xapp → Xlam → (c: Obj)→ (x: [(El c→ El tm))→ A c x

such that the following equations are valid.

rec tvar tapp tlam c x = tvar c x if x: [(El c→v El tm)
rec tvar tapp tlam c (app′ s t) = tapp c s t
rec tvar tapp tlam c (lam′ s) = tlam c s

Proof (outline). To outline the proof idea, note first that a function of type

(c: Obj) → (x: [(El c → El tm)) → A c x in D̂, corresponds to an inhabitant of
A Φ t for each concrete object Φ of D and each inhabitant t : [(ElΦ→ El tm). This
is because naturality constraints for boxed types are vacuous (and Obj = [Obj).
Next, note that inhabitants of [(ElΦ→ El tm) correspond to domain-level terms
of type tm in context Φ up to αβη-equality. We can perform a case-distinction on
whether it is a variable, abstraction or application and depending on the result
use tvar, tapp or tlam to define the required inhabitant of A Φ t.

As a simple example for rec, we can define the function is-lam discussed
above by rec (hc, x. false) (hc, x, y, rx, ry. false) (hc, x, rx. true).

5 Simple Contextual Modal Type Theory

We have outlined informally how the internal dependent type theory of D̂ can
model contextual types. In this section, we make this precise by giving the
interpretation of Cocon [23], a contextual modal type theory where we can work

with contextual HOAS trees and computations about them, into D̂. We will
focus here on a simply-typed version of Cocon where we use a simply-typed
domain-language with constants app and lam and also only allow computations
about HOAS trees, but do not consider, for example, universes. Concentrating
on a stripped down, simply-typed version of Cocon allows us to focus on the
essential aspects, namely how to interpret domain-level contexts and domain-level
contextual objects and types semantically. The generalisation to a dependently
typed domain-level such as LF in Sec. 6 will be conceptually straightforward,
although more technical. Handling universes is an orthogonal issue (see also [16]).

We first define our simply-typed domain-level with the type tm the term
constants lam and app (see Fig. 1). Following Cocon, we allow computations to
be embedded into domain-level terms via unboxing. The intuition is that if a
program t promises to compute a value of type dx:tm, y:tm ` tme, then we can
embed t directly into a domain-level object writing lam λx.lam λy.app btc x,
unboxing t. Domain-level objects (resp. types) can be packaged together with
their domain-level context to form a contextual object (resp. type). Domain-level
contexts are formed as usual, but may contain context variables to describe a
yet unknown prefix. Last, we include domain-level substitutions that allow us to
move between domain-level contexts. The compound substitution σ,M extends
the substitution σ with domain Ψ̂ to a substitution with domain Ψ̂ , x, where
M replaces x. Following [18,23], we do not store the domain (like Ψ̂) in the

Semantical Analysis of Contextual Types 11

Domain-level types A,B ::= tm | A→ B
Domain-level terms M,N ::= λx.M |M N | x | lam | app | btcσ
Domain-level contexts Ψ,Φ ::= · | ψ | Ψ, x:A

Domain-level context (erased) Ψ̂ , Φ̂ ::= · | ψ | Ψ̂ , x
Domain-level substitutions σ ::= · | wkΨ̂ | σ,M

Contextual types T ::= Ψ ` A | Ψ v̀ A

Contextual objects C ::= Ψ̂ `M

Domain of discourse τ̆ ::= τ | ctx
Types and Terms τ, I ::= dT e | (y : τ̆1)⇒ τ2

t, s ::= y | dCe | recI B Ψ t | fn y ⇒ t | t1 t2
Branches B ::= Γ 7→ t
Contexts Γ ::= · | Γ, y : τ̆

Fig. 1. Syntax of Cocon with a fixed simply-typed domain tm

substitution, it can always be recovered before applying the substitution. We
also include weakening substitution, written as wkΨ̂ , to describe the weakening of

the domain Ψ to Ψ,
−−→
x:A. Weakening substitutions are necessary, as they allow

us to express the weakening of a context variable ψ. Identity is a special form
of the wkΨ̂ substitution, which follows immediately from the typing rule of wkΨ̂ .
Composition is admissible.

