
Layered Modal Type Theory

Where Meta-programming Meets Intensional Analysis

Jason Z. S. Hu(�) and Brigitte Pientka

School of Computer Science, McGill University, Montréal, QC, Canada H3A 0E9
zhong.s.hu@mail.mcgill.ca bpientka@cs.mcgill.ca

Abstract. We introduce layering to modal type theory to combine type
theory with intensional analysis. In particular, we demonstrate this idea
by developing a 2-layered modal type theory. At the core of this type
theory (layer 0) is a simply typed λ-calculus with no modality. Layer 1 is
obtained by extending the core language with one layer of contextual □
types to support pattern matching on potentially open code from layer 0
while retaining normalization. Although both layers fundamentally share
the same language and the same typing judgment, we only allow com-
putation at layer 1. As a consequence, layer 0 accurately captures the
syntactic representation of code in contrast to the computational behav-
iors at layer 1. The system is justified by normalization by evaluation
(NbE) using a presheaf model. The normalization algorithm extracted
from the model is sound and complete and is implemented in Agda.
Layered modal type theory provides a uniform foundation for meta-
programming with intensional analysis. We see this work as an important
step towards a foundational way to support meta-programming in proof
assistants.

Keywords: modal type theory · contextual types · meta-programming · nor-
malization by evaluation· presheaf model

1 Introduction

For the past decades, the problem of combining type theory and meta-program-
ming has been in need for a solution (c.f. [57,15,18,36,47,50,7]). Given the solid
and elegant foundations for describing proofs as programs provided by type
theories, also supporting meta-programming allows us to think of proof genera-
tion as code generation. This opens up the possibility to support proof macros,
domain-specific proof generators, proof transformations, and reasoning about
meta-programs within the same language.

While support for meta-programming in existing proof assistants is common
(e.g. [18,15,61,57]), this is typically achieved via some unverified mechanisms
like reflection, requiring significant engineering effort. Moreover, the interplay
between these mechanisms and the core type theory is not well-understood,
often breaks critical type-theoretic properties like confluence, and lacks theoret-
ical guarantees like normalization. As a consequence, it is often not clear how we

https://orcid.org/0000-0001-6710-6262
https://orcid.org/0000-0002-2549-4276

2 J. Z. S. Hu and B. Pientka

language that
meta-programs itself

(a) homogeneous style

...ext. lang.
(layer 1)

core lang.
(layer 0)

(b) layered style

· · ·
meta-meta-language

meta-language

object language

(c) heterogeneous style

Fig. 1: Layered style as a middle ground

can reason about meta-programs themselves. Even guaranteeing that the gen-
erated code is well-typed and well-scoped is non-trivial. Hence this leads to a
gap between implementations of meta-programming in proof assistants and their
theoretical foundations.

Theoretical foundations that combine meta-programming with type-theory
typically fall into two categories: the homogeneous style and the heterogeneous
style. Homogeneous meta-programming uses a single language capable of meta-
programming itself (depicted in Fig. 1a). To provide a logical, type-safe founda-
tion in this style, Davies and Pfenning [17] give a modal λ-calculus with the □
modality. They use the modal type □T to represent the code of type T . Having
modal types allows us to differentiate on the type level meta-programs that ma-
nipulate code from regular programs in one unified language. Nanevski et al. [39]
subsequently extend the modal λ-calculus [17] with contextual types, allowing
meta-programming on open code. Nevertheless, the correspondence described by
both systems only supports basic primitives like execution and composition of
code, but does not suggest a way to support any form of intensional analysis.
In fact, supporting intensional analysis in the homogeneous style while retaining
properties like confluence and normalization has been fraught with difficulties
(c.f. [48]). Most recently, Kavvos [33] notes that we can only soundly extend the
modal λ-calculus with intensional analysis for closed code if we want to retain
confluence. A significant step towards supporting pattern matching on open code
in a homogeneous style is taken in Moebius [30]. Moebius is based on System F-
style polymorphism. However, its pattern matching does not guarantee coverage.
Therefore Moebius does not provide normalization.

In a heterogeneous system, we distinguish between the meta-language and
the object language (illustrated by Fig. 1c). Recently, Kovács [36] adapts 2-level
type theory (2LTT), originally conceived for homotopy type theory, to depen-
dently typed meta-programming. Here, a dependently typed meta-language sits
on top of a less expressive object language. However, this type theory does not
support intensional analysis. In contrast, Cocon [47], another 2-level type theory
following in the footsteps of previous work [17,39], supports modeling open code
and intensional code analysis. Though these heterogeneous systems are modular,
this comes at a price: a definition in one level is not directly accessible or reused
in the other level. Unlike homogeneous systems, both heterogeneous systems do
not support execution of code. Moreover, the separation into two languages leads
to two separate investigations of meta-theoretic properties for two languages and
ultimately two separate normalization arguments. How to elegantly scale these
languages to multiple layers is not obvious, or at least very tedious.

Layered Modal Type Theory 3

In this paper, we propose a novel layered style as a schema to combine meta-
programming and type theory (see Fig. 1b) and to combine the advantages of
homogeneous and heterogeneous styles. Specifically, our layered modal type the-
ory achieves three features: 1 a run primitive, which extracts a term of type
A given code of type A for all A; 2 a normalizing type theory; 3 pattern
matching on code, which is the most general form of intensional analysis. As a
demonstration, we develop a layered modal simple type theory achieving these
features. In this type theory, there are a fixed number of layers of languages.
The type theory is uniform in the sense that all layers fundamentally share a
common syntax for their languages and the same typing judgment as in the ho-
mogeneous style. Therefore, our layered system has a natural run primitive as all
homogeneous systems. Furthermore, our layered system follows the matryoshka
principle: the language at layer i is contained in its meta-language at layer i+1.
What is added to layer i at layer i+1 is the ability to inspect and analyze code
from the language at layer i. This matryoshka structure of layers of languages
not only ensures uniformity in the syntax and the typing judgment of the type
theory, but also provides extra flexibility in distinguishing computational behav-
iors at different layers. As a principle, we only allow β and η equivalence at the
highest layer, so all lower layers are treated as static code which is only identified
by its syntax. Layering allows us to encode different computational behaviors at
different layers using the same set of equivalence rules. This is crucial to enable
sound intensional analysis and establish normalization.

To introduce layering succinctly, we focus on a 2-layered modal simple type
theory in this paper. In this 2-layered system, its core language at layer 0 is a
simply typed λ-calculus (STLC). At layer 1, STLC is then extended with one
layer of meta-programming with the □ modality. The meta-language at layer
1 can only manipulate and analyze code from layer 0, but not from its own
layer. Following our previous discussion, we only allow computation on layer
1, and terms at layer 0 are treated as pure syntax. This allows us to cleanly
define covering pattern matching on code and eventually leads to an elegant
normalization proof using a presheaf model.

Summary of Contributions:

1. We develop a 2-layered modal type theory (Sec. 3) which supports running
code (feature 1). To prove normalization, we extend the classic presheaf
model for STLC [5] to our type theory (Sec. 4). From this presheaf model,
we extract its normalization algorithm that is complete and sound.

2. We extend the previous 2-layered modal type theory with pattern matching
on code (Sec. 5). We adapt our previous presheaf model to support pattern
matching on code and prove that the extracted algorithm is both complete
and sound. Thus we achieve features 2 and 3 .

3. We outline three different dimensions to extend layered modal type theory
in Sec. 6. In particular, we discuss extensions to richer systems like System
F and Martin-Löf type theory. We also discuss how to extend the expressive
power of the computational layer with additional operations, and how to
scale our 2-layered system to n layers.

4 J. Z. S. Hu and B. Pientka

We believe that layering is versatile enough to be adapted to complex systems
like System F and Martin-Löf type theory. As such, it provides a systematic way
of supporting intensional analysis while retaining normalization. It is a signifi-
cant step towards closing the gap between implementations that support meta-
programming in practice and their theoretical foundations. Interested readers
could find more details in our technical report [27] and our Agda code [28].

2 Example Programs in 2-layered Modal Type Theory

In this section, we show how to write and improve the well-known power function
in layered modal type theory by gradually introducing more features. In general,
many common meta-programs including the power function use only two layers.

2.1 A Layered Power Function

The power function defined by [17, Sec. 3.4] is a classic meta-program and we
can define it in our 2-layered type theory with the help of contextual types:

power : Nat → □ (x : Nat ⊢ Nat)

power zero = box (x. 1)

power (succ n) = letbox u ← power n in box (x. u[x/x] * x)

In the examples in this section, we use a front-end syntax similar to Haskell
and Agda. For clarity, we abbreviate succ ... (succ zero) as numbers, e.g. 1 is
notation for succ zero. The return type of this meta-function is a contextual type
□ (x : Nat ⊢ Nat). This type denotes code of type Nat with an open variable x

of type Nat. In general, the number of open variables is arbitrary. In the body,
we recurse on the input number. If it is zero, then the generated code is just 1.
The open variable x is not used. In the succ case, we first perform the recursive
call power n. The eliminator letbox binds a new global variable u to an open
type (x : Nat ⊢ Nat). We say that u has type Nat with an open variable x of
type Nat. A global variable is a placeholder for code. It remains visible under
a box constructor. Regular variables like n, on the other hand, cannot directly
participate in code construction, so they are hidden inside box. When we refer
to u in box, we must instantiate the open variable x of u. In this case, an identity
substitution [x/x] suffices. Now u[x/x] stands for the n’th power of x and we
obtain our goal by multiplying it with an extra x. Our implementation of the
power function is almost as expected except for the dangling 1:

power 1 = box (x. 1 * x) power 2 = box (x. (1 * x) * x)

We would like to remove the 1’s because it is the unit element of multiplication.
We will make this improvement in the next subsection. Nevertheless, we can
already run the current code, which is critical for a meta-programming system:

letbox u ← power 2 in λ x. u[x/x] : Nat → Nat

generates a regular function computing squares. We can also directly run the
code with a specific argument:

Layered Modal Type Theory 5

letbox u ← power 2 in u[5/x] = 25

would substitute 5 for x and give 25, the square of 5.

2.2 Pattern Matching for Intensional Analysis

An easy way to improve the previous implementation is to pattern match on
the resulting code and remove all occurrences of 1. However, supporting pattern
matching on code in a type-theoretic setting has been notoriously difficult. Previ-
ous attempts in the homogeneous style fail to retain the normalization property.
To illustrate, consider the intensional isapp function [33,19]. This function sim-
ply looks at the structure of a code and returns true if this code is a function
application, or false otherwise. Note that isapp’s behavior purely depends on
the syntactic structure of its argument. In our 2-layered system, this function
can be implemented by a pattern matching on code:

isapp : □ (⊢ Nat) → Bool

isapp x = match x with | ?u ?u’ ⇒ true | ⇒ false

We use pattern matching to inspect the input code x. In our first branch, we
return true if x is some function application. Here, ?u and ?u’ are both pattern
variables. We use question marks to distinguish pattern variables and constants,
e.g. zero and succ which are the constructors of Nat. This distinction is only
necessary in the patterns, and we do not write a question mark when we refer
to a pattern variable in the body of the branch. We also omit writing the local
context in which the pattern is sensible because it is determined by the type
of x. The pattern variables u and u’ capture the code of the function and the
argument respectively if x is a function application. As they are not used, we
could also have written instead. The other branches are captured by the
wildcard and all return false. Let us see how this function behaves:

isapp (box ((λ x. x) 10)) = true

isapp (box 10) = false

Kavvos [33] points out that Gabbay and Nanevski’s [19] evaluation of isapp
is not confluent. It is possible to evaluate the same program in different orders
and obtain two different values. For some well-typed code t and s,

letbox u ← box (t s) in isapp (box u)

= isapp (box (t s)) = true

letbox u ← box (t s) in isapp (box u)

= letbox u ← box (t s) in false = false

In the second execution, isapp (box u) is evaluated first, and then the overall
result is false. In our system, this confluence issue is avoided by preventing the
execution of isapp (box u) until it is known what u stands for. This treatment
ensures that isapp is stable under substitutions. Hence, the program only evalu-
ates to true. This is a subtle but critical design decision which ultimately enables
sound intensional analysis and normalization. We explain more in Sec. 5.2.