We summarise the typing rules for domain-level terms and types in Fig. 2.
We also include typing rules for domain-level contexts. Note that since we restrict
ourselves to a simply-typed domain-level, we simply check that A is a well-formed
type. We defer the reduction and expansion rules to the appendix and only
remark here that equality for domain-level terms and substitution is modulo βη.
In particular, bdΦ̂ ` Necσ reduces to [σ]N .

In our grammar, we distinguish between the contextual type Ψ ` A and
the more restricted contextual type Φ v̀ A which characterises only variables
of type A from the domain-level context Φ. We give here two sample typing
rules for Φ v̀ A which are the ones used most in practice to illustrate the
main idea. We embed contextual objects into computations via the modality.
Computation-level types include boxed contextual types, dΦ ` Ae, and function
types, written as (y : τ̆1) ⇒ τ2. We overload the function space and allow as
domain of discourse both computation-level types and the schema ctx of domain-
level context, although only in the latter case y can occur in τ2. We use fn y ⇒ t
to introduce functions of both kinds. We also overload function application t s
to eliminate function types (y : τ1) ⇒ τ2 and (y : ctx) ⇒ τ2, although in the
latter case s stands for a domain-level context. We separate domain-level contexts
from contextual objects, as we do not allow functions that return a domain-level
context.

The recursor is written as recI B Ψ t. Here, t describes a term of type dΨ ` tme
that we recurse over and B describes the different branches that we can take

12 B. Pientka and U. Schöpp

Γ ;Ψ `M : A Term M has type A in domain-level context Ψ and context Γ

Γ ` Ψ : ctx x:A ∈ Ψ
Γ ;Ψ ` x : A

Γ ` Ψ : ctx
Γ ;Ψ ` lam : (tm→ tm)→ tm

Γ ` Ψ : ctx
Γ ;Ψ ` app : tm→ tm→ tm

Γ ;Ψ `M : A→ B Γ ;Ψ ` N : A

Γ ;Ψ `M N : B

Γ ;Ψ, x:A `M : B

Γ ;Ψ ` λx.M : A→ B

Γ ` t : dΦ ` Ae Γ ;Ψ ` σ : Φ

Γ ;Ψ ` btcσ : A

Γ ;Φ ` σ : Ψ Substitution σ provides a mapping from the (domain) context Ψ to Φ

Γ ` Ψ,
−−→
x:A : ctx

Γ ;Ψ,
−−→
x:A ` wkΨ̂ : Ψ

Γ ` Φ : ctx
Γ ;Φ ` · : ·

Γ ;Φ ` σ : Ψ Γ ;Φ `M : A

Γ ;Φ ` σ,M : Ψ, x:A

Γ ` Ψ : ctx Domain-level context Ψ is a well-formed

Γ ` · : ctx
Γ (y) = ctx

Γ ` y : ctx
Γ ` Ψ : ctx

Γ ` Ψ, x:A : ctx

Fig. 2. Typing Rules for Domain-level Terms, Substitutions, Contexts

depending on the value computed by t. As is common when we have dependencies,
we annotate the recursor with the typing invariant I. Here, we consider only
the recursor over domain-level terms of type tm. Hence, we annotate it with
I = (ψ : ctx) ⇒ (y : dψ ` tme) ⇒ τ . To check that the recursor recI B Ψ t has
type [Ψ/ψ]τ , we check that each of the three branches has the specified type I.
In the base case, we may assume in addition to ψ : ctx that we have a variable
p : dψ v̀ tme and check that the body has the appropriate type. If we encounter
a contextual object built with the domain-level constant app, then we choose
the branch bapp. We assume ψ: ctx, m: dψ ` tme, n: dψ ` tme, as well as fn and
fm which stand for the recursive calls on m and n respectively. We then check
that the body tapp is well-typed. If we encounter a domain object built with the
domain-level constant lam, then we choose the branch blam. We assume ψ: ctx
and m: dψ, x:tm ` tme together with the recursive call fm on m in the extended
LF context ψ, x:tm. We then check that the body tlam is well-typed. The typing
rules for computations are given in Fig. 3. We omit the reduction rules here and
refer the interested reader to the appendix.