With sound pattern matching on code, a simple arithmetic simplifier is im-
plemented to remove the redundant 1’s in the previous subsection:

6 J. Z. S. Hu and B. Pientka

simp : □ (x : Nat ⊢ Nat) → □ (x : Nat ⊢ Nat)

simp y = match y with

| 1 * ?u ⇒ box (x. u[x/x])

| ?u * ?u’ ⇒ letbox u1 = simp (box (x. u[x/x]))

in box (x. u1[x/x] * u’[x/x])

| ⇒ y

In the first case, we remove 1 from the multiplication. In the second case, we
recursively simplify the first factor. We know this is sufficient because 1 only
occurs in the leftmost factor. In the last case, we do not optimize. Since pattern
matching is covering, we must either specify all cases or give a wildcard case.
At last, we provide a wrapper function power’, where we invoke simp to simplify
the code generated by power:

power ’ : Nat → □ (x : Nat ⊢ Nat)

power ’ n = simp (power n)

The power’ function precisely does what we expect:

power ’ 1 = box (x. x) power ’ 2 = box (x. x * x)

This example shows that we have full control over code via pattern matching on
code, while running power’ still gives the same behaviors as power.

3 A 2-Layered Modal Type Theory

In this section, we introduce a 2-layered modal type theory, which is simple
yet powerful enough for many interesting programs like the unoptimized power

function in the previous example. This system provides a starting point and a
basis for a clear understanding of the impact of layering on syntax and semantics.
We build a semantic framework for 2-layered modal type theory which is further
extended with pattern matching on code in Sec. 5.

2-layered modal type theory is defined as follows:

S, T := Nat | □(Γ ⊢ T) | S −→ T (Types, Typ)
x, y (Local variables)
u (Global variables)
s, t := x | uδ | zero | succ t | recT s (x y.s′) t (Terms, Exp)

| box t | letbox u � s in t | λx.t | s t
δ := · | δ, t/x (Local substitutions)
Γ,∆ := · | Γ, x : T (Local contexts)
Φ, Ψ := · | Φ, u : (Γ ⊢ T) (Global contexts)

We assume de Bruijn indices as our name representation for convenience but our
development generalizes. We use natural numbers Nat as a base type. We can
construct zero and succ of another Nat. recT s (x y.s′) t is the recursor for Nat,
where t is the scrutinee, s is the base case and s′ is the step case, where x is
the predecessor and y is the result from the recursive call. As the recursor for
natural numbers is standard, we leave its discussion in the technical report [27].

Layered Modal Type Theory 7

A function is introduced by λ-abstraction and can be applied to an argument.
□(Γ ⊢ T) is a contextual type. It stands for code open in context Γ . The box

constructor introduces terms of type □(Γ ⊢ T) and letbox is the eliminator for
it. We defer our discussion on pattern matching on code to Sec. 5.

For layered systems, we keep track of as many contexts as the layers. These
contexts are contained in a fixed-sized context array in the judgments. With two
layers, a context array only has two contexts Φ;Γ . It hence defines a dual-context
type theory. Following Pfenning and Davies [42,17], Γ is referred to as a local
context and its variables are local variables, ranged over by x and y. Φ is a global
context and contains global variables, ranged over by u. For a global binding
u : (Γ ⊢ T), we say that u represents code of type T with an open context Γ .

When writing meta-programs, we conceptually distinguish between programs
that are dynamic and compute, and code that is static and syntactic. In a ho-
mogeneous system, this distinction is captured by types, i.e. program t has type
T while code has type □(Γ ⊢ T). However, a term t itself does not provide infor-
mation about whether it is inside of a box (hence treated as code), or outside of
a box (hence a program). For example, only knowing that succ zero has type Nat
does not reveal whether it is a piece of code or a program. The typing judgment
for homogeneous systems like Ψ ;Γ ⊢ t : T [42,17] only provides typing informa-
tion, and does not a priori determine whether t should be considered as code or
as a program. Even though one major advantage of a homogeneous system is
to use the same language for code and programs, this lack of information is the
critical reason for the challenges that we face when combining type theory and
intensional analysis.

Layered modal type theory makes the distinction between code and programs
explicit. In the typing judgment Ψ ;Γ ⊢i t : T , we use the subscript i ∈ [0, 1] to
identify the layer at which t is well-typed. This judgment states that the term t
has type T at layer i. When i = 0, t is code and does not compute, and when
i = 1, t is a program and therefore has rich reduction behaviors. There are three
important implications of layering:

1. we can control what types are valid at each layer,
2. we can control what terms are well-typed at each layer, and
3. we can control what terms are equivalent at each layer.

In the first part, we control the validity of types using the validity predicate.
In the rules below, we rule out the use of □ at layer 0 and limit layer 1 to at
most one layer of □:

Nat wfi
S wfi T wfi

S −→ T wfi
Γ wf0 T wf0

□(Γ ⊢ T) wf1

This validity predicate only limits the depth of nested □s. Therefore, (□(· ⊢
Nat) → □(· ⊢ Nat)) wf1 holds although it has two □s. □(· ⊢ □(· ⊢ Nat)) wf1

does not hold, because it has two nested layers of □. Moreover, the validity
judgment only provides an upper bound, so both Nat wf0 and Nat wf1 hold.
This predicate generalizes to Ψ wfi and Γ wfi by requiring all types in Ψ and Γ

8 J. Z. S. Hu and B. Pientka

Ψ ;Γ ⊢i t : T and Ψ ;Γ ⊢i δ : ∆ Term t and local substitution δ are well-typed,

respectively, in context Ψ and Γ at layer i where i ∈ [0, 1]

Ψ wf
0 Γ wf

i

Ψ ;Γ ⊢i · : ·
Ψ ;Γ ⊢i δ : ∆ Ψ ;Γ ⊢i t : T

Ψ ;Γ ⊢i δ, t/x : ∆,x : T

Ψ ;Γ ⊢i δ : ∆ u : (∆ ⊢ T) ∈ Ψ

Ψ ;Γ ⊢i uδ : T

Ψ wf
0 Γ wf

i x : T ∈ Γ

Ψ ;Γ ⊢i x : T

Ψ wf
0 Γ wf

i

Ψ ;Γ ⊢i zero : Nat

Ψ ;Γ ⊢i t : Nat
Ψ ;Γ ⊢i succ t : Nat

Ψ ;Γ, x : S ⊢i t : T
Ψ ;Γ ⊢i λx.t : S −→ T

Ψ ;Γ ⊢i t : S −→ T Ψ ;Γ ⊢i s : S

Ψ ;Γ ⊢i t s : T

Ψ ;Γ ⊢i t ≈ t′ : T Term t and t′ are equivalent in contexts Ψ and Γ at layer i

Ψ ;Γ, x : S ⊢1 t : T Ψ ;Γ ⊢1 s : S

Ψ ;Γ ⊢1 (λx.t) s ≈ t[s/x] : T

Ψ ; · ⊢0 s : T Ψ, u : T ;Γ ⊢1 t : T ′

Ψ ;Γ ⊢1 letbox u � box s in t ≈ t[s/u] : T ′

Ψ ;Γ ⊢1 t : S −→ T

Ψ ;Γ ⊢1 t ≈ λx.(t x) : S −→ T

Fig. 2: Typing and equivalence judgments

to comply with the predicate. The validity predicates satisfy the lifting property:

Lemma 1 (Type lifting). If T wf0, then T wf1; if Γ wf0, then Γ wf1.

The lifting property characterizes the matryoshka principle for types and the
diagram in Fig. 1b, and says that types and contexts at a lower layer are included
at a higher layer.

The fact that the validity predicate only allows □ at layer 1, suggests that its
constructor box and eliminator letbox should also only appear at layer 1, while
terms of types Nat and functions should appear at both layers. Having a layer
in the typing judgment allows us to cleanly restrict valid terms at each layer:

Γ wf1 Ψ ;∆ ⊢0 t : T

Ψ ;Γ ⊢1 box t : □(∆ ⊢ T)

Ψ ;Γ ⊢1 s : □(∆ ⊢ T) Ψ, u : (∆ ⊢ T);Γ ⊢1 t : T ′

Ψ ;Γ ⊢1 letbox u � s in t : T ′

box t is well-typed at layer 1, only if the code t is well-typed at layer 0. Now
a clear line is drawn between code and programs: code lives at layer 0 while
programs live at layer 1. The rule for letbox is only available at layer 1. The
body is type-checked in an extended global context with a new global variable.
This global variable is a placeholder for the code computed by s.

The rules are given in Fig. 2. The rules for terms coming from STLC, i.e. zero,
succ, λ and function applications, are standard and valid at both layers. Given
a term of type Nat or a function, we know whether it is code or a program by
checking the layer it lives at. Extra validity predicates are added to the premises
of the local variable rule and the zero rule to enforce the coherence between terms
and types at layer i. Notice that terms from STLC can extend the local context
via λ regardless of layers and they can only refer to but not introduce global
variables. When referring to a global variable u, a local substitution δ is needed

Layered Modal Type Theory 9

to replace all variables in the local context ∆, as specified by the superscript.
The coherence between terms and types requires terms at layer i to have types
at the same layer. This criterion is formulated by the following lemma:

Lemma 2 (Syntactic validity). If Ψ ;Γ ⊢i t : T , then Ψ wf0, Γ wfi and T wfi

for i ∈ [0, 1].

Ψ is always valid at layer 0 because it is a context for code from layer 0.
The layer i in the typing judgment Ψ ;Γ ⊢i t : T effectively leads to the

encapsulation of two languages in the same system. When i = 0, only terms in
STLC are well-typed, so we work in STLC, and hence Ψ wf0 and Γ wf0 hold.
The typing rules ensure that we cannot write any meta-program at this layer
and no □ is involved. When i = 1, one layer of □ is allowed in addition to
STLC. At this layer, we can not only write regular STLC programs, but also
write meta-programs that generate STLC programs through □. Thus, we work
with a meta-language and an extension of STLC. In this case, Ψ wf0 and Γ wf1

hold. Using layers, we fit both code (layer 0) and programs (layer 1) in a unified
set of typing rules and arrive at a middle ground between homogeneous and
heterogeneous styles. Code at layer 0 can be lifted to layer 1 and turned into a
program. The resulting program is well-typed, due to the following lemma:

Lemma 3 (Term lifting). If Ψ ;Γ ⊢0 t : T , then Ψ ;Γ ⊢1 t : T .

The lifting property of well-typed terms has two indications. 1 A language at
layer 0 is contained at layer 1. This is the critical intuition of the matryoshka
principle and the idea of layering. 2 Though a term at layer 0 is code and
static, its computational behaviors are recovered by lifting it to layer 1. The
second point is what guarantees a universal run primitive for all code that is
crucial for a meta-programming system and achieves the feature 1 in Sec. 1.
The term lifting behavior can be trigger by the β rule for □. For some well-typed
terms t and s at layer 0 and a local substitution δ that does not refer to u:

letbox u � box (λx.t) s in uδ ≈ ((λx.t) s)[δ] ≈ t[s/x][δ]

Due to the β rule, u is replaced by (λx.t) s. The layer-0 term (λx.t) s is then
lifted to layer 1 on the right hand side and computes. Thus its computational
behavior is revived and it is further reduced to t[s/x].

At last, due to layering in the typing rules, the equivalence rules are also lay-
ered. There are three groups of equivalence rules: the PER rules which include
symmetry and transitivity, congruence rules which are naturally derived from
the typing rules, and the computation rules which describe β and η equivalence.
The PER and congruence rules apply to all layers, but the computation rules
only apply to layer 1. We show all the β and η rules at the bottom of Fig. 2.
The PER and congruence rules are standard. [s/x] and [s/u] are local and global
substitutions, respectively. They substitute s for x and for u everywhere as ex-
pected. The lack of computation at layer 0 ensures that terms at layer 0 are
identified only by their syntactic structures and indeed behave as code:

Lemma 4 (Static code). If Ψ ;Γ ⊢0 t ≈ s : T , then t = s.