5.1 Interpretation

We now give an interpretation of simply-typed Cocon in a presheaf model with
a cartesian closed universe of representables. Let us first extend the internal
dependent type theory with the constant tm for modelling the domain-level
type constant tm and with the constants app : El tm → El tm → El tm and

Semantical Analysis of Contextual Types 13

Γ ` C : T Contextual object C has contextual type T

Γ ;Ψ `M : A

Γ ` (Ψ̂ `M) : (Ψ ` A)

Γ ` Ψ : ctx x:A ∈ Ψ
Γ ` (Ψ̂ ` x) : (Ψ v̀ A)

x:dΦ v̀ Ae ∈ Γ Γ ;Ψ ` wkΨ̂ : Φ

Γ ` (Ψ̂ ` bxcwk
Ψ̂

) : (Ψ v̀ A)

Γ ` t : τ Term t has computation type τ
y : τ̆ ∈ Γ
Γ ` y : τ̆

Γ ` C : T
Γ ` dCe : dT e

Γ ` t : (y : τ̆1)⇒ τ2 Γ ` s : τ̆1

Γ ` t s : [s/y]τ2

Γ, y : τ̆1 ` t : τ2 Γ ` (y : τ̆1)⇒ τ2 : type

Γ ` fn y ⇒ t : (y : τ̆1)⇒ τ2

Recursor over domain-level terms I = (ψ : ctx)⇒ (y : dψ ` tme)⇒ τ

Γ ` t : dΨ ` tme Γ ` I : u Γ ` bv : I Γ ` bapp : I Γ ` blam : I
Γ ` recI(bv | bapp | blam) Ψ t : [Ψ/ψ]τ

Branch for Variable
Γ, ψ : ctx, p : dψ v̀ tme ` tv : τ

Γ ` (ψ, p 7→ tv) : I

Branch for Application app
Γ, ψ : ctx,m:dψ ` tme, n:dψ ` tme, fm:τ, fn:τ ` tapp : τ

Γ ` (ψ,m, n, fn, fm 7→ tapp) : I

Branch for Function lam
Γ, φ : ctx,m:dφ, x:tm ` tme, fm:[(φ, x:tm)/ψ]τ ` tlam : [φ/ψ]τ

Γ ` ψ,m, fm 7→ tlam : I

Fig. 3. Typing Rules for Contextual Objects and Computations

lam : (El tm→ El tm)→ El tm to model the corresponding domain-level constants
app and lam.

We can now translate domain-level and computation-level types of Cocon into
the internal dependent type theory for D̂. We do so by interpreting the domain-
level terms, types, substitutions, and contexts (see Fig. 4). All translations are on
well-typed terms and types. Domain-level types are interpreted as the terms of
type Obj in the internal dependent type theory that represent them. Domain-level
contexts are also interpreted as terms of type Obj by JΓ ` Ψ : ctxK. For example,
a domain-level context x:tm, y:tm is interpreted as times (times unit tm) tm :
Obj. A domain-level substitution with domain Ψ and codomain Φ becomes
a term of type El e′ that is parameterised by an element u: El e, where e =
JΓ ` Φ : ctxK and e′ = JΓ ` Ψ : ctxK. As e′ is some product, for example
times (times unit tm) tm, the domain-level substitution is translated into an
n-ary tuple. A weakening substitution Γ ;Ψ, x:tm ` wkΨ : Ψ is interpreted as
fst u where u: El (times e tm) and e = JΓ ` Ψ : ctxK. More generally, when we

weaken a context Ψ by n declarations, i.e.
−−→
x:A, we interpret wkΨ as fstn u.