10 J. Z. S. Hu and B. Pientka

ε : · =⇒g ·
γ : Ψ =⇒g Φ Γ wf

0 T wf
0

q(γ) : Ψ, u : (Γ ⊢ T) =⇒g Φ, u : (Γ ⊢ T)

γ : Ψ =⇒g Φ Γ wf
0 T wf

0

p(γ) : Ψ, u : (Γ ⊢ T) =⇒g Φ ε : · =⇒l ·
τ : Γ =⇒l ∆ T wf

1

q(τ) : Γ, x : T =⇒l ∆,x : T

τ : Γ =⇒l ∆ T wf
1

p(τ) : Γ, x : T =⇒l ∆

γ : Ψ =⇒g Φ τ : Γ =⇒l ∆

γ; τ : Ψ ;Γ =⇒ Φ;∆

Fig. 3: Global and local weakenings

This lemma justifies our treatment of terms at layer 0 as code and prepares for
the addition of pattern matching on code in Sec. 5.

Finally, we specify global substitutions between global contexts. Global sub-
stitutions are defined in the usual way as lists of terms:

σ := · | σ, t/u (Global substitutions)

Due to layering, all terms in a global substitution must live at layer 0:

Ψ wf0

Ψ ⊢ · : ·
Ψ ⊢ σ : Φ Ψ ;Γ ⊢0 t : T

Ψ ⊢ σ, t/u : Φ, u : (Γ ⊢ T)

Given a global substitution σ, we can apply it to a term:

x[σ] := x
uδ[σ] := σ(u)[δ[σ]] (lookup u in σ)

zero[σ] := zero
succ t[σ] := succ (t[σ])
λx.t[σ] := λx.(t[σ])
s t[σ] := (s[σ) (t[σ])

box t[σ] := box (t[σ])
letbox u � s in t[σ] := letbox u � s[σ] in (t[σ, u/u])

where δ[σ] applies σ to all terms in δ. Global substitutions do not handle local
variables, so in the case of local variables we just return x, while in the case of
global variables we look up σ and apply the globally substituted local substitu-
tion δ[σ] to the result of the lookup. σ propagate in most cases recursively. In
the case of letbox, we extend the substitution and apply σ, u/u to the body t.
Global substitutions compose and have identity. We write Ψ ⊢ idΨ : Ψ , and often
omit the subscript whenever it can be inferred.

4 Presheaf Model and Normalization by Evaluation

We now establish normalization by evaluation (NbE) [37,11,1] of the 2-layered
modal type theory. NbE is a technique to establish the normalization property.
An NbE proof usually proceeds in two steps: first, we evaluate terms of a type

Layered Modal Type Theory 11

J K : Typ→W op =⇒ Set
JNatK := NfNat

J□(Γ ⊢ T)K := Nf□(Γ⊢T)

JS −→ T K := JSK−̂→JT K

JΦK0Ψ := {γ | γ : Ψ =⇒g Φ}
JΦK1Ψ := {σ | Ψ ⊢ σ : Φ}

J·K Ψ ;Γ := {∗}
J∆,x : T K Ψ ;Γ := J∆K Ψ ;Γ × JT K Ψ ;Γ

Fig. 4: Interpretations of types, and global and local contexts

theory into some chosen domain; second, normal forms are extracted from values
in this domain. Our chosen domain is a presheaf category. A presheaf category is
a functor category from some base category to the category of sets. A carefully
chosen base category leads to an intuitive normalization proof. In this section,
we use the category of weakenings as the base category. The presheaf model
shown here is a moderate extension of the classic presheaf model of STLC [5].

4.1 Category of Weakenings

In the category of weakenings, the objects are the dual contexts and morphisms
are weakenings between dual contexts. Weakenings between dual contexts are
just tuples of global and local weakenings. They individually are defined in the
same way as weakenings in STLC as below:

γ := ε | q(γ) | p(γ) (Global weakenings) τ := ε | q(τ) | p(τ) (Local weakenings)

Their typing rules are virtually identical with the only difference in the validity
predicates (Fig. 3). The q constructor extends a weakening with the same type,
while p actually weakens the context. Ψ =⇒g Φ denotes global weakenings and
Γ =⇒l ∆ denotes local weakenings. Then weakenings of dual contexts γ; τ :
Ψ ;Γ =⇒ Φ;∆ are tuples of global and local weakenings. Both global and local
weakenings have composition and identity. We write idΨ and idΓ for the identity
global and local weakenings, respectively. We often omit the subscript when
it can be inferred from the context. Identity and composition of weakenings
Ψ ;Γ =⇒ Φ;∆ are defined pairwise. We verify that dual contexts and weakenings
form a category, which is referred to as W . This is the base category that we
will be working with. We sometimes also need to work with GW , the category
of global contexts and global weakenings.

4.2 Presheaf Model and Interpretations

In this section, we define the normalization algorithm with W as our base cat-
egory. The algorithm normalizes terms to their βη-normal forms, which are de-
fined as follows:

w := v | zero | succ w | box t | λx.w (Normal form (Nf))
v := x | uθ | v w | recT w (x y.w′) v | letbox u � v in w (Neutral form (Ne))
θ := · | θ, w/x (Normal local substitutions)

12 J. Z. S. Hu and B. Pientka

Notice that box t is already normal for any t. This is expected because box t
regards t as static code so t cannot be reduced. These definitions induce the sets
of well-typed normal and neutral forms:

NfTΨ ;Γ := {w | Ψ ;Γ ⊢1 w : T} NeTΨ ;Γ := {v | Ψ ;Γ ⊢1 v : T}

The sets only capture terms at layer 1 due to the lack of reductions at layer 0.
NfT and NeT then are induced presheaves mapping dual contexts to the sets of
normal and neutral forms, respectively.

Next we give the interpretation of types. The interpretation of function types
is presheaf exponentials derived from the Yoneda lemma with naturality:

F −̂→G : W op =⇒ Set
(F −̂→G) Ψ ;Γ := ∀ γ; τ : Φ;∆ =⇒ Ψ ;Γ . F Φ;∆ → G Φ;∆

We define the interpretations of types, and global and local contexts in Fig. 4.
Both Nat and □(Γ ⊢ T) are interpreted as their presheaves of normal forms.
In particular, J□(Γ ⊢ T)K is not even recursive. This case effectively interprets
□(Γ ⊢ T) as the code of T open in Γ . Based on the definition, two possible kinds

of terms in Nf□(Γ⊢T) are either neutral or of the form box t. In the latter case,
we have gained access to the syntax of t, permitting more complex operations
like pattern matching on code.

The interpretation of global contexts is layered. At layer 1, it is the presheaf
of global substitutions, containing code at layer 0 awaiting to be evaluated. At
layer 0, it is the Hom set of GW , i.e. the presheaf of global weakenings. This
definition is motivated technically to ensure the naturality of evaluation of terms
to be defined shortly. We let σ to range over JΦKiΨ when i is unknown. Local
contexts are interpreted as iterated products of values as usual, where ∗ is the
unique element of a chosen singleton set. A dual context is interpreted pairwise:

JΦ;∆KiΨ ;Γ := JΦKiΨ × J∆K Ψ ;Γ

All interpretations above are functors:

Lemma 5. JT K, JΦKi, J∆K and JΦ;∆Ki are presheaves. JΦKi is from GW .

If a ∈ JT K Φ;∆ and γ; τ : Ψ ;Γ =⇒ Φ;∆, we write a[γ; τ] for the functorial action
of γ; τ on a. We generalize this notation to other functors.

Finally, we define the evaluation functions, interpreting terms as natural
transformations between presheaves. This interpretation relies on two other nat-
ural transformations, reification and reflection, which map NeT to JT K and JT K
to NfT , respectively. All four natural transformations are defined in Fig. 5. Since
Nat and □(Γ ⊢ T) are interpreted as presheaves of normal forms, their cases in
reification and reflection are just identities. The case for functions is defined in
the same way as in STLC.

Our evaluation is a moderate extension of the evaluation of STLC [5]. The
evaluation function is layered because the type theory itself is layered. The cases
overlapping with STLC are identical, so we only discuss the modal cases. The

Layered Modal Type Theory 13

↓TΨ ;Γ : JT K Ψ ;Γ → NfTΨ ;Γ (Reification)
↓NatΨ ;Γ (a) := a

↓□T
Ψ ;Γ (a) := a

↓S−→T
Ψ ;Γ (a) := λx. ↓TΨ ;Γ,x:S (a (id; p(id) , ↑SΨ ;Γ,x:S (x)))

(where id; p(id) : Ψ ;Γ, x:S =⇒ Ψ ;Γ)

↑TΨ ;Γ : NeTΨ ;Γ =⇒ JT K Ψ ;Γ (Reflection)
↑BΨ ;Γ (v) := v

↑□T
Ψ ;Γ (v) := v

↑S−→T
Ψ ;Γ (v) :=

(γ; τ : Φ;∆ =⇒ Ψ ;Γ)(a ∈ JSK Φ;∆) 7→↑TΦ;∆ (v[γ; τ] ↓SΦ;∆ (a))

J KiΨ ;Γ : Φ;∆ ⊢i t : T → JΦ;∆KiΨ ;Γ → JT K Ψ ;Γ (Evaluation)
JzeroKiΨ ;Γ (σ; ρ) := zero

Jsucc tKiΨ ;Γ (σ; ρ) := succ (JtKiΨ ;Γ (σ; ρ))

JuδK0Ψ ;Γ (γ; ρ) :=↑TΨ ;Γ (u[γ]θ)

(where u : (∆′ ⊢ T) ∈ Φ, Φ;∆ ⊢0 δ : ∆′, and θ :=↓∆
′

Ψ ;Γ (JδK0Ψ ;Γ (γ; ρ)))

JuδK1Ψ ;Γ (σ; ρ) := Jσ(u)K0Ψ ;Γ (id; JδK1Ψ ;Γ (σ; ρ))
JxKiΨ ;Γ (σ; ρ) := ρ(x) (lookup x in ρ)

Jλx : S.tKiΨ ;Γ (σ; ρ) :=
(γ; τ : Φ′;∆′ =⇒ Ψ ;Γ)(a ∈ JSK Φ′;∆′) 7→ JtKiΦ′;∆′(σ′; (ρ′, a))

(where (σ′; ρ′) := σ; ρ[γ; τ] ∈ JΦ;∆KiΦ′;∆′)

Jt sKiΨ ;Γ (σ; ρ) := JtKiΨ ;Γ (σ; ρ)(id Ψ ;Γ , JsKiΨ ;Γ (σ; ρ))
Jbox tK1Ψ ;Γ (σ; ρ) := box (t[σ])

Jletbox u � s in tK1Ψ ;Γ (σ; ρ) := JtK1Ψ ;Γ (σ, s
′/u; ρ) (if JsK1Ψ ;Γ (σ; ρ) = box s′)

Jletbox u � s in tK1Ψ ;Γ (σ; ρ) :=

↑TΨ ;Γ (letbox u � v in ↓TΨ,u:S;Γ (JtK1Ψ,u:S;Γ (σ
′, uid/u; ρ′)))

(if JsK1Ψ ;Γ (σ; ρ) = v, also (σ′; ρ′) := (σ; ρ)[p(id); id] ∈ JΦ;∆K1Ψ,u:S;Γ)

J KiΨ ;Γ : Φ;∆ ⊢i δ : ∆′ → JΦ;∆KiΨ ;Γ → J∆′K Ψ ;Γ

(Substitution Evaluation)
J·KiΨ ;Γ () := ∗

Jδ, t/xKiΨ ;Γ (σ; ρ) := (JδKiΨ ;Γ (σ; ρ), JtKiΨ ;Γ (σ; ρ))

Fig. 5: Definitions of reification, reflection and evaluation

box t case is only available at layer 1. In this case, we directly propagate σ under
box. In the letbox case, we first evaluate s. Given JsK1Ψ ;Γ ∈ J□(Γ ⊢ S)K1Ψ ;Γ =

Nf
□(Γ⊢S)
Ψ ;Γ , this evaluation has two possible results: it returns either a box s′, or

a neutral v. In the first case, we just recurse with σ extended with s′ for u. In
the second case of letbox, some neutral v blocks the evaluation, so we can only
recurse on the body t with u as is and with σ and ρ properly weakened. To obtain
a JT K Ψ ;Γ , we reify the evaluation of t and obtain a normal form, using which we
obtain a neutral of letbox. A reflection of this neutral gives us a JT K Ψ ;Γ .

The interpretation of global variables is the most interesting. When uδ is
referred to at layer 1, we are evaluating some code and turning it into a program,
i.e. running it. We retrieve the code by looking up u in σ, and continue the
evaluation at layer 0 with an environment obtained by evaluating δ. Notice that

14 J. Z. S. Hu and B. Pientka

the layer decreases so the interpretation is well-founded regardless of the size
of σ(u). The evaluation of a local substitution recursively evaluates all terms in
the local substitution. If we refer to uδ at layer 0, then u should stay neutral.
Moreover, the evaluation function is required to return a natural transformation.
Both requirements lead to the interpretation of global contexts as Hom set of
GW at layer 0, since a weakened global variable is still a global variable and

neutral. We first normalize δ by evaluating and then reifying it (↓∆′

Ψ ;Γ) and
obtain a JT K Ψ ;Γ by reflection. Last, reification, reflection and evaluation are all
natural transformations:

Lemma 6 (Naturality). If γ; τ : Ψ ′;Γ ′ =⇒ Ψ ;Γ ,

– if a ∈ JT K Ψ ;Γ , then ↓TΨ ;Γ (a)[γ; τ] =↓TΨ ′;Γ ′ (a[γ; τ]);

– if v ∈ NeTΨ ;Γ , then ↑TΨ ;Γ (v)[γ; τ] =↑TΨ ′;Γ ′ (v[γ; τ]);

– if Φ;∆ ⊢i t : T and σ; ρ ∈ JΦ;∆KiΨ ;Γ , then JtKiΨ ;Γ (σ; ρ)[γ; τ] = JtKiΨ ′;Γ ′((σ; ρ)[γ; τ]).

The NbE algorithm is given by composing the interpretations:

Definition 1. A normalization by evaluation algorithm given Ψ ;Γ ⊢1 t : T is

nbeTΨ ;Γ (t) : Nf
T
Ψ ;Γ

nbeTΨ ;Γ (t) :=↓TΨ ;Γ (JtK1Ψ ;Γ (↑Ψ ;Γ))

where ↑Ψ ;Γ∈ JΨ ;Γ K1Ψ ;Γ is a tuple of the identity global substitution and the
identity environment.

This algorithm is correct due to the following two theorems:

Theorem 1 (Completeness). If Ψ ;Γ ⊢1 t ≈ t′ : T , then nbeTΨ ;Γ (t) = nbeTΨ ;Γ (t
′).

Theorem 2 (Soundness). If Ψ ;Γ ⊢1 t : T , then Ψ ;Γ ⊢1 t ≈ nbeTΨ ;Γ (t) : T .

The completeness theorem states that equivalent terms have equal normal forms,
so we can compare the syntactic equality between normal forms to decide whether
two terms are equivalent. The soundness theorem states that a well-typed term
has and is equivalent to its normal form. Notice that the theorems are about
layer 1 because only terms at this layer compute. In the remainder of this sec-
tion, we outline only the soundness proof. For complete details, please refer to
our technical report [27].

4.3 Soundness

The soundness theorem is established via gluing models, which relate syntactic
terms with semantic values. In our 2-layered system, we need two layers of gluing
models, which reflect the fact that we are actually operating in two languages.
For a gluing relation R, we write a ∼ b ∈ R to denote (a, b) ∈ R.

Layered Modal Type Theory 15

Layer-0 Gluing Model We begin with the gluing model for natural numbers.
It recursively relates a term t and a normal form of type Nat. This gluing relation
applies for both layers:

Ψ ;Γ ⊢1 t ≈ zero : Nat

t ∼ zero ∈ Nat Ψ ;Γ

Ψ ;Γ ⊢1 t ≈ succ t′ : Nat
t′ ∼ w ∈ Nat Ψ ;Γ

t ∼ succ w ∈ Nat Ψ ;Γ

Ψ ;Γ ⊢1 t ≈ v : Nat

t ∼ v ∈ Nat Ψ ;Γ

At layer 0, for all T wf0, its gluing model is:

LT M0Ψ ;Γ ⊆ Exp× JT K Ψ ;Γ

LNatM0Ψ ;Γ := Nat Ψ ;Γ

LS −→ T M0Ψ ;Γ := {(t, a) | ∀ γ; τ : Φ;∆ =⇒ Ψ ;Γ, s ∼ b ∈ LSM0Φ;∆ .

t[γ; τ] s ∼ a(γ; τ, b) ∈ LT M0Φ;∆}

LT M0 does not have a case for □ due to T wf0. The function case requires that the
results of function applications remain related for all weakenings and all related
arguments. The gluing between local substitutions and evaluation environments
δ ∼ ρ ∈ L∆M0Ψ ;Γ is defined by using LT M0 to relate terms and values pairwise.

Definition 2. We define the semantic judgment at layer 0:

Ψ ;Γ ⊩0 t : T := ∀ γ : Φ =⇒g Ψ and δ ∼ ρ ∈ LΓ M0Φ;∆ . t[γ][δ] ∼ JtK0Φ;∆(γ; ρ) ∈ LT M0Φ;∆

The semantic judgment at layer 0 only universally quantifies over global weak-
enings.

Layer-1 Gluing Model The reason why we must define the layer-0 gluing
model first is that we refer to Ψ ;Γ ⊩0 t : T in our layer-1 model. The semantics
of □(∆ ⊢ T) is given in terms of the semantic judgment at layer 0:

Ψ ;Γ ⊢1 t ≈ box s : □(∆ ⊢ T) Ψ ;∆ ⊩0 s : T

t ∼ box s ∈ □(∆ ⊢ T) Ψ ;Γ

Ψ ;Γ ⊢1 t ≈ v : □(∆ ⊢ T)

t ∼ v ∈ □(∆ ⊢ T) Ψ ;Γ

In the first rule, t is related to box s and s is a semantically well-typed term
at layer 0. The premise Ψ ;∆ ⊩0 s : T is necessary when we prove the semantic
typing rule for letbox. Without it, we will not able to maintain the semantic
well-formedness of global substitutions during evaluation and in the semantic
judgment at layer 1. The details are in our technical report. The gluing model
at layer 1 for T wf1 is now defined as:

LT M1Ψ ;Γ ⊆ Exp× JT K Ψ ;Γ

LNatM1Ψ ;Γ := Nat Ψ ;Γ

L□(∆ ⊢ T)M1Ψ ;Γ := □(∆ ⊢ T) Ψ ;Γ

LS −→ T M1Ψ ;Γ := {(t, a) | ∀ γ; τ : Φ;∆ =⇒ Ψ ;Γ, s ∼ b ∈ LSM1Φ;∆ .

t[γ; τ] s ∼ a(γ; τ, b) ∈ LT M1Φ;∆}

Compared to the layer-0 model, the layer-1 model only has an extra case L□(∆ ⊢
T)M1. The other two cases are just the same:

16 J. Z. S. Hu and B. Pientka

Lemma 7. If T wf0, then LT M0Ψ ;Γ = LT M1Ψ ;Γ .

This lemma semantically describes the matryoshka principle, witnessing the sub-
sumption of layer 0 into layer 1. The semantic judgment at layer 1 is universally
quantified over a semantic global substitution defined below:

Ψ wf0

Ψ ⊩ · : ·
Ψ ⊩ σ : Φ Ψ ;Γ ⊩0 t : T

Ψ ⊩ σ, t/u : Φ, u : (Γ ⊢ T)

We define the semantic judgment at layer 1:

Ψ ;Γ ⊩1 t : T := ∀ Φ ⊩ σ : Ψ and δ ∼ ρ ∈ LΓ M1Φ;∆ . t[σ][δ] ∼ JtK1Φ;∆(σ; ρ) ∈ LT M1Φ;∆

The fundamental theorem is established by proving all semantic typing rules:

Theorem 3 (Fundamental). If Ψ ;Γ ⊢i t : T , then Ψ ;Γ ⊩i t : T .
If Ψ ;Γ ⊢i δ : ∆, then Ψ ;Γ ⊩i δ : ∆.

5 Supporting Pattern Matching on Code

In the previous section, we have achieved feature 1 and partly feature 2 . In
this section, we extend the previous system with pattern matching on code,
so all features are concluded. We adapt the presheaf model and show that the
normalization algorithm remains complete and sound. We introduce a creative
semantics in the soundness proof in order to justify pattern matching on code.

5.1 Extension of Pattern Matching

In this section, we extend our previous 2-layered modal type theory with pattern
matching on code as follows.

s, t := · · · | match t with
−→
b (Terms, Exp)

b := varx ⇒ t | zero ⇒ t | succ ?u ⇒ t | λx.?u ⇒ t | ?u ?u′ ⇒ t
| recT ?u (x y.?u′) ?u′′ ⇒ t (Branches)

We extend the system with another elimination form of □(Γ ⊢ T), pattern

matching (match t with
−→
b), where

−→
b is a list of all possible branches of t. The

branches only need to match terms in STLC because pattern matching is only
available at layer 1 and the scrutinee is code from layer 0. We do not directly
support nested patterns like (λy.?u) ?u′ to keep the system simple, but they can
be encoded as nested pattern matchings. Supporting any useful general recursor
(e.g. [47,29]) would require context variables, which abstract over local contexts,
and type polymorphism. We see these extensions orthogonal to layering and
leave it to future work.

Further modifications to the typing and equivalence rules are in Fig. 6. We
omit the case for rec for conciseness. The typing rule for match uses the judgment

Ψ ;Γ ⊢1
−→
b : ∆ ⊢ T ⇒ T ′. This judgment enumerates all possible branches based

Layered Modal Type Theory 17

Ψ ;Γ ⊢i t : T Term t has type T in contexts Ψ and Γ at layer i where i ∈ [0, 1]

Ψ ;Γ ⊢1 s : □(∆ ⊢ T) Ψ ;Γ ⊢1
−→
b : ∆ ⊢ T ⇒ T ′

Ψ ;Γ ⊢1 match s with
−→
b : T ′

Ψ ;Γ ⊢1 b : ∆ ⊢ T ⇒ T ′ b is a branch of type T ′ w.r.t. a code of type T open in ∆.

∆ wf
0 x : T ∈ ∆ Ψ ;Γ ⊢1 t : T ′

Ψ ;Γ ⊢1 varx ⇒ t : ∆ ⊢ T ⇒ T ′
∆ wf

0 Ψ ;Γ ⊢1 t : T ′

Ψ ;Γ ⊢1 zero⇒ t : ∆ ⊢ Nat⇒ T ′

Ψ, u : (∆ ⊢ Nat);Γ ⊢1 t : T ′

Ψ ;Γ ⊢1 succ ?u⇒ t : ∆ ⊢ Nat⇒ T ′
Ψ, u : (∆,x : S ⊢ T);Γ ⊢1 t : T ′

Ψ ;Γ ⊢1 λx.?u⇒ t : ∆ ⊢ S −→ T ⇒ T ′

∀ S wf
0 . Ψ, u : (∆ ⊢ S −→ T), u′ : (∆ ⊢ S);Γ ⊢1 t : T ′

Ψ ;Γ ⊢1?u ?u′ ⇒ t : ∆ ⊢ T ⇒ T ′

Ψ ;Γ ⊢i t ≈ t′ : T Terms t and t′ are equivalent (β rules for match)

x : T ∈ ∆ Ψ ;Γ ⊢1
−→
b : ∆ ⊢ T ⇒ T ′ −→

b (x) = varx ⇒ t

Ψ ;Γ ⊢1 match box x with
−→
b ≈ t : T ′

Ψ ;Γ ⊢1
−→
b : ∆ ⊢ Nat⇒ T ′ −→

b (zero) = zero⇒ t

Ψ ;Γ ⊢1 match box zero with
−→
b ≈ t : T ′

Ψ ;∆ ⊢0 s : Nat Ψ ;Γ ⊢1
−→
b : ∆ ⊢ Nat⇒ T ′ −→

b (succ s) = succ ?u⇒ t

Ψ ;Γ ⊢1 match box (succ s) with
−→
b ≈ t[s/u] : T ′

Ψ ;∆,x : S ⊢0 s : T Ψ ;Γ ⊢1
−→
b : ∆ ⊢ S −→ T ⇒ T ′ −→

b (λx.s) = λx.?u⇒ t

Ψ ;Γ ⊢1 match box (λx.s) with
−→
b ≈ t[s/u] : T ′

Ψ ;∆ ⊢0 t : S −→ T Ψ ;∆ ⊢0 s : S Ψ ;Γ ⊢1
−→
b : ∆ ⊢ T ⇒ T ′ −→b (t s) =?u ?u′ ⇒ t

Ψ ;Γ ⊢1 match box (t s) with
−→
b ≈ t[t/u, s/u′] : T ′

Fig. 6: Adjusted rules with contextual types

on the type of the scrutinee. This guarantees coverage of pattern matching, i.e.

that
−→
b is indeed a list of all possible branches for a given scrutinee of type

□(∆ ⊢ T).