A well-typed domain-level term, Γ ;Ψ ` M : A, is mapped to an object of
type El JAK that depends on u:El JΓ ` Ψ : ctxK.

Hence the translation of a well-typed domain-level term is indexed by u that
stands for the term-level interpretation of a domain-level context Φ. Initially, u

14 B. Pientka and U. Schöpp

Interpretation of domain-level types

JtmK = tm

JA→ BK = arrow JAK JBK

Interpretation of domain-level contexts

JΓ ` ψ : ctxK = ψ

JΓ ` · : ctxK = unit

JΓ ` (Ψ, x:A) : ctxK = times e JAK where JΓ ` Ψ : ctxK = e

Interpretation of domain-level terms where u: El e and JΓ ` Ψ : ctxK = e

JΓ ;Ψ ` x : AKu = snd (fstk u) where Ψ = Ψ0, x:A, yk:Ak, . . . , y1:A1

JΓ ;Ψ ` λx.M : A→ BKu = arrow-i (hx:El JAK. e)
where JΓ ;Ψ, x:A `M : BK(pair u x) = e

JΓ ;Ψ `M N : BKu = arrow-e e1 e2 where JΓ ;Ψ `M : A→ BKu = e1
and JΓ ;Ψ ` N : AKu = e2

JΓ ;Ψ ` btcσ : AKu = let box x = e1 in x e2 where JΓ ` t : dΦ ` AeK = e1
and JΓ ;Ψ ` σ : ΦKu = e2

JΓ ;Ψ ` app : tm→ tm→ tmKu = arrow-i(hx:El tm. arrow-i (hy:El tm. app x y))

JΓ ;Ψ ` lam : (tm→ tm)→ tmKu = arrow-i(hf :El (arrow tm tm).
lam (hx:El tm. arrow-e f x))

Interpretation of domain-level substitutions where u: El e and JΓ ` Φ : ctxK = e

JΓ ;Ψ ` · : ·Ku = terminal

JΓ ;Ψ ` (σ,M) : Φ, x:AKu = pair e1 e2 where JΓ ;Ψ ` σ : ΦKu = e1
and JΓ ;Ψ `M : AKu = e2

JΓ ;Ψ,
−−→
x:A ` wkΦ̂ : ΦKu = fstn u where n = |

−−→
x:A|

Fig. 4. Interpretation of Domain-level Types and Terms

is simply a variable. However, when we translate Γ ;Φ ` λx.M : A → B given
u: El e where JΓ ` Ψ : ctxK = e, we need to recursively translate M in the
extended domain-level context Ψ, x:A and hence we also need to build a term
pair u x that inhabits El (times e JAK). The translation of Γ ;Φ, x:A ` M : A
will return a term e that may contain x. However, note that x will eventually
be bound in arrow-i (hx:El JAK. e) When we translate a variable x where Φ =
Φ0, x:A, yk:Ak, . . . , y1:A1, we return fstk (snd u). We translate Γ ;Φ ` btcσ : A
directly using let box-construct where the domain-level substitution σ is simply
translated into a pair. As the computation t has the contextual type dΨ ` tme
its translation will be of type [(El e → El tm) where e = JΓ ` Ψ : ctxK. Hence
we simply can extract a function x:(El e→ El tm) using let box construct and
pass to it the interpretation of σ. The translation of domain-level applications
and domain-level constants app and lam is straightforward.

The interpretation of a contextual types dΨ ` Ae makes explicit the fact that
they correspond to functions El e→ El JAK where e = JΓ ` Ψ : ctxK (see Fig. 5).