All typing rules for individual branches are similar. For example, if the pat-
tern is λx.?u, then u captures the body of some λ. The branch body t is checked
with u bound to (∆,x : S ⊢ T), which has a larger local context than ∆ which
we begin with. If the branch matches a function application, our premise requires
t is well-typed for all S wf0. This universal quantification should be read as a
higher-order derivation that applies for all S wf0 (see also [60]) and where we
keep S abstract as a parameter.

The bottom of Fig. 6 are the β rules for pattern matching. Based on the
structure of the scrutinee, we dispatch to the right branch and propagate instan-
tiations for pattern variables via global substitutions to the bodies. Notations

like
−→
b (succ s) denote the lookup of

−→
b based on a given shape. For example,

−→
b (succ s) = succ ?u ⇒ t means that we look up succ s in

−→
b , and find the

18 J. Z. S. Hu and B. Pientka

branch succ ?u ⇒ t. Then s is meant to substitute u in t. This lookup is guar-

anteed to succeed because Ψ ;Γ ⊢1
−→
b : ∆ ⊢ T ⇒ T ′ is covering.

5.2 Neutral Forms

Careful readers might have noticed that in our grammar of branches, we do not
have a case for global variables, nor do we have a β rule for pattern matching

on box uδ. So what should match box uδ with
−→
b be reduced to? The answer

might be surprising: this term in fact is blocked. Previously, we mentioned a
concern about isapp raised by Kavvos [33]. His subsequent analysis concludes
that sound intensional operations can only act on globally and locally closed
code. This restriction is clearly too strong. After looking into the analysis, we
see that this conclusion is based on the assumption that intensional operations

reduce on box uδ, which leads to the strong restriction. match box uδ with
−→
b

should not reduce, just for the same reason match x with
−→
b should not. They are

both waiting for substitutions to supply an actual code to unblock the evaluation.
Their only difference is that they act on different substitutions. This observation
leads to a renewed definition of neutral forms:

v := · · · | match v with −→r | match box uδ with −→r (Neutral form (Ne))
r := varx ⇒ w | zero ⇒ w | succ ?u ⇒ w | λx.?u ⇒ w | ?u ?u′ ⇒ w

| recT ?u (x y.?u′) ?u′′ ⇒ w (Normal branches)

The definition of normal forms, described by w, remains the same. To obtain βη
normal forms, all branches should be normalized. If u is a scrutinee of a match,
its local substitution stays as is because it is considered as code. This adjustment
is subtle but critical to give a sound presheaf model.

Moreover, notice that letbox u � box u′δ in t does not get blocked. This
difference in computational behaviors is due to different purposes of two elimi-
nation forms. letbox is primary for code composition and the execution of code,
while pattern matching focuses on intensional analysis of code. For this reason,
we include both letbox and pattern matching as elimination forms. They coex-
ist perfectly at layer 1 because our core theory at layer 0 is unaffected. Without
layering, both letbox and pattern matching are available everywhere, includ-
ing inside of box, which causes all sorts of complex interactions and makes the
computational behavior of the whole type theory difficult to control. This is why
former systems based on [17] are so difficult to extend with intensional analysis
in a controlled manner. Now we have introduced pattern matching on code and
achieved feature 3 outlined in Sec. 1. In the rest of this section, we fix the
normalization proof and justify that this system is a proper type theory.

5.3 Adjusting the Presheaf Model

Since we only add an elimination form, we simply extend the model in Sec. 4.
The adjustments are shown in Fig. 7. Two additional functions are defined: first,
the match function dispatches evaluation to the proper branch based on the

Layered Modal Type Theory 19

input code and evaluates the body with a global substitution and an evaluation
environment; second, nfbranch normalizes the body of a branch and obtains a

normal branch. Applying nfbranch to
−→
b normalizes all branches in

−→
b . nfbranch

is invoked when we normalize a pattern matching on some neutral code.
Let us consider the match case. We first evaluate the scrutinee. If the result is

a neutral term, then we simply invoke nfbranch to normalize all branch bodies,
and then use reflection to obtain a JT K Ψ ;Γ . Each case in nfbranch proceeds
similarly. The evaluation of the body continues with the global substitution
extended with pattern variables. The evaluated body is then reified to a normal
form and thus the resulting branch is also normal. If the result is box s, then we
match the code s accordingly with a branch and evaluate the body. This is done
by calling the match function. Based on the shape of s, the match function looks

up
−→
b and extends σ accordingly before evaluating the body. For example, if s

is a λ, then the branch λx.?u ⇒ t is picked, and t is evaluated. The lookup of−→
b must succeed because our pattern matching is covering. However, if s is just
a global variable, based on the previous discussion on neutral forms, we must
block the evaluation and only normalize the branches. The case forms a neutral
form and is essentially the same as if the scrutinee is evaluated to a neutral.

The presheaf interpretation gives a semantic explanation of how layering
enables sound pattern matching on code and why it is difficult in purely ho-
mogeneous systems. A term of type □(Γ ⊢ T) has two different uses: it either
stands for code that will be run (due to letbox) or it stands for code that will
be analyzed (due to pattern matching). In the former case, it is evaluated to a
natural transformation in the semantics while in the latter, only its syntactic
information is needed. Moreover, these two uses are not mutually exclusive. A
program might use both semantic and syntactic information of the same code.
To support pattern matching on code, we must maintain both semantic and
syntactic information and therefore the evaluation of code must be postponed.
In our setting, this evaluation only happens when we evaluate a global variable
at layer 1. The evaluation function evaluates the code represented by the global
variable and maintains its well-foundedness by decreasing the layer from 1 to 0.
Meanwhile, in a homogeneous system without layers, it is no longer clear how
to give a well-founded evaluation of a global variable due to the lack of proper
measure if intensional analysis is supported.

As we will see very shortly, the intuition above based on two different uses of
code must be formalized in the gluing model in order to establish a soundness
proof, giving a formal account for the importance of layering.

5.4 Soundness

Recall that in Sec. 4.3, we need a 2-layered model, where the layer-1 model refers
to the semantic judgment at layer 0 to support letbox. The semantic judgment
at layer 0 is defined as a universal quantification over global weakenings and the
gluing between local substitutions and evaluation environments:

Ψ ;Γ ⊨0 t : T := ∀ γ : Φ =⇒g Ψ and δ ∼ ρ ∈ LΓ M0Φ;∆ . t[γ][δ] ∼ JtK0Φ;∆(γ; ρ) ∈ LT M0Φ;∆

20 J. Z. S. Hu and B. Pientka

J KiΨ ;Γ : Φ;∆ ⊢i t : T → JΦ;∆KiΨ ;Γ → JT K Ψ ;Γ (Evaluation)

Jmatch t with
−→
b K1Ψ ;Γ (σ; ρ) := match(s,

−→
b) Ψ ;Γ (σ; ρ) (if JtK1Ψ ;Γ (σ; ρ) = box s)

Jmatch t with
−→
b K1Ψ ;Γ (σ; ρ) :=↑TΨ ;Γ (match v with −→r)

(if JtK1Ψ ;Γ (σ; ρ) = v : □(∆′ ⊢ S) for some ∆′ and −→r := nfbranch(
−→
b) Ψ ;Γ (σ; ρ))

match : Ψ ;Γ ⊢0 t : T → Φ;∆ ⊢1
−→
b : ∆′ ⊢ T ⇒ T ′ → JΦ;∆K1Ψ ;Γ → JT K Ψ ;Γ

(Branch Evaluation Based on Code)

match(x,
−→
b) Ψ ;Γ (σ; ρ) := JtK1Ψ ;Γ (σ; ρ) (where x⇒ t :=

−→
b (x))

match(zero,
−→
b) Ψ ;Γ (σ; ρ) := JtK1Ψ ;Γ (σ; ρ) (where zero⇒ t :=

−→
b (zero))

match(succ s,
−→
b) Ψ ;Γ (σ; ρ) := JtK1Ψ ;Γ (σ, s/u; ρ) (where succ ?u⇒ t :=

−→
b (succ s))

match(λx.s,
−→
b) Ψ ;Γ (σ; ρ) := JtK1Ψ ;Γ (σ, s/u; ρ) (where λx.?u⇒ t :=

−→
b (λx.s))

match(t′ s,
−→
b) Ψ ;Γ (σ; ρ) := JtK1Ψ ;Γ (σ, t

′/u, s/u; ρ) (where ?u ?u′ ⇒ t :=
−→
b (t′ s))

match(uδ,
−→
b) Ψ ;Γ (σ; ρ) :=↑T

′
Ψ ;Γ (match box uδ with −→r)

(where −→r := nfbranch(
−→
b) Ψ ;Γ (σ; ρ))

nfbranch : Φ;∆ ⊢1 b : ∆′ ⊢ T ⇒ T ′ → JΦ;∆K1Ψ ;Γ → Ψ ;Γ ⊢1 r : ∆′ ⊢ T ⇒ T ′

(Normalization of A Branch)

nfbranch(x⇒ t) Ψ ;Γ (σ; ρ) := x⇒↓T
′

Ψ ;Γ (JtK1Ψ ;Γ (σ; ρ))

nfbranch(zero⇒ t)Ψ ;Γ (σ; ρ) := zero⇒↓T
′

Ψ ;Γ (JtK1Ψ ;Γ (σ; ρ))

nfbranch(succ ?u⇒ t)Ψ ;Γ (σ; ρ) :=

succ ?u⇒↓T
′

Ψ,u:(∆′⊢Nat);Γ (JtK1Ψ,u:(∆′⊢Nat);Γ (σ
′, uid/u; ρ′))

(where (σ′; ρ′) := (σ; ρ)[p(id); id] ∈ JΦ;∆K1Ψ,u:(∆′⊢Nat);Γ)

nfbranch(λx.?u⇒ t) Ψ ;Γ (σ; ρ) :=

λx.?u⇒↓T
′

Ψ,u:(∆′,x:S⊢T);Γ (JtK1Ψ,u:(∆′,x:S⊢T);Γ (σ
′, uid/u; ρ′))

(where x : S and (σ′; ρ′) := (σ; ρ)[p(id); id] ∈ JΦ;∆K1Ψ,u:(∆′,x:S⊢T);Γ)

nfbranch(?u ?u′ ⇒ t) Ψ ;Γ (σ; ρ) :=?u ?u′ ⇒↓T
′

Ψ ′;Γ (JtK1Ψ ′;Γ (σ
′, uid/u, u′id/u′; ρ′))

(for any S wf0, where Ψ ′ := Ψ, u : (∆′ ⊢ S −→ T ′), u′ : (∆′ ⊢ S),)
(and (σ′; ρ′) := (σ; ρ)[p(p(id)); id] ∈ JΦ;∆K1Ψ ′;Γ)

Fig. 7: Adjustments to the presheaf model

This definition taken from Sec. 4.3, unfortunately, cannot support the semantic
rule for pattern matching. Consider some Ψ ;Γ ⊨0 t s : T . To prove that pattern
matching on code is semantically sound, we perform an analysis on the structure
of t s. But we are stuck, because we cannot derive Ψ ;Γ ⊨0 t : S −→ T or Ψ ;Γ ⊨0
s : S for some S. In general, the semantic information of subterms is lost. To
support pattern matching on code, our semantic judgment must maintain both
the syntactic structure of the code and the semantic information of all subterms.
Therefore, our semantic judgments at layer 0 become inductively defined (Fig. 8).
These rules are essentially just the typing rules with some extra Ψ ;Γ ⊨0 t : T
premises. The inductive definition makes sure that the semantic information for
all subterms are maintained.

Finally, we refer to Ψ ;Γ ⊩0 t : T when we define the gluing relation for
□(Γ ⊢ T) at layer 1. This allows us to inspect the syntactic structure of t
during an evaluation of pattern matching and access its semantic information
at the same time. We refer readers to our technical report [27] for the proofs of
the semantic rules for pattern matching. At layer 1, we use the new semantic

Layered Modal Type Theory 21

Ψ wf
0 Γ wf

0

Ψ ;Γ ⊩0 · : ·
Ψ ;Γ ⊩0 δ : ∆ Ψ ;Γ ⊩0 t : T

Ψ ;Γ ⊩0 δ, t/x : ∆,x : T

Ψ wf
0 Γ wf

0

Ψ ;Γ ⊩0 zero : Nat

Ψ ;Γ ⊩0 t : Nat
Ψ ;Γ ⊨0 succ t : Nat

Ψ ;Γ ⊩0 succ t : Nat

Ψ wf
0 Γ wf

i

x : T ∈ Γ

Ψ ;Γ ⊩0 x : T

Ψ ;Γ ⊩0 δ : ∆

u : (∆ ⊢ T) ∈ Ψ Ψ ;Γ ⊨0 uδ : □(∆ ⊢ T)

Ψ ;Γ ⊩0 uδ : □(∆ ⊢ T)

Ψ ;Γ, x : S ⊩0 t : T
Ψ ;Γ ⊨0 λx.t : S −→ T

Ψ ;Γ ⊩0 λx.t : S −→ T

Ψ ;Γ ⊩0 t : S −→ T
Ψ ;Γ ⊩0 s : S Ψ ;Γ ⊨0 t s : T

Ψ ;Γ ⊩0 t s : T

Fig. 8: Layer-0 semantic judgment

judgment Ψ ;Γ ⊩0 t : T at layer 0 to define the semantic judgment for global
substitutions Φ ⊩ σ : Ψ , and then define the semantic judgment for terms and
local substitutions:

Ψ ;Γ ⊩1 t : T := ∀ Φ;Γ ⊩0 σ : Ψ and δ ∼ ρ ∈ LΓ M1Φ;∆ .
t[σ; δ] ∼ JtK1Φ;∆(σ; ρ) ∈ LT M1Φ;∆

Ψ ;Γ ⊩1 δ′ : ∆′ := ∀ Φ;Γ ⊩0 σ : Ψ and δ ∼ ρ ∈ LΓ M1Φ;∆ .
δ′[σ] ◦ δ ∼ Jδ′K1Φ;∆(σ; ρ) ∈ L∆′M1Φ;∆

By proving and then instantiating the fundamental theorems, we obtain the
soundness proof.

6 Future Extensions to Layered Systems

We have shown that 2-layered modal type theory supports intensional analysis
and retains normalization. In this section, we build on our previous development
and describe three possible extensions of layered systems as future work.

6.1 Extending to Complex Type Systems

In this paper, so far we only focused on simple types. Layering, however, is a
powerful idea that, we believe, scales naturally. A natural extension is to con-
sider System F, the foundation for many practical programming languages like
Haskell and ML family, as the core language. Haskell and ML communities have
expressed strong interest in meta-programming [49,59,58,34,35,53, etc.]. Layer-
ing provides a simple solution to this problem. In 2-layered System F, we replace
validity of types with well-kindedness of types: Ψ ;Γ ⊢i T : ∗. Following the ma-
tryoshka principle, at layer 0, we operate in System F, while at layer 1, we work
in a meta-language extending System F with one layer of □. We hope that 2-
layered System F not only guarantees the well-scopedness and well-typedness of
code, but is also normalizing, following our development here.

Besides System F, we are also interested in using Martin-Löf type theory
(MLTT) as the base language. 2-layered MLTT would provide a foundation for
tactic languages and meta-programming in proof assistants like Coq, Agda and

22 J. Z. S. Hu and B. Pientka

Lean. Following our previous development, we expect that 2-layered MLTT en-
ables 1 the reuse of all definitions from layer 0 at layer 1, and 2 the guarantee
of well-scopedness and well-typedness of all code. Since in MLTT types are also
terms, we simply reuse contextual types □(Γ ⊢ Type) for code of types.

One challenge we expect from extending MLTT with layering is the semantics
of code. For example, when we pattern match on code t : (λx.x) Nat, we expect
that the type is reduced to Nat. That is, (λx.x) Nat and Nat as types are con-
sidered the same even for code. We effectively take quotient of code over types.
This behavior aligns well with quotient inductive-inductive types (QIIT) [31,6]
and we expect QIIT to appear in the semantics in some form, but we leave the
detailed investigation as future work.

6.2 Extending Power of Layer 1

Though pattern matching allows inspection of code, not all operations can be
defined easily in this way. For example, the weak head normal form reduction
(whnf) on a term is not defined by a simple structural recursion on the syntax
of the term. In 2-layered modal type theory, we can extend a whnf operation at
layer 1 and still maintain normalization. The following are the rewrite rules for
whnf and we can extend our previous normalization algorithm in Sec. 5 with a
rewrite process [9,10]:

whnf (box zero)⇝ box zero whnf (box (succ t))⇝ box (succ t)
whnf (box (λx.t))⇝ box (λx.t) whnf (box ((λx.t) s))⇝ whnf (box (t[s/x]))

whnf (box x)⇝ box x
whnf (box t)⇝ whnf (box t′)

whnf (box (t s))⇝ whnf (box (t′ s))

whnf does not go under succ or λ and is only available at layer 1. Both local and
global substitutions simply propagate under whnf. The rewrite process repeats
these rules until no rule matches. This process will terminate due to the strong
normalization of STLC and therefore the whole system remains terminating.
However, with global variables, we must apply extra care to maintain conflu-
ence and eventually normalization. In Sec. 5.2, we discuss the impact of global
substitutions and the necessity of their stability. When we extend layer 1 with
another operation, we must also make sure that this extended operation is stable
under global substitutions. When whnf encounters a global variable in the head
position, such as whnf(box uδ) or whnf(box (uδ s)), there is no matching rule
and the rewrite process stops for the same reason for pattern matching stopping
for box uδ. The lack of a reduction rule when a global variable is in the head
position is particularly important. With whnf, we can now simplify a term before
matching, which is a very useful and typical tactic in proof assistants:

match box ((λx.x) zero) with | zero ⇒ true | ⇒ false ≈ false

match whnf (box ((λx.x) zero)) with | zero ⇒ true | ⇒ false ≈ true

Due to layering, whnf only needs to consider terms in STLC at layer 0. In a
homogeneous system, whnf must apply to all possible code, and thus becomes

Layered Modal Type Theory 23

troublesome to define. This extensibility of layer 1 is an important and useful
feature for a foundation for meta-programming in proof assistants.

6.3 Extending to More Layers

Another potential of layering is to generalize the 2-layered system to n layers for
a fixed n > 2. Scaling to n layers is in fact technically detailed, but conceptually
simple. We sketch the process briefly here and leave the details as future work.

In a layered system, terms are type-checked in a context array. For an n-
layered system, this context array has length n:

Γn−1; · · · ;Γ1;Γ0 ⊢i t : T or
−→
Γ ⊢i t : T where i ∈ [0, n− 1].

We now use x, y to range over variables in all contexts. Each context in the
context array contains bindings of a fixed shape. Bindings in Γ0 are x : T .
Bindings in Γi for i ∈ [1, n−1] are of the shape x : (∆i−1; · · · ;∆0 ⊢ T). Bindings
in each ∆j also have the specified shape. Contextual types are generalized to
context arrays: □(∆i−1; · · · ;∆0 ⊢ T). The design of a n-layered system is guided
by two principles: the matryoshka principle, which says types and terms at lower
layers are subsumed by higher layers, and the static code principle, which only
terms at layer n−1 compute. Particularly, the latter principle means that terms
from layer 0 to n− 2 are static code. Following both principles, we will be able
to fill in the details and design an n-layered system.

We expect the n-layered generalization to be compatible with the extension
with operations described in Sec. 6.2. Instead of extending layer 1, we extend
layer n− 1 so that all lower layers are unaffected.

7 Related Work and Conclusion

7.1 Normalization of Modal Type Theories

The core of our paper is the normalization of 2-layered modal type theory. Re-
cently, there have been a number of approaches that explore modal type theories.
One of the earliest is from Nanevski et al. [39]. They prove the normalization for
contextual modal type theory (CMTT) indirectly by a translation to the system
by de Groote [23]. This translation does not give a direct normalization algorithm
for CMTT. Our system in Sec. 3 is strictly weaker than CMTT by disallowing
nested □s. Even if we scale our system to n layers as outlined in Sec. 6.3, the
resulting system will only have a hierarchy of contextual types, so we still cannot
recover the same expressive power as CMTT to do arbitrary nesting of □s. Nev-
ertheless, in Sec. 5, we have shown that this temporary loss in expressive power
enables an orthogonal avenue of intensional analysis that is difficult to obtain
in CMTT. Kavvos [32] proposes formulations for a few different modalities in
the dual-context style and proves the normalization using a translation to de
Groote’s system as well. The normalization of System GL, however, is proved
directly by reducibility candidates. Lately, Gratzer [20] proves the normalization

24 J. Z. S. Hu and B. Pientka

of multimodal type theory, a generalization of the dual-context systems, using
Sterling’s [51] synthetic Tait’s computability.

The Kripke-style systems are another kind of formulation of modalities and is
different from ours in context management. The normalization problem for this
style is more intensively investigated. Borghuis [13] proves the strong normaliza-
tion of modal pure type systems in his PhD thesis. More recently, Clouston [16]
proves the normalization of System K using reducbility candidates. Gratzer et
al.[22] prove the normalization of a dependent type theory with idempotent S4
by parameterizing Abel’s [1] untyped domain method with a poset. Valliappan
et al. [55] use the same method and prove the normalization for Systems K,
T , K4 and S4. Hu and Pientka [26] establish the same result but introduce a
“truncoid” algebraic structure to the untyped domain model instead, so that
one normalization proof can be instantiated to adapt to all four systems. This
method using truncoids has been scaled to dependent types [25]. It is worth
emphasizing that none of these modal type theories supports pattern matching
on code as we do in our 2-layer modal type theory.

7.2 Homogeneous Meta-programming and Its Foundations

Early ideas of metaprogramming using quasi-quoting style can be traced back
to Lisp/Scheme [3]. In Lisp’s untyped setting, all programs are represented as
lists, so intensional analysis is reduced to inspections of lists and is relatively
simple. Supporting type-safe metaprogramming leads to all the complications.
MetaML [54] is an early example for type-safe meta-programming. MetaML em-
ploys a quasi-quoting style similar to Lisp. However, MetaML does not support
any form of intensional analysis. In fact, MetaML’s meta-theory even allows re-
duction of code under quote [52], so intensional analysis is deliberately avoided.
The correspondence between meta-programming and modal logic S4 is described
by Davies and Pfenning [17]. The correspondence explains how the modal logic
S4 models multi-staging and code composition, but it does not explain how in-
tensional analysis should be supported. Two formulations of S4 are presented:
the dual-context style and the Kripke style. While the Kripke-style formulation
provides a type-theoretic formulation for quasi-quotation, it is more challenging
to extend and support intensional analysis. On the other hand, the dual-context
style forces programmers to write meta-programs in a comonadic style, but it
has better setup for intensional analysis as we have demonstrated. This is also
the approach taken in Beluga [43,45] and Moebius [30].

The semantics for dual-context style has also been studied previously. In the
context of contextual types, Gabbay and Nanevski [19] attempt to give a set-
theoretic semantics to contextual types. As pointed out by Kavvos [33], their
exact formulation of contextual types seems to break the confluence property.

Boespflug and Pientka [12] extend the dual-context style to the multi-context
style. Though the multi-context style and the Kripke style both use multiple
contexts for typing, the number of contexts in the former is more or less fixed
(hence context arrays), while in the latter, contexts are often pushed and popped
during typing (hence context stacks). Davies and Pfenning [17] show that the

Layered Modal Type Theory 25

Kripke style system is equivalent to the dual-context style. Moebius [30] combines
the multi-context style and contextual types, and supports pattern matching on
code in System F. Moebius has subject reduction. However, to adapt Moebius to
a type theory, normalization must be proved, but it is not obvious how to support
coverage. Whether layering provides a solution requires a future investigation.