Consequently, the corresponding contextual object (Φ̂ `M) is interpreted as a

Semantical Analysis of Contextual Types 15

Interpretation of contextual objects (C)

JΓ ` (Φ̂ `M) : (Φ ` A)K = hu: El e. e′ where JΓ ` Φ : ctxK = e
and JΓ ;Φ `M : AKu = e′

JΓ ` (Φ̂ `M) : (Φ v̀ A)K = hu: El e. e′ where JΓ ` Φ : ctxK = e
and JΓ ;Φ `M : AKu = e′

Interpretation of contextual types (T)

JΓ ` (Φ ` A)K = (u:El e)→ El JAK where JΓ ` Φ : ctxK = e

JΓ ` (Φ v̀ A)K = (u:El e)→v El JAK where JΓ ` Φ : ctxK = e

Fig. 5. Interpretation of Contextual Objects and Types

Interpretation of computation-level types (τ̆)

JdT eK = [JT K
J(x:τ̆1)⇒ τ2K = (x:Jτ̆1K)→ Jτ2K
JctxK = Obj

Computation-level typing contexts (Γ)

J·K = ·
JΓ, x: τ̆K = JΓ K, x: Jτ̆K

Interpretation of computations (Γ ` t : τ ; without recursor)

JΓ ` dCe : dT eK = box e where JΓ ` C : T K = e

JΓ ` t1 t2 : τK = e1 e2 where JΓ ` t1 : (x:τ̆2)⇒ τK = e1
and JΓ ` t2 : τ̆2K = e2

JΓ ` fn x⇒ t : (x:τ̆1)⇒ τ2K = hx: Jτ̆1K. e where JΓ, x:τ̆1 ` t : τ2K = e

JΓ ` x : τK = x

Fig. 6. Interpretation of Computation-level Types and Terms – without recursor

function. Similarly, dΨ v̀ Ae is mapped to the restricted function space denoted
by →v, which describes functions with bodies that only contain projections.

Last, we give the interpretation of computation-level types, contexts and
terms (see Fig. 6). It is mostly straightforward, as we simply map dT e to [JT K
and dCe is simply interpreted as boxed term.

The interpretation of the recursor is also straightforward now (see Fig. 7). In
Lemma 4, we expressed a primitive recursion scheme in our internal type theory
and defined a term rec together with its type. We now interpret every branch of
our recursor in the computation-level as a function of the required type in our
internal type theory. While this is somewhat tedious, it is straightforward.

We can now show that all well-typed domain-level and computation-level
objects are translated into well-typed constructions in our internal type theory.
As a consequence, we can show that equality in Cocon is equivalent to the
corresponding equivalence in our internal type theoretic interpretation.

16 B. Pientka and U. Schöpp

Interpretation of recursor for I = (ψ : ctx)⇒ (y : dψ ` tme)⇒ τ :

JΓ ` recI(bv | bapp | blam) Ψ t : [Ψ/ψ, t/y]τK = rec ev eapp elam ec e
where JΓ ` bv : IK = ev, JΓ ` bapp : IK = eapp, JΓ ` blam : IK = elam,

JΓ ` Ψ : ctxK = ec and JΓ ` t : dΨ ` tmeK = e

Interpretation of Variable Branch

JΓ ` (ψ, x 7→ tv) : IK = hψ: Obj. h x: [(Elψ →v El tm). e
where JΓ, ψ : ctx, x : dψ v̀ tme ` tv : [x/y]τK = e

Interpretation of Application Branch

JΓ ` (ψ,m, n, fn, fm 7→ tapp) : IK = hψ: Obj. hm,n: [(Elψ → El tm).
hfm: J[m/y]τK. h fn: J[n/y]τK. e

where JΓ, ψ:ctx,m:dψ ` tme, n:dψ ` tme ` tapp : [dψ ` app bmc bnce/y]τK = e

Interpretation of Lambda-Abstraction Branch

JΓ ` (ψ,m, fm 7→ tlam) : IK = hψ: Obj.hm: [(El (times ψ tm)→ El tm).
hfm:τm.e

where J[(ψ, x:tm)/ψ, m/y]τK = τm,
JΓ, ψ:ctx,m:dψ, x:tm ` tme ` tapp : [dψ ` lam λx.bmce/y]τK = e

Fig. 7. Interpretation of Recursor

Lemma 5. The interpretation maintains the following typing invariants:

– If Γ ` Ψ : ctx then JΓ ` Ψ : ctxK : Obj.
– If Γ ; Ψ `M : A then JΓ K, u: El JΓ ` Ψ : ctxK ` JΓ ;Ψ `M : AKu : El JAK.
– If Γ ; Ψ ` σ : Ψ then JΓ K, u: El JΓ ` Ψ : ctxK ` JΓ ;Ψ ` σ : ΨKu : El JΨK.
– If Γ ` C : T then JΓ K ` JΓ ` C : T K : JT K.
– If Γ ` t : τ then JΓ K ` JΓ ` t : τK : JτK.