Ωmega [56] is another example for a sound meta-programming system with
pattern matching on code. Ωmega implements the quasi-quoting style. The open
context of a code is annotated in the type, similar to contextual types. However,
the type of the code itself is not remembered, so their type system is not as
complex due to reduced type information.

7.3 Intensionality in Type Theories

Interest in intensionality is often associated with modalities. Pfenning [41] de-
scribes a type theory in which terms might be treated intensionally, extensionally,
or irrelevantly when corresponding modalities are employed. This is similar to
our setting, where intensionality of code is marked by the □ modality. In the
same setting, Kavvos [33] describes a special kind of intensional recursions using
Löb induction ((□A → A) → A), which supports meta-programs to access their
own code. Löb induction says if we can prove A from the proof of A, then A is
true. Löb induction is incompatible with the Axiom T (□A → A), but it still has
interesting computational behaviors, including an example for computer viruses.
Chen and Ko [14] resolve the incompatibility between the Löb induction and the
Axiom T by supporting them in two separate modalities.

7.4 Layering in Type Theories

Layering can also be found in other type theories. Logical Framework (LF) [24]
is essentially a layered system. LF is a dependently typed framework to define
object languages. These object languages live at one layer. LF as their meta-
language live at a higher layer. Isabelle [40] is one example for modern proof
assistants based on LF. There are two layers in Cocon [47]. At the lower layer
is LF, which defines an object language. At the higher layer is a Martin-Löf
type theory (MLTT) for computation. Two layers are connected by contextual
types. Cocon supports induction in MLTT on the syntax of an object language
in LF. Cocon’s structure leads to a similar semantics to our 2-layered modal
type theory. The main difference is that in 2-layered modal type theory, the core
language at layer 0 is a sub-language of the computational language at layer 1.
Consequently, all terms at layer 0 can be lifted to layer 1 (Lemma 3) for free and
be run as programs. The conversion from code to programs is done implicitly in
the semantics. Contrarily, in Cocon, since the object language is defined freely,
an embedding to MLTT must be given explicitly and is only possible if the
object language has strictly weaker expressive power. A categorical semantics
for Cocon is given by Hu et al.[46,29]. Kovács [36] and Allais [4] demonstrate
applications of 2-level type theory which focuses more on code composition and
does not support intensional analysis.

26 J. Z. S. Hu and B. Pientka

Our system uses layers to account for the number of nested □’s, which shares
some similarity with graded and quantitative systems [8,2,38]. The latter sys-
tems use grades to keep track of uses of variables. We believe that it would be
interesting to have a universal framework to contain all these different uses of
modalities, though it requires further investigations.

Our approach is also similar to GuTT [21], a guarded type theory supporting
Löb induction. GuTT has two layers. The first layer excludes dynamics of Löb
induction (but not for other terms) and enjoys normalization. The lost dynamics
is recovered at the second layer, at the cost of normalization. We are similar in
that we both take advantage of differences between layers and one layer is the
extension of the other.

7.5 Conclusion and Future Work

In this paper, we introduce the layered style to support intensional analysis in
type theory. In the layered view, meta-programming is done in an extended lan-
guage of a chosen core language. Pattern matching on code at a higher layer
only needs to handle code at lower layers, hence circumventing the complica-
tions in previous work. We investigate the layered style in 2-layered modal type
theory, which supports pattern matching on code where we guarantee coverage
by construction. We provide a constructive proof of normalization by evaluation
using a presheaf model. The normalization algorithm extracted from the model
is proven complete and sound and is implemented in Agda.

Layering provides a controlled and modular way to introduce meta-program-
ming with intensional analysis to type theory. As a first step, we plan to add
context abstraction following the approach taken for example in Beluga to sup-
port more general recursion principles [43,44]. We see abstracting over contexts
as an orthogonal issue. As a next step, we will adapt layering to Martin-Löf type
theory (MLTT). Both extensions will create the first dependent type theory that
is supporting intensional analysis of code within MLTT. In the long term, we
hope that this type theory will also provide a foundation for extending the core
language of Coq, Agda, or other proof assistants with a meta-language of tactics
that can reuse all definitions from the core language while the normalization of
the overall system is retained.

References

1. Abel, A.: Normalization by evaluation: dependent types and impredicativity. Ha-
bilitation thesis, Ludwig-Maximilians-Universität München (2013), https://www.
cse.chalmers.se/~abela/habil.pdf

2. Abel, A., Bernardy, J.: A unified view of modalities in type systems. Proc. ACM
Program. Lang. 4(ICFP), 90:1–90:28 (2020), https://doi.org/10.1145/3408972

3. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs,
Second Edition. MIT Press (1996)

4. Allais, G.: Scoped and typed staging by evaluation (2024), https://arxiv.org/
abs/2310.13413

https://www.cse.chalmers.se/~abela/habil.pdf
https://www.cse.chalmers.se/~abela/habil.pdf
https://doi.org/10.1145/3408972
https://arxiv.org/abs/2310.13413
https://arxiv.org/abs/2310.13413

Layered Modal Type Theory 27

5. Altenkirch, T., Hofmann, M., Streicher, T.: Categorical reconstruction of a re-
duction free normalization proof. In: Pitt, D.H., Rydeheard, D.E., Johnstone,
P.T. (eds.) Category Theory and Computer Science, 6th International Confer-
ence, CTCS ’95, Cambridge, UK, August 7-11, 1995, Proceedings. Lecture Notes
in Computer Science, vol. 953, pp. 182–199. Springer (1995), https://doi.org/
10.1007/3-540-60164-3_27

6. Altenkirch, T., Kaposi, A.: Normalisation by evaluation for dependent types. In:
Kesner, D., Pientka, B. (eds.) 1st International Conference on Formal Structures
for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal.
LIPIcs, vol. 52, pp. 6:1–6:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2016), https://doi.org/10.4230/LIPIcs.FSCD.2016.6

7. Anand, A., Boulier, S., Cohen, C., Sozeau, M., Tabareau, N.: Towards certified
meta-programming with typed template-coq. In: Avigad, J., Mahboubi, A. (eds.)
Interactive Theorem Proving - 9th International Conference, ITP 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018,
Proceedings. Lecture Notes in Computer Science, vol. 10895, pp. 20–39. Springer
(2018), https://doi.org/10.1007/978-3-319-94821-8_2

8. Atkey, R.: Syntax and semantics of quantitative type theory. In: Dawar, A., Grädel,
E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp. 56–65. ACM
(2018), https://doi.org/10.1145/3209108.3209189

9. Berger, U., Eberl, M., Schwichtenberg, H.: Normalization by Evaluation. In: Möller,
B., Tucker, J.V. (eds.) Prospects for Hardware Foundations: ESPRIT Working
Group 8533 NADA — New Hardware Design Methods Survey Chapters, pp.
117–137. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (1998),
https://doi.org/10.1007/3-540-49254-2_4

10. Berger, U., Eberl, M., Schwichtenberg, H.: Term rewriting for normalization
by evaluation. Inf. Comput. 183(1), 19–42 (2003), https://doi.org/10.1016/

S0890-5401(03)00014-2

11. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed
lambda -calculus. In: [1991] Proceedings Sixth Annual IEEE Symposium on Logic
in Computer Science. pp. 203–211 (Jul 1991). https://doi.org/10.1109/LICS.
1991.151645

12. Boespflug, M., Pientka, B.: Multi-level contextual type theory. In: Geuvers, H.,
Nadathur, G. (eds.) Proceedings Sixth International Workshop on Logical Frame-
works and Meta-languages: Theory and Practice, LFMTP 2011, Nijmegen, The
Netherlands, August 26, 2011. EPTCS, vol. 71, pp. 29–43 (2011), https://doi.
org/10.4204/EPTCS.71.3

13. Borghuis, V.A.J.: Coming to terms with modal logic : on the interpretation of
modalities in typed lambda-calculus. PhD Thesis, Mathematics and Computer
Science (1994), https://doi.org/10.6100/IR427575

14. Chen, L., Ko, H.: Realising intensional S4 and GL modalities. In: Manea, F., Simp-
son, A. (eds.) 30th EACSL Annual Conference on Computer Science Logic, CSL
2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference). LIPIcs,
vol. 216, pp. 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022),
https://doi.org/10.4230/LIPIcs.CSL.2022.14

15. Christiansen, D.R., Brady, E.C.: Elaborator reflection: extending idris in idris. In:
Garrigue, J., Keller, G., Sumii, E. (eds.) Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, Nara, Japan,

https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1007/3-540-49254-2_4
https://doi.org/10.1016/S0890-5401(03)00014-2
https://doi.org/10.1016/S0890-5401(03)00014-2
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.4204/EPTCS.71.3
https://doi.org/10.4204/EPTCS.71.3
https://doi.org/10.6100/IR427575
https://doi.org/10.4230/LIPIcs.CSL.2022.14

28 J. Z. S. Hu and B. Pientka

September 18-22, 2016. pp. 284–297. ACM (2016), https://doi.org/10.1145/
2951913.2951932

16. Clouston, R.: Fitch-style modal lambda calculi. In: Baier, C., Lago, U.D. (eds.)
Foundations of Software Science and Computation Structures - 21st International
Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings. Lecture Notes in Computer Science, vol. 10803, pp. 258–275.
Springer (2018), https://doi.org/10.1007/978-3-319-89366-2_14

17. Davies, R., Pfenning, F.: A modal analysis of staged computation. Journal of
the ACM 48(3), 555–604 (May 2001), https://dl.acm.org/doi/10.1145/382780.
382785

18. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogramming
framework for formal verification. Proc. ACM Program. Lang. 1(ICFP), 34:1–34:29
(2017), https://doi.org/10.1145/3110278

19. Gabbay, M.J., Nanevski, A.: Denotation of contextual modal type theory (CMTT):
syntax and meta-programming. J. Appl. Log. 11(1), 1–29 (2013), https://doi.
org/10.1016/j.jal.2012.07.002

20. Gratzer, D.: Normalization for multimodal type theory. In: Baier, C., Fisman,
D. (eds.) LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, Haifa, Israel, August 2 - 5, 2022. pp. 2:1–2:13. ACM (2022), https://doi.
org/10.1145/3531130.3532398

21. Gratzer, D., Birkedal, L.: A stratified approach to löb induction. In: Felty, A.P.
(ed.) 7th International Conference on Formal Structures for Computation and
Deduction, FSCD 2022, August 2-5, 2022, Haifa, Israel. LIPIcs, vol. 228, pp.
23:1–23:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022), https:

//doi.org/10.4230/LIPIcs.FSCD.2022.23

22. Gratzer, D., Sterling, J., Birkedal, L.: Implementing a modal dependent type the-
ory. Proceedings of the ACM on Programming Languages 3(ICFP), 107:1–107:29
(Jul 2019), https://doi.org/10.1145/3341711

23. de Groote, P.: On the Strong Normalization of Natural Deduction with
Permutation-Conversions. In: Narendran, P., Rusinowitch, M. (eds.) Rewriting
Techniques and Applications. pp. 45–59. Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg (1999), https://doi.org/10.1007/3-540-48685-2_4

24. Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. J. ACM
40(1), 143–184 (1993), https://doi.org/10.1145/138027.138060

25. Hu, J.Z.S., Jang, J., Pientka, B.: Normalization by evaluation for modal dependent
type theory. Journal of Functional Programming 33, e7 (2023). https://doi.org/
10.1017/S0956796823000060

26. Hu, J.Z.S., Pientka, B.: A Categorical Normalization Proof for the Modal Lambda-
Calculus. Electronic Notes in Theoretical Informatics and Computer Science Vol-
ume 1 - Proceedings of MFPS XXXVIII (Feb 2023), https://entics.

episciences.org/10360

27. Hu, J.Z.S., Pientka, B.: Layered modal type theories (2023), https://arxiv.org/
abs/2305.06548

28. Hu, J.Z.S., Pientka, B.: Agda mechanization (2024), https://doi.org/10.5281/
zenodo.10492818

29. Hu, J.Z.S., Pientka, B., Schöpp, U.: A category theoretic view of contextual types:
From simple types to dependent types. ACM Trans. Comput. Log. 23(4), 25:1–
25:36 (2022), https://doi.org/10.1145/3545115

https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1007/978-3-319-89366-2_14
https://dl.acm.org/doi/10.1145/382780.382785
https://dl.acm.org/doi/10.1145/382780.382785
https://doi.org/10.1145/3110278
https://doi.org/10.1016/j.jal.2012.07.002
https://doi.org/10.1016/j.jal.2012.07.002
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.4230/LIPIcs.FSCD.2022.23
https://doi.org/10.4230/LIPIcs.FSCD.2022.23
https://doi.org/10.1145/3341711
https://doi.org/10.1007/3-540-48685-2_4
https://doi.org/10.1145/138027.138060
https://doi.org/10.1017/S0956796823000060
https://doi.org/10.1017/S0956796823000060
https://doi.org/10.1017/S0956796823000060
https://doi.org/10.1017/S0956796823000060
https://entics.episciences.org/10360
https://entics.episciences.org/10360
https://arxiv.org/abs/2305.06548
https://arxiv.org/abs/2305.06548
https://doi.org/10.5281/zenodo.10492818
https://doi.org/10.5281/zenodo.10492818
https://doi.org/10.1145/3545115

Layered Modal Type Theory 29

30. Jang, J., Gélineau, S., Monnier, S., Pientka, B.: Mœbius: metaprogramming using
contextual types: the stage where system f can pattern match on itself. Proc. ACM
Program. Lang. 6(POPL), 1–27 (2022), https://doi.org/10.1145/3498700

31. Kaposi, A., Altenkirch, T.: Normalisation by Evaluation for Type Theory, in Type
Theory. Logical Methods in Computer Science Volume 13, Issue 4 (Oct 2017),
https://lmcs.episciences.org/4005/pdf, publisher: Episciences.org

32. Kavvos, G.A.: Dual-context calculi for modal logic. In: 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017. pp. 1–12. IEEE Computer Society (2017), https://doi.org/10.1109/
LICS.2017.8005089

33. Kavvos, G.A.: Intensionality, intensional recursion and the gödel-löb axiom. FLAP
8(8), 2287–2312 (2021), https://collegepublications.co.uk/ifcolog/?00050

34. Kiselyov, O.: The design and implementation of BER metaocaml - system de-
scription. In: Codish, M., Sumii, E. (eds.) Functional and Logic Programming -
12th International Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014.
Proceedings. Lecture Notes in Computer Science, vol. 8475, pp. 86–102. Springer
(2014), https://doi.org/10.1007/978-3-319-07151-0_6

35. Kokaji, Y., Kameyama, Y.: Polymorphic multi-stage language with control effects.
In: Yang, H. (ed.) Programming Languages and Systems - 9th Asian Symposium,
APLAS 2011, Kenting, Taiwan, December 5-7, 2011. Proceedings. Lecture Notes
in Computer Science, vol. 7078, pp. 105–120. Springer (2011), https://doi.org/
10.1007/978-3-642-25318-8_11

36. Kovács, A.: Staged compilation with two-level type theory. Proc. ACM Program.
Lang. 6(ICFP), 540–569 (2022), https://doi.org/10.1145/3547641

37. Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part. In: Rose,
H.E., Shepherdson, J.C. (eds.) Studies in Logic and the Foundations of Mathe-
matics, Logic Colloquium ’73, vol. 80, pp. 73–118. Elsevier (Jan 1975), https:
//www.sciencedirect.com/science/article/pii/S0049237X08719451

38. Moon, B., III, H.E., Orchard, D.: Graded modal dependent type theory. In:
Yoshida, N. (ed.) Programming Languages and Systems - 30th European Sym-
posium on Programming, ESOP 2021, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City,
Luxembourg, March 27 - April 1, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12648, pp. 462–490. Springer (2021), https://doi.org/10.1007/

978-3-030-72019-3_17

39. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM
Transactions on Computational Logic 9(3), 23:1–23:49 (Jun 2008), https://doi.
org/10.1145/1352582.1352591

40. Paulson, L.C.: Natural deduction as higher-order resolution. J. Log. Program. 3(3),
237–258 (1986), https://doi.org/10.1016/0743-1066(86)90015-4

41. Pfenning, F.: Intensionality, extensionality, and proof irrelevance in modal type
theory. In: 16th Annual IEEE Symposium on Logic in Computer Science, Boston,
Massachusetts, USA, June 16-19, 2001, Proceedings. pp. 221–230. IEEE Computer
Society (2001), https://doi.org/10.1109/LICS.2001.932499

42. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathemat-
ical Structures in Computer Science 11(04) (Aug 2001), http://www.journals.
cambridge.org/abstract_S0960129501003322

43. Pientka, B.: A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In: Necula, G.C., Wadler, P. (eds.) Pro-
ceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

https://doi.org/10.1145/3498700
https://lmcs.episciences.org/4005/pdf
https://doi.org/10.1109/LICS.2017.8005089
https://doi.org/10.1109/LICS.2017.8005089
https://collegepublications.co.uk/ifcolog/?00050
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-642-25318-8_11
https://doi.org/10.1007/978-3-642-25318-8_11
https://doi.org/10.1145/3547641
https://www.sciencedirect.com/science/article/pii/S0049237X08719451
https://www.sciencedirect.com/science/article/pii/S0049237X08719451
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1016/0743-1066(86)90015-4
https://doi.org/10.1109/LICS.2001.932499
http://www.journals.cambridge.org/abstract_S0960129501003322
http://www.journals.cambridge.org/abstract_S0960129501003322

30 J. Z. S. Hu and B. Pientka

gramming Languages, POPL 2008, San Francisco, California, USA, January 7-12,
2008. pp. 371–382. ACM (2008), https://doi.org/10.1145/1328438.1328483

44. Pientka, B., Abel, A.: Well-Founded Recursion over Contextual Objects. In: Al-
tenkirch, T. (ed.) 13th International Conference on Typed Lambda Calculi and Ap-
plications (TLCA 2015). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 38, pp. 273–287. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany (2015), http://drops.dagstuhl.de/opus/volltexte/2015/5169

45. Pientka, B., Dunfield, J.: Programming with proofs and explicit contexts. In: Antoy,
S., Albert, E. (eds.) Proceedings of the 10th International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, July 15-17, 2008,
Valencia, Spain. pp. 163–173. ACM (2008), https://doi.org/10.1145/1389449.
1389469

46. Pientka, B., Schöpp, U.: Semantical Analysis of Contextual Types. In: Goubault-
Larrecq, J., König, B. (eds.) Foundations of Software Science and Computation
Structures. pp. 502–521. Lecture Notes in Computer Science, Springer Interna-
tional Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45231-5_
26

47. Pientka, B., Thibodeau, D., Abel, A., Ferreira, F., Zucchini, R.: A type theory
for defining logics and proofs. In: 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. pp.
1–13. IEEE (2019), https://doi.org/10.1109/LICS.2019.8785683

48. Schürmann, C., Despeyroux, J., Pfenning, F.: Primitive recursion for higher-order
abstract syntax. Theor. Comput. Sci. 266(1-2), 1–57 (Sep 2001), http://dx.doi.
org/10.1016/S0304-3975(00)00418-7

49. Sheard, T., Jones, S.P.: Template meta-programming for haskell. In: Chakravarty,
M.M.T. (ed.) Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell,
Haskell 2002, Pittsburgh, Pennsylvania, USA, October 3, 2002. pp. 1–16. ACM
(2002), https://doi.org/10.1145/581690.581691

50. Sozeau, M., Anand, A., Boulier, S., Cohen, C., Forster, Y., Kunze, F., Malecha, G.,
Tabareau, N., Winterhalter, T.: The metacoq project. J. Autom. Reason. 64(5),
947–999 (2020), https://doi.org/10.1007/s10817-019-09540-0

51. Sterling, J.: First Steps in Synthetic Tait Computability: The Objective Metathe-
ory of Cubical Type Theory. Ph.D. thesis, Carnegie Mellon University, USA (2022),
https://doi.org/10.1184/r1/19632681.v1

52. Taha, W.: A sound reduction semantics for untyped CBN multi-stage computa-
tion. or, the theory of metaml is non-trivial (extended abstract). In: Lawall, J.L.
(ed.) Proceedings of the 2000 ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM ’00), Boston, Massachusetts,
USA, January 22-23, 2000. pp. 34–43. ACM (2000), https://doi.org/10.1145/
328690.328697

53. Taha, W., Sheard, T.: Multi-stage programming with explicit annotations. In:
Proceedings of the 1997 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation. pp. 203–217. PEPM ’97, Association for
Computing Machinery, New York, NY, USA (Dec 1997), https://doi.org/10.
1145/258993.259019

54. Taha, W., Sheard, T.: Metaml and multi-stage programming with explicit annota-
tions. Theor. Comput. Sci. 248(1-2), 211–242 (2000), https://doi.org/10.1016/
S0304-3975(00)00053-0

55. Valliappan, N., Ruch, F., Tomé Cortiñas, C.: Normalization for fitch-style modal
calculi. Proc. ACM Program. Lang. 6(ICFP), 772–798 (2022), https://doi.org/
10.1145/3547649

https://doi.org/10.1145/1328438.1328483
http://drops.dagstuhl.de/opus/volltexte/2015/5169
https://doi.org/10.1145/1389449.1389469
https://doi.org/10.1145/1389449.1389469
https://doi.org/10.1007/978-3-030-45231-5_26
https://doi.org/10.1007/978-3-030-45231-5_26
https://doi.org/10.1007/978-3-030-45231-5_26
https://doi.org/10.1007/978-3-030-45231-5_26
https://doi.org/10.1109/LICS.2019.8785683
http://dx.doi.org/10.1016/S0304-3975(00)00418-7
http://dx.doi.org/10.1016/S0304-3975(00)00418-7
https://doi.org/10.1145/581690.581691
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1184/r1/19632681.v1
https://doi.org/10.1145/328690.328697
https://doi.org/10.1145/328690.328697
https://doi.org/10.1145/258993.259019
https://doi.org/10.1145/258993.259019
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649

Layered Modal Type Theory 31

56. Viera, M., Pardo, A.: A multi-stage language with intensional analysis. In: Jarz-
abek, S., Schmidt, D.C., Veldhuizen, T.L. (eds.) Generative Programming and
Component Engineering, 5th International Conference, GPCE 2006, Portland, Ore-
gon, USA, October 22-26, 2006, Proceedings. pp. 11–20. ACM (2006), https:

//doi.org/10.1145/1173706.1173709

57. van der Walt, P., Swierstra, W.: Engineering proof by reflection in agda. In: Hinze,
R. (ed.) Implementation and Application of Functional Languages - 24th Interna-
tional Symposium, IFL 2012, Oxford, UK, August 30 - September 1, 2012, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 8241, pp. 157–173.
Springer (2012), https://doi.org/10.1007/978-3-642-41582-1_10

58. Xie, N., Pickering, M., Löh, A., Wu, N., Yallop, J., Wang, M.: Staging with class:
a specification for typed template haskell. Proc. ACM Program. Lang. 6(POPL),
1–30 (2022), https://doi.org/10.1145/3498723

59. Yallop, J.: Staged generic programming. Proc. ACM Program. Lang. 1(ICFP),
29:1–29:29 (2017), https://doi.org/10.1145/3110273

60. Zeilberger, N.: Focusing and higher-order abstract syntax. In: Necula, G.C.,
Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008. pp. 359–369. ACM (2008), https://doi.org/10.1145/
1328438.1328482

61. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac:
A monad for typed tactic programming in coq. J. Funct. Program. 25 (2015),
https://doi.org/10.1017/S0956796815000118

https://doi.org/10.1145/1173706.1173709
https://doi.org/10.1145/1173706.1173709
https://doi.org/10.1007/978-3-642-41582-1_10
https://doi.org/10.1145/3498723
https://doi.org/10.1145/3110273
https://doi.org/10.1145/1328438.1328482
https://doi.org/10.1145/1328438.1328482
https://doi.org/10.1017/S0956796815000118

	Layered Modal Type Theory