The proof goes by induction on derivations.

Proposition 1 (Soundness). The following are true.

– If Γ ; Ψ `M ≡ N : A then
JΓ K, u: El JΨK ` JΓ ; Ψ `M : AKu = JΓ ; Ψ ` N : AKu : El JAK.

– If Γ ;Ψ ` σ ≡ σ′ : Φ then
JΓ K, u: El JΨK ` JΓ ;Ψ ` σ : ΦKu = JΓ ;Ψ ` σ′ : ΦKu : El JΦK.

– If Γ ` t1 ≡ t2 : τ then JΓ K ` JΓ ` t1 : τK = JΓ ` t2 : τK : JτK.

6 Presheaves on a Small Category with Attributes

To explain the core of our approach as simply as possible, we have concentrated
on a simply-typed domain language. In the remaining space, we outline how our
approach generalises to dependent domain languages like LF.

We follow the same approach as above. We start from a term model D of the
domain language and then interpret contextual types in the presheaf category D̂.
In the simply-typed case above, D was a small cartesian closed category. In the

Semantical Analysis of Contextual Types 17

dependent case, D is a small Category with Attributes. Categories with attributes
(CwAs) [11] are a general notion of model for dependent type theories that is
suitable for modelling dependent domain languages like LF.

With this change, we follow essentially the same approach as above. The
main difference is that the universe of representables now makes available the
CwA-structure of D instead of the cartesian closed structure. The following
section outlines this in analogy to Sec. 4.1.

6.1 Yoneda CwA

In a Yoneda CwA we again have a type for the objects of D, which we now denote
Ctx. In the term model for LF, these would be the LF contexts. The type Ty c
represents (possibly dependent) LF types in context c. Contexts can be built
with the constants nil and cons.

` Ctx type ` nil : Ctx
c: Ctx ` Ty c type ` cons : (c: Ctx)→ (a: Ty c)→ Ctx

Both Ctx and Ty c are constant presheaves, i.e. [Ctx = Ctx and [(Ty c) = Ty c.
As in Sec. 4.1, we consider the contexts as codes of a universe.

c: Ctx ` El c type

The type El c has the same interpretation as before and is essentially just the
Yoneda embedding. The morphisms c→ d of the CwA D thus appear as functions
of type El c→ El d.

The axioms of a CwA can be stated using terms and equations in the inter-
nal language of D̂. For example, substitution on types and context projection
morphisms are given by the following constants.

c, d: Ctx ` sub : (a: Ty d)→ (f : El c→ El d)→ Ty c
c: Ctx, a: Ty c ` p : El (cons c a)→ El c

The other components of a CwA are added similarly and the CwA-axioms [11]
are expressed in terms of equations for these constants.

The inhabitants of a type can then be captured by the dependent type

c: Ctx, a: Ty c, u: El c ` I a u type

defined by I a u := Σv: El (cons c a). (p v) = u. This type contains all values in
El (cons c a) whose first projection is u. If one considers u: El c as a dependent
tuple of LF terms (one term for each variable in the context represented by c),
then I a u represents all the terms that can be appended to this tuple to make
it into one of type El (cons c a). Indeed, one can define a pairing operation by
pair := λu. λ〈v, p〉. v.

c: Ctx, a: (Ty c) ` pair : (u: El c)→ I a u→ El (cons c a)

18 B. Pientka and U. Schöpp

With these definitions, we can represent dependent contextual types much like
the simply-typed ones. Recall that we had interpreted Φ ` A by El JΦK→ El JAK
where both JΦK and JAK were terms of type Obj. In the dependent case, A may
depend on Φ. The interpretation of Φ is a term JΦK : Ctx, much as before. The
interpretation of A takes the dependency into account: u: El JΦK ` JAKu : Ty u.
The interpretation of the contextual type Φ ` A will then be:

(u: El JΦK)→ I JAKu u

It may be interesting to note that (u: El c)→ I a u is isomorphic to the type of
sections of p : El (cons c a)→ El c.

Object-level term constants in LF can be lifted using I. Consider, for example,
an encoding of the simply-typed lambda-calculus in LF. It represents only well-
typed terms by means of the constants app : Πa, b: ty. tm (arr a b)→ tm a→ tm b
and lam : Πa, b: ty. (tm a→ tm b)→ tm (arr a b). Therein, the type tm of object-
level terms is dependent on an object-level type ty, which may be built using a
constant o : ty for a base type and a constant arr : ty→ ty→ ty for function
types. This encoding lifts to the Yoneda CwA as in simply-typed case:

c: Ctx ` ty : Ty c Γ ` o : I ty u
c: Ctx ` tm : Ty (cons c ty) Γ ` arr : I ty u→ I ty u→ I ty u

∆ ` app : I tm (pair u (arr a b))→ I tm (pair u a)→ I tm (pair u b)
` lam : (I tm (pair u a)→ I tm (pair u b))→ I tm (pair u (arr a b))

Here, Γ abbreviates c: Ctx, u: (El c) and ∆ abbreviates Γ, a, b: (I ty u). Notice
how lam uses higher-order abstract syntax at the meta level.

With these definitions, the interpretation of Cocon is essentially just as before.
For working with the dependencies in a Yoneda CwA, we found it very useful to
type-check our definitions in Agda, see our sources [1].

7 Conclusion

We have given a rational reconstruction of contextual type theory in presheaf
models of higher-order abstract syntax. This provides a semantical way of un-
derstanding the invariants of contextual types independently of the algorithmic
details of type checking. At the same time, we identify the contextual modal
type theory, Cocon, which is known to be normalising, as a syntax for presheaf
models of HOAS. By accounting for the Yoneda embedding with a universe á
la Tarski, we obtain a manageable way of constructing contextual types in the
model, especially in the dependent case. While various forms of universes are
being studied in the context of functor categories, e.g. [2,16], we are not aware of
previous uses of presheaves over CwAs or similar.

In future work, one may consider using the model as a way of compiling
contextual types, by implementing the semantics. In another direction, it may be
interesting to apply the syntax of contextual types to other presheaf categories.
We also hope that the model will help to guide the further development of Cocon.

Acknowledgements. We thank the anonymous reviewers for helpful feedback.

Semantical Analysis of Contextual Types 19

References

1. The Agda sources for this paper are available from: http://github.com/uelis/
contextual.

2. Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James
McKinna. A type and scope safe universe of syntaxes with binding: Their semantics
and proofs. Proc. ACM Program. Lang., 2(ICFP):90:1–90:30, July 2018.

3. Benton, P.N., Bierman, G.M., de Paiva, V., Hyland, M.: A term calculus for intu-
itionistic linear logic. In: Bezem, M., Groote, J.F. (eds.) Typed Lambda Calculi and
Applications, International Conference on Typed Lambda Calculi and Applications,
TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993, Proceedings. vol. 664, pp.
75–90. Springer (1993)

4. Andrew Barber and Gordon Plotkin. Dual intuitionistic linear logic. Technical
Report, LFCS, University of Edinburgh, 1997.

5. John Cartmell. Generalised algebraic theories and contextual categories. Annals of
Pure and Applied Logic, 32:209 – 243, 1986.

6. Rowan Davies and Frank Pfenning. A modal analysis of staged computation.
Journal of the ACM, 48(3):555–604, 2001.

7. Peter Dybjer. Internal type theory. In Types for Proofs and Programs (TYPES’95),
pages 120–134, 1995.

8. M. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding. In
Logic in Computer Science (LICS’99), pages 193–202. IEEE Press, 1999.

9. Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax involving
binders. In Logic in Computer Science (LICS’99), pages 214–224. IEEE Press,
1999.

10. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, January 1993.

11. Martin Hofmann. Syntax and Semantics of Dependent Types, page 79–130. Publi-
cations of the Newton Institute. Cambridge University Press, 1997.

12. Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Logic in
Computer Science (LICS’99), pages 204–213. IEEE Press, 1999.

13. Furio Honsell, Marino Miculan, and Ivan Scagnetto. An axiomatic approach to
metareasoning on nominal algebras in HOAS. In International Colloquium on
Automata, Languages and Programming (ICALP’01), LNCS 2076, pages 963–978.
Springer, 2001.

14. Bart Jacobs. Comprehension categories and the semantics of type dependency.
Theor. Comput. Sci., 107(2):169–207, 1993.

15. Kavvos, G.A.: Intensionality, intensional recursion, and the Gödel-Löb axiom. CoRR
abs/1703.01288 (2017), http://arxiv.org/abs/1703.01288

16. Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal universes
in models of homotopy type theory. In Formal Structures for Computation and
Deduction (FSCD’18), pages 22:1–22:17, 2018.

17. Dale Miller and Catuscia Palamidessi. Foundational aspects of syntax. ACM
Comput. Surv., 31(3es), 1999.

18. Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal
type theory. ACM Transactions on Computational Logic, 9(3):1–49, 2008.

19. Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Symposium on
Language Design and Implementation (PLDI’88), pages 199–208, June 1988.

20. Brigitte Pientka. A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In Principles of Programming Languages
(POPL’08), pages 371–382. ACM Press, 2008.

http://github.com/uelis/contextual
http://github.com/uelis/contextual
http://arxiv.org/abs/1703.01288

20 B. Pientka and U. Schöpp

21. Brigitte Pientka and Andreas Abel. Well-founded recursion over contextual objects.
In Typed Lambda Calculi and Applications (TLCA’15), pages 273–287, 2015.

22. Brigitte Pientka, Andreas Abel, Francisco Ferreira, David Thibodeau, and Rébecca
Zucchini. Cocon: Computation in contextual type theory. CoRR, abs/1901.03378,
2019.

23. Brigitte Pientka, Andreas Abel, Francisco Ferreira, David Thibodeau, and Rebecca
Zucchini. A type theory for defining logics and proofs. In 34th IEEE/ ACM
Symposium on Logic in Computer Science (LICS’19), pages 1–13, IEEE Computer
Society, 2019.

24. Brigitte Pientka and Andrew Cave. Inductive Beluga: Programming Proofs (System
Description). In Conference on Automated Deduction (CADE-25), LNCS 9195,
pages 272–281. Springer, 2015.

25. Brigitte Pientka and Joshua Dunfield. Programming with proofs and explicit
contexts. In Principles and Practice of Declarative Programming (PPDP’08), pages
163–173, 2008.

26. Brigitte Pientka and Joshua Dunfield. Beluga: a framework for programming and
reasoning with deductive systems (System Description). In International Joint
Conference on Automated Reasoning (IJCAR’10), LNAI 6173, pages 15–21. Springer,
2010.

27. Shulman, M.: Brouwer’s fixed-point theorem in real-cohesive homotopy type theory.
Mathematical Structures in Computer Science 28(6), 856–941 (2018)

28. Thomas Streicher. Semantics of Type Theory. Birkhäuser, 1991.
29. Andrea Vezzosi. Agda with a flat modality. Available from https://github.com/

agda/agda/tree/flat, 2018.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

cc_by.pdf

https://github.com/agda/agda/tree/flat
https://github.com/agda/agda/tree/flat
http://creativecommons.org/licenses/by/4.0/

	Semantical Analysis of Contextual Types

